JP2014110266A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2014110266A
JP2014110266A JP2012262688A JP2012262688A JP2014110266A JP 2014110266 A JP2014110266 A JP 2014110266A JP 2012262688 A JP2012262688 A JP 2012262688A JP 2012262688 A JP2012262688 A JP 2012262688A JP 2014110266 A JP2014110266 A JP 2014110266A
Authority
JP
Japan
Prior art keywords
semiconductor element
solder resist
resist layer
insulating substrate
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012262688A
Other languages
Japanese (ja)
Inventor
Kenji Nakamura
憲志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera SLC Technologies Corp
Original Assignee
Kyocera SLC Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera SLC Technologies Corp filed Critical Kyocera SLC Technologies Corp
Priority to JP2012262688A priority Critical patent/JP2014110266A/en
Publication of JP2014110266A publication Critical patent/JP2014110266A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board in which disconnection is rarely generated on an extraction wire in an opening on a solder resist layer.SOLUTION: A wiring board 10 consists of an insulation substrate 1 having a mounting part 1a where a semiconductor element S is mounted on its upper surface center; a number of semiconductor element connection pads 5 arranged parallel to each other along an outer periphery of the semiconductor element S on an outer periphery of the mounting part 1a on the insulation substrate 1; an extraction wire 6 extending from semiconductor element connection pads 5 to the center side of the mounting part 1a on the insulation substrate 1; and a solder resist layer 3 applied to the upper surface of the insulation substrate 1 and having an opening 3a which exposes the semiconductor element connection pads 5 and in which its inner peripheral side 3ai gets across the extraction wire 6. The inner peripheral side 3ai has a wavy shape in which a part getting across the extraction wire 6 has a gradient θ of 45 degrees or less with respect to a virtual line L connecting the part to the center of the mounting part 1a.

Description

本発明は、半導体素子を搭載するために用いられる配線基板に関するものである。   The present invention relates to a wiring board used for mounting a semiconductor element.

従来、下面外周部に電極端子がペリフェラル配置された半導体素子をフリップチップ接続により搭載する配線基板が知られている。このような従来の配線基板20の例を図4(a),(b)に示す。従来の配線基板20は、絶縁基板11と配線導体12とソルダーレジスト13とを有している。なお、図4(b)においては、絶縁基板11上面の配線導体12のうち、ソルダーレジスト層13で覆われている部分を破線で示している。   2. Description of the Related Art Conventionally, there is known a wiring board on which a semiconductor element having electrode terminals arranged peripherally on the outer periphery of a lower surface is mounted by flip chip connection. An example of such a conventional wiring board 20 is shown in FIGS. A conventional wiring board 20 includes an insulating substrate 11, a wiring conductor 12, and a solder resist 13. In FIG. 4B, a portion of the wiring conductor 12 on the upper surface of the insulating substrate 11 that is covered with the solder resist layer 13 is indicated by a broken line.

絶縁基板11は、例えばガラスクロスにエポキシ樹脂等の熱硬化性樹脂を含浸させた電気絶縁材料から成り、その上面中央部に半導体素子Sを搭載するための搭載部11aを有している。また、絶縁基板11の上面から下面にかけては多数のスルーホール14が形成されている。   The insulating substrate 11 is made of, for example, an electrically insulating material in which a glass cloth is impregnated with a thermosetting resin such as an epoxy resin, and has a mounting portion 11a for mounting the semiconductor element S on the center of the upper surface thereof. A number of through holes 14 are formed from the upper surface to the lower surface of the insulating substrate 11.

配線導体12は、銅箔や銅めっき層から成り、絶縁基板11の上面の搭載部11aからスルーホール14内壁を介して絶縁基板11の下面に導出している。絶縁基板11の上面の配線導体12は、搭載部11aの外周部に多数の半導体素子接続パッド15を有している。これらの半導体素子接続パッド15は、半導体素子Sの外周辺に沿って2列の並びで配置されている。さらに、各半導体素子接続パッド15には引出配線16が接続されている。内側の列の半導体素子接続パッド15に接続された引出配線16は搭載部11aの中央部側に延びており、外側の列の半導体素子接続パッド15に接続された引出配線16は搭載部11aの外側に延びている。また、絶縁基板11の下面の配線導体12は、多数の外部接続パッド17を有している。これらの外部接続パッド17は絶縁基板11の下面に格子状の並び配置されている。そして、半導体素子接続パッド15と外部接続パッド17とは、対応するもの同士が引出配線16およびスルーホール14内の配線導体12を介して互いに電気的に接続されている。   The wiring conductor 12 is made of a copper foil or a copper plating layer, and is led out from the mounting portion 11 a on the upper surface of the insulating substrate 11 to the lower surface of the insulating substrate 11 through the inner wall of the through hole 14. The wiring conductor 12 on the upper surface of the insulating substrate 11 has a large number of semiconductor element connection pads 15 on the outer periphery of the mounting portion 11a. These semiconductor element connection pads 15 are arranged in two rows along the outer periphery of the semiconductor element S. Further, a lead wiring 16 is connected to each semiconductor element connection pad 15. The lead wiring 16 connected to the semiconductor element connection pad 15 in the inner row extends to the center side of the mounting portion 11a, and the lead wiring 16 connected to the semiconductor element connection pad 15 in the outer row is connected to the mounting portion 11a. It extends outward. Further, the wiring conductor 12 on the lower surface of the insulating substrate 11 has a large number of external connection pads 17. These external connection pads 17 are arranged in a grid on the lower surface of the insulating substrate 11. Corresponding semiconductor element connection pads 15 and external connection pads 17 are electrically connected to each other via lead wires 16 and wiring conductors 12 in the through holes 14.

ソルダーレジスト層13は、エポキシ樹脂等の熱硬化性樹脂から成り、絶縁基板11の上下面に被着されているとともにスルーホール14内に充填されている。ソルダーレジスト層13には、絶縁基板11の上面側において半導体素子接続パッド15およびこれに接続された引出配線16の一部を露出させる開口部13aが形成されている。開口部13aは、内外2列の半導体素子接続パッド15およびこれらに接続された引出配線16の一部を一括して露出させるように搭載部11aの外周部に沿った方形枠状をしている。また、ソルダーレジスト層13には、絶縁基板11の下面側において外部接続パッド17を露出させる開口部13bが形成されている。開口部13bは、各外部接続パッド17を個別に露出させる円形をしている。   The solder resist layer 13 is made of a thermosetting resin such as an epoxy resin, and is attached to the upper and lower surfaces of the insulating substrate 11 and filled in the through holes 14. In the solder resist layer 13, an opening 13 a is formed on the upper surface side of the insulating substrate 11 to expose the semiconductor element connection pad 15 and a part of the lead wiring 16 connected thereto. The opening 13a has a rectangular frame shape along the outer peripheral portion of the mounting portion 11a so as to expose a part of the inner and outer two rows of semiconductor element connection pads 15 and a part of the lead wiring 16 connected thereto. . The solder resist layer 13 is formed with an opening 13 b that exposes the external connection pad 17 on the lower surface side of the insulating substrate 11. The opening 13b has a circular shape that exposes each external connection pad 17 individually.

そして、この従来の配線基板20によれば、図5に示すように、搭載部11a上に半導体素子Sを、その各電極端子Tと対応する半導体素子接続パッド15とが向かい合うようにして配置するとともに電極端子Tと半導体素子接続パッド15とを半田を介して接続し、しかる後、配線基板20と半導体素子Sとの間に球状シリカ等の無機絶縁物フィラーが分散された熱硬化性樹脂から成る封止樹脂Uを注入するとともに熱硬化させることにより、半導体素子Sが搭載部11a上に実装されることとなる。   According to this conventional wiring board 20, as shown in FIG. 5, the semiconductor element S is arranged on the mounting portion 11a so that the electrode terminals T and the corresponding semiconductor element connection pads 15 face each other. At the same time, the electrode terminal T and the semiconductor element connection pad 15 are connected via solder, and then, from a thermosetting resin in which an inorganic insulating filler such as spherical silica is dispersed between the wiring substrate 20 and the semiconductor element S. The semiconductor element S is mounted on the mounting portion 11a by injecting the sealing resin U to be formed and thermosetting it.

しかしながら、近時、半導体素子Sは、その集積度が高くなるとともに外形サイズも10数mm角と大きなものが現れてきている。このように高集積化された半導体素子Sにおいては、電極端子Tの大きさも直径30μm以下と小さくなっている。そのため、電極端子Tが接続される半導体素子接続パッド15およびこれに接続される引出配線16の幅も30μm以下と細いものになってきている。そして、このような高集積化され、かつ外形サイズの大きな半導体素子Sを配線基板20に実装すると、図6に示すように、ソルダーレジスト層13の熱膨張係数と封止樹脂Uの熱膨張係数の差に起因して発生する熱応力によって、ソルダーレジスト層13の開口部13a内周辺とこれに接する封止樹脂Uとの間にクラックCが発生してしまうことがある。これは球状シリカ等の無機絶縁フィラーを多く含む封止樹脂Uの熱膨張係数がソルダーレジスト層13の熱膨張係数よりも小さくなっていることによる。そのため、封止樹脂Uを熱硬化させる温度から室温に下がる際にソルダーレジスト層13の方が、封止樹脂Uよりも大きく収縮しようとし、その応力がソルダーレジスト層13の開口部13a内周辺とこれに接する封止樹脂Uとの間に集中するためである。   However, recently, the semiconductor element S has become higher in integration degree and has a large outer size of a few tens of mm square. In the semiconductor element S highly integrated in this way, the size of the electrode terminal T is also as small as 30 μm or less in diameter. For this reason, the widths of the semiconductor element connection pads 15 to which the electrode terminals T are connected and the lead-out wirings 16 connected thereto are also as narrow as 30 μm or less. When such a highly integrated semiconductor element S having a large outer size is mounted on the wiring board 20, the thermal expansion coefficient of the solder resist layer 13 and the thermal expansion coefficient of the sealing resin U are obtained as shown in FIG. Due to the thermal stress generated due to the difference, a crack C may occur between the periphery of the opening 13a of the solder resist layer 13 and the sealing resin U in contact therewith. This is because the thermal expansion coefficient of the sealing resin U containing a large amount of inorganic insulating filler such as spherical silica is smaller than the thermal expansion coefficient of the solder resist layer 13. Therefore, the solder resist layer 13 tends to shrink more than the sealing resin U when the temperature is lowered from the temperature at which the sealing resin U is thermoset to room temperature, and the stress is generated in the periphery of the opening 13a of the solder resist layer 13. It is because it concentrates between sealing resin U which touches this.

ソルダーレジスト層13の開口部13a内周辺とこれに接する封止樹脂Uとの間にクラックCが発生した場合、半導体素子Sが作動時に発生する熱が配線基板20に繰り返し加えられると、そのクラックCが下方に進行してしまう。そして、このクラックCの下方に引出配線16が位置していると、クラックCが引出配線16にまで進行し、ついにはその引出配線16に断線をもたらせてしまう。この断線は、引出配線16の幅が30μm以下と細い場合に顕著に発生する。   If a crack C occurs between the inner periphery of the opening 13a of the solder resist layer 13 and the sealing resin U in contact therewith, if the heat generated during operation of the semiconductor element S is repeatedly applied to the wiring substrate 20, the crack C C progresses downward. If the lead wiring 16 is positioned below the crack C, the crack C proceeds to the lead wiring 16, and finally the lead wiring 16 can be broken. This disconnection occurs remarkably when the width of the lead-out wiring 16 is as thin as 30 μm or less.

特開2007−227708号公報JP 2007-227708 A

本発明の課題は、ソルダーレジスト層の開口部内周辺とこれに接する封止樹脂との間に発生する熱応力をソルダーレジスト層の開口部内周辺が横切る引出配線上において有効に分散させることにより、引出配線に断線が発生しにくい配線基板を提供することにある。   The object of the present invention is to effectively distribute the thermal stress generated between the inner periphery of the opening of the solder resist layer and the sealing resin in contact with it on the lead wiring crossed by the inner periphery of the opening of the solder resist layer. An object of the present invention is to provide a wiring board in which disconnection is unlikely to occur in wiring.

本発明の配線基板は、上面中央部に半導体素子が搭載される搭載部を有する絶縁基板と、該絶縁基板上における前記搭載部の外周部に、前記半導体素子の外周辺に沿って並設された多数の半導体素子接続パッドと、前記絶縁基板上を前記半導体素子接続パッドから前記搭載部の中央部側に向けて延在する引出配線と、前記絶縁基板の上面に被着されており、前記半導体素子接続パッドを露出させるとともに内周辺が前記引出配線を横切る開口部を有するソルダーレジスト層とを具備して成る配線基板であって、前記内周辺は、前記引出配線を横切る部分が該部分と前記搭載部の中心とを結ぶ仮想線に対して45度以下の傾きを有する波型形状であることを特徴とするものである。   The wiring board of the present invention is arranged in parallel along the outer periphery of the semiconductor element on the insulating substrate having a mounting portion on which the semiconductor element is mounted at the center of the upper surface, and on the outer peripheral portion of the mounting portion on the insulating substrate. A plurality of semiconductor element connection pads, a lead wire extending from the semiconductor element connection pad toward the central portion of the mounting portion on the insulating substrate, and an upper surface of the insulating substrate. A wiring board comprising a solder resist layer having an opening that exposes a semiconductor element connection pad and has an inner periphery that crosses the lead wire, wherein the inner periphery has a portion that crosses the lead wire and the portion. It is a wave shape having an inclination of 45 degrees or less with respect to an imaginary line connecting the center of the mounting portion.

本発明の配線基板によれば、半導体素子接続パッドから搭載部の中央部に向けて延在する引出配線を横切るソルダーレジスト層の開口部の内周辺は、前記引出配線を横切る部分が、該部分と前記搭載部の中心とを結ぶ仮想線に対して45度以下の傾きを有する波型形状であることから、ソルダーレジスト層の開口部の内周辺とこれに接する封止樹脂との間に発生する熱応力をソルダーレジスト層の開口部の内周辺が横切る引出配線上において有効に分散させることができ、それにより、引出配線に断線が発生しにくい配線基板を提供することができる。   According to the wiring board of the present invention, the inner periphery of the opening of the solder resist layer that crosses the lead wiring extending from the semiconductor element connection pad toward the center of the mounting portion has a portion that crosses the lead wiring. Is generated between the inner periphery of the opening of the solder resist layer and the sealing resin in contact with the solder resist layer, since the corrugated shape has an inclination of 45 degrees or less with respect to a virtual line connecting the center of the mounting portion and the mounting portion. Therefore, it is possible to effectively disperse the thermal stress on the lead wiring that the inner periphery of the opening of the solder resist layer crosses, thereby providing a wiring board in which disconnection of the lead wiring is unlikely to occur.

図1は、本発明の配線基板における実施形態の一例を示す概略断面図および概略上面図である。FIG. 1 is a schematic cross-sectional view and a schematic top view illustrating an example of an embodiment of a wiring board according to the present invention. 図2は、図1に示す配線基板に半導体素子を実装した状態を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a state in which a semiconductor element is mounted on the wiring board shown in FIG. 図3は、図1に示す配線基板の要部拡大概略上面図である。FIG. 3 is an enlarged schematic top view of the main part of the wiring board shown in FIG. 図4は、従来の配線基板を示す概略断面図および概略上面図である。FIG. 4 is a schematic cross-sectional view and a schematic top view showing a conventional wiring board. 図5は、図4に示す配線基板に半導体素子を実装した状態を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing a state in which a semiconductor element is mounted on the wiring board shown in FIG. 図6は、図4に示す配線基板における問題点を説明するための要部概略断面図である。FIG. 6 is a schematic cross-sectional view of a main part for explaining problems in the wiring board shown in FIG.

次に、本発明の配線基板について、図1〜図3を基にして説明する。図1(a),(b)に本発明の配線基板10の実施形態の一例を示す。本例の配線基板10は、主として絶縁基板1と配線導体2とソルダーレジスト層3とから構成されている。なお、図1(b)においては、絶縁基板1上面の配線導体2のうち、ソルダーレジスト層3で覆われている部分を破線で示している。   Next, the wiring board of the present invention will be described with reference to FIGS. 1A and 1B show an example of an embodiment of a wiring board 10 of the present invention. The wiring substrate 10 of this example is mainly composed of an insulating substrate 1, a wiring conductor 2, and a solder resist layer 3. In FIG. 1B, a portion of the wiring conductor 2 on the upper surface of the insulating substrate 1 that is covered with the solder resist layer 3 is indicated by a broken line.

絶縁基板1は、例えばガラスクロス基材にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させた厚みが30〜200μm程度の単層または多層の絶縁層を熱硬化させた樹脂系電気絶縁材料から成り、その上面中央部に半導体素子Sを搭載するための搭載部1aを有している。また、絶縁基板1には、その上面から下面にかけて直径が50〜300μm程度のスルーホール4が形成されている。   The insulating substrate 1 is, for example, a resin-based electric material obtained by thermosetting a single-layer or multilayer insulating layer having a thickness of about 30 to 200 μm in which a glass cloth base material is impregnated with a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin. It is made of an insulating material and has a mounting portion 1a for mounting the semiconductor element S at the center of the upper surface. Further, a through hole 4 having a diameter of about 50 to 300 μm is formed in the insulating substrate 1 from the upper surface to the lower surface.

配線導体2は、銅箔や銅めっき層から成り、絶縁基板1の上面の搭載部1aからスルーホール4内壁を介して絶縁基板1の下面に導出している。配線導体2の厚みは、10〜20μm程度である。絶縁基板1の上面の配線導体2は、搭載部1aの外周部に多数の半導体素子接続パッド5を有している。各半導体素子接続パッド5の大きさは幅が10〜30μm程度、長さが20〜60μm程度である。これらの半導体素子接続パッド5は、半導体素子Sの外周辺に沿って2列の並びで配置されている。さらに、各半導体素子接続パッド5には引出配線6が接続されている。引出配線6の幅は半導体素子接続パッド5との接続部で10〜30μm程度である。内側の列の半導体素子接続パッド5に接続された引出配線6は搭載部1aの中央部側に延びており、外側の列の半導体素子接続パッド5に接続された引出配線6は搭載部1aの外側に延びている。また、絶縁基板1の下面に配線導体2は、多数の外部接続パッド7を有している。外部接続パッド7の直径は200〜500μm程度である。これらの外部接続パッド7は絶縁基板1の下面に格子状の並び配置されている。そして、半導体素子接続パッド5と外部接続パッド7とは、対応するもの同士が引出配線6およびスルーホール4内の配線導体2を介して互いに電気的に接続されている。   The wiring conductor 2 is made of a copper foil or a copper plating layer, and is led out from the mounting portion 1 a on the upper surface of the insulating substrate 1 to the lower surface of the insulating substrate 1 through the inner wall of the through hole 4. The thickness of the wiring conductor 2 is about 10 to 20 μm. The wiring conductor 2 on the upper surface of the insulating substrate 1 has a large number of semiconductor element connection pads 5 on the outer periphery of the mounting portion 1a. Each semiconductor element connection pad 5 has a width of about 10 to 30 μm and a length of about 20 to 60 μm. These semiconductor element connection pads 5 are arranged in two rows along the outer periphery of the semiconductor element S. Furthermore, a lead wiring 6 is connected to each semiconductor element connection pad 5. The width of the lead wiring 6 is about 10 to 30 μm at the connection portion with the semiconductor element connection pad 5. The lead wiring 6 connected to the semiconductor element connection pad 5 in the inner row extends to the center side of the mounting portion 1a, and the lead wiring 6 connected to the semiconductor element connection pad 5 in the outer row is connected to the mounting portion 1a. It extends outward. The wiring conductor 2 has a large number of external connection pads 7 on the lower surface of the insulating substrate 1. The diameter of the external connection pad 7 is about 200 to 500 μm. These external connection pads 7 are arranged in a grid on the lower surface of the insulating substrate 1. Corresponding semiconductor element connection pads 5 and external connection pads 7 are electrically connected to each other via the lead wiring 6 and the wiring conductor 2 in the through hole 4.

ソルダーレジスト層3は、エポキシ樹脂等の熱硬化性樹脂から成り、絶縁基板1の上下面に被着されているとともにスルーホール4内に充填されている。ソルダーレジスト層3の厚みは絶縁基板1の上下面に被着された部分で20〜40μm程度である。ソルダーレジスト層3には、絶縁基板1の上面側において半導体素子接続パッド5およびこれに接続された引出配線6の一部を露出させる開口部3aが形成されている。開口部3aは、内外2列の半導体素子接続パッド5およびこれらに接続された引出配線6の一部を一括して露出させるように搭載部1aの外周部に沿った方形枠状をしている。なお、開口部3aから露出する引出配線6の幅は10〜30μm程度、長さは20〜60μm程度である。また、ソルダーレジスト層3には、絶縁基板1の下面側において外部接続パッド7を露出させる開口部3bが形成されている。開口部3bは、各外部接続パッド7を個別に露出させる円形をしている。   The solder resist layer 3 is made of a thermosetting resin such as an epoxy resin, is attached to the upper and lower surfaces of the insulating substrate 1 and is filled in the through holes 4. The thickness of the solder resist layer 3 is about 20 to 40 μm at the portions deposited on the upper and lower surfaces of the insulating substrate 1. In the solder resist layer 3, an opening 3 a is formed on the upper surface side of the insulating substrate 1 to expose a part of the semiconductor element connection pad 5 and the lead wiring 6 connected thereto. The opening 3a has a rectangular frame shape along the outer peripheral portion of the mounting portion 1a so as to expose a part of the inner and outer two rows of semiconductor element connection pads 5 and a part of the lead wiring 6 connected thereto. . In addition, the width | variety of the extraction wiring 6 exposed from the opening part 3a is about 10-30 micrometers, and length is about 20-60 micrometers. The solder resist layer 3 is formed with an opening 3 b that exposes the external connection pad 7 on the lower surface side of the insulating substrate 1. The opening 3b has a circular shape that exposes each external connection pad 7 individually.

そして、この配線基板10によれば、図2に示すように、搭載部1a上に半導体素子Sを、各電極端子Tと対応する半導体素子接続パッド5とが向かい合うようにして配置するとともに電極端子Tと半導体素子接続パッド5とを半田を介して接続し、しかる後、配線基板10と半導体素子Sとの間に球状シリカ等の無機絶縁物フィラーが分散された熱硬化性樹脂から成る封止樹脂Uを注入するとともに熱硬化させることにより、半導体素子Sが搭載部1a上に実装されることとなる。   According to this wiring board 10, as shown in FIG. 2, the semiconductor element S is arranged on the mounting portion 1a such that each electrode terminal T and the corresponding semiconductor element connection pad 5 face each other and the electrode terminal. T and the semiconductor element connection pad 5 are connected via solder, and then sealed with a thermosetting resin in which an inorganic insulating filler such as spherical silica is dispersed between the wiring board 10 and the semiconductor element S. By injecting the resin U and thermosetting it, the semiconductor element S is mounted on the mounting portion 1a.

ところで本例の配線基板10においては、図3に示すように、ソルダーレジスト層3の開口部3aの内周辺3aiは、内側の列の半導体素子接続パッド5から搭載部1aの中央部に向けて延在する引出配線6を横切る部分が、この部分と搭載部1aの中心とを結ぶ仮想線Lに対して45度以下の傾きθを有するように波型形状となっている。このようにソルダーレジスト層3の開口部3aの内周辺3aiは、内側の列の半導体素子接続パッド5から搭載部1aの中央部に向けて延在する引出配線6を横切る部分が、この部分と搭載部1aの中心とを結ぶ仮想線に対して45度以下の傾きθを有するように波型形状であることから、搭載部1aに半導体素子Sを実装後、ソルダーレジスト層3の開口部3aの内周辺3aiとこれに接する封止樹脂Uとの間に発生する熱応力を、内周辺3aiが横切る引出配線6上において有効に分散させることができる。したがって、それにより引出配線6に断線が発生しにくい配線基板10を提供することができる。   By the way, in the wiring board 10 of this example, as shown in FIG. 3, the inner periphery 3ai of the opening 3a of the solder resist layer 3 is directed from the semiconductor element connection pad 5 in the inner row toward the center of the mounting portion 1a. A portion that crosses the extending lead wire 6 has a wave shape so that it has an inclination θ of 45 degrees or less with respect to a virtual line L that connects this portion and the center of the mounting portion 1a. In this way, the inner periphery 3ai of the opening 3a of the solder resist layer 3 has a portion crossing the lead wire 6 extending from the semiconductor element connection pad 5 in the inner row toward the center of the mounting portion 1a. Since it has a wave shape so as to have an inclination θ of 45 degrees or less with respect to an imaginary line connecting the center of the mounting portion 1a, the opening 3a of the solder resist layer 3 is mounted after mounting the semiconductor element S on the mounting portion 1a. The thermal stress generated between the inner periphery 3ai and the sealing resin U in contact with the inner periphery 3ai can be effectively dispersed on the lead-out wiring 6 traversed by the inner periphery 3ai. Therefore, it is possible to provide the wiring board 10 that is less likely to cause disconnection in the lead-out wiring 6.

なお、ソルダーレジスト層3の開口部3aの内周辺3aiは、引出配線6を横切る部分における仮想線Lに対する傾きθが45度を超えると、ソルダーレジスト層3の開口部3aの内周辺3aiとこれに接する封止樹脂Uとの間に発生する熱応力を、ソルダーレジスト層3の開口部3aの内周辺3aiが横切る引出配線上6において有効に分散させることができなくなる危険性が大きくなる。したがって、ソルダーレジスト層3の開口部3aの内周辺3aiは、引出配線6を横切る部分における仮想線Lに対する傾きが45度以下であることが好ましく、さらには30度以下であることが好ましい。   Note that the inner periphery 3ai of the opening 3a of the solder resist layer 3 is the same as the inner periphery 3ai of the opening 3a of the solder resist layer 3 when the inclination θ with respect to the virtual line L in the portion crossing the lead wiring 6 exceeds 45 degrees. There is an increased risk that the thermal stress generated between the sealing resin U and the sealing resin U cannot be effectively dispersed on the lead wiring 6 across the inner periphery 3ai of the opening 3a of the solder resist layer 3. Therefore, the inner periphery 3ai of the opening 3a of the solder resist layer 3 is preferably 45 degrees or less, more preferably 30 degrees or less, with respect to the imaginary line L in the portion crossing the lead-out wiring 6.

1 絶縁基板
1a 搭載部
2 配線導体
3 ソルダーレジスト層
3a ソルダーレジスト層の開口部
3ai ソルダーレジスト層の開口部の内周辺
5 半導体素子接続パッド
L 仮想線
S 半導体素子
θ 傾き
DESCRIPTION OF SYMBOLS 1 Insulation board | substrate 1a Mounting part 2 Wiring conductor 3 Solder resist layer 3a Opening part of solder resist layer 3ai Inner periphery of opening part of solder resist layer 5 Semiconductor element connection pad L Virtual line S Semiconductor element (theta) Inclination

Claims (1)

上面中央部に半導体素子が搭載される搭載部を有する絶縁基板と、該絶縁基板上における前記搭載部の外周部に、前記半導体素子の外周辺に沿って並設された多数の半導体素子接続パッドと、前記絶縁基板上を前記半導体素子接続パッドから前記搭載部の中央部側に向けて延在する引出配線と、前記絶縁基板の上面に被着されており、前記半導体素子接続パッドを露出させるとともに内周辺が前記引出配線を横切る開口部を有するソルダーレジスト層とを具備して成る配線基板であって、前記内周辺は、前記引出配線を横切る部分が該部分と前記搭載部の中心とを結ぶ仮想線に対して45度以下の傾きを有する波型形状であることを特徴とする配線基板。   An insulating substrate having a mounting portion on which the semiconductor element is mounted at the center of the upper surface, and a large number of semiconductor element connection pads arranged in parallel along the outer periphery of the semiconductor element on the outer peripheral portion of the mounting portion on the insulating substrate And a lead wiring extending from the semiconductor element connection pad toward the center of the mounting portion on the insulating substrate, and an upper surface of the insulating substrate, and the semiconductor element connection pad is exposed. And a solder resist layer having an inner periphery having an opening that crosses the lead wire, wherein the inner periphery has a portion that crosses the lead wire and the center of the mounting portion. A wiring board having a corrugated shape having an inclination of 45 degrees or less with respect to a connecting virtual line.
JP2012262688A 2012-11-30 2012-11-30 Wiring board Pending JP2014110266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012262688A JP2014110266A (en) 2012-11-30 2012-11-30 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012262688A JP2014110266A (en) 2012-11-30 2012-11-30 Wiring board

Publications (1)

Publication Number Publication Date
JP2014110266A true JP2014110266A (en) 2014-06-12

Family

ID=51030747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012262688A Pending JP2014110266A (en) 2012-11-30 2012-11-30 Wiring board

Country Status (1)

Country Link
JP (1) JP2014110266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985153B2 (en) 2019-03-14 2021-04-20 Toshiba Memory Corporation Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985153B2 (en) 2019-03-14 2021-04-20 Toshiba Memory Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
KR100524437B1 (en) Semiconductor device, substrate for a semiconductor device, method of manufacturing thereof, and electronic instrument
TWI573229B (en) Wiring substrate
TWI425667B (en) Led flip chip structure and method for manufacturing the same
TWI551198B (en) Printed circuit board structure with heat dissipation function
JP6314731B2 (en) Semiconductor device and manufacturing method of semiconductor device
US9271388B2 (en) Interposer and package on package structure
TW201503777A (en) Circuit board
JP2011166081A (en) Semiconductor device, semiconductor package, interposer, method of manufacturing semiconductor device, and method of manufacturing interposer
JP5285204B2 (en) Semiconductor device and substrate for manufacturing semiconductor device
TWI501370B (en) Semiconductor package and method of manufacture
JP2014110266A (en) Wiring board
JP2014110267A (en) Wiring board
JP2014110268A (en) Wiring board
TWI435427B (en) Semiconductor carrier, package and method of forming same
CN102420202A (en) Semiconductor device and manufacturing method thereof
TWI505422B (en) Window bga package for dispersing stress from chip corners
JP6215784B2 (en) Wiring board
JP5835725B2 (en) Wiring board
TWI492358B (en) Semiconductor package and method of forming the same
JP4956048B2 (en) Semiconductor device and manufacturing method thereof
TWI495058B (en) Package structure and method for manufacturing same
JP2010098226A (en) Semiconductor device
JP2014130953A (en) Wiring board
KR20140078104A (en) LED package and manufacturing method therfor
JP2017130600A (en) Wiring board manufacturing method