JP2014109551A - Device and method for fluid identification - Google Patents

Device and method for fluid identification Download PDF

Info

Publication number
JP2014109551A
JP2014109551A JP2012265507A JP2012265507A JP2014109551A JP 2014109551 A JP2014109551 A JP 2014109551A JP 2012265507 A JP2012265507 A JP 2012265507A JP 2012265507 A JP2012265507 A JP 2012265507A JP 2014109551 A JP2014109551 A JP 2014109551A
Authority
JP
Japan
Prior art keywords
fluid
ultrasonic
tubular member
ultrasonic pulse
propagating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012265507A
Other languages
Japanese (ja)
Other versions
JP5968210B2 (en
Inventor
Shoji Yamaguchi
尚二 山口
Satoshi Fujita
智 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012265507A priority Critical patent/JP5968210B2/en
Publication of JP2014109551A publication Critical patent/JP2014109551A/en
Application granted granted Critical
Publication of JP5968210B2 publication Critical patent/JP5968210B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid identification technique which allows for receiving ultrasonic pulses that traverse a fluid in a tubular member with a good S/N ratio.SOLUTION: A fluid identification device comprises: a transmitter probe 2 which is placed on an outer peripheral surface 11 of a tubular member 1 containing a fluid therein to transmit an ultrasonic pulse in a traverse direction of the tubular member; a receiver probe 3 which is placed on the outer peripheral surface 11 to receive an in-fluid propagating ultrasonic pulse which is an ultrasonic pulse that traverses the fluid; a signal evaluation unit which determines a type of the fluid based on propagation time of the in-fluid propagating ultrasonic pulse that has traveled across the fluid; and an ultrasonic absorption member 4 which is mounted on the outer surface of the tubular member 1 between the transmitter probe 2 and the receiver probe 3 to absorb a wall body-propagating ultrasonic pulse which is an ultrasonic pulse that propagates along the peripheral wall of the tubular member 1.

Description

本発明は、管状部材に内在している流体の種別を判定するための流体識別装置及び流体識別方法に関する。   The present invention relates to a fluid identification device and a fluid identification method for determining the type of fluid inherent in a tubular member.

地中には、都市ガスを供給するためのガス管、上水を供給するための上水道管、下水を回収するための下水道管等の管状部材が埋設されている。土壌の掘削工事を行う際には、それらの管状部材が露出してくることがある。このような場合には、露出した管状部材が有効に使用されているものであるか否か、また有効に使用されている場合にはその内部を流れる流体の種別(例えば、水や都市ガス等)を判定することが必要であり、その内部を流れる流体の種別に応じて適切な保安処置を取る必要があるからである。   In the ground, tubular members such as a gas pipe for supplying city gas, a water pipe for supplying tap water, and a sewer pipe for collecting sewage are embedded. When performing soil excavation work, the tubular members may be exposed. In such a case, whether or not the exposed tubular member is used effectively, and if it is used effectively, the type of fluid flowing through the tubular member (for example, water or city gas) This is because it is necessary to take appropriate safety measures depending on the type of fluid flowing through the inside.

管状部材に内在する流体の種別を、穿孔などを行なわない非破壊検査で行なう流体識別装置が特許文献1から知られている。この流体識別装置では、管状部材の外周面に、互いに対向する送信用探触子と受信用探触子が配置され、送信用探触子から送信された超音波パルスが管状部材内の流体を横断して受信用探触子に達するまでの時間から超音波の伝播速度が算出される。超音波の伝播速度、いわゆる音速は、超音波が伝播する媒体の密度や体積弾性率などの物性値に依存するので、音速から物質を特定することができる。このことを利用して、この流体識別装置は算出された音速から管状部材に内在する流体が、水または都市ガスであるかを判定する。   A fluid identification device is known from Patent Document 1 in which the type of fluid contained in a tubular member is determined by non-destructive inspection without performing perforation. In this fluid identification device, a transmitting probe and a receiving probe facing each other are arranged on the outer peripheral surface of a tubular member, and an ultrasonic pulse transmitted from the transmitting probe causes a fluid in the tubular member to flow. The propagation speed of the ultrasonic wave is calculated from the time required to cross to reach the receiving probe. Since the propagation speed of ultrasonic waves, so-called sound speed, depends on physical properties such as the density and bulk modulus of the medium through which the ultrasonic waves propagate, the substance can be specified from the sound speed. Using this fact, the fluid identification device determines whether the fluid contained in the tubular member is water or city gas from the calculated sound velocity.

このような装置の使用における問題点は、送信用探触子から送信された超音波パルスは管状部材の外周面に入射した際に、その大部分が管状部材の管壁を伝播する板波や表面波に分解され、管壁だけを伝播して受信用探触子に達するので、音圧レベルの高いノイズ波として受信用探触子に受信されることである。音速による流体の種別判定に要求される音速測定には、管状部材内の流体を横断して受信用探触子に達した超音波パルスの正確な検出が重要であるが、上記のノイズ波がその障害となる。このノイズ波の悪影響を低減するため、上記特許文献1による流体識別装置では、管壁を伝播して受信用探触子に向う超音波を打ち消すキャンセル波を送信するキャンセル用探触子が備えられている。   The problem with the use of such a device is that, when the ultrasonic pulse transmitted from the transmitting probe is incident on the outer peripheral surface of the tubular member, most of the pulse wave propagates through the tube wall of the tubular member. Since it is decomposed into surface waves and propagates only through the tube wall to reach the receiving probe, it is received by the receiving probe as a noise wave having a high sound pressure level. For the measurement of the speed of sound required for the determination of the type of fluid based on the speed of sound, it is important to accurately detect the ultrasonic pulse that has reached the receiving probe across the fluid in the tubular member. It becomes an obstacle. In order to reduce the adverse effect of this noise wave, the fluid identification device according to Patent Document 1 includes a canceling probe that transmits a canceling wave that propagates through the tube wall and cancels the ultrasonic wave toward the receiving probe. ing.

管状部材の内部に存在している流体の種別を判定する技術分野とは異なるが、管内の液体等の流体中に含まれる空気などの気体層を非破壊的に検出するために、超音波を用いる管内気体層検出装置が特許文献2から知られている。この装置は、管の外部から管の直径方向に超音波を発射し、この超音波の反射エコーを受信して管内の流体とともに存在する気体層の有無を検出するが、その際、管の全外周面に吸音材層を設け、この吸音材層の外部から超音波を発射する。この装置では、いわゆる1つの超音波探触子を送信と受信の両方で用いる、いわゆる反射エコー法を採用している。このような反射エコー法は、管内周面からの反射エコーが繰り返されるため、本願発明のような、管状部材の内部に存在している流体の種別を超音波の伝播時間ないしは音速によって判定する技術に適用することは実質的には難しい。さらに、管の外周全面に巻き付けた吸音材層の外部に超音波探触子を配置して、そこから超音波パルスを発信させると、吸音材層による音波吸収のため、管内部に入射する超音波パルスの音圧が低下してしまう。これを防ぐために、吸音材層の厚みを小さくした場合には、管壁から入射してくる超音波パルス(ノイズ波)を十分に吸収できず、吸音材層の外表面で反射して再び管壁に戻ってしまう不都合が生じる。   Unlike the technical field of determining the type of fluid existing inside the tubular member, in order to nondestructively detect a gas layer such as air contained in a fluid such as a liquid in the tube, ultrasonic waves are used. An in-pipe gas layer detection device to be used is known from Patent Document 2. This device emits ultrasonic waves from the outside of the tube in the diameter direction of the tube, receives the reflected echo of this ultrasonic wave, and detects the presence or absence of a gas layer that exists with the fluid in the tube. A sound absorbing material layer is provided on the outer peripheral surface, and ultrasonic waves are emitted from the outside of the sound absorbing material layer. This apparatus employs a so-called reflection echo method in which a single ultrasonic probe is used for both transmission and reception. In such a reflection echo method, since a reflection echo from the inner peripheral surface of the tube is repeated, a technique for determining the type of fluid existing in the tubular member based on the propagation time or speed of sound as in the present invention. It is practically difficult to apply. Furthermore, when an ultrasonic probe is arranged outside the sound absorbing material layer wound around the entire outer periphery of the tube and an ultrasonic pulse is transmitted from the sound absorbing material layer, the ultrasonic wave incident on the inside of the tube is absorbed by the sound absorbing material layer. The sound pressure of the sound wave pulse is reduced. In order to prevent this, when the thickness of the sound absorbing material layer is reduced, the ultrasonic pulse (noise wave) incident from the tube wall cannot be sufficiently absorbed, and it is reflected by the outer surface of the sound absorbing material layer and again the tube. The inconvenience of returning to the wall occurs.

2012−185083号公報2012-185083 平11−183235号公報Hei 11-183235

上述したように、管状部材の内部に存在している流体の種別を判定するために、上記特許文献2で開示された超音波反射法の適用は実質的に不可能である。さらに、上記特許文献1による流体識別装置において採用されているキャンセル用探触子からのキャンセル波による、管壁を伝播してくる超音波(板波や表面波)の打ち消しは、技術的難度が高く、装置コストの負担が大きい。このため、キャンセル用探触子を用いずにノイズ波を低減し、管状部材に内在する流体を横断してくる超音波パルスを良好なS/N比で受信できる流体識別技術が要望されている。   As described above, in order to determine the type of fluid existing inside the tubular member, the application of the ultrasonic reflection method disclosed in Patent Document 2 is substantially impossible. Furthermore, the cancellation of the ultrasonic wave (plate wave or surface wave) propagating through the tube wall due to the cancellation wave from the canceling probe employed in the fluid identification device according to Patent Document 1 has a technical difficulty. High and the burden of equipment cost is large. For this reason, there is a need for a fluid identification technique that can reduce the noise wave without using a canceling probe and receive an ultrasonic pulse that traverses the fluid contained in the tubular member with a good S / N ratio. .

本発明による流体識別装置は、流体が内在する管状部材の外周面に配置され、前記管状部材の横断方向に超音波パルスを送信する送信用探触子と、前記送信用探触子から送信され前記流体を横断して伝播する超音波パルスである流体伝播超音波パルスを受信するように前記管状部材の外周面に配置される受信用探触子と、前記流体伝播超音波パルスが前記流体を伝播した伝播時間に基づいて前記流体の種別を判定する信号評価部と、前記管状部材の周壁に沿って伝播する超音波パルスである壁体伝播超音波パルスを吸収するために前記送信用探触子と前記受信用探触子の間の前記管状部材の表面に装着された超音波吸収部材とを備えている。   A fluid identification device according to the present invention is disposed on an outer peripheral surface of a tubular member in which fluid is contained, and transmits a transmission probe that transmits an ultrasonic pulse in a transverse direction of the tubular member, and is transmitted from the transmission probe. A receiving probe disposed on an outer peripheral surface of the tubular member so as to receive a fluid propagating ultrasonic pulse that is an ultrasonic pulse propagating across the fluid; and the fluid propagating ultrasonic pulse A signal evaluation unit for determining the type of the fluid based on the propagation time propagated, and the probe for transmission to absorb a wall-propagating ultrasonic pulse that is an ultrasonic pulse propagating along the peripheral wall of the tubular member. And an ultrasonic absorbing member mounted on the surface of the tubular member between the receiver and the receiving probe.

この構成によれば、送信用探触子から送信された超音波パルスが管状部材の外周面に入射した際に分解された板波や表面波である壁体伝播超音波パルスは管状部材の管壁を伝播する途中で管状部材の表面に装着された超音波吸収部材によって部分的に吸収される。これにより、キャンセル用探触子からのキャンセル波による壁体伝播超音波パルス(ノイズ波)の打ち消しを行なわずとも、満足できるS/N比で所望の超音波パルスを受信でき、正確な音速測定に基づく流体種別の判定が実現する。   According to this configuration, the wall-propagating ultrasonic pulse, which is a plate wave or surface wave decomposed when the ultrasonic pulse transmitted from the transmission probe enters the outer peripheral surface of the tubular member, In the course of propagating through the wall, it is partially absorbed by the ultrasonic absorbing member mounted on the surface of the tubular member. As a result, the desired ultrasonic pulse can be received with a satisfactory S / N ratio without canceling the wall-propagating ultrasonic pulse (noise wave) due to the cancellation wave from the canceling probe, and accurate sound velocity measurement can be performed. The determination of the fluid type based on is realized.

本発明による流体識別装置は、ガス管と水道管との区別がつかなくなった地中埋設管の種別特定、つまり管を流れている流体がガスかあるいは水であるかを判定するようなケースに適している。そのような管状部材は、主に円形管であり、その外周面は比較的大きな曲率をもって湾曲している。このため、超音波吸収部材には、管壁を伝播するノイズ波(壁体伝播超音波パルス)が当該超音波吸収部材へも伝播するように外周面にぴったりと密着できるような性質が要求される。この要求を満たすために、前記超音波吸収部材は粘性のある超音波吸収部材で構成されることが好ましい。   The fluid identification device according to the present invention can be used to specify the type of underground pipe that cannot distinguish between a gas pipe and a water pipe, that is, to determine whether the fluid flowing through the pipe is gas or water. Is suitable. Such a tubular member is mainly a circular tube, and its outer peripheral surface is curved with a relatively large curvature. For this reason, the ultrasonic absorbing member is required to have a property such that a noise wave (wall propagation ultrasonic pulse) propagating through the tube wall can be closely adhered to the outer peripheral surface so as to propagate to the ultrasonic absorbing member. The In order to satisfy this requirement, the ultrasonic absorbing member is preferably composed of a viscous ultrasonic absorbing member.

管壁を伝播するノイズ波をできるだけスムーズに超音波吸収部材に入射させるには、管壁の音響インピーダンスと超音波吸収部材の音響インピーダンスとの差が少ない方がよい。しかしながら、互いの音響インピーダンスを近似させてノイズ波をスムーズに超音波吸収部材に入射させたとしてもそのノイズ波が超音波吸収部材の外周面で再び反射して管壁に戻って再び管壁に入射することは避けなければならない。従って、超音波吸収部材に入射したノイズ波は散乱や段階的な反射などによりできるだけ超音波吸収部材の内部でその音圧エネルギを低減させるとよい。この目的のため、本発明の好適な実施形態の1つでは、前記超音波吸収部材は複数層からなり、各層の音響インピーダンスは前記管状部材の外周面に近い層ほど前記管状部材の音響インピーダンスとの差が少なくなるように構成されている。   In order for noise waves propagating through the tube wall to enter the ultrasonic absorbing member as smoothly as possible, it is better that the difference between the acoustic impedance of the tube wall and the acoustic impedance of the ultrasonic absorbing member is small. However, even if the acoustic waves are approximated to each other and noise waves are smoothly incident on the ultrasonic absorbing member, the noise waves are reflected again on the outer peripheral surface of the ultrasonic absorbing member and return to the tube wall to return to the tube wall. Incident light must be avoided. Therefore, it is preferable to reduce the sound pressure energy of the noise wave incident on the ultrasonic absorbing member within the ultrasonic absorbing member as much as possible by scattering or stepwise reflection. For this purpose, in one preferred embodiment of the present invention, the ultrasonic absorbing member is composed of a plurality of layers, and the acoustic impedance of each layer is closer to the acoustic impedance of the tubular member as the layer is closer to the outer peripheral surface of the tubular member. It is configured to reduce the difference between the two.

地中埋設管などが流体識別対象となる場合、超音波吸収部材は泥などで汚れるため使い捨て使用される。そのような場合、毎回の超音波吸収部材の管外周面への巻き付け装着作業を簡便にするためには、超音波吸収部材をシート成形材として用意することが好ましい。   When an underground pipe or the like is a fluid identification target, the ultrasonic absorbing member is contaminated with mud or the like and thus is used disposable. In such a case, it is preferable to prepare the ultrasonic absorbing member as a sheet molding material in order to simplify the operation of wrapping the ultrasonic absorbing member around the pipe outer peripheral surface every time.

さらに、管壁を伝播するノイズ波が超音波吸収部材に入射する割合を高めるためには、超音波吸収部材を管壁の外周面に安定的に密着させる必要がある。このため、本発明の好適な実施形態では、前記超音波吸収部材を前記管状部材の外周面に押し付ける締付具が備えられる。その際、この締付具は調整可能な一定の押し付け圧で超音波吸収部材を外周面に押し付けるように構成されることが好ましい。   Furthermore, in order to increase the rate at which noise waves propagating through the tube wall are incident on the ultrasonic absorbing member, it is necessary to stably adhere the ultrasonic absorbing member to the outer peripheral surface of the tube wall. For this reason, in a preferred embodiment of the present invention, a fastener for pressing the ultrasonic absorbing member against the outer peripheral surface of the tubular member is provided. At this time, the fastener is preferably configured to press the ultrasonic absorbing member against the outer peripheral surface with an adjustable constant pressing pressure.

流体の種別を判定する信号評価部の具体的な実施形態の1つでは、前記信号評価部は、前記流体伝播超音波パルスの伝播時間から前記流体を伝播する時間を算定し、この算定された時間に基づいて前記流体の音速を算定する音速算定部と、算定された音速から前記流体の種別を判定する判定部と、前記判定部の判定結果を報知する報知部とを含んでいる。送信用探触子から送信して受信用探触子で受信される超音波パルスは流体を横断伝播するだけでなく、送信用探触子と接する側と受信用探触子と接する側の2つの管厚部を径方向に伝播する。従って、正確に、流体の音速を算定するためには、管厚部を伝播する時間を含まない流体を伝播する流体伝播時間が求められ、その時間と管状部材の内径から流体の音速が算定される。管内周面と流体との間には反射波が生じるので、この反射波を利用して、流体伝播時間を求めることできる。このような伝播時間測定は、超音波による厚み測定などに利用されている一般的な測定技術であるので、それを流用することができる。判定部は、算定された音速に基づいて流体の種別を判定する。その際、判定部は予め識別対象となっている流体の音速を登録しておくと好都合である。   In one specific embodiment of the signal evaluation unit for determining the type of fluid, the signal evaluation unit calculates the time for propagating the fluid from the propagation time of the fluid propagation ultrasonic pulse, and this calculation is performed. A sound speed calculation unit that calculates the sound speed of the fluid based on time; a determination unit that determines the type of the fluid from the calculated sound speed; and a notification unit that notifies a determination result of the determination unit. The ultrasonic pulse transmitted from the transmission probe and received by the reception probe not only propagates across the fluid, but also includes two on the side in contact with the transmission probe and the side in contact with the reception probe. Propagates in the radial direction through one tube thickness. Therefore, in order to accurately calculate the sound velocity of the fluid, the fluid propagation time for propagating the fluid that does not include the time for propagating the tube thickness portion is obtained, and the sound velocity of the fluid is calculated from the time and the inner diameter of the tubular member. The Since a reflected wave is generated between the inner peripheral surface of the tube and the fluid, the fluid propagation time can be obtained using this reflected wave. Since such propagation time measurement is a general measurement technique used for thickness measurement by ultrasonic waves, it can be used. The determination unit determines the type of fluid based on the calculated sound speed. At this time, it is convenient that the determination unit registers the sound speed of the fluid to be identified in advance.

なお、種別判定すべき管状部材の材質や寸法がわかっており、さらにその内部に存在する液体が予め知られている複数種である場合、超音波パルスが送信用探触子から送信して受信用探触子で受信されるまでの伝播時間を、識別対象となっている流体種が割り当てられるように区分けしておくとよい。この場合、求められた伝播時間がこの区分けられた伝播時間帯のどこに入るかによって流体の種別を判定することができるので、評価部の構成を簡単化することができる。   In addition, when the material and dimensions of the tubular member to be classified are known, and there are a plurality of types of liquids that are known in advance, ultrasonic pulses are transmitted from the transmission probe and received. It is preferable to classify the propagation time until it is received by the probe for use so that the fluid type to be identified is assigned. In this case, since the type of fluid can be determined depending on where the determined propagation time falls within this classified propagation time zone, the configuration of the evaluation unit can be simplified.

本発明は、上述した流体識別装置だけでなく、管状部材に内在する流体を識別するための流体識別方法も対象としている。本発明による流体識別方法は、流体が内在する管状部材の外周面に、前記管状部材の横断方向に超音波パルスを送信するように送信用探触子を配置するステップと、前記送信用探触子から送信されるとともに前記流体を横断して伝播する超音波パルスである流体伝播超音波パルスを受信するように受信用探触子を管状部材の外周面に配置するステップと、前記管状部材の周壁に沿って伝播する超音波パルスである壁体伝播超音波パルスを吸収するように前記送信用探触子と前記受信用探触子の間の前記管状部材の表面に超音波吸収部材を装着するステップと、前記流体伝播超音波パルスが前記流体を伝播した伝播時間に基づいて前記流体の種別を判定するステップを含む。この流体識別方法がもたらす作用効果は、上述した流体識別装置で述べた通りである。また、好適な実施形態として述べられた種々の特徴もこの流体識別方法にも適用可能である。   The present invention is directed not only to the above-described fluid identification device, but also to a fluid identification method for identifying a fluid existing in a tubular member. The fluid identification method according to the present invention includes a step of arranging a transmission probe on an outer peripheral surface of a tubular member in which a fluid is present so as to transmit an ultrasonic pulse in a transverse direction of the tubular member, and the transmission probe. Disposing a receiving probe on the outer peripheral surface of the tubular member so as to receive a fluid-propagating ultrasonic pulse that is transmitted from the child and propagates across the fluid; An ultrasonic absorbing member is mounted on the surface of the tubular member between the transmitting probe and the receiving probe so as to absorb a wall-propagating ultrasonic pulse that is an ultrasonic pulse propagating along the peripheral wall. And determining a type of the fluid based on a propagation time during which the fluid-propagating ultrasonic pulse propagates through the fluid. The operational effects brought about by this fluid identification method are as described in the above-described fluid identification device. Various features described as preferred embodiments can also be applied to this fluid identification method.

本発明による流体識別装置の基本原理を説明する模式図であり、流体識別作業中の管状部材の径方向断面図である。It is a schematic diagram explaining the basic principle of the fluid identification apparatus by this invention, and is radial direction sectional drawing of the tubular member in fluid identification operation | work. 管状部材の径方向に発信された超音波パルスの模式的な波形図である。It is a typical waveform diagram of an ultrasonic pulse transmitted in the radial direction of a tubular member. 本発明による流体識別装置の実施形態の1つを示す斜視図である。It is a perspective view which shows one of the embodiment of the fluid identification apparatus by this invention. 締付具を省いた状態での流体識別装置の構成要素を示す模式図である。It is a schematic diagram which shows the component of the fluid identification apparatus in the state which excluded the fastener. 吸収部材ありでの超音波パルスの波形図である。It is a wave form diagram of an ultrasonic pulse with an absorption member. 吸収部材なしでの超音波パルスの波形図である。It is a wave form diagram of an ultrasonic pulse without an absorption member.

本発明による流体識別装置に採用されている音速測定の基本原理を図1の模式図を用いて説明する。
図1に示された管状部材1は円形断面を有する導管であり、その内部を都市ガス、空気、LPG、水などの流体が流れる。場合によっては、管状部材1の内部に流体が滞留していることもある。本発明による流体識別装置は、この管状部材1を流れる流体の種別を管状部材1の外周面11から超音波を用いた非破壊測定で判定する。超音波が媒体を伝播する速度、つまり音速は、物性値によって異なるので、この測定ではこのことを利用する。ここでは、超音波パルスを送信する送信用探触子2が超音波パルスの放射中心線が管状部材1の直径に一致するように管状部材1の外周面11に配置される。さらに、送信用探触子2から送信されるとともに管状部材1に内在する流体を横断して伝播する超音波パルスを受信するために、管状部材1の管軸に関して対称の位置となる外周面11に受信用探触子3が配置される。本発明による流体識別装置に採用されている音速測定は、反射法ではなく透過法での音速測定である。従って、超音波パルスが送信用探触子2から送信された時点から、その超音波パルスが受信用探触子3によって受信されるまでの時点の時間が超音波伝播時間として測定される。この超音波伝播時間で送信用探触子2と受信用探触子3との間の長さを割ることで音速が得られる。この場合、流管状部材1を径方向に通過する超音波の伝播時間が含まれるため、流体を通過する超音波の伝播時間だけを求める場合には、管状部材1を通過する超音波の伝播時間を差し引く必要がある。予め、管状部材1の管厚と管状部材1の材料を調べておけば、その超音波伝播時間は推定することができる。流体の音速は、管状部材1に用いられている鋳鉄や鋼、あるいは合成樹脂などに較べるとかなり遅く、また管状部材1の管厚は内径に較べて短いので、流体の種別の判定条件としては、管状部材1の超音波伝播時間も含んだ超音波伝播時間をそのまま利用することも可能である。
The basic principle of sound velocity measurement employed in the fluid identification device according to the present invention will be described with reference to the schematic diagram of FIG.
A tubular member 1 shown in FIG. 1 is a conduit having a circular cross section, and a fluid such as city gas, air, LPG, water flows through the inside thereof. In some cases, fluid may stay inside the tubular member 1. The fluid identification device according to the present invention determines the type of fluid flowing through the tubular member 1 from the outer peripheral surface 11 of the tubular member 1 by nondestructive measurement using ultrasonic waves. Since the speed at which the ultrasonic wave propagates through the medium, that is, the speed of sound, differs depending on the physical property value, this is used in this measurement. Here, the probe 2 for transmitting an ultrasonic pulse is arranged on the outer peripheral surface 11 of the tubular member 1 so that the radiation center line of the ultrasonic pulse matches the diameter of the tubular member 1. Further, in order to receive an ultrasonic pulse transmitted from the transmitting probe 2 and propagating across the fluid existing in the tubular member 1, the outer peripheral surface 11 is located symmetrically with respect to the tube axis of the tubular member 1. The receiving probe 3 is disposed at the center. The sound speed measurement employed in the fluid identification device according to the present invention is the sound speed measurement by the transmission method, not the reflection method. Therefore, the time from when the ultrasonic pulse is transmitted from the transmission probe 2 to when the ultrasonic pulse is received by the reception probe 3 is measured as the ultrasonic propagation time. The speed of sound is obtained by dividing the length between the transmitting probe 2 and the receiving probe 3 by this ultrasonic wave propagation time. In this case, since the propagation time of the ultrasonic wave passing through the flow tubular member 1 in the radial direction is included, when only the propagation time of the ultrasonic wave passing through the fluid is obtained, the propagation time of the ultrasonic wave passing through the tubular member 1 is determined. It is necessary to deduct. If the tube thickness of the tubular member 1 and the material of the tubular member 1 are examined in advance, the ultrasonic propagation time can be estimated. The speed of sound of the fluid is considerably slower than cast iron, steel, or synthetic resin used for the tubular member 1, and the tube thickness of the tubular member 1 is shorter than the inner diameter. The ultrasonic wave propagation time including the ultrasonic wave propagation time of the tubular member 1 can be used as it is.

このように構成された流体識別装置においては、受信用探触子3で受信される信号には、管状部材1に内在する流体を横断して伝播する超音波パルス(ここでは流体伝播超音波パルスとも称し、図1では符号Wfを付記している)以外の超音波パルス(ここでは壁体伝播超音波パルス又はノイズ波とも称し、図1では符号Wnを付記している)が含まれることである。ノイズ波は、図1でも模式的に示されているが、送信用探触子2から送信された超音波パルスが板波や表面波に分解されたものであり、その分解された超音波が、管壁(管の側壁)に沿って拡散し、受信用探触子3に達して受信される。鋼や鋳鉄あるいは合成樹脂から製造される管状部材1を伝播するノイズ波の音速は流体の音速に較べてかなり速いので、伝播距離は1.5倍ほど長くても、流体を横断して伝播する超音波パルスよりは早く受信用探触子3に達する。また、このノイズ波はさらに管状部材1を一回りして再び受信用探触子3に達する。図2に、受信用探触子3で受信される超音波信号の波形図が模式的に示されている。図2において、1回目のノイズ波に符号Wn1が付記され、さらに一回りして受信されたノイズ波に符号Wn2が付記されている。流体を横断して伝播する超音波パルスの波形には符号Wfが付記されている。   In the fluid identification device configured as described above, a signal received by the receiving probe 3 includes an ultrasonic pulse propagating across the fluid existing in the tubular member 1 (here, a fluid propagation ultrasonic pulse). In addition, an ultrasonic pulse other than those shown in FIG. 1 (indicated by the symbol Wf) (herein also referred to as wall-propagating ultrasonic pulses or noise waves, and in FIG. 1 by the symbol Wn) is included. is there. Although the noise wave is also schematically shown in FIG. 1, the ultrasonic pulse transmitted from the transmission probe 2 is decomposed into a plate wave and a surface wave, and the decomposed ultrasonic wave is Then, it diffuses along the tube wall (side wall of the tube), reaches the receiving probe 3 and is received. Since the sound velocity of the noise wave propagating through the tubular member 1 manufactured from steel, cast iron, or synthetic resin is considerably faster than that of the fluid, it propagates across the fluid even if the propagation distance is about 1.5 times longer. The probe 3 for reception is reached earlier than the ultrasonic pulse. Further, the noise wave further goes around the tubular member 1 and reaches the receiving probe 3 again. FIG. 2 schematically shows a waveform diagram of an ultrasonic signal received by the receiving probe 3. In FIG. 2, the first noise wave is marked with a symbol Wn1, and the noise wave received once around is marked with a symbol Wn2. The waveform of the ultrasonic pulse that propagates across the fluid is marked with the symbol Wf.

ノイズ波(壁体伝播超音波パルス)が管状部材1の管壁に沿って伝播している間にこのノイズ波を吸収するため、超音波吸収部材4が送信用探触子2と受信用探触子3の間の管状部材1の外表面11に装着されている。管状部材1から超音波吸収部材4にノイズ波が効率良く入射するために、超音波吸収部材4の材料は管状部材1の音響インピーダンスにできるだけ近いものを選ぶ。さらに管状部材1の外表面11への密着性を良くするために、外表面11の曲率に一致する屈曲性を持つ程度の粘性を有することが好ましい。さらには、超音波吸収部材4に入射したノイズ波を吸収するために吸音特性を有する材料の使用、あるいは吸音構造(多孔構造や粒状体混入構造)を形成することも利点がある。一例として、超音波吸収部材4を、各層の音響インピーダンスが管状部材1の外周面に近い層ほど管状部材1の音響インピーダンスとの差が小さくなるように形成した複数層から構成することも好適である。また、超音波吸収部材4の管状部材1の外表面11への密着性をより向上させるためには、超音波吸収部材4を管状部材1の外周面に押し付ける締付具が用いられる。好適な超音波吸収部材4として、油粘土、パテ、さらにはゴムシート、プラスチック(PP)シート、不織布など、あるいはそれらを組み合わせた複合材が挙げられる。   Since the noise wave is absorbed while the noise wave (wall-propagating ultrasonic pulse) propagates along the tube wall of the tubular member 1, the ultrasonic absorbing member 4 is connected to the transmitting probe 2 and the receiving probe. It is attached to the outer surface 11 of the tubular member 1 between the touch elements 3. In order for noise waves to efficiently enter the ultrasonic absorbing member 4 from the tubular member 1, the material of the ultrasonic absorbing member 4 is selected as close as possible to the acoustic impedance of the tubular member 1. Further, in order to improve the adhesion of the tubular member 1 to the outer surface 11, it is preferable that the tube member 1 has a viscosity with a degree of flexibility that matches the curvature of the outer surface 11. Furthermore, there is an advantage in using a material having a sound absorbing characteristic in order to absorb a noise wave incident on the ultrasonic absorbing member 4 or forming a sound absorbing structure (a porous structure or a granular material mixed structure). As an example, it is also preferable that the ultrasonic absorbing member 4 is composed of a plurality of layers formed so that the difference in acoustic impedance of the tubular member 1 is smaller as the acoustic impedance of each layer is closer to the outer peripheral surface of the tubular member 1. is there. In order to further improve the adhesion of the ultrasonic absorbing member 4 to the outer surface 11 of the tubular member 1, a fastener that presses the ultrasonic absorbing member 4 against the outer peripheral surface of the tubular member 1 is used. Suitable ultrasonic absorbing members 4 include oil clay, putty, rubber sheet, plastic (PP) sheet, non-woven fabric, etc., or a composite material combining them.

図1に模式的に示されているように、管状部材1から超音波吸収部材4に入射したノイズ波(図1では符号Waを付記している)は散乱等によって超音波吸収部材4に吸収されその音圧エネルギを失っていく。これにより、受信用探触子3で受信される超音波信号としてのノイズ波はかなり減衰することになる。なお、この図2は説明目的であり、その波形は理解し易いようにデフォルメされている。   As schematically shown in FIG. 1, a noise wave (indicated by symbol Wa in FIG. 1) incident on the ultrasonic absorbing member 4 from the tubular member 1 is absorbed by the ultrasonic absorbing member 4 by scattering or the like. The sound pressure energy is lost. Thereby, the noise wave as the ultrasonic signal received by the receiving probe 3 is considerably attenuated. Note that FIG. 2 is for illustrative purposes, and the waveform is deformed for easy understanding.

図2を用いて流体の識別の方法を説明する。なお、図2で示された、横軸に時間軸ととった超音波パルスの波形図では、送信用探触子2で超音波パルスが送信された時点がTs(通常は0秒)で示され、わかりやすいように擬似パルスW0が表示されている。さらに、最初のノイズ波の波形がWn1で、2回目のノイズ波の波形がWn2で示され、それぞれの受信用探触子3への到達時点がTwn1、Twn2で示されている。流体伝播超音波パルスの波形がWfで示され、その到達時点がTwfで示されている。
流体伝播超音波パルスの伝播時間:t0は、t0=Twf―Tsで求めることができ、管状部材1の外径をDとすれば、D/t0で管状部材1を含む流体伝播超音波パルスの音速が得られる。管状部材1を含まない流体伝播超音波パルスの音速を求めるには、管状部材1を伝播する時間:Δtを差し引いた伝播時間:t=t0―2Δtを求め、管状部材1の内径をdとすれば、d/tで流体のみの音速が算定できる。管状部材1を伝播する時間:Δtは、推定値でもよいし、管状部材1の肉厚と材質から算定してもよい。識別しようとする流体の音速と管状部材の音速がかなり違っていると、その影響は少ないので、上述した音速:D/t0に基づいて流体種別を判定してもよい。この流体識別装置において重要なことは、超音波吸収部材4によってノイズ波をできる限り減衰させて、できるだけクリアな流体伝播超音波パルスの立ち上がり波形を得ることである。
A fluid identification method will be described with reference to FIG. In the waveform diagram of the ultrasonic pulse shown in FIG. 2 with the time axis on the horizontal axis, the time point when the ultrasonic pulse is transmitted by the transmission probe 2 is indicated by Ts (usually 0 seconds). The pseudo pulse W0 is displayed for easy understanding. Further, the waveform of the first noise wave is indicated by Wn1, the waveform of the second noise wave is indicated by Wn2, and the arrival time points at the respective reception probes 3 are indicated by Twn1 and Twn2. The waveform of the fluid propagation ultrasonic pulse is indicated by Wf, and the arrival time is indicated by Twf.
The propagation time of the fluid propagation ultrasonic pulse: t0 can be obtained by t0 = Twf-Ts. If the outer diameter of the tubular member 1 is D, the fluid propagation ultrasonic pulse including the tubular member 1 is represented by D / t0. Sound speed is obtained. In order to obtain the sound velocity of the fluid propagation ultrasonic pulse not including the tubular member 1, the propagation time of the tubular member 1: the propagation time after subtracting Δt: t = t 0 −2Δt is obtained, and the inner diameter of the tubular member 1 is set to d. For example, the sound velocity of only the fluid can be calculated by d / t. The propagation time of the tubular member 1: Δt may be an estimated value or may be calculated from the thickness and material of the tubular member 1. If the sound velocity of the fluid to be identified is significantly different from the sound velocity of the tubular member, the influence thereof is small. Therefore, the fluid type may be determined based on the above-mentioned sound velocity: D / t0. What is important in this fluid identification device is that the ultrasonic wave absorbing member 4 attenuates the noise wave as much as possible to obtain the rising waveform of the fluid propagation ultrasonic pulse as clear as possible.

なお、超音波パルスは、境界面を形成する媒体の音響インピーダンスの差が大きいほど境界面で強く反射するので、ここでは、流体と管状部材1の内周面との境界面で大きな反射が生じる。従って、図2の波形図では、受信用探触子3には、上述した最初に到着した流体伝播超音波パルスの波形(Wfで示されている)だけでなく、管状部材1内の流体を1回半往復した流体伝播超音波パルスの波形(Wf2で示されている)も示されている。そのような流体伝播超音波パルスの到達時点はTwf2で示されている。Wf2で示された波形の方がWfで示された波形より良いS/N比で検出できる場合には、この波形を用いて伝播時間(Twf2―Ts=t0+2×t0=3t0)の算定結果に基づいて流体種別を判定することができる。   In addition, since the ultrasonic pulse is more strongly reflected at the boundary surface as the difference in acoustic impedance of the medium forming the boundary surface is larger, here, a large reflection occurs at the boundary surface between the fluid and the inner peripheral surface of the tubular member 1. . Therefore, in the waveform diagram of FIG. 2, the receiving probe 3 receives not only the waveform of the first fluid propagation ultrasonic pulse (indicated by Wf) but also the fluid in the tubular member 1. Also shown is the waveform of a fluid-propagating ultrasonic pulse that is reciprocated once and a half (shown as Wf2). The arrival time of such a fluid propagating ultrasonic pulse is indicated by Twf2. If the waveform indicated by Wf2 can be detected with a better signal-to-noise ratio than the waveform indicated by Wf, this waveform is used to calculate the propagation time (Twf2-Ts = t0 + 2 × t0 = 3t0). Based on this, the fluid type can be determined.

次に、図面を用いて、本発明による流体識別装置の具体的な実施形態の1つを説明する。図3は、流体識別装置の全体構成を示す斜視図であり、図4は、締付具を省いた状態での流体識別装置の構成要素を示す模式図である。   Next, one specific embodiment of the fluid identification device according to the present invention will be described with reference to the drawings. FIG. 3 is a perspective view illustrating the overall configuration of the fluid identification device, and FIG. 4 is a schematic diagram illustrating the components of the fluid identification device in a state in which the fastener is omitted.

図3と図4に示された流体識別装置は、図1と図2とを用いて説明した基本原理を実施するものであり、管状部材としての水道管またはガス管などの導管1の外表面11に対向設置される送信用探触子2と受信用探触子3、超音波処理ユニット5、超音波吸収部材4、締付具6を備えている。送信用探触子2及び受信用探触子3の超音波励起面には導管1の曲面とのマッチングを行なうためのシュー部材31が装着されている。超音波吸収部材4は、油粘土製で、厚さ数mmで約30cm幅のシート状に成形加工され、導管1の外表面11に隙間なく巻き付けられている。但し、超音波吸収部材4送信用探触子2が導管1の外表面11に直接接触できるように、超音波吸収部材4の送信用探触子2と受信用探触子3の設置箇所には開口部41が設けられている。   The fluid identification device shown in FIGS. 3 and 4 implements the basic principle described with reference to FIGS. 1 and 2, and the outer surface of the conduit 1 such as a water pipe or gas pipe as a tubular member. 11 includes a transmitting probe 2 and a receiving probe 3, which are disposed opposite to each other, an ultrasonic processing unit 5, an ultrasonic absorbing member 4, and a fastener 6. A shoe member 31 for matching the curved surface of the conduit 1 is mounted on the ultrasonic excitation surfaces of the transmission probe 2 and the reception probe 3. The ultrasonic absorbing member 4 is made of oil clay, is formed into a sheet shape having a thickness of several millimeters and a width of about 30 cm, and is wound around the outer surface 11 of the conduit 1 without a gap. However, the ultrasonic wave absorbing member 4 transmitting probe 2 can be placed directly on the outer surface 11 of the conduit 1 at the place where the transmitting probe 2 and the receiving probe 3 of the ultrasonic absorbing member 4 are installed. Is provided with an opening 41.

締付具6は、巻き付けられた超音波吸収部材4を全面的に導管1に対して押し付けるように構成されており、帯状体61と帯状体61の自由端同士を引っ張り合わせて帯状体61に張力を与える締付ボルトからなる。締付ボルトを締め込むことで、帯状体61の張力を増大させ、その径方向内方へ力によって超音波吸収部材4を締付ける。その締付トルクは10N・m程度である。帯状体61においても、導管1に設置された送信用探触子2と受信用探触子3とに干渉しないように、開口部31aが設けられている。締付具6の装着時には、超音波吸収部材4の開口部41と帯状体61の開口部63とが一致するように、帯状体61の導管1に対する軸方向および周方向の位置が調整される。導管1の外表面11と超音波吸収部材4との密着性を向上させるために、その間にグリセリンや潤滑オイルなどのカップリング剤を介在させることも好適である。   The fastener 6 is configured to press the wound ultrasonic absorbing member 4 entirely against the conduit 1, and pulls the strip 61 and the free ends of the strip 61 to the strip 61. It consists of tightening bolts that give tension. By tightening the tightening bolt, the tension of the belt-like body 61 is increased, and the ultrasonic absorbing member 4 is tightened by a force inward in the radial direction. The tightening torque is about 10 N · m. Also in the belt-like body 61, an opening 31 a is provided so as not to interfere with the transmission probe 2 and the reception probe 3 installed in the conduit 1. When the fastener 6 is attached, the axial and circumferential positions of the strip 61 with respect to the conduit 1 are adjusted so that the opening 41 of the ultrasonic absorbing member 4 and the opening 63 of the strip 61 match. . In order to improve the adhesion between the outer surface 11 of the conduit 1 and the ultrasonic absorbing member 4, it is also preferable to interpose a coupling agent such as glycerin or lubricating oil therebetween.

超音波処理ユニット5は図4に示されているように、送信用探触子2から送信され受信用探触子3で受信された流体伝播超音波パルスが前記流体を伝播した伝播時間に基づいて導管1に内在する流体の種別を判定するために、送信回路51、受信回路52、信号評価部53、データ格納部54、表示部55を備えている。送信回路51は、高圧パルスを発生させ送信用探触子2の圧電素子を励起し、超音波パルスを作り出す。受信回路52は、受信用探触子3で受信された信号に対して増幅や周波数選別などを行なう前処理を行なう。表示部55は、超音波パルスの波形やその他情報を表示する、液晶等のディスプレイである。   As shown in FIG. 4, the ultrasonic processing unit 5 is based on the propagation time that the fluid propagation ultrasonic pulse transmitted from the transmission probe 2 and received by the reception probe 3 propagates through the fluid. In order to determine the type of fluid present in the conduit 1, a transmission circuit 51, a reception circuit 52, a signal evaluation unit 53, a data storage unit 54, and a display unit 55 are provided. The transmission circuit 51 generates a high-voltage pulse to excite the piezoelectric element of the transmission probe 2 to generate an ultrasonic pulse. The receiving circuit 52 performs preprocessing for performing amplification, frequency selection, and the like on the signal received by the receiving probe 3. The display unit 55 is a display such as a liquid crystal that displays the waveform of the ultrasonic pulse and other information.

信号評価部53には、流体伝播超音波パルスの伝播時間から流体を伝播する時間を算定する伝播時間算定部53a、算定された伝播時間に基づいて流体の音速を算定する音速算定部53b、音速算定部53bで算定された音速から前記流体の種別を判定する判定部53c、判定部の判定結果を報知するための報知信号を生成する報知部53dが含まれている。ここでは、伝播時間算定部53aで取り扱われる伝播時間は、厳密な意味で超音波パルスが流体を伝播する時間に限定されるわけでなく、導管1を伝播する時間も含めたトータルの伝播時間も含むものであってもよい。導管伝播時間が推定できる場合には、算定された伝播時間からその導管伝播時間分だけ減算することで正確な流体伝播時間を求めることができる。この実施形態では、導管伝播時間が流体種別判定に大きな影響を与えないので、伝播時間算定部53aで取り扱う伝播時間は、超音波パルスが送信用探触子2で送信された時点から、受信用探触子3で受信される時点までの時間である。但し、上述したように、反射を伴わない真の透過超音波パルス(図2の波形図ではWfで示されている)が良好なS/N比で検出されない場合には、導管1内で1回半往復した超音波パルス(図2の波形図ではWf2で示されている)が用いられる。伝播時間算定部53aや音速算定部53bにおける動作の仕組みは、超音波音速測定器や超音波肉厚測定器で広く利用されているものであるから、ここでは詳しい説明は省略するが、例えば特許文献1が参照される。   The signal evaluation unit 53 includes a propagation time calculation unit 53a that calculates the time for propagation of the fluid from the propagation time of the fluid propagation ultrasonic pulse, a sound speed calculation unit 53b that calculates the sound speed of the fluid based on the calculated propagation time, A determination unit 53c that determines the type of the fluid from the sound speed calculated by the calculation unit 53b, and a notification unit 53d that generates a notification signal for notifying the determination result of the determination unit are included. Here, the propagation time handled by the propagation time calculation unit 53a is not strictly limited to the time for the ultrasonic pulse to propagate through the fluid, and the total propagation time including the time for propagation through the conduit 1 is not limited. It may be included. When the conduit propagation time can be estimated, an accurate fluid propagation time can be obtained by subtracting the conduit propagation time from the calculated propagation time. In this embodiment, since the conduit propagation time does not significantly affect the fluid type determination, the propagation time handled by the propagation time calculation unit 53a is determined from the time when the ultrasonic pulse is transmitted by the transmission probe 2 for reception. This is the time until the point of reception by the probe 3. However, as described above, when a true transmitted ultrasonic pulse without reflection (indicated by Wf in the waveform diagram of FIG. 2) is not detected with a good S / N ratio, 1 in the conduit 1 An ultrasonic pulse (represented by Wf2 in the waveform diagram of FIG. 2) that has been reciprocated once and a half times is used. The mechanism of operation in the propagation time calculation unit 53a and the sound speed calculation unit 53b is widely used in ultrasonic sound velocity measuring devices and ultrasonic wall thickness measuring devices. Reference 1 is referred to.

判定部53cは、データ格納部54にアクセスして、音速算定部53bで算定された音速に最も類似する音速を有する流体種を検索し、検索合致した流体種を導管1に内在する流体と判定する。判定部53cで実行されるアルゴリズムは種々の変形が可能である。例えば、導管1の材質と内径と肉厚別に、識別するべき流体ごとの相応な伝播時間をデータ格納部54に格納しておけば、音速算定部53bを省略して、伝播時間算定部53aで算定された伝播時間から直接流体種を判定することも可能である。判定部53cで導管1に内在する流体種が判定されると、報知部53dは判定された流体種を表示部55に表示するための表示信号を生成する。また、報知部53dは、判定された流体種を音声やブザーあるいはランプで報知するような構成であっても良い。   The determination unit 53c accesses the data storage unit 54, searches for a fluid type having the sound speed most similar to the sound speed calculated by the sound speed calculation unit 53b, and determines that the fluid type that matches the search is a fluid existing in the conduit 1. To do. Various modifications can be made to the algorithm executed by the determination unit 53c. For example, if the propagation time corresponding to each fluid to be identified is stored in the data storage unit 54 according to the material, inner diameter, and thickness of the conduit 1, the sound speed calculation unit 53b is omitted, and the propagation time calculation unit 53a It is also possible to determine the fluid type directly from the calculated propagation time. When the determination unit 53c determines the fluid type inherent in the conduit 1, the notification unit 53d generates a display signal for displaying the determined fluid type on the display unit 55. Further, the notification unit 53d may be configured to notify the determined fluid type by voice, buzzer, or lamp.

上述した実施形態の流体識別装置において、大気圧の空気を内在させた、管外径:118mm、管厚:8.5mmの鋳鉄製導管1に対して測定実験が行なわれた。なお、送信用探触子2と受信用探触子3の周波数に関しては、導管1の材質と管厚によって適切なものが異なるので、数種類の周波数の送信用探触子2と受信用探触子3を用意して最良のS/N比が得られるものを選択することが好ましい。
この実験で得られた超音波波形は図5と図6に示されている。図5は、締付具6を用いて超音波吸収部材4を10Nmの締付トルクで締付けた際に得られた超音波波形である。図6は、参考のため、超音波吸収部材4なしで行なわれた際に得られた超音波波形である。図5の超音波波形から読み取ることができるように、導管1の内部(空気)を1回半往復して受信用探触子3で受信された流体伝播超音波パルスの波形(Wf2で示されている)の到達時点(Twf2で示されている)は920μsである。鋳鉄の音速は、3000から5000m/sであるので、超音波パルスが導管1を伝播する時間は、5μs以下であり、無視してもよいし、その分をTwf2から差し引いてもよい。導管1の内径は101mmで、伝播時間はそれを3回伝播したことになるので、音速は、約330m/sと算定される。つまり、この音速結果から、導管1に内在する流体は空気であると判定できる。ちなみに、超音波吸収部材4なしではノイズ波による干渉により流体伝播超音波パルスの波形を検出することが困難であることが、図4から読み取ることができる。
In the fluid identification device of the above-described embodiment, a measurement experiment was performed on a cast iron conduit 1 having a pipe outer diameter of 118 mm and a pipe thickness of 8.5 mm in which atmospheric air was present. As for the frequencies of the transmission probe 2 and the reception probe 3, appropriate ones differ depending on the material of the conduit 1 and the tube thickness. Therefore, the transmission probe 2 and the reception probe of several kinds of frequencies are used. It is preferable to prepare a child 3 and select one that provides the best S / N ratio.
The ultrasonic waveforms obtained in this experiment are shown in FIGS. FIG. 5 is an ultrasonic waveform obtained when the ultrasonic absorbing member 4 is tightened with a tightening torque of 10 Nm using the tightening tool 6. FIG. 6 is an ultrasonic waveform obtained when the ultrasonic absorbing member 4 is used for reference. As can be read from the ultrasonic waveform of FIG. 5, the waveform of the fluid propagation ultrasonic pulse (indicated by Wf 2) received by the receiving probe 3 after reciprocating once and half inside the conduit 1 (air). The arrival time (indicated by Twf2) is 920 μs. Since the speed of sound of cast iron is 3000 to 5000 m / s, the time for the ultrasonic pulse to propagate through the conduit 1 is 5 μs or less, and may be ignored, or the amount may be subtracted from Twf2. Since the inner diameter of the conduit 1 is 101 mm and the propagation time has propagated it three times, the sound speed is calculated to be about 330 m / s. That is, from this sound speed result, it can be determined that the fluid contained in the conduit 1 is air. Incidentally, it can be read from FIG. 4 that it is difficult to detect the waveform of the fluid-propagating ultrasonic pulse due to interference by noise waves without the ultrasonic absorbing member 4.

本発明は、管状部材に内在する流体の種別を管状部材の外側から非破壊的手法で識別する流体識別装置に適用できる。   The present invention can be applied to a fluid identification device that identifies the type of fluid inherent in a tubular member from the outside of the tubular member by a non-destructive method.

1:導管(管状部材)
2:送信用探触子
3:受信用探触子
4:超音波吸収部材
5:超音波処理ユニット
51:送信回路
52:受信回路
53:信号評価部
53a:伝播時間算定部
53b:音速算定部
53c:判定部
53d:報知部
54:データ格納部
6:締付具
1: Conduit (tubular member)
2: Transmission probe 3: Reception probe 4: Ultrasonic absorbing member 5: Ultrasonic processing unit 51: Transmission circuit 52: Reception circuit 53: Signal evaluation unit 53a: Propagation time calculation unit 53b: Sound velocity calculation unit 53c: Determination unit 53d: Notification unit 54: Data storage unit 6: Fastening tool

Claims (7)

流体が内在する管状部材の外周面に配置され、前記管状部材の横断方向に超音波パルスを送信する送信用探触子と、
前記送信用探触子から送信され前記流体を横断して伝播する超音波パルスである流体伝播超音波パルスを受信するように前記管状部材の外周面に配置される受信用探触子と、
前記流体伝播超音波パルスが前記流体を伝播した伝播時間に基づいて前記流体の種別を判定する信号評価部と、
前記管状部材の周壁に沿って伝播する超音波パルスである壁体伝播超音波パルスを吸収するために前記送信用探触子と前記受信用探触子の間の前記管状部材の表面に装着された超音波吸収部材と、
を備える流体識別装置。
A transmitting probe that is disposed on an outer peripheral surface of a tubular member in which a fluid is present and transmits an ultrasonic pulse in a transverse direction of the tubular member;
A receiving probe disposed on an outer peripheral surface of the tubular member so as to receive a fluid propagating ultrasonic pulse transmitted from the transmitting probe and propagating across the fluid;
A signal evaluation unit that determines the type of the fluid based on a propagation time during which the fluid propagation ultrasonic pulse propagates through the fluid;
Attached to the surface of the tubular member between the transmitting probe and the receiving probe to absorb wall-propagating ultrasonic pulses, which are ultrasonic pulses propagating along the peripheral wall of the tubular member. An ultrasonic absorbing member,
A fluid identification device comprising:
前記超音波吸収部材は粘性のある超音波吸収部材である請求項1に記載の流体識別装置。   The fluid identification device according to claim 1, wherein the ultrasonic absorbing member is a viscous ultrasonic absorbing member. 前記超音波吸収部材は複数層からなり、各層の音響インピーダンスは前記管状部材の外周面に近い層ほど前記管状部材の音響インピーダンスとの差が少ない請求項1または2に記載の流体識別装置。   3. The fluid identification device according to claim 1, wherein the ultrasonic absorbing member includes a plurality of layers, and the acoustic impedance of each layer has a smaller difference from the acoustic impedance of the tubular member as the layer is closer to the outer peripheral surface of the tubular member. 前記超音波吸収部材は、シート成形材である請求項1から3のいずれか一項に記載の流体識別装置。   The fluid identification device according to any one of claims 1 to 3, wherein the ultrasonic absorbing member is a sheet molding material. 前記超音波吸収部材を前記管状部材の外周面に押し付ける締付具が備えられている請求項1から4のいずれか一項に記載の流体識別装置。   The fluid identification device according to any one of claims 1 to 4, further comprising a fastener that presses the ultrasonic absorbing member against an outer peripheral surface of the tubular member. 前記信号評価部は、前記流体伝播超音波パルスの伝播時間から前記流体を伝播する時間を算定し、この算定された時間に基づいて前記流体の音速を算定する音速算定部と、算定された音速から前記流体の種別を判定する判定部と、前記判定部の判定結果を報知する報知部とを含む請求項1から5のいずれか一項に記載の流体識別装置。   The signal evaluation unit calculates a time for propagating the fluid from a propagation time of the fluid propagation ultrasonic pulse, and calculates a sound speed of the fluid based on the calculated time, and a calculated sound speed The fluid identification device according to claim 1, further comprising: a determination unit that determines a type of the fluid from a determination unit; and a notification unit that notifies a determination result of the determination unit. 流体が内在する管状部材の外周面に、前記管状部材の横断方向に超音波パルスを送信するように送信用探触子を配置するステップと、
前記送信用探触子から送信されるとともに前記流体を横断して伝播する超音波パルスである流体伝播超音波パルスを受信するように受信用探触子を前記管状部材の外周面に配置するステップと、
前記管状部材の周壁に沿って伝播する超音波パルスである壁体伝播超音波パルスを吸収するように前記送信用探触子と前記受信用探触子の間の前記管状部材の表面に超音波吸収部材を装着するステップと、
前記流体伝播超音波パルスが前記流体を伝播した伝播時間に基づいて前記流体の種別を判定するステップと、
を備える流体識別方法。
Disposing a transmitting probe on an outer peripheral surface of a tubular member in which fluid is present so as to transmit an ultrasonic pulse in a transverse direction of the tubular member;
Disposing a receiving probe on the outer peripheral surface of the tubular member so as to receive a fluid propagating ultrasonic pulse, which is an ultrasonic pulse transmitted from the transmitting probe and propagating across the fluid. When,
An ultrasonic wave is applied to the surface of the tubular member between the transmitting probe and the receiving probe so as to absorb a wall-propagating ultrasonic pulse that is an ultrasonic pulse propagating along the peripheral wall of the tubular member. Attaching the absorbent member;
Determining the type of the fluid based on a propagation time during which the fluid-propagating ultrasonic pulse has propagated through the fluid;
A fluid identification method comprising:
JP2012265507A 2012-12-04 2012-12-04 Fluid identification device and fluid identification method Expired - Fee Related JP5968210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012265507A JP5968210B2 (en) 2012-12-04 2012-12-04 Fluid identification device and fluid identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012265507A JP5968210B2 (en) 2012-12-04 2012-12-04 Fluid identification device and fluid identification method

Publications (2)

Publication Number Publication Date
JP2014109551A true JP2014109551A (en) 2014-06-12
JP5968210B2 JP5968210B2 (en) 2016-08-10

Family

ID=51030256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012265507A Expired - Fee Related JP5968210B2 (en) 2012-12-04 2012-12-04 Fluid identification device and fluid identification method

Country Status (1)

Country Link
JP (1) JP5968210B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072188A (en) * 2016-10-31 2018-05-10 株式会社日立パワーソリューションズ Nondestructive inspection system using guide wave, and nondestructive inspection method
JP2019095322A (en) * 2017-11-24 2019-06-20 富士電機株式会社 Ultrasonic wave flow rate measurement structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128843A (en) * 1980-12-16 1982-08-10 Maikuro Piyuaa Shisutemusu Inc Pulse echo apparatus and holder thereof
JPH11183235A (en) * 1997-12-25 1999-07-09 Toshiba Corp Method and device for detecting gas layer in pipe using ultrasonic wave
JP2000146750A (en) * 1998-11-16 2000-05-26 Jrc Tokki Kk Underwater sound-absorbing device
JP2002082098A (en) * 2000-09-07 2002-03-22 Yokogawa Electric Corp Fluid kind judgment device and flowmeter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128843A (en) * 1980-12-16 1982-08-10 Maikuro Piyuaa Shisutemusu Inc Pulse echo apparatus and holder thereof
JPH11183235A (en) * 1997-12-25 1999-07-09 Toshiba Corp Method and device for detecting gas layer in pipe using ultrasonic wave
JP2000146750A (en) * 1998-11-16 2000-05-26 Jrc Tokki Kk Underwater sound-absorbing device
JP2002082098A (en) * 2000-09-07 2002-03-22 Yokogawa Electric Corp Fluid kind judgment device and flowmeter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072188A (en) * 2016-10-31 2018-05-10 株式会社日立パワーソリューションズ Nondestructive inspection system using guide wave, and nondestructive inspection method
JP2019095322A (en) * 2017-11-24 2019-06-20 富士電機株式会社 Ultrasonic wave flow rate measurement structure
JP7056096B2 (en) 2017-11-24 2022-04-19 富士電機株式会社 Ultrasonic flow measurement structure

Also Published As

Publication number Publication date
JP5968210B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
US6363788B1 (en) Noninvasive detection of corrosion, mic, and foreign objects in containers, using guided ultrasonic waves
US10458871B2 (en) Apparatus and method for measuring the pressure inside a pipe or container
US6595059B2 (en) Noninvasive detection of corrosion, MIC, and foreign objects in fluid-filled pipes using leaky guided ultrasonic waves
KR102417558B1 (en) Detection and Monitoring of Changes in Metal Structures Using Multimode Acoustic Signals
US8117918B2 (en) Method and apparatus for determining pipewall thickness using one or more ultrasonic sensors
CN103154721A (en) Apparatus and method for noninvasive particle detection using Doppler spectroscopy
EP3710795B1 (en) Device and method for detecting deposition layers in a conduit conducting a liquid or a soft medium and/or for level detection
JP2004301540A (en) Non-destructive inspection method and non-destructive inspection device
JP2006322902A5 (en)
JP2014178202A (en) Ultrasonic flowmeter and method for measuring ultrasonic flow
Piao et al. Non-invasive ultrasonic inspection of sludge accumulation in a pipe
JP5968210B2 (en) Fluid identification device and fluid identification method
KR102481199B1 (en) Pipe Thickness Measuring System by Using Induced Ultrasonic wave and Ultra Sonar
US20100305870A1 (en) Detection of gas voids in pipe using guided wave
US8714029B2 (en) Flow measuring device and method including both a doppler frequency shift measurement method and travel time measurement method
US5929338A (en) Thickness measurement of in-ground culverts
KR100966543B1 (en) Ultrasonic evaluation system for internal deposit layer in a pipe
JP5155490B1 (en) Ultrasonic flow meter
RU66029U1 (en) INTEGRATED DEVICE FOR MEASURING FLOW, DENSITY AND VISCOSITY OF OIL PRODUCTS
JP3810661B2 (en) Defect detection method for piping
KR102481198B1 (en) Pipe Thickness Measuring Method by Induced Ultrasonic wave and Ultra Sonar
JP3715177B2 (en) Evaluation method of circular pipe
JPH11183235A (en) Method and device for detecting gas layer in pipe using ultrasonic wave
RU2313068C2 (en) Mode of measuring gas consumption in main pipelines and an arrangement for its execution
RU2197679C2 (en) Method for locating leak points on liquid-carrying pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R150 Certificate of patent or registration of utility model

Ref document number: 5968210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees