JP2014108011A - Shift control device of electric automobile - Google Patents

Shift control device of electric automobile Download PDF

Info

Publication number
JP2014108011A
JP2014108011A JP2012261082A JP2012261082A JP2014108011A JP 2014108011 A JP2014108011 A JP 2014108011A JP 2012261082 A JP2012261082 A JP 2012261082A JP 2012261082 A JP2012261082 A JP 2012261082A JP 2014108011 A JP2014108011 A JP 2014108011A
Authority
JP
Japan
Prior art keywords
rotational speed
gear
torque
speed
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012261082A
Other languages
Japanese (ja)
Other versions
JP5930541B2 (en
Inventor
Kunio Sakata
邦夫 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to JP2012261082A priority Critical patent/JP5930541B2/en
Priority to PCT/JP2013/081302 priority patent/WO2014084102A1/en
Publication of JP2014108011A publication Critical patent/JP2014108011A/en
Application granted granted Critical
Publication of JP5930541B2 publication Critical patent/JP5930541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/485Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/107Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0474Smoothing ratio shift by smoothing engagement or release of positive clutches; Methods or means for shock free engagement of dog clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shift control device of an electric automobile capable of achieving a target shift stage, and thus, preventing a situation such as travel incapability when gear change cannot be completed by certainly engaging a dog tooth by appropriately executing rotation synchronization of a shift gear utilizing an electric motor.SOLUTION: In preselection of a gear mechanism G2 to a predetermined shift stage, a dog tooth is engaged by operating a synchronization mechanism of a shift stage by a hydraulic cylinder 6 upon executing rotation synchronization control for matching rotational speed of a target shift gear to target rotational speed by transmitting driving force of an electric motor 3 to a speed changer 2. An oil temperature correction coefficient is set to a larger value as oil temperature of the speed changer is lower since rotation of the shift gear suddenly falls after rotation synchronization when the oil temperature is low, and the target rotational speed is set to an increase side based on the oil temperature correction coefficient.

Description

本発明は電気自動車の変速制御装置に係り、詳しくは車両に走行用動力源として搭載された電動機を利用して変速機の変速ギヤを回転同期させることにより円滑に変速を実行可能な変速制御装置に関する。   The present invention relates to a shift control device for an electric vehicle, and more specifically, a shift control device capable of smoothly performing a shift by rotating and synchronizing a shift gear of a transmission using an electric motor mounted as a driving power source in the vehicle. About.

従来からの走行用動力源としてエンジンを搭載したエンジン車両の効率を改善するために、エンジンに加えて走行用動力源として電動機を搭載したハイブリッド電気自動車、或いはエンジンに代えて電動機を搭載した電気自動車など(以下、電気自動車と総称する)が実用化されている。このような電気自動車では、エンジンの運転効率が低下する走行領域では電動機を作動させて走行したり、或いは車両の減速時などに電動機を発電機として作動させて回生エネルギを回収したりして効率の向上を達成している。   In order to improve the efficiency of an engine vehicle equipped with an engine as a conventional driving power source, a hybrid electric vehicle equipped with an electric motor as a driving power source in addition to the engine, or an electric vehicle equipped with an electric motor instead of the engine (Hereinafter collectively referred to as an electric vehicle). In such an electric vehicle, the electric motor is operated in a traveling region where the engine operating efficiency is lowered, or the electric motor is operated as a generator when the vehicle is decelerated, etc., and regenerative energy is recovered. Has achieved an improvement.

近年ではトラックやバスなどの大型車両にも電気自動車が採用されると共に、変速機の自動化も進められている。自動変速機としては、トルクコンバータ式変速機やCVT(Continuously Variable Transmission)が一般的であるが、大きな駆動力を伝達するトラックやバスなどの大型車両に対しては容量が不足する場合がある。そこで、従来からの手動変速機をベースとして、変速操作及びクラッチの断接操作をアクチュエータにより自動的に行うようにした自動変速機が用いられている。   In recent years, electric vehicles have been adopted for large vehicles such as trucks and buses, and transmissions have been automated. As an automatic transmission, a torque converter type transmission and a CVT (Continuously Variable Transmission) are generally used, but the capacity may be insufficient for a large vehicle such as a truck or a bus that transmits a large driving force. Therefore, an automatic transmission is used in which a shift operation and a clutch connection / disconnection operation are automatically performed by an actuator based on a conventional manual transmission.

周知のように常時噛合式の手動変速機では、走行用動力源からの駆動力を各変速段のギヤ比を介して出力軸上の各変速ギヤに伝達し、出力軸上で各変速ギヤを常にギヤ比に応じた速度で遊転させている。そして、各変速ギヤを選択的に出力軸に結合することにより変速段を達成(所謂ギヤ入れ)し、対応するギヤ比を介して出力軸を経て駆動輪側に動力伝達を行っている。出力軸は常に車速に対応して回転するため、出力軸に対して目的の変速ギヤを結合するには事前に回転同期を行う必要がある。   As is well known, in an always-meshing manual transmission, the driving force from the driving power source is transmitted to each transmission gear on the output shaft via the gear ratio of each gear, and each transmission gear is transmitted on the output shaft. Always idle at a speed according to the gear ratio. Then, each speed change gear is selectively coupled to the output shaft to achieve a shift stage (so-called gear engagement), and power is transmitted to the drive wheel via the output shaft via the corresponding gear ratio. Since the output shaft always rotates in accordance with the vehicle speed, it is necessary to synchronize rotation in advance in order to connect the target transmission gear to the output shaft.

そこで、各変速ギヤと出力軸との間にそれぞれ回転同期のためのシンクロ機構を設けている。運転者のシフト操作に連動してシンクロ機構のスリーブを出力軸上でスライドさせ、カムにより発生した摩擦力を利用して変速ギヤの回転速度を出力軸側に同期させた上で、変速ギヤ側及びスリーブ側のドグ歯を互いに噛合させている。自動変速機では、このようなスリーブのスライドが運転者のシフト操作に代えてアクチュエータにより行われる。   In view of this, a synchronizing mechanism for rotational synchronization is provided between each transmission gear and the output shaft. The synchronization mechanism sleeve is slid on the output shaft in conjunction with the driver's shift operation, and the speed of the transmission gear is synchronized with the output shaft side using the frictional force generated by the cam. The dog teeth on the sleeve side are meshed with each other. In the automatic transmission, the sliding of the sleeve is performed by an actuator instead of the driver's shift operation.

以上のように、変速毎に変速ギヤの回転速度がシンクロ機構によって出力軸側に同期されるが、その際のシンクロ機構の負担を軽減することが望ましい。電気自動車では電動機の駆動力を変速機に入力することにより、出力軸上の変速ギヤの回転速度を自由に調整可能である。そこで、車両走行中の変速時には、事前に電動機を利用して変速ギヤの回転速度を積極的に出力軸側の回転速度に接近・同期させる制御を実施している。   As described above, the rotational speed of the transmission gear is synchronized with the output shaft side by the synchronization mechanism for each shift, but it is desirable to reduce the burden on the synchronization mechanism at that time. In an electric vehicle, the rotational speed of the transmission gear on the output shaft can be freely adjusted by inputting the driving force of the electric motor to the transmission. Therefore, at the time of shifting while the vehicle is running, control is performed in advance to make the rotational speed of the transmission gear actively approach and synchronize with the rotational speed on the output shaft side using an electric motor in advance.

例えば車速などに基づき変速機の出力軸の回転速度を算出し、その出力軸回転速度を目標値として電動機により目的の変速ギヤの回転速度を制御する。車両の加減速中に変速が行われた場合には、変速を開始してからドグ歯の噛合が完了するまでの間に出力軸の回転速度が変化するため、出力軸の変化分を見込んで車速の微分値に基づき目標値を補正する場合もある(以下、従来技術という)。
そして、変速ギヤの回転速度が目標値近傍に到達して回転同期が完了した時点で、アクチュエータによりスリーブをスライドさせる。シンクロ機構により最終的な僅かな回転差が同期され、双方のドグ歯が噛合して変速が完了する。
For example, the rotational speed of the output shaft of the transmission is calculated based on the vehicle speed or the like, and the rotational speed of the target transmission gear is controlled by the electric motor using the output shaft rotational speed as a target value. If a shift is performed during acceleration / deceleration of the vehicle, the rotation speed of the output shaft changes between the start of the shift and the engagement of the dog teeth. In some cases, the target value is corrected based on the differential value of the vehicle speed (hereinafter referred to as the conventional technique).
Then, when the rotation speed of the transmission gear reaches the vicinity of the target value and the rotation synchronization is completed, the sleeve is slid by the actuator. The final slight rotational difference is synchronized by the synchro mechanism, and both dog teeth mesh with each other to complete the shift.

ところで、自動変速機の内部機構はオイルにより潤滑されており、油温が変化するとオイル粘度も変化して内部機構に作用する回転抵抗が増減し、上記した電動機による変速ギヤの回転同期にも影響を及ぼす。そこで、この点を配慮した対策として、例えば特許文献1の技術が提案されている。
当該特許文献1の技術では、回転同期の際に電動機により変速ギヤに付加するトルクを変速機の油温に応じて補正することにより、油温変化に関わらず常に略一定の時間で変速ギヤの回転速度を目標値に到達させている。これにより回転同期を完了するまでの所要時間、ひいては変速完了までの所要時間の格差を解消して変速フィーリングの向上を図っている。
By the way, the internal mechanism of the automatic transmission is lubricated with oil, and when the oil temperature changes, the oil viscosity also changes and the rotational resistance acting on the internal mechanism increases and decreases, which also affects the rotation synchronization of the transmission gear by the above-mentioned electric motor. Effect. Therefore, for example, a technique disclosed in Patent Document 1 has been proposed as a countermeasure considering this point.
In the technique disclosed in Patent Document 1, the torque applied to the transmission gear by the electric motor at the time of rotation synchronization is corrected according to the oil temperature of the transmission, so that the transmission gear always has a substantially constant time regardless of the oil temperature change. The rotational speed has reached the target value. This eliminates the difference between the time required to complete the rotation synchronization and the time required to complete the shift, thereby improving the shift feeling.

特開2000−295709号公報JP 2000-295709 A

上記のように自動変速機の油温変化に応じて内部機構に作用する回転抵抗は増減し、特にオイル粘度が増加する低油温時には、変速ギヤが大きな回転抵抗を受けてギヤ入れ中(回転同期の完了からドグ歯の噛合までの期間中)に急激に回転低下する。一方で出力軸側は車速に応じて変化しているため、両者間に大きな回転差が生じた状態でシンクロ機構によるドグ歯の噛合が試みられる。
即ち、電動機により回転同期したにも拘わらず、その回転同期がドグ歯の噛合に有効に活かされない事態が発生する。このようなギヤ入れ中の回転低下により変速ギヤの回転速度が出力軸側からかけ離れた状況では、スリーブの操作に大きな力が必要になり、アクチュエータの駆動力が不足してドグ歯を噛合できなくなる。
As described above, the rotational resistance acting on the internal mechanism increases and decreases according to the oil temperature change of the automatic transmission. Especially at low oil temperature when the oil viscosity increases, the transmission gear receives a large rotational resistance and is gearing (rotating During the period from the completion of the synchronization to the engagement of the dog teeth), the rotation rapidly decreases. On the other hand, since the output shaft side changes in accordance with the vehicle speed, dog teeth are engaged by the synchro mechanism in a state where a large rotational difference is generated between the two.
That is, although the rotation is synchronized by the electric motor, a situation occurs in which the rotation synchronization is not effectively utilized for the engagement of the dog teeth. In a situation where the rotational speed of the transmission gear is far from the output shaft side due to such a decrease in rotation during gear engagement, a large force is required for the operation of the sleeve, and the driving force of the actuator is insufficient and the dog teeth cannot be engaged. .

特許文献1の技術によれば、油温変化に関わらず回転同期の所要時間を均一化できるものの、回転同期後に変速ギヤが回転低下する現象は全く対処できず、解決策にはなり得なかった。また、上記のように回転同期の目標値を車速の微分値に基づき補正する従来技術もあるが、当該手法は車両の加減速に伴って出力軸側が回転変化したときの対策であり、変速ギヤ側の回転変化に着目した対策ではない。よって、この従来技術では低油温時に発生する変速ギヤの回転低下には対応できず、やはり解決策にはなり得なかった。   According to the technique of Patent Document 1, although the time required for rotation synchronization can be made uniform regardless of changes in the oil temperature, the phenomenon that the transmission gear decreases after rotation synchronization cannot be dealt with at all and cannot be a solution. . In addition, there is a conventional technique that corrects the target value of rotation synchronization based on the differential value of the vehicle speed as described above, but this method is a countermeasure when the output shaft side changes in rotation with the acceleration / deceleration of the vehicle. It is not a measure focusing on the rotation change of the side. Therefore, this prior art cannot cope with the reduction in the rotation speed of the transmission gear that occurs when the oil temperature is low, and it cannot be a solution.

結果として、ドグ歯の噛合不能により目的の変速段を達成できないことから、所定時間の経過後に変速不能のエラー判定が下される。この場合の対処としては、安全のために動力伝達の強制的な遮断制御、例えば変速機のニュートラルへの切換或いはクラッチの遮断などを実行するが、車両は走行不能に陥ってしまう。また、他の対処として、別の代替変速段への変速を試行する場合もあるが、車両の走行性能が著しく低下して本来の走行を継続できなくなってしまう。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、電動機を利用した変速ギヤの回転同期を適切に実施することにより、ドグ歯を確実に噛合させて目的の変速段を達成でき、もって変速を完了できない場合の走行不能などの事態を未然に防止することができる電気自動車の変速制御装置を提供することにある。
As a result, the target shift speed cannot be achieved due to the inability to engage the dog teeth, so that an error determination indicating that the shift is impossible is made after a predetermined time has elapsed. As a countermeasure in this case, forcible power transmission cutoff control, for example, switching to the neutral of the transmission or clutch cutoff is executed for safety, but the vehicle falls into an inoperable state. Further, as another countermeasure, there is a case where a shift to another alternative shift stage is attempted, but the traveling performance of the vehicle is significantly deteriorated and the original traveling cannot be continued.
The present invention has been made to solve such problems, and the object of the present invention is to properly engage the dog teeth by appropriately carrying out the rotation synchronization of the transmission gear using an electric motor. It is an object of the present invention to provide a shift control device for an electric vehicle that can achieve a target shift stage and prevent a situation such as inability to travel when the shift cannot be completed.

上記目的を達成するため、第1の発明は、電動機の駆動力を変速機を介して駆動輪側に伝達して走行可能な電気自動車において、変速機の変速段を切換操作するときに、電動機の駆動力を変速機に伝達して、切換操作すべき変速ギヤの回転速度を変速機の出力軸側の回転速度に基づき設定された第1の目標回転速度に一致させるように制御する回転同期制御手段と、変速機の油温を検出する油温検出手段と、油温検出手段により検出された油温が低いほど、第1の目標回転速度を出力軸側の回転速度よりも増加側に設定する目標回転速度設定手段とを備えたものである。   To achieve the above object, according to a first aspect of the present invention, there is provided an electric vehicle capable of traveling by transmitting a driving force of an electric motor to a driving wheel side via a transmission, and when the operation of switching the gear position of the transmission is performed. Rotational synchronization for controlling the rotational speed of the transmission gear to be switched to coincide with the first target rotational speed set based on the rotational speed on the output shaft side of the transmission. The lower the oil temperature detected by the control means, the oil temperature detecting means for detecting the oil temperature of the transmission, and the lower the oil temperature detected by the oil temperature detecting means, the higher the first target rotational speed to the higher side than the rotational speed on the output shaft side. And target rotation speed setting means for setting.

変速機の油温が低い状況では、回転同期後に変速ギヤの回転速度が急激に低下するが、油温に応じて第1の目標回転速度が増加側に設定されるため、回転同期の完了時点で変速ギヤの回転速度が予め高められる。よって、その後に変速ギヤが回転低下したとしても、ドグ歯を噛合させる時点で確実に出力軸側の回転速度近傍に保持できる。このため、ドグ歯を噛合させるときのシンクロ機構の負担が軽減され、迅速且つ確実にドグ歯を噛合させて目的の変速段を達成でき、もって変速を完了できない場合の走行不能などの事態を未然に防止することができる。   In a situation where the oil temperature of the transmission is low, the rotation speed of the transmission gear rapidly decreases after the rotation synchronization, but the first target rotation speed is set to increase according to the oil temperature. Thus, the rotational speed of the transmission gear is increased in advance. Therefore, even if the transmission gear subsequently decreases in rotation, it can be reliably maintained in the vicinity of the rotation speed on the output shaft side when the dog teeth are engaged. As a result, the burden on the synchro mechanism when meshing the dog teeth can be reduced, the dog gears can be meshed quickly and reliably to achieve the target gear position, and the situation such as the inability to run when the gear shift cannot be completed will occur. Can be prevented.

第2の発明は、上記電気自動車において、さらに電気自動車の車速を検出する車速検出手段を備え、目標回転速度設定手段が、車速検出手段により検出された車速が高いほど、第1の目標回転速度を出力軸側の回転速度よりも増加側に設定するものである。
車速が高い場合には、回転同期後の変速ギヤの回転低下が急激なものになる。よって、車速が高いほど第1の目標回転速度を増加側に設定することにより、ドグ歯の噛合時点でより確実に変速ギヤの回転速度を出力軸側の回転速度近傍に保持することができる。
According to a second aspect of the present invention, the electric vehicle further includes vehicle speed detection means for detecting a vehicle speed of the electric vehicle, and the higher the vehicle speed detected by the vehicle speed detection means, the higher the vehicle speed detected by the vehicle speed detection means. Is set on the increase side with respect to the rotation speed on the output shaft side.
When the vehicle speed is high, the speed reduction of the transmission gear after the rotation synchronization becomes abrupt. Therefore, by setting the first target rotational speed to the increasing side as the vehicle speed increases, the rotational speed of the transmission gear can be more reliably maintained near the rotational speed on the output shaft side at the time of engagement of the dog teeth.

第3の発明は、上記電気自動車において、さらにアクセル開度を検出するアクセル開度検出手段を備え、目標回転速度設定手段が、アクセル開度検出手段により検出されたアクセル開度が大きいほど、第1の目標回転速度を出力軸側の回転速度よりも増加側に設定するものである。
アクセル開度が大きい場合には、間もなく出力軸側の回転速度が上昇することが予想される。よって、アクセル開度が大きいほど第1の目標回転速度を増加側に設定することにより、ドグ歯の噛合時点でより確実に変速ギヤの回転速度を出力軸側の回転速度近傍に保持することができる。
According to a third aspect of the present invention, the electric vehicle further includes an accelerator opening degree detecting unit that detects an accelerator opening degree, and the target rotational speed setting unit increases the accelerator opening degree detected by the accelerator opening degree detecting unit. The target rotational speed of 1 is set on the increase side with respect to the rotational speed on the output shaft side.
When the accelerator opening is large, the rotation speed on the output shaft side is expected to increase soon. Therefore, by setting the first target rotational speed to the increasing side as the accelerator opening is larger, the rotational speed of the transmission gear can be more reliably maintained near the rotational speed on the output shaft side at the time of engagement of the dog teeth. it can.

第4の発明は、上記電気自動車において、さらに目標回転速度設定手段が、変速機の変速段が低ギヤ段側であるほど、第1の目標回転速度を出力軸側の回転速度よりも増加側に設定するものである。
低ギヤ段側であるほど出力軸側が急激に回転上昇する。よって、低ギヤ段側であるほど第1の目標回転速度を増加側に設定することにより、ドグ歯の噛合時点でより確実に変速ギヤの回転速度を出力軸側の回転速度近傍に保持することができる。
According to a fourth aspect of the present invention, in the electric vehicle, the target rotational speed setting means further increases the first target rotational speed from the rotational speed on the output shaft side as the transmission gear stage is on the lower gear stage side. Is set to
The lower the gear position, the more rapidly the output shaft side rotates. Therefore, by setting the first target rotational speed to the increasing side as the gear is closer to the lower gear stage side, the rotational speed of the transmission gear is more reliably maintained near the rotational speed on the output shaft side when the dog teeth are meshed. Can do.

第5の発明は、上記電気自動車において、さらに回転同期制御手段による回転同期の完了後に、上記変速ギヤの回転速度を維持し得るゼロトルクを中心として、上記電動機により上記変速ギヤに正側及び負側の微小トルクを交互に付加するトルク変動制御を実行するトルク変動制御手段を備えたものである。
ドグ歯を噛合させる時点で変速ギヤの回転速度が出力軸側の回転速度近傍に保持されるだけでなく、微小トルクの付加により出力軸側に対する変速ギヤの位相が絶えず変化するため、一層迅速且つ確実にドグ歯を噛合させて変速を完了することができる。
According to a fifth aspect of the present invention, in the electric vehicle, after the completion of the rotation synchronization by the rotation synchronization control means, with the electric motor as a center on the zero torque that can maintain the rotation speed of the transmission gear, the transmission gear is positively and negatively connected to the transmission gear. Torque fluctuation control means for executing torque fluctuation control for alternately applying the minute torque of.
Not only is the rotation speed of the transmission gear kept near the rotation speed on the output shaft side at the time of meshing the dog teeth, but the phase of the transmission gear with respect to the output shaft side constantly changes due to the addition of minute torque, so that the speed is further increased. Shifting can be completed by reliably engaging the dog teeth.

第6の発明は、上記電気自動車において、さらにトルク変動制御手段によるトルク変動制御の実行中に、上記変速ギヤの回転速度を上記出力軸側の回転速度に対応して設定された第2の目標回転速度近傍に保持すべく、上記トルク変動制御手段によって付加される上記正側及び負側の微小トルクを補正するトルク補正手段を備え、トルク補正手段が、変速ギヤの回転速度が第2の目標回転速度を下回ったときに、ゼロトルクを基準として負側の微小トルクよりも正側の微小トルクが大となるように補正し、変速ギヤの回転速度が第2の目標回転速度を予め設定されたヒステリシス設定値だけ上回ったときに、ゼロトルクを基準として正側の微小トルクよりも負側の微小トルクが大となるように補正するものである。   According to a sixth aspect of the present invention, in the electric vehicle, the second target in which the rotational speed of the transmission gear is set corresponding to the rotational speed on the output shaft side during execution of torque fluctuation control by the torque fluctuation control means. Torque correction means for correcting the positive and negative minute torques added by the torque fluctuation control means so as to be held in the vicinity of the rotation speed is provided, and the torque correction means has a second target rotation speed of the transmission gear. When the rotational speed falls below the zero torque, the positive minute torque is corrected to be larger than the negative minute torque, and the second gear rotation speed is set in advance as the rotational speed of the transmission gear. When the hysteresis set value is exceeded, correction is performed so that the negative minute torque becomes larger than the positive minute torque with reference to zero torque.

従って、正側及び負側の微小トルクの補正、例えば微小トルクの変動量の補正や変動時間の補正により、ギヤ入れ中の変速ギヤの回転速度は目標回転速度近傍に保持される。よって、変速ギヤは出力軸側に対して回転同期した状態で位相を絶えず変化させるため、一層迅速且つ確実にドグ歯を噛合させて変速を完了することができる。また、変速ギヤの回転速度が上昇したときには、ヒステリシス設定値に基づき微小トルクの補正が遅延される。回転抵抗が大の低油温時などには、たとえ変速ギヤの回転速度が目標回転速度を上回ったとしても、その直後に回転抵抗により目標回転速度を下回る可能性がある。このような場合の不必要な微小トルクの補正が防止され、変速ギヤの回転速度を低下させる必要がある場合に限って微小トルクが補正されるため、ギヤ入れ中の変速ギヤの回転速度をより良好に目標回転速度近傍に保持することができる。   Accordingly, the rotational speed of the transmission gear during gear engagement is maintained in the vicinity of the target rotational speed by correcting the minute torque on the positive side and the negative side, for example, correcting the variation amount of the minute torque and correcting the variation time. Therefore, since the speed change gear constantly changes its phase in a state of being rotationally synchronized with the output shaft side, it is possible to complete the speed change by meshing the dog teeth more quickly and reliably. Further, when the rotational speed of the transmission gear increases, the correction of the minute torque is delayed based on the hysteresis setting value. Even when the rotational speed of the transmission gear exceeds the target rotational speed at a low oil temperature where the rotational resistance is large, there is a possibility that the rotational resistance falls below the target rotational speed immediately after that. In such a case, unnecessary correction of minute torque is prevented, and minute torque is corrected only when it is necessary to reduce the rotation speed of the transmission gear. It can be kept well near the target rotational speed.

第7の発明は、上記電気自動車において、さらにトルク変動制御手段が、正側及び負側の微小トルクの間で予め設定された継続時間に亘ってゼロトルクを継続するものである。
出力軸に対する変速ギヤの位相を絶えず変化させると、ドグ歯が噛合可能な位相を瞬間的に通り過ぎて却って噛合できない可能性がある。ゼロトルクに保持する期間を設けることにより、当該期間中は位相変化が中断されるため、結果としてドグ歯の噛合の機会を作り出すことができ、一層確実にドグ歯を噛合させることができる。
According to a seventh aspect of the present invention, in the above electric vehicle, the torque fluctuation control means further continues zero torque for a preset duration between the positive and negative minute torques.
If the phase of the speed change gear with respect to the output shaft is constantly changed, there is a possibility that the phase in which the dog teeth can mesh is instantaneously passed and cannot be meshed. By providing a period during which the torque is maintained at zero torque, the phase change is interrupted during the period. As a result, an opportunity for meshing the dog teeth can be created, and the dog teeth can be meshed more reliably.

実施形態の変速制御装置が適用されたハイブリッド型トラックを示す全体構成図である。1 is an overall configuration diagram showing a hybrid truck to which a shift control device of an embodiment is applied. 第1実施形態の車両ECUが実行するプリセレクト制御ルーチンを示すフローチャートである。It is a flowchart which shows the preselect control routine which vehicle ECU of 1st Embodiment performs. 変速機の油温に基づき油温補正係数を算出するためのマップを示す図である。It is a figure which shows the map for calculating an oil temperature correction coefficient based on the oil temperature of a transmission. 車速に基づき速度補正係数を算出するためのマップを示す図である。It is a figure which shows the map for calculating a speed correction coefficient based on a vehicle speed. アクセル開度に基づきアクセル補正係数を算出するためのマップを示す図である。It is a figure which shows the map for calculating an accelerator correction coefficient based on an accelerator opening. 変速段に基づきギヤ補正係数を算出するためのマップを示す図である。It is a figure which shows the map for calculating a gear correction coefficient based on a gear stage. 第2実施形態の車両ECUが実行するプリセレクト制御ルーチンを示すフローチャートである。It is a flowchart which shows the preselect control routine which vehicle ECU of 2nd Embodiment performs. 操作ストロークに対するトルク変動制御の実行範囲を示す説明図である。It is explanatory drawing which shows the execution range of the torque fluctuation control with respect to an operation stroke. 第2実施形態の車両ECUが実行するトルク変動制御ルーチンを示すフローチャートである。It is a flowchart which shows the torque fluctuation control routine which vehicle ECU of 2nd Embodiment performs. トルク変動制御の実行状況を示すタイムチャートである。It is a time chart which shows the execution situation of torque fluctuation control. ギヤ入れ中の変速ギヤの回転変動状況を示すタイムチャートである。It is a time chart which shows the rotation fluctuation state of the transmission gear in gear setting.

[第1実施形態]
以下、本発明をハイブリッド型トラックの変速制御装置に具体化した第1実施形態を説明する。
図1は本実施形態の変速制御装置が適用されたハイブリッド型トラックを示す全体構成図であり、以下の説明ではトラックを車両と称する。車両には走行用動力源としてディーゼルエンジン(以下、エンジンという)1が搭載されている。エンジン1の出力軸1aは車両の後方(図の右方)に突出し、自動変速機(以下、単に変速機という)2の入力軸2aに接続されている。変速機2は前進6段(1速段〜6速段)及び後退1段を備えており、エンジン1の動力は入力軸2aを介して変速機2に入力された後に、変速段に応じて変速されて出力軸2bから差動装置12及び駆動軸13を介して左右の駆動輪14に伝達されるようになっている。
[First Embodiment]
A first embodiment in which the present invention is embodied in a shift control device for a hybrid truck will be described below.
FIG. 1 is an overall configuration diagram showing a hybrid truck to which a shift control apparatus according to this embodiment is applied. In the following description, the truck is referred to as a vehicle. A vehicle is equipped with a diesel engine (hereinafter referred to as an engine) 1 as a driving power source. An output shaft 1a of the engine 1 projects rearward (to the right in the drawing) of the vehicle and is connected to an input shaft 2a of an automatic transmission (hereinafter simply referred to as a transmission) 2. The transmission 2 has six forward speeds (first speed to sixth speed) and one reverse speed. After the power of the engine 1 is input to the transmission 2 via the input shaft 2a, the transmission 2 according to the gear speed. The speed is changed and transmitted from the output shaft 2 b to the left and right drive wheels 14 via the differential 12 and the drive shaft 13.

変速機2は、所謂デュアルクラッチ式変速機として構成されており、走行用動力源として電動機3を内蔵している。当該デュアルクラッチ式変速機の詳細は、例えば特開2009−035168号公報などに記載されているため、本実施形態では概略説明にとどめる。このため、図1では変速機2を実際の機構とは異なる模式的な表現で示しており、以下の説明でも変速機2の構成及び作動状態を概念的に述べる。
周知のようにデュアルクラッチ式変速機は、奇数変速段と偶数変速段とを相互に独立した動力伝達系として設け、何れか一方で動力伝達しているときに他方を次に予測される次変速段に予め切り換えておくことにより、動力伝達を中断することなく次変速段への切換を完了するシステムである。
The transmission 2 is configured as a so-called dual clutch transmission, and includes an electric motor 3 as a driving power source. The details of the dual clutch transmission are described in, for example, Japanese Patent Application Laid-Open No. 2009-035168, and therefore only a brief description is given in the present embodiment. For this reason, FIG. 1 shows the transmission 2 in a schematic representation different from the actual mechanism, and the configuration and operating state of the transmission 2 will also be conceptually described in the following description.
As is well known, a dual clutch type transmission is provided with an odd-numbered gear stage and an even-numbered gear stage as mutually independent power transmission systems, and when one of them is transmitting power, the other is predicted next. This is a system that completes switching to the next gear without interrupting power transmission by switching to gears in advance.

即ち、図1に示すように、変速機2の入力軸2aにはクラッチC1を介して奇数変速段(1,3,5速段)からなる歯車機構G1が接続されると共に、同じく入力軸2aにはクラッチC2及び電動機3を介して偶数変速段(2,4,6速段)からなる歯車機構G2が接続されている。これらの歯車機構G1,G2の出力側は上記した共通の出力軸2bに連結されている。   That is, as shown in FIG. 1, the input shaft 2a of the transmission 2 is connected to a gear mechanism G1 consisting of odd gears (first, third, and fifth gears) via a clutch C1, and the input shaft 2a. A gear mechanism G2 composed of an even-numbered gear stage (2, 4, 6th gear stage) is connected to the motor via the clutch C2 and the electric motor 3. The output sides of these gear mechanisms G1 and G2 are connected to the common output shaft 2b.

クラッチC1,C2にはそれぞれ油圧シリンダ6が接続され、両油圧シリンダ6は電磁弁7が介装された油路8を介して油圧供給源9に接続されている。電磁弁7の開弁時には油圧供給源9から油路8を介して油圧シリンダ6に作動油が供給され、油圧シリンダ6が作動して対応するクラッチC1,C2が切断状態から接続状態に切り換えられる。
一方、電磁弁7が閉弁すると、作動油の供給中止により油圧シリンダ6が作動しなくなることから、クラッチC1,C2は図示しないプレッシャスプリングにより接続状態から切断状態に切り換えられる。なお、クラッチC1,C2の駆動方式はこれに限ることはなく、例えば油圧駆動に代えてエア駆動或いはモータ駆動を採用してもよい。
A hydraulic cylinder 6 is connected to each of the clutches C1 and C2, and both hydraulic cylinders 6 are connected to a hydraulic pressure supply source 9 through an oil passage 8 in which an electromagnetic valve 7 is interposed. When the solenoid valve 7 is opened, hydraulic oil is supplied from the hydraulic supply source 9 to the hydraulic cylinder 6 through the oil passage 8, and the hydraulic cylinder 6 is operated to switch the corresponding clutch C1, C2 from the disconnected state to the connected state. .
On the other hand, when the solenoid valve 7 is closed, the hydraulic cylinder 6 is not operated due to the supply of hydraulic oil being stopped, and the clutches C1 and C2 are switched from the connected state to the disconnected state by a pressure spring (not shown). Note that the drive system of the clutches C1 and C2 is not limited to this. For example, air drive or motor drive may be employed instead of the hydraulic drive.

また、変速機2の歯車機構G1,G2にはそれぞれギヤシフトユニット10が設けられている。図示はしないがギヤシフトユニット10は、歯車機構G1,G2内の各変速段に対応するシフトフォークを作動させる複数の油圧シリンダ、及び各油圧シリンダを作動させる複数の電磁弁を内蔵している。ギヤシフトユニット10は油路11を介して上記した油圧供給源9と接続されており、油圧供給源9から供給される作動油が各電磁弁により切り換えられ、対応する油圧シリンダによりシフトフォークを介してスリーブがスライド操作されて歯車機構G1,G2の変速段が切り換えられる。   The gear mechanisms G1 and G2 of the transmission 2 are each provided with a gear shift unit 10. Although not shown, the gear shift unit 10 incorporates a plurality of hydraulic cylinders that operate shift forks corresponding to the respective shift speeds in the gear mechanisms G1 and G2, and a plurality of electromagnetic valves that operate each hydraulic cylinder. The gear shift unit 10 is connected to the above-described hydraulic supply source 9 via an oil passage 11, and the hydraulic oil supplied from the hydraulic supply source 9 is switched by each electromagnetic valve, and the corresponding hydraulic cylinder passes through the shift fork. The sleeve is slid to change the gear positions of the gear mechanisms G1 and G2.

変速時において、基本的にクラッチC1,C2の断接状態は常に逆方向に切り換えられる。このため、一方のクラッチC1,C2の接続により対応する歯車機構G1,G2の何れかの変速段が達成されて動力伝達されているときには、他方のクラッチC1,C2が切断され、対応する歯車機構G1,G2では何れの変速段も動力伝達していない状態にある。よって、他方の歯車機構G1,G2では、事前に次変速段(現在の変速段に隣接する高ギヤ側または低ギヤ側の変速段)への事前のギヤ入れが可能となる(この操作をプリセレクトと称する)。プリセレクト後に変速タイミングに至ると、クラッチC1,C2の断接状態を逆転させることにより、他方の歯車機構G1,G2でプリセレクトにより達成された変速段で動力伝達が開始され、動力伝達を中断することなく変速が完了する。   At the time of shifting, the clutch C1, C2 is basically always switched in the reverse direction. For this reason, when one of the gear mechanisms G1 and G2 has achieved the shift speed by connecting one of the clutches C1 and C2, and the power is being transmitted, the other clutch C1 and C2 is disconnected and the corresponding gear mechanism is disengaged. In G1 and G2, none of the gears transmit power. Therefore, in the other gear mechanisms G1 and G2, it is possible to advance to the next gear stage (the gear stage on the high gear side or the low gear side adjacent to the current gear stage) in advance (this operation is performed in advance). Called select). When the shift timing is reached after preselection, the transmission / reception state of the clutches C1 and C2 is reversed, so that power transmission is started at the shift stage achieved by preselection with the other gear mechanisms G1 and G2, and the power transmission is interrupted. The shift is complete without

図示はしないが、電動機3は内外2重に配設されたロータ及びステータから構成され、ロータを回転可能に支持する回転軸がクラッチC2の出力側及び歯車機構G2の入力側に接続されている。電動機3にはインバータ4を介して走行用のバッテリ5が電気的に接続され、インバータ4により電動機3の力行制御及び回生制御が行われるようになっている。
電動機3の力行制御では、走行用バッテリ5に蓄えられた直流電力がインバータ4により交流電力に変換されて電動機3に供給され、電動機3がモータ作動して駆動力を歯車機構G2に入力する。また、車両減速時などに行われる電動機3の回生制御では、駆動輪14側からの逆駆動により電動機3がジェネレータ作動して回生制動力を発生すると共に、発電した交流電力をインバータ4により直流電力に変換して走行用バッテリ5に充電する。
Although not shown, the electric motor 3 is composed of a rotor and a stator that are arranged in an inner and outer double, and a rotating shaft that rotatably supports the rotor is connected to the output side of the clutch C2 and the input side of the gear mechanism G2. . A battery 5 for traveling is electrically connected to the electric motor 3 via an inverter 4, and power running control and regenerative control of the electric motor 3 are performed by the inverter 4.
In the power running control of the electric motor 3, the DC power stored in the traveling battery 5 is converted into AC power by the inverter 4 and supplied to the electric motor 3, and the electric motor 3 operates as a motor to input the driving force to the gear mechanism G2. In the regenerative control of the electric motor 3 performed at the time of deceleration of the vehicle, the electric motor 3 generates a regenerative braking force by reverse driving from the drive wheel 14 side, and the generated AC power is converted into DC power by the inverter 4. And the battery 5 for traveling is charged.

車両には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAMなど)、中央処理装置(CPU)、タイマカウンタなどを備えた車両ECU(制御ユニット)16が設置されている。車両ECU16はエンジンECU17、インバータECU18並びに走行用バッテリECU19からの情報、或いは以下に述べるセンサ類からの情報などに基づき車両全体の統合的な制御を行う。この車両ECU16からの指令に基づきエンジンECU17がエンジン1の制御を、インバータECU18が電動機3の制御を、バッテリECU19が走行用バッテリ5の管理をそれぞれ実行する。   The vehicle includes an input / output device (not shown), a storage device (ROM, RAM, etc.) used to store control programs and control maps, a central processing unit (CPU), a vehicle ECU (control unit) equipped with a timer counter, etc. 16 is installed. The vehicle ECU 16 performs integrated control of the entire vehicle based on information from the engine ECU 17, the inverter ECU 18, and the travel battery ECU 19, or information from sensors described below. Based on the command from the vehicle ECU 16, the engine ECU 17 controls the engine 1, the inverter ECU 18 controls the electric motor 3, and the battery ECU 19 manages the running battery 5.

車両ECU16の入力側には、歯車機構G1の入力回転速度Nin1を検出する入力回転速度センサ23、歯車機構G2の入力回転速度Nin2を検出する入力回転速度センサ24(=電動機3の回転速度)、歯車機構G1,G2の変速段を検出するギヤ位置センサ25、変速機2の出力回転速度Nout(歯車機構G1,G2の出力軸2bの回転速度)を検出する出力回転速度センサ28(車速検出手段)、セレクトレバー29の位置を検出するレバー位置センサ30、ブレーキペダル34に対する踏力に応じて発生するブレーキ液圧Pbを検出するブレーキ液圧センサ35、及び変速機2の油温Toilを検出する油温センサ36(油温検出手段)などのセンサ類が接続されている。また、車両ECU16の出力側には、上記したクラッチC1,C2の電磁弁7、ギヤシフトユニット10の各電磁弁などのデバイス類が接続されている。   On the input side of the vehicle ECU 16, there are an input rotational speed sensor 23 for detecting the input rotational speed Nin1 of the gear mechanism G1, an input rotational speed sensor 24 for detecting the input rotational speed Nin2 of the gear mechanism G2 (= the rotational speed of the electric motor 3), A gear position sensor 25 that detects the gear position of the gear mechanisms G1 and G2, an output rotation speed sensor 28 that detects the output rotation speed Nout of the transmission 2 (the rotation speed of the output shaft 2b of the gear mechanisms G1 and G2) (vehicle speed detection means) ), A lever position sensor 30 for detecting the position of the select lever 29, a brake hydraulic pressure sensor 35 for detecting a brake hydraulic pressure Pb generated in response to a depression force on the brake pedal 34, and an oil for detecting an oil temperature Toil of the transmission 2. Sensors such as a temperature sensor 36 (oil temperature detecting means) are connected. Devices such as the electromagnetic valves 7 of the clutches C1 and C2 and the electromagnetic valves of the gear shift unit 10 are connected to the output side of the vehicle ECU 16.

例えば車両ECU16は、エンジンECU17を介して入力されるアクセル開度θaccなどから車両1の走行に必要な要求トルクを演算し、この要求トルクをエンジン1が発生するトルク及び電動機3が発生するトルクに配分する。また、これと並行して要求トルク、車両の走行状態、エンジン1及び電動機3の運転状態、走行用バッテリ5のSOCなどに基づき車両の走行モード(エンジン走行、モータ走行、エンジン・モータ走行)を選択する。そして、選択した走行モードを実行すべくエンジンECU17及びインバータECU18に指令を出力すると共に、適宜変速機2の変速制御を実行する。
エンジンECU17は、車両ECU16によって設定された走行モード及びエンジントルクを達成するように、エンジン1を制御して運転させる。エンジンECU17の入力側には、エンジン1の回転速度Neを検出するエンジン回転速度センサ22、アクセルペダル26の開度θaccを検出するアクセルセンサ27(アクセル開度検出手段)が接続されている。
For example, the vehicle ECU 16 calculates a required torque necessary for traveling of the vehicle 1 from the accelerator opening θacc input through the engine ECU 17, and converts this required torque into a torque generated by the engine 1 and a torque generated by the electric motor 3. To distribute. At the same time, the vehicle running mode (engine running, motor running, engine / motor running) is set based on the required torque, the running state of the vehicle, the operating state of the engine 1 and the electric motor 3, the SOC of the running battery 5, and the like. select. Then, a command is output to the engine ECU 17 and the inverter ECU 18 to execute the selected travel mode, and the shift control of the transmission 2 is appropriately executed.
The engine ECU 17 controls and operates the engine 1 so as to achieve the travel mode and engine torque set by the vehicle ECU 16. An engine rotational speed sensor 22 for detecting the rotational speed Ne of the engine 1 and an accelerator sensor 27 (accelerator opening detecting means) for detecting the opening θacc of the accelerator pedal 26 are connected to the input side of the engine ECU 17.

また、インバータECU18は、車両ECU16によって設定された走行モード及び電動機3のトルクを達成するように、インバータ4を駆動制御して電動機3を作動させる。
また、バッテリECU19は、走行用バッテリ5の温度、走行用バッテリ5の電圧、インバータ4と走行用バッテリ5との間に流れる電流などを検出すると共に、これらの検出結果から走行用バッテリ5のSOCを求め、そのSOCを検出結果と共に車両ECU16に出力する。
In addition, the inverter ECU 18 drives and controls the inverter 4 to operate the electric motor 3 so as to achieve the travel mode and the torque of the electric motor 3 set by the vehicle ECU 16.
The battery ECU 19 detects the temperature of the traveling battery 5, the voltage of the traveling battery 5, the current flowing between the inverter 4 and the traveling battery 5, and the SOC of the traveling battery 5 from these detection results. The SOC is output to the vehicle ECU 16 together with the detection result.

ところで、変速機2の偶数変速段側の歯車機構G2には電動機3が接続されているため、プリセレクトの際に電動機3を利用して各変速ギヤの回転速度Nを出力軸2b側に同期させてシンクロ機構の負担を軽減することが可能である。そこで、車両走行中の歯車機構G2のプリセレクト時には電動機3による回転同期制御を実行している。
しかしながら、このような制御により回転同期が達成されたとしても、[発明が解決しようとする課題]でも述べたように、特に変速機2の油温Toilが低い状況では、回転同期の完了後の変速ギヤの急激な回転低下によりドグ歯を噛合できない事態が発生する。
By the way, since the electric motor 3 is connected to the gear mechanism G2 on the even gear stage side of the transmission 2, the motor 3 is used to synchronize the rotational speed N of each transmission gear to the output shaft 2b side during preselection. It is possible to reduce the burden on the synchro mechanism. Therefore, the rotation synchronization control by the electric motor 3 is executed at the time of preselecting the gear mechanism G2 while the vehicle is running.
However, even if rotation synchronization is achieved by such control, as described in [Problem to be Solved by the Invention], particularly in a situation where the oil temperature Toil of the transmission 2 is low, the rotation synchronization is completed. A situation occurs in which the dog teeth cannot be meshed due to a rapid rotation reduction of the transmission gear.

そこで、本発明者は不具合の解消のために、ギヤ入れ中の変速ギヤの回転低下を見込んで、変速ギヤを回転同期させる際の目標回転速度Ntgtを出力軸2b側の回転速度Noutよりも高回転側に設定する対策を見出した。以下、当該対策のために車両ECU16が実行する処理について説明する。
ここで、上記観点に基づき本実施形態では、電動機3による回転同期のための目標回転速度Ntgt(第1の目標回転速度)として、出力回転速度Noutよりも高回転側の値が適用される。これとは別に、後述する第2実施形態で実行されるトルク変動制御時には出力回転速度Noutと一致する目標回転速度Ntgt(第2の目標回転速度)も適用される。
Therefore, the present inventor expects a reduction in the rotation of the transmission gear during gear engagement in order to eliminate the problem, and sets the target rotation speed Ntgt when rotating the transmission gear to be higher than the rotation speed Nout on the output shaft 2b side. We found a measure to set on the rotation side. Hereinafter, the process which vehicle ECU16 performs for the said countermeasure is demonstrated.
Here, based on the above viewpoint, in the present embodiment, a value on the higher rotation side than the output rotation speed Nout is applied as the target rotation speed Ntgt (first target rotation speed) for rotation synchronization by the electric motor 3. Apart from this, a target rotational speed Ntgt (second target rotational speed) that matches the output rotational speed Nout is also applied during torque fluctuation control executed in the second embodiment to be described later.

そこで以下の説明では、回転同期のための出力回転速度Noutよりも高い目標回転速度NtgtにはUPを付し(NtgtUP>Nout)、第2実施形態で述べる出力軸回転相度Noutと一致する目標回転速度Ntgt(=Nout)に対して区別を図るものとする。
なお、実際の制御では、出力軸回転速度Noutにギヤ比分を乗算した値(Nout・ギヤ比分)を目標回転速度Ntgtとし、その目標回転速度Ntgtに入力回転速度Nin2を一致させるように制御しているが、以下の説明では便宜上、上記のように目標回転速度Ntgtが出力回転速度Noutに一致するものとして扱う。
Therefore, in the following explanation, UP is added to the target rotational speed Ntgt higher than the output rotational speed Nout for rotational synchronization (NtgtUP> Nout), and the target coincides with the output shaft rotational compatibility Nout described in the second embodiment. A distinction is made between the rotational speed Ntgt (= Nout).
In actual control, a value obtained by multiplying the output shaft rotation speed Nout by the gear ratio (Nout / gear ratio) is set as the target rotation speed Ntgt, and the control is performed so that the input rotation speed Nin2 matches the target rotation speed Ntgt. However, in the following description, for the sake of convenience, it is assumed that the target rotational speed Ntgt matches the output rotational speed Nout as described above.

図2は車両ECU16が実行するプリセレクト制御ルーチンを示すフローチャートであり、車両ECU16は車両のイグニションスイッチがオンされているときに本ルーチンを所定の制御インターバルで実行する。
まず、ステップS2で歯車機構G2のプリセレクトのタイミングに至ったか否かを判定し、No(否定)のときには一旦ルーチンを終了する。ステップS2の判定がYes(肯定)になると、ステップS4に移行して目標回転速度NtgtUPの設定処理を実行する。即ち、出力回転速度センサ28により検出された出力回転速度Noutをベース値Nbaseとして設定し、次式(1)に従って目標回転速度NtgtUPを算出する(目標回転速度設定手段)。
FIG. 2 is a flowchart showing a preselect control routine executed by the vehicle ECU 16. The vehicle ECU 16 executes this routine at a predetermined control interval when the ignition switch of the vehicle is turned on.
First, in step S2, it is determined whether or not the preselect timing of the gear mechanism G2 has been reached. If No (No), the routine is once terminated. When the determination in step S2 is Yes (positive), the process proceeds to step S4, and the target rotational speed NtgtUP setting process is executed. That is, the output rotation speed Nout detected by the output rotation speed sensor 28 is set as the base value Nbase, and the target rotation speed NtgtUP is calculated according to the following equation (1) (target rotation speed setting means).

NtgtUP=Nbase×KNtemp×KNv×KNacc×KNgear ……(1)
ここに、KNtempは油温補正係数、KNvは速度補正係数、KNaccはアクセル補正係数、KNgearはギヤ補正係数であり、それぞれ予め設定された図3〜6に示すマップに基づき算出される。
NtgtUP = Nbase × KNtemp × KNv × KNacc × KNgear ...... (1)
Here, KNtemp is an oil temperature correction coefficient, KNv is a speed correction coefficient, KNacc is an accelerator correction coefficient, and KNgear is a gear correction coefficient, which are calculated based on preset maps shown in FIGS.

図3は変速機2の油温Toilに基づき油温補正係数KNtempを算出するためのマップを示し、油温補正係数KNtempは油温Toilが低いほど大きな値として算出される。
図4は車速Vに基づき速度補正係数KNvを算出するためのマップを示し、速度補正係数KNvは車速Vが高いほど大きな値として算出される。
図5はアクセル開度θaccに基づきアクセル補正係数KNaccを算出するためのマップを示し、アクセル補正係数KNaccはアクセル開度θaccが大きいほど大きな値として算出される。
図6は変速機2の変速段(現在動力伝達中の変速段)に基づきギヤ補正係数KNgearを算出するためのマップを示し、ギヤ補正係数KNgearは低ギヤ段ほど大きな値として算出される。
FIG. 3 shows a map for calculating the oil temperature correction coefficient KNtemp based on the oil temperature Toil of the transmission 2, and the oil temperature correction coefficient KNtemp is calculated as a larger value as the oil temperature Toil is lower.
FIG. 4 shows a map for calculating the speed correction coefficient KNv based on the vehicle speed V. The speed correction coefficient KNv is calculated as a larger value as the vehicle speed V is higher.
FIG. 5 shows a map for calculating the accelerator correction coefficient KNacc based on the accelerator opening θacc. The accelerator correction coefficient KNacc is calculated as a larger value as the accelerator opening θacc is larger.
FIG. 6 shows a map for calculating the gear correction coefficient KNgear based on the gear stage of the transmission 2 (the gear stage currently transmitting power), and the gear correction coefficient KNgear is calculated as a larger value as the gear speed is lower.

式(1)により目標回転速度NtgtUPは、常にギヤ入れ中の変速ギヤの回転低下に相当する分だけ出力回転速度Noutよりも高回転側の値として算出される。換言すると、目標回転速度NtgtUPに基づく回転同期後のギヤ入れ中に変速ギヤは回転低下するが、ギヤ入れによりドグ歯を噛合させる時点(より詳しくは、シンクロ機構のカムの作用で発生した摩擦力により変速ギヤと出力軸2b側との回転同期が開始される時点)で変速ギヤの回転速度Nが出力回転速度Nout近傍に保持されるように、目標回転速度NtgtUPが算出される。   The target rotation speed NtgtUP is always calculated as a value on the higher rotation side than the output rotation speed Nout by an amount corresponding to the rotation reduction of the transmission gear during gear engagement according to the equation (1). In other words, the gear shifts during rotation after the gear synchronization based on the target rotation speed NtgtUP, but the time when the dog teeth mesh with the gear engagement (more specifically, the frictional force generated by the cam action of the synchro mechanism). Thus, the target rotational speed NtgtUP is calculated so that the rotational speed N of the transmission gear is maintained in the vicinity of the output rotational speed Nout at the time when rotational synchronization between the transmission gear and the output shaft 2b is started.

以上により目標回転速度NtgtUPを算出すると、車両ECU16はステップS6に移行する。ステップS6では、入力回転速度センサ24により検出された歯車機構G2の入力回転速度Nin2及びプリセレクトすべき目的の変速段のギヤ比に基づき変速ギヤの回転速度Nを算出した上で、回転速度Nを目標回転速度NtgtUPに一致させるように電動機3を制御する(回転同期制御手段)。   When the target rotational speed NtgtUP is calculated as described above, the vehicle ECU 16 proceeds to step S6. In step S6, the rotational speed N of the transmission gear is calculated based on the input rotational speed Nin2 of the gear mechanism G2 detected by the input rotational speed sensor 24 and the gear ratio of the target gear to be preselected, and then the rotational speed N Is controlled to match the target rotational speed NtgtUP (rotation synchronization control means).

その後、ステップS8で変速ギヤと出力軸2bとの回転同期が完了したか否かを判定し、NoのときにはステップS6の処理を繰り返す。ステップS8の判定がYesになるとステップS10に移行し、歯車機構G2のギヤシフトユニット10を駆動制御してプリセレクトすべき変速段のギヤ入れを開始する。ギヤ入れが開始されると、シンクロ機構のスリーブが出力軸2b上でスライドしてカムにより摩擦力を発生させ、この摩擦力を利用して変速ギヤと出力軸2b側との回転同期が行われて、ドグ歯が噛合した時点でギヤ入れが完了する。
さらにステップS12で、ギヤ入れの開始から予め設定されたギヤ入れトライ時間T1が経過したか否かを判定し、続くステップS14ではギヤ位置センサ25の検出に基づきギヤ入れが完了したか否かを判定する。ギヤ入れの開始当初は未だギヤ入れトライ時間T1は経過せず、ギヤ入れも完了していないため、ステップS12,14で共にNoの判定を下してステップS10に戻る。
Thereafter, in step S8, it is determined whether or not the rotation synchronization between the transmission gear and the output shaft 2b is completed. If No, the process of step S6 is repeated. When the determination in step S8 is Yes, the process proceeds to step S10, and the gear shift unit 10 of the gear mechanism G2 is driven and controlled to start gear-shifting to be preselected. When gearing is started, the sleeve of the synchro mechanism slides on the output shaft 2b and generates a frictional force by the cam. Using this frictional force, the transmission gear and the output shaft 2b side are synchronized in rotation. When the dog teeth mesh, the gear setting is completed.
Further, in step S12, it is determined whether or not a preset gear engagement try time T1 has elapsed since the start of gear engagement. In subsequent step S14, it is determined whether or not gear engagement has been completed based on detection of the gear position sensor 25. judge. At the beginning of gearing, since the gearing try time T1 has not yet elapsed and gearing has not been completed, the determination of No is made in both steps S12 and S14 and the process returns to step S10.

このようにしてステップS10〜14の処理を繰り返してギヤ入れを継続し、ギヤ入れトライ時間T1の経過前にギヤ入れが完了すると、ステップS14からステップS16に移行してギヤ入れ完了判定を下した後にルーチンを終了する。
従って、以上のように初回のギヤ入れによりプリセレクトが正常に完了すると、以降は図2のステップS2でNoの判定を下すことからギヤ入れは繰り返されない。そして、その後の変速タイミングでクラッチC1,C2の断接状態が逆転されることにより、歯車機構G2の目的の変速段への変速が完了することになる。
In this manner, the process of steps S10 to S14 is repeated to continue the gear engagement. When the gear engagement is completed before the gear engagement try time T1 elapses, the process shifts from step S14 to step S16 to make a gear engagement completion determination. The routine ends later.
Accordingly, when preselection is normally completed by the first gear setting as described above, the determination of No is made in step S2 of FIG. 2 and the gear setting is not repeated. Then, the connection / disconnection state of the clutches C1 and C2 is reversed at the subsequent shift timing, whereby the shift to the target shift stage of the gear mechanism G2 is completed.

一方、ギヤ入れが完了する以前にギヤ入れトライ時間T1が経過すると、車両ECU16はステップS12からステップS18に移行してギヤ入れ失敗判定を下す。この場合にはギヤ入れを実行して完了できない状況にあるため、再度ギヤ入れを試行する操作(この動作をリトライ操作という)を要する。リトライ操作を行うには、ステップS10の処理によってギヤ入れ方向に途中まで操作したシンクロ機構を元に戻す必要がある。そこで、続くステップS20では、ギヤシフトユニット10を逆方向に駆動制御するストローク戻し操作を実行してシンクロ機構のストロークを元に戻す。   On the other hand, when the gear engagement try time T1 elapses before the gear engagement is completed, the vehicle ECU 16 proceeds from step S12 to step S18 and makes a gear engagement failure determination. In this case, since gearing cannot be performed and completed, an operation to try gearing again (this operation is called a retry operation) is required. In order to perform the retry operation, it is necessary to return the synchro mechanism operated halfway in the gear engagement direction by the process of step S10. Therefore, in the subsequent step S20, a stroke return operation for driving and controlling the gear shift unit 10 in the reverse direction is executed to return the stroke of the synchro mechanism.

これにより歯車機構G2はギヤ入れ前の状態に戻される。よって、その後に図2のルーチンを実行すると、車両ECU16は未だプリセレクトが未完了であることからステップS2でYesの判定を下し、ステップS4以降でリトライ操作として上記と同一内容のギヤ入れを再試行する。
以上のようにして歯車機構G2のプリセレクト時には、まずステップS4〜8の処理により、目的の変速段の変速ギヤを電動機3によって出力軸2b側に回転同期させた上で、ステップS10〜14の処理によりギヤ入れを行っている。
そして、変速ギヤを回転同期させる際の目標回転速度NtgtUPを、上記式(1)に基づき変速機2の油温Toilが低いほどベース値Nbase(=出力回転速度Nout)よりも増加させている。
As a result, the gear mechanism G2 is returned to the state before the gear engagement. Therefore, when the routine of FIG. 2 is subsequently executed, the vehicle ECU 16 determines Yes in step S2 because pre-selection has not been completed yet, and after step S4, performs the same gear as described above as a retry operation. try again.
As described above, when the gear mechanism G2 is preselected, first, the gear of the target gear stage is rotationally synchronized to the output shaft 2b side by the electric motor 3 by the processing in steps S4 to S8, and then in steps S10 to S14. Gearing is performed by processing.
Then, the target rotational speed NtgtUP when the transmission gear is rotationally synchronized is increased from the base value Nbase (= output rotational speed Nout) as the oil temperature Toil of the transmission 2 is lower based on the above equation (1).

仮に目標回転速度NtgtUPを出力回転速度Noutとして設定した場合、油温Toilが低い状況では、回転同期後に変速ギヤの回転速度Nが出力軸2b側の回転速度Noutを大きく下回ってドグ歯を噛合できなくなる。そして、このときの変速ギヤの回転低下は、油温Toilが低いほど急激なものとなる。
よって、油温Toilに応じて目標回転速度NtgtUPを増加させることにより、回転同期が完了した時点の変速ギヤの回転速度Nが予め出力回転速度Noutよりも高められる。このため、その後のギヤ入れ中に変速ギヤが回転低下したとしても、ドグ歯を噛合させる時点で確実に出力軸2b側の回転速度Nout近傍に保持することができる。
If the target rotational speed NtgtUP is set as the output rotational speed Nout and the oil temperature Toil is low, the rotational speed N of the transmission gear can be significantly lower than the rotational speed Nout on the output shaft 2b side and the dog teeth can be meshed after the rotational synchronization. Disappear. And the rotation reduction of the transmission gear at this time becomes so rapid that the oil temperature Toil is low.
Therefore, by increasing the target rotation speed NtgtUP according to the oil temperature Toil, the rotation speed N of the transmission gear at the time when the rotation synchronization is completed is increased in advance from the output rotation speed Nout. For this reason, even if the transmission gear decreases during the subsequent gear engagement, it can be reliably maintained in the vicinity of the rotational speed Nout on the output shaft 2b side when the dog teeth are engaged.

このような状況でドグ歯の噛合が試みられるためシンクロ機構の負担が軽減され、ギヤシフトユニット10の油圧シリンダは大きな力を要することなくスリーブを操作でき、迅速且つ確実にドグ歯を噛合させて変速段のプリセレクトを達成できる。歯車機構G2側のプリセレクトが不能な場合には歯車機構G1側の動力伝達を継続するしかなく、車両の走行性能が大幅に低下してしまうが、迅速且つ確実にプリセレクトを完了することにより、このような不測の事態を未然に防止することができる。   In this situation, engagement of the dog teeth is attempted, so that the burden on the synchro mechanism is reduced. The hydraulic cylinder of the gear shift unit 10 can operate the sleeve without requiring a large force, and the dog teeth can be engaged with each other quickly and reliably. A stage pre-select can be achieved. If preselection on the gear mechanism G2 side is impossible, the power transmission on the gear mechanism G1 side must be continued, and the running performance of the vehicle will be greatly reduced. However, by completing the preselection quickly and reliably, Such an unexpected situation can be prevented in advance.

しかも、本実施形態では油温Toilのみならず、車速V、アクセル開度θacc及び変速段に応じて目標回転速度NtgtUPを設定している。
車速Vが高い場合には変速ギヤは高回転域で回転同期されるため、回転同期後の回転低下が急激なものになる。よって、上記式(1)に基づき車速Vが高いほど目標回転速度NtgtUPを増加させることにより、たとえ高速走行時であっても、ドグ歯の噛合時点でより確実に変速ギヤの回転速度Nを出力軸2b側の回転速度Nout近傍に保持することができる。
Moreover, in this embodiment, the target rotational speed NtgtUP is set not only according to the oil temperature Toil but also according to the vehicle speed V, the accelerator opening θacc, and the gear position.
When the vehicle speed V is high, the speed change gear is rotationally synchronized in the high rotational speed range, so that the rotational decrease after the rotational synchronization becomes abrupt. Therefore, by increasing the target rotational speed NtgtUP as the vehicle speed V is higher based on the above equation (1), the rotational speed N of the transmission gear can be output more reliably at the time of engagement of the dog teeth even during high-speed traveling. It can be held near the rotational speed Nout on the shaft 2b side.

また、アクセル開度θaccが大きい場合には、間もなく出力軸2b側の回転速度Noutが上昇することが予想される。よって、上記式(1)に基づきアクセル開度θaccが大きいほど目標回転速度NtgtUPを増加させることにより、たとえ回転同期後に出力軸2b側が回転上昇した場合であっても、ドグ歯の噛合時点でより確実に変速ギヤの回転速度Nを出力軸2b側の回転速度Nout近傍に保持することができる。
なお、車速Vの微分値に基づく従来技術でも出力軸2b側の回転変化を考慮しているが、その時点の車速Vに基づく補正処理のため、回転同期が完了した後の車速変化には対応できない。車速Vの変化はアクセル開度θaccの変化に対して所定の遅れを伴って発生することから、アクセル開度θaccに応じて目標回転速度NtgtUPを設定すれば、出力軸2b側の回転変化をいち早く目標回転速度NtgtUPに反映でき、もって上記作用効果を達成できる。車両重量が大きいトラックなどは、アクセル操作が車両の加減速に反映されるまでに時間がかかるため、特に本設定処理が有用となる。
Further, when the accelerator opening degree θacc is large, it is expected that the rotational speed Nout on the output shaft 2b side will soon increase. Therefore, by increasing the target rotational speed NtgtUP as the accelerator opening degree θacc is larger based on the above formula (1), even when the output shaft 2b side is rotated up after the rotation synchronization, it is more effective at the time of engagement of the dog teeth. The rotational speed N of the transmission gear can be reliably maintained near the rotational speed Nout on the output shaft 2b side.
In the conventional technology based on the differential value of the vehicle speed V, the rotational change on the output shaft 2b side is taken into account. However, because of the correction processing based on the vehicle speed V at that time, the change in the vehicle speed after the rotation synchronization is completed is supported. Can not. Since the change in the vehicle speed V occurs with a predetermined delay with respect to the change in the accelerator opening θacc, if the target rotation speed NtgtUP is set according to the accelerator opening θacc, the change in the rotation on the output shaft 2b side is accelerated. This can be reflected in the target rotational speed NtgtUP, thereby achieving the above-described effects. This setting process is particularly useful for a truck having a heavy vehicle weight because it takes time until the accelerator operation is reflected in the acceleration / deceleration of the vehicle.

また、回転同期後の出力軸2b側の回転変化は、アクセル開度θaccのみならず変速機2の変速段も影響し、変速段が低ギヤ側であるほど出力軸2b側が急激に回転上昇する。よって、上記式(1)に基づき低ギヤ段ほど目標回転速度NtgtUPを増加させることにより、変速段の相違に関わらず、ドグ歯の噛合時点でより確実に変速ギヤの回転速度Nを出力軸2b側の回転速度Nout近傍に保持することができる。
よって、以上の車速V、アクセル開度θacc及び変速段に応じた目標回転速度NtgtUPの設定処理により、一層迅速且つ確実にドグ歯を噛合させて変速段のプリセレクトを達成できる。
Further, the rotation change on the output shaft 2b side after the rotation synchronization affects not only the accelerator opening degree θacc but also the gear stage of the transmission 2, and the output shaft 2b side rapidly rotates and rises as the gear stage is on the lower gear side. . Therefore, by increasing the target rotational speed NtgtUP as the gear position is lower based on the above equation (1), the rotational speed N of the transmission gear can be more reliably set at the time of engagement of the dog teeth regardless of the gear position. Side rotation speed Nout can be maintained.
Therefore, the gear speed preselection can be achieved by meshing the dog teeth more quickly and surely by the setting processing of the target vehicle speed NtgtUP according to the vehicle speed V, the accelerator opening degree θacc, and the gear position.

ところで、このような目標回転速度NtgtUPの高回転側の設定により、変速ギヤと出力軸2b側との回転速度が接近してドグ歯を噛合させ易くなるが、回転速度が完全に一致して偶然にドグ歯の先端同士が当たると、却ってドグ歯を噛合不能な状況に陥る可能性がある。そこで、このような状況を想定した対策を講じることも考えられ、以下に第2実施形態として説明する。   By the way, by setting the target rotational speed NtgtUP on the high rotational side, the rotational speeds of the transmission gear and the output shaft 2b are close to each other so that the dog teeth can be easily meshed. If the tips of the dog teeth hit each other, there is a possibility that the dog teeth may be unable to mesh. Therefore, it is conceivable to take a measure assuming such a situation, which will be described below as a second embodiment.

[第2実施形態]
本実施形態の全体的な構成は図1に基づき説明したものと同一であり、相違点は、車両ECU16が実行する処理にある。そこで、構成が共通する箇所は同一部材番号を付して説明を省略し、車両ECU16の処理について重点的に説明する。
ここで本実施形態では、プリセレクトのために目的の変速段のシンクロ機構が油圧シリンダで操作されるときに、ドグ歯を噛合させ易くするために変速ギヤに正側及び負側の微小トルクを交互に付加している(以下、このときの制御をトルク変動制御という)。このトルク変動制御は、ニュートラル状態からドグ歯の噛合までのシンクロ機構のストローク中の所定範囲で実行されることから、そのストローク範囲を特定するために、上記ギヤ位置センサ25はストロークセンサとしても機能するように構成されている。
[Second Embodiment]
The overall configuration of the present embodiment is the same as that described with reference to FIG. 1, and the difference is in the processing executed by the vehicle ECU 16. Therefore, parts having the same configuration are denoted by the same member numbers and description thereof is omitted, and the processing of the vehicle ECU 16 will be described mainly.
Here, in the present embodiment, when the sync mechanism of the target gear stage is operated by the hydraulic cylinder for preselection, positive and negative minute torques are applied to the transmission gear to facilitate meshing of the dog teeth. These are added alternately (hereinafter, the control at this time is referred to as torque fluctuation control). Since this torque fluctuation control is executed in a predetermined range during the stroke of the synchro mechanism from the neutral state to the meshing of the dog teeth, the gear position sensor 25 also functions as a stroke sensor in order to specify the stroke range. Is configured to do.

図7は車両ECU16が実行するプリセレクト制御ルーチンを示すフローチャートである。同フローチャートでは、図2と同一処理の箇所には同一ステップS番号を付している。
まず、ステップS2で歯車機構G2のプリセレクトのタイミングに至ると、ステップS4で式(1)に従って目標回転速度NtgtUPの設定処理を実行する。本実施形態では、ドグ歯の噛合よりも先行するトルク変動制御を開始する時点で変速ギヤの回転速度Nが出力軸2b側と一致するように、目標回転速度NtgtUPが設定される。
FIG. 7 is a flowchart showing a preselect control routine executed by the vehicle ECU 16. In the flowchart, the same step S numbers are assigned to the same processing as in FIG.
First, when the preselect timing of the gear mechanism G2 is reached in step S2, a setting process of the target rotational speed NtgtUP is executed in accordance with the equation (1) in step S4. In the present embodiment, the target rotational speed NtgtUP is set so that the rotational speed N of the transmission gear coincides with the output shaft 2b side when the torque fluctuation control preceding the meshing of the dog teeth is started.

図8に示すように、例えばトルク変動制御の範囲としては、ニュートラル範囲を外れた時点からギヤ入れが完了した時点までのストローク範囲が設定される。ギヤ入れが完了した時点とは、具体的にはドグ歯が完全に噛合して実際にギヤ入れが完了した時点(後述するギヤ入れ完了ストロークの時点と一致)でもよいし、それよりも先行する回転同期のためのカム作動が終了してギヤ入れ完了の見通しが立った時点でもよい。
その後に車両ECU16は、ステップS6で目標回転速度NtgtUPに基づき電動機3を制御し、続くステップS8で回転同期が完了すると、ステップS10でギヤ入れを開始する。続くステップS102では、シンクロ機構の操作ストロークが上記トルク変動制御の範囲内であるか否かを判定する。
As shown in FIG. 8, for example, as a range of torque fluctuation control, a stroke range from the time when the neutral range is exceeded to the time when the gear engagement is completed is set. Specifically, the time point when the gearing is completed may be the time point when the dog teeth are completely meshed and the gearing is actually completed (coincides with the time point of the gearing completion stroke described later) or precedes it. It may be when the cam operation for rotation synchronization is completed and the prospect of completion of gearing is established.
Thereafter, the vehicle ECU 16 controls the electric motor 3 based on the target rotational speed NtgtUP in step S6, and when rotation synchronization is completed in the subsequent step S8, gearing is started in step S10. In subsequent step S102, it is determined whether or not the operation stroke of the synchro mechanism is within the range of the torque fluctuation control.

ギヤ入れの開始当初は未だトルク変動制御の範囲内に入っていないため、ステップS102でNoの判定を下してステップS12に移行する。ステップS12ではギヤ入れトライ時間T1が経過したか否かを判定し、続くステップS14ではギヤ入れ完了の操作ストロークに達したか否かを判定する。何れの判定もNoのときにはステップS10に戻り、ステップS10以降の処理を繰り返す。操作ストロークがトルク変動制御の範囲内に入ると、ステップS102でYesの判定を下してステップS104でトルク変動制御を実行する(トルク変動制御手段)。   Since it is not yet within the range of the torque fluctuation control at the beginning of gear engagement, No is determined in step S102, and the process proceeds to step S12. In step S12, it is determined whether or not the gear engagement try time T1 has elapsed. In subsequent step S14, it is determined whether or not an operation stroke for completing gear engagement has been reached. If both determinations are No, the process returns to step S10, and the processes after step S10 are repeated. When the operation stroke falls within the range of torque fluctuation control, a Yes determination is made in step S102, and torque fluctuation control is executed in step S104 (torque fluctuation control means).

ギヤ入れトライ時間T1の経過前にギヤ入れ完了の操作ストロークに到達すると、ステップS14からステップS16に移行してギヤ入れ完了判定を下した後にルーチンを終了する。また、ギヤ入れ完了の操作ストロークに到達する以前にギヤ入れトライ時間T1が経過すると、ステップS18でギヤ入れ失敗判定を下し、続くステップS20でストローク戻し操作を実行する。   When the gearing completion operation stroke is reached before the gearing try time T1 elapses, the routine proceeds from step S14 to step S16 to determine completion of gearing and the routine is terminated. If the gear engagement try time T1 elapses before the gear engagement completion operation stroke is reached, a gear engagement failure determination is made in step S18, and a stroke return operation is executed in the subsequent step S20.

一方、車両ECU16は上記ステップS104に移行すると、図9に示すトルク変動制御ルーチンを実行する。
トルク変動制御では、図10のタイムチャートに示すように、電動機3により変速ギヤに正側及び負側の微小トルクを交互に付加している。詳しくは、その時点の変速ギヤの回転速度Nを維持し得るゼロトルク(図中に0で示す)を中心として、振幅及び時間が大のメイントルクと振幅及び時間が小のサブトルクとを互いに逆方向に繰り返すことにより周期的なトルク変動を実現している。
On the other hand, when the vehicle ECU 16 proceeds to step S104, the vehicle ECU 16 executes a torque fluctuation control routine shown in FIG.
In the torque fluctuation control, as shown in the time chart of FIG. 10, positive and negative minute torques are alternately added to the transmission gear by the electric motor 3. Specifically, the main torque having a large amplitude and time and the sub-torque having a small amplitude and time are opposite to each other around zero torque (indicated by 0 in the figure) that can maintain the rotational speed N of the transmission gear at that time. By repeating the above, periodic torque fluctuations are realized.

このようなトルク変動制御のために、以下の制御量が設定されている。
1)ゼロトルクに対するメイントルクの変動量MTmain
2)ゼロトルクに対するサブトルクの変動量MTsub(<MTmain)
3)メイントルクの変動時間Tmain
4)サブトルクの変動時間Tsub(<Tmain)
5)ゼロトルクの継続時間Tzero
6)メイントルク及びサブトルクを1セットとした反復回数N
The following control amounts are set for such torque fluctuation control.
1) Variation amount of main torque MTmain with respect to zero torque
2) Sub torque fluctuation amount MTsub (<MTmain) with respect to zero torque
3) Main torque fluctuation time Tmain
4) Sub torque fluctuation time Tsub (<Tmain)
5) Zero torque duration Tzero
6) Number of iterations N with main torque and sub torque set as one set

各制御量(MTmain,MTsub,Tmain,Tsub,Tzero,N)は予め設定されており、まず変動量MTmain及び変動時間Tmainに基づきメイントルクが付加され、次いで変動量MTsub及び変動時間Tsubに基づきサブトルクが付加される。これらのメイントルク及びサブトルクの1セットが反復回数Nだけ繰り返された後に、継続時間Tzeroに亘ってゼロトルクに保持される。そして、ゼロトルクが終了すると、以上のメイントルクの付加からゼロトルクまでの一連のトルク付加の手順が繰り返して行われる。   Each control amount (MTmain, MTsub, Tmain, Tsub, Tzero, N) is set in advance. First, the main torque is added based on the variation amount MTmain and the variation time Tmain, and then the subtorque is based on the variation amount MTsub and the variation time Tsub. Is added. After one set of these main torque and sub torque is repeated N times, the torque is held at zero torque for the duration Tzero. When the zero torque is completed, a series of torque addition procedures from the addition of the main torque to the zero torque are repeated.

トルク変動制御は常にメイントルクから開始するが、そのメイントルクを正側とするか負側とするかについては定まっておらず、以下に述べるように、目標回転速度Ntgtと変速ギヤの回転速度Nとの偏差ΔN(=Ntgt−N)に基づき正負が決定される。このときの目標回転速度Ntgtは、出力回転速度Noutと一致する値(=Nout)である。   The torque fluctuation control always starts from the main torque, but it is not determined whether the main torque is set to the positive side or the negative side, and as described below, the target rotational speed Ntgt and the rotational speed N of the transmission gear are determined. The positive / negative is determined based on the deviation ΔN (= Ntgt−N). The target rotation speed Ntgt at this time is a value (= Nout) that matches the output rotation speed Nout.

図9のルーチンを開始すると、まず、車両ECU16はステップS202で目標回転速度Ntgtと変速ギヤの実際の回転速度Nとの偏差ΔNが負から正に反転したか否かを判定する。判定がNoのときにはステップS204に移行し、偏差ΔNが予め設定されたヒステリシス設定値−ΔN0を下回ったか否かを判定する。判定がNoのときにはステップS206に移行して、現状のトルク変動制御を継続した後にルーチンを終了する。
そして、偏差ΔNが負から正に反転してステップS202の判定がYesになると、ステップS208に移行して変動量MTmainを正側に設定することにより正側のメイントルクからトルク変動制御を開始する(トルク補正手段)。また、偏差ΔNがヒステリシス設定値−ΔN0を下回ってステップS204の判定がYesになると、ステップS210に移行して変動量MTmainを負側に設定することにより負側のメイントルクからトルク変動制御を開始する(トルク補正手段)。
When the routine of FIG. 9 is started, first, the vehicle ECU 16 determines whether or not the deviation ΔN between the target rotational speed Ntgt and the actual rotational speed N of the transmission gear is reversed from negative to positive in step S202. When the determination is No, the routine proceeds to step S204, where it is determined whether or not the deviation ΔN is below a preset hysteresis setting value −ΔN0. When the determination is No, the routine proceeds to step S206, and the routine is terminated after continuing the current torque fluctuation control.
When the deviation ΔN is reversed from negative to positive and the determination in step S202 becomes Yes, the process proceeds to step S208, and the fluctuation amount MTmain is set to the positive side, thereby starting the torque fluctuation control from the positive main torque. (Torque correction means). Further, when the deviation ΔN falls below the hysteresis set value −ΔN0 and the determination in step S204 becomes Yes, the process proceeds to step S210, and the torque fluctuation control is started from the negative main torque by setting the fluctuation amount MTmain to the negative side. (Torque correction means).

次に、以上の車両ECU16の処理による歯車機構G2のプリセレクトの実行状況を図10,11に基づき説明する。
図11はギヤ入れ中の変速ギヤの回転変動状況を示すタイムチャートである。
図7のステップS6の処理により、変速ギヤの回転速度Nは電動機3の駆動によって引き上げられ、図11のポイントeで目標回転速度NtgtUPに到達して回転同期が完了した後にギヤ入れが開始される。
Next, the execution state of the preselection of the gear mechanism G2 by the processing of the vehicle ECU 16 will be described with reference to FIGS.
FIG. 11 is a time chart showing the rotational fluctuation state of the transmission gear during gear engagement.
By the process of step S6 in FIG. 7, the rotational speed N of the transmission gear is increased by driving the electric motor 3, and the gear engagement is started after reaching the target rotational speed NtgtUP at the point e in FIG. .

電動機3の駆動の中止と共に変速ギヤの回転速度Nは低下し始め、シンクロ機構の操作ストロークがトルク変動制御の範囲に入ると、ステップS104でトルク変動制御が開始される。この時点で変速ギヤの回転速度Nは、図11にポイントaで示す出力回転速度Nout(=Ntgt)まで低下し、偏差ΔN(=Ntgt−N)が負側から正側に反転する。このため図9のステップS208の処理に基づき、ポイントa以降ではトルク変動制御が正側のメイントルクから開始される。   When the drive of the electric motor 3 is stopped, the rotational speed N of the transmission gear starts to decrease, and when the operation stroke of the synchro mechanism enters the range of torque fluctuation control, torque fluctuation control is started in step S104. At this time, the rotational speed N of the transmission gear decreases to the output rotational speed Nout (= Ntgt) indicated by point a in FIG. 11, and the deviation ΔN (= Ntgt−N) is reversed from the negative side to the positive side. Therefore, based on the processing in step S208 in FIG. 9, the torque fluctuation control is started from the main torque on the positive side after the point a.

よって、図10に示すように、まずゼロトルクに対して変動量MTmainだけ増加補正された正側のメイントルクが変動時間Tmainに亘って変速ギヤに付加される。変動時間Tmainが経過するとサブトルクに切り換えられ、ゼロトルクに対して変動量MTsubだけ減少補正された負側のサブトルクが変動時間Tsubに亘って変速ギヤに付加される。これらのメイントルク及びサブトルクが反復回数Nだけ繰り返され、その後に変速ギヤへの付加トルクは継続時間Tzeroに亘ってゼロトルクに保持される。   Therefore, as shown in FIG. 10, first, the positive main torque, which is corrected to increase by the fluctuation amount MTmain with respect to the zero torque, is added to the transmission gear over the fluctuation time Tmain. When the fluctuation time Tmain elapses, the torque is switched to the sub-torque, and the negative side sub-torque corrected to decrease by the fluctuation amount MTsub with respect to the zero torque is added to the transmission gear over the fluctuation time Tsub. These main torque and sub torque are repeated N times, after which the additional torque to the transmission gear is maintained at zero torque for the duration Tzero.

正側にトルクを制御するメイントルクでは変速ギヤを回転上昇させ、負側にトルクを制御するサブトルクでは変速ギヤを回転低下させる。そして、サブトルクの変動量MTsubよりもメイントルクの変動量MTmainが大であり、且つサブトルクの変動時間Tsubよりもメイントルクの変動時間Tmainも大であるため、変速ギヤの回転速度Nに対する影響力はサブトルクよりもメイントルクの方が大きい。このため、ポイントa以降では変速ギヤの回転速度Nが次第に上昇し、偏差ΔNが正側から負側に反転した後、図11のポイントbでヒステリシス設定値−ΔN0を下回る。   The main gear that controls the torque on the positive side rotates the transmission gear, and the sub-torque that controls the torque on the negative side rotates the transmission gear. Since the main torque fluctuation amount MTmain is larger than the sub-torque fluctuation amount MTsub, and the main torque fluctuation time Tmain is also longer than the sub-torque fluctuation time Tsub, the influence on the rotational speed N of the transmission gear is The main torque is larger than the sub torque. Therefore, after the point a, the rotational speed N of the transmission gear gradually increases, and after the deviation ΔN is reversed from the positive side to the negative side, it falls below the hysteresis set value −ΔN0 at the point b in FIG.

ここで、図11では変速ギヤの大略的な回転変動状況を表しているが、ポイントaの箇所で例示しているように、実際の変速ギヤの回転速度Nはトルク変動制御によるトルク付加に応じた周期で微小変動している。このためトルク変動制御中の変速ギヤは、増速及び減速を繰り返して出力軸2b側に対して位相を変化させている。   Here, FIG. 11 shows a schematic rotation fluctuation state of the transmission gear, but as illustrated by the point a, the actual rotation speed N of the transmission gear depends on the torque addition by the torque fluctuation control. It fluctuates minutely with different cycles. For this reason, the speed change gear during torque fluctuation control repeatedly increases and decreases speed to change the phase with respect to the output shaft 2b side.

そして、図10,11のポイントb以降では、改めて負側のメイントルクからトルク変動制御が開始されると共に、その影響を受けて変速ギヤの回転速度Nが次第に低下する。そして、ポイントcで偏差ΔNが負側から正側に反転すると、改めて正側のメイントルクからトルク変動制御が開始される。変速ギヤの回転速度Nが次第に増加し、ポイントdで偏差ΔNがヒステリシス設定値−ΔN0を下回ると、改めて負側のメイントルクからトルク変動制御が開始される。   Then, after point b in FIGS. 10 and 11, torque fluctuation control is started again from the negative main torque, and the rotational speed N of the transmission gear gradually decreases under the influence thereof. When the deviation ΔN is reversed from the negative side to the positive side at the point c, the torque fluctuation control is started again from the main torque on the positive side. When the rotational speed N of the transmission gear gradually increases and the deviation ΔN falls below the hysteresis set value −ΔN0 at the point d, torque fluctuation control is started again from the negative main torque.

以上のようにしてギヤ入れ時にはトルク変動制御が実行され、電動機3により変速ギヤに正側及び負側の微小トルクが交互に付加されながら、シンクロ機構がギヤ入れ方向に操作される。そして、トルク変動制御では、偏差ΔNに応じてメイントルクを正・負の何れから開始するかを決定している。このため、トルク変動制御を開始した時点のみならず、その後のギヤ入れ中においても変速ギヤの回転速度Nが目標回転速度Ntgt近傍に保持され続ける。そして、変速ギヤは出力軸2b側に対して回転同期した状態で、トルク変動制御による微小トルクの付加に伴って回転速度Nを微小変動させて出力軸2b側に対する位相を変化させる。   As described above, torque variation control is executed during gear engagement, and the synchro mechanism is operated in the gear engagement direction while the positive torque and the negative torque on the transmission gear are alternately applied to the transmission gear by the electric motor 3. In the torque fluctuation control, it is determined whether the main torque starts from positive or negative according to the deviation ΔN. For this reason, the rotational speed N of the transmission gear is kept near the target rotational speed Ntgt not only at the time of starting the torque fluctuation control but also during the subsequent gear engagement. Then, the transmission gear rotates in synchronization with the output shaft 2b side, and changes the phase with respect to the output shaft 2b side by slightly changing the rotational speed N with the addition of the minute torque by torque fluctuation control.

このような状況でドグ歯の噛合が試みられるため、たとえ偶然にドグ歯の先端同士が当たった場合であっても、この状況を変速ギヤの位相変化によって解消できる。よって、第1実施形態に比較して一層迅速且つ確実にドグ歯を噛合させて変速段のプリセレクトを達成できる。歯車機構G2側のプリセレクトが不能な場合には歯車機構G1側の動力伝達を継続するしかなく、車両の走行性能が大幅に低下してしまうが、確実にプリセレクトを完了することにより、このような不測の事態を未然に防止することができる。   Since engagement of dog teeth is attempted in such a situation, this situation can be resolved by a phase change of the transmission gear even if the dog teeth end by chance. Therefore, compared with the first embodiment, the dog teeth can be meshed more quickly and reliably, and the pre-selection of the shift stage can be achieved. If preselection on the gear mechanism G2 side is impossible, the power transmission on the gear mechanism G1 side must be continued, and the running performance of the vehicle will be greatly reduced. Such an unexpected situation can be prevented in advance.

しかも、トルク変動制御では、変速ギヤの回転速度Nの上昇時には、偏差ΔNが正側から負側に反転した時点でなく、それよりも遅延する偏差ΔNが−ΔN0を下回った時点で、負側のメイントルクを開始している。
変速機2の低油温時には変速ギヤなどに作用する回転抵抗が大であるため、たとえ回転速度Nが目標回転速度Ntgtを上回ったとしても、その直後に回転抵抗により目標回転速度Ntgtを下回る可能性がある。このような場合の不必要なトルク変動制御の切換を未然に防止し、変速ギヤを回転低下させる必要がある場合に限って適切に負側のメイントルクを開始できる。このため、ギヤ入れ中の変速ギヤの回転速度Nをより良好に目標回転速度Ntgt近傍に保持できる。
Moreover, in the torque fluctuation control, when the rotational speed N of the transmission gear increases, the negative side is not the time when the deviation ΔN is reversed from the positive side to the negative side but the time when the deviation ΔN that is delayed is less than −ΔN0. The main torque has started.
Since the rotational resistance acting on the transmission gear or the like is large when the transmission 2 has a low oil temperature, even if the rotational speed N exceeds the target rotational speed Ntgt, it can be immediately below the target rotational speed Ntgt due to the rotational resistance. There is sex. In such a case, unnecessary switching of torque fluctuation control is prevented in advance, and the negative main torque can be appropriately started only when it is necessary to reduce the rotation of the transmission gear. For this reason, the rotational speed N of the transmission gear during gear engagement can be better maintained in the vicinity of the target rotational speed Ntgt.

また、トルク変動制御では、メイントルク及びサブトルクの付加を反復回数Nだけ繰り返した後にゼロトルクに保持している。トルク変動制御では、変速ギヤの回転速度Nを微小変動させて出力軸2b側に対する位相を変化させており、この位相変化がドグ歯の噛合に貢献している。しかし、出力軸2bに対する変速ギヤの位相を絶えず変化させると、ドグ歯が噛合可能な位相を瞬間的に通り過ぎて却って噛合できない場合もある。
ゼロトルクに保持する期間(継続時間Tzero)を設けることにより、当該期間中は出力軸2b側に対する変速ギヤの位相変化が中断されるため、結果としてドグ歯の噛合の機会を作り出すことができる。よって、一層迅速且つ確実に変速段のプリセレクトを達成することができる。
In the torque fluctuation control, the addition of the main torque and the sub torque is repeated for the number of repetitions N, and then held at zero torque. In the torque fluctuation control, the rotational speed N of the transmission gear is slightly changed to change the phase with respect to the output shaft 2b, and this phase change contributes to the engagement of the dog teeth. However, when the phase of the speed change gear with respect to the output shaft 2b is constantly changed, there are cases where the phase where the dog teeth can mesh is instantaneously passed and cannot be meshed.
By providing a period during which the torque is maintained at zero (continuation time Tzero), the phase change of the transmission gear with respect to the output shaft 2b is interrupted during the period, and as a result, an opportunity for meshing of the dog teeth can be created. Therefore, it is possible to achieve the shift stage preselection more quickly and reliably.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、エンジン1に加えて走行用動力源として電動機3を搭載したハイブリッド型トラックに具体化したが、電動機3のみを搭載した電気自動車に具体化してもよいし、バスや乗用車に具体化してもよい。
また上記実施形態では、デュアルクラッチ式変速機2に適用したが、これに限るものではなく、例えば手動変速機をベースとして、変速操作及びクラッチの断接操作をアクチュエータにより自動的に行う自動変速機に具体化してもよい。また、手動変速機に具体化して、運転者による手動の変速操作時に電動機3を利用した回転同期を行うようにしてもよい。
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above-described embodiment, the present invention has been embodied in a hybrid truck equipped with the electric motor 3 as a driving power source in addition to the engine 1, but may be embodied in an electric vehicle equipped with only the electric motor 3, or in a bus or a passenger car. It may be embodied.
Moreover, in the said embodiment, although applied to the dual clutch transmission 2, it is not restricted to this, For example, based on a manual transmission, the automatic transmission which performs a shift operation and a clutch connection / disconnection operation automatically with an actuator It may be embodied in. Further, it may be embodied as a manual transmission, and rotation synchronization using the electric motor 3 may be performed at the time of manual shift operation by the driver.

また上記実施形態では、常に補正係数KNtemp,KNv,KNacc,KNgearに基づき目標回転速度Ntgtを算出したが、これに限ることはない。例えば、何れかの補正係数KNtemp,KNv,KNacc,KNgearを省略したり、別の補正係数を追加したりしてもよい。また、回転同期後の変速ギヤの回転低下には変速機2の油温Toilが最も影響するため、油温Toilが所定温度以上のときにはベース値Nbaseを目標回転速度Ntgtとして設定し、油温Toilが所定温度未満のときに限って補正係数Nbase,KNtemp,KNv,KNacc,KNgearに基づき目標回転速度Ntgtを算出するようにしてもよい。   In the above embodiment, the target rotational speed Ntgt is always calculated based on the correction coefficients KNtemp, KNv, KNacc, and KNgear. However, the present invention is not limited to this. For example, any correction coefficient KNtemp, KNv, KNacc, KNgear may be omitted, or another correction coefficient may be added. Further, since the oil temperature Toil of the transmission 2 has the greatest influence on the rotation reduction of the transmission gear after the rotation synchronization, when the oil temperature Toil is equal to or higher than a predetermined temperature, the base value Nbase is set as the target rotation speed Ntgt, and the oil temperature Toil The target rotational speed Ntgt may be calculated based on the correction coefficients Nbase, KNtemp, KNv, KNacc, and KNgear only when is less than the predetermined temperature.

また上記実施形態では、変速機2の油温Toilなどに関係なく常にトルク変動制御を実行したが、これに限ることはない。例えば変速機2の油温Toilが高いときにはトルク変動制御を実行せず、油温Toilが低くてドグ歯を噛合させ難い条件のときのみにトルク変動制御を実行してもよい。また、油温Toilに関わらずトルク変動制御を常に実行すると共に、変速機2の油温Toilが高いときには偏差ΔNに応じたトルク変動制御の切換を実行せず、油温Toilが低くて回転同期後の変速ギヤの回転低下が急激になると予測される場合のみ、偏差ΔNに応じたトルク変動制御の切換を実行してもよい。   Moreover, in the said embodiment, although torque fluctuation control was always performed irrespective of the oil temperature Toil of the transmission 2, etc., it is not restricted to this. For example, torque fluctuation control may not be executed when the oil temperature Toil of the transmission 2 is high, and torque fluctuation control may be executed only when the oil temperature Toil is low and it is difficult to mesh the dog teeth. In addition, torque fluctuation control is always executed regardless of the oil temperature Toil, and when the oil temperature Toil of the transmission 2 is high, switching of the torque fluctuation control according to the deviation ΔN is not executed, and the oil temperature Toil is low and rotational synchronization is performed. Switching of torque fluctuation control according to the deviation ΔN may be executed only when it is predicted that the subsequent reduction of the rotation of the transmission gear will be abrupt.

また上記実施形態では、偏差ΔNに応じて変速ギヤの回転速度Nへの影響力が大のメイントルクからトルク変動制御を改めて開始することにより、変速ギヤの回転速度Nを目標回転速度Ntgt近傍に保持したが、この手法に限ることはない。例えば偏差ΔNに基づき、変速ギヤの回転速度Nを目標回転速度Ntgtに接近させる方向に、メイントルクまたはサブトルクの変動量MTmain,MTsubを順次増減するようにしてもよい。また、変動量MTmain,MTsubに代えて変動時間Tmain,Tsubを増減してもよい。
また上記第2実施形態では、変速ギヤに微小トルクを付加するトルク変動制御を実行すると共に、偏差ΔNに基づき変速ギヤの回転速度Nを目標回転速度Ntgt近傍に保持する制御を行った。しかし、必ずしも後者の制御を実行する必要はなく、トルク変動制御のみを実行するようにしてもよい。
In the above-described embodiment, the torque fluctuation control is started again from the main torque having a large influence on the rotational speed N of the transmission gear according to the deviation ΔN, so that the rotational speed N of the transmission gear is brought close to the target rotational speed Ntgt. Although retained, it is not limited to this method. For example, the fluctuation amounts MTmain and MTsub of the main torque or the sub torque may be increased or decreased sequentially in the direction in which the rotational speed N of the transmission gear approaches the target rotational speed Ntgt based on the deviation ΔN. Further, the fluctuation times Tmain and Tsub may be increased or decreased instead of the fluctuation amounts MTmain and MTsub.
In the second embodiment, torque fluctuation control for applying a minute torque to the transmission gear is executed, and control for maintaining the rotation speed N of the transmission gear near the target rotation speed Ntgt is performed based on the deviation ΔN. However, it is not always necessary to execute the latter control, and only the torque fluctuation control may be executed.

1 エンジン
1a 出力軸
2 変速機
2a 入力軸
2b 出力軸
3 電動機
4 インバータ
5 バッテリ
6 油圧シリンダ
7 電磁弁
8,11 油路
9 油圧供給源
10 ギヤシフトユニット
12 差動装置
13 駆動軸
14 駆動輪
16 車両ECU
(回転同期制御手段、目標回転速度設定手段、トルク変動制御手段、トルク補正手段)
17 エンジンECU
18 インバータECU
19 バッテリECU
23,24 入力回転速度センサ
25 ギヤ位置センサ
26 アクセルペダル
27 アクセルセンサ(アクセル開度検出手段)
28 出力回転速度センサ(車速検出手段)
29 セレクトレバー
30 レバー位置センサ
34 ブレーキペダル
35 ブレーキセンサ
36 油温センサ(油温検出手段)
C1,C2 クラッチ
G1,G2 歯車機構
DESCRIPTION OF SYMBOLS 1 Engine 1a Output shaft 2 Transmission 2a Input shaft 2b Output shaft 3 Electric motor 4 Inverter 5 Battery 6 Hydraulic cylinder 7 Solenoid valve 8,11 Oil path 9 Hydraulic supply source 10 Gear shift unit 12 Differential device 13 Drive shaft 14 Drive wheel 16 Vehicle ECU
(Rotation synchronization control means, target rotation speed setting means, torque fluctuation control means, torque correction means)
17 Engine ECU
18 Inverter ECU
19 Battery ECU
23, 24 Input rotational speed sensor 25 Gear position sensor 26 Accelerator pedal 27 Accelerator sensor (accelerator opening detection means)
28 Output rotation speed sensor (vehicle speed detection means)
29 Select lever 30 Lever position sensor 34 Brake pedal 35 Brake sensor 36 Oil temperature sensor (oil temperature detection means)
C1, C2 Clutch G1, G2 Gear mechanism

Claims (7)

電動機の駆動力を変速機を介して駆動輪側に伝達して走行可能な電気自動車において、
上記変速機の変速段を切換操作するときに、上記電動機の駆動力を上記変速機に伝達して、切換操作すべき変速ギヤの回転速度を該変速機の出力軸側の回転速度に基づき設定された第1の目標回転速度に一致させるように制御する回転同期制御手段と、
上記変速機の油温を検出する油温検出手段と、
上記油温検出手段により検出された油温が低いほど、上記第1の目標回転速度を上記出力軸側の回転速度よりも増加側に設定する目標回転速度設定手段と
を備えたことを特徴とする電気自動車の変速制御装置。
In an electric vehicle that can travel by transmitting the driving force of the electric motor to the driving wheel side through the transmission,
When switching the gear position of the transmission, the driving force of the motor is transmitted to the transmission, and the rotational speed of the transmission gear to be switched is set based on the rotational speed on the output shaft side of the transmission Rotation synchronization control means for controlling to coincide with the first target rotation speed,
Oil temperature detecting means for detecting the oil temperature of the transmission;
And target rotation speed setting means for setting the first target rotation speed to be higher than the rotation speed on the output shaft side as the oil temperature detected by the oil temperature detection means is lower. A shift control device for an electric vehicle.
上記電気自動車の車速を検出する車速検出手段を備え、
上記目標回転速度設定手段は、上記車速検出手段により検出された車速が高いほど、上記第1の目標回転速度を上記出力軸側の回転速度よりも増加側に設定することを特徴とする請求項1記載の電気自動車の変速制御装置。
Vehicle speed detection means for detecting the vehicle speed of the electric vehicle,
The said target rotational speed setting means sets the said 1st target rotational speed to the increase side rather than the rotational speed of the said output shaft side, so that the vehicle speed detected by the said vehicle speed detection means is high. 2. A shift control apparatus for an electric vehicle according to 1.
上記アクセル開度を検出するアクセル開度検出手段を備え、
上記目標回転速度設定手段は、上記アクセル開度検出手段により検出されたアクセル開度が大きいほど、上記第1の目標回転速度を上記出力軸側の回転速度よりも増加側に設定することを特徴とする請求項1または2記載の電気自動車の変速制御装置。
Accelerator opening detection means for detecting the accelerator opening,
The target rotation speed setting means sets the first target rotation speed to be higher than the rotation speed on the output shaft side as the accelerator opening detected by the accelerator opening detection means is larger. The shift control device for an electric vehicle according to claim 1 or 2.
上記目標回転速度設定手段は、上記変速機の変速段が低ギヤ段側であるほど、上記第1の目標回転速度を上記出力軸側の回転速度よりも増加側に設定することを特徴とする請求項1乃至3の何れか記載の電気自動車の変速制御装置。   The target rotational speed setting means sets the first target rotational speed to be higher than the rotational speed on the output shaft side as the shift stage of the transmission is on the lower gear stage side. The shift control device for an electric vehicle according to any one of claims 1 to 3. 上記回転同期制御手段による回転同期の完了後に、上記変速ギヤの回転速度を維持し得るゼロトルクを中心として、上記電動機により上記変速ギヤに正側及び負側の微小トルクを交互に付加するトルク変動制御を実行するトルク変動制御手段を備えたことを特徴とする請求項1乃至4の何れか記載の電気自動車の変速制御装置。   Torque fluctuation control in which positive and negative minute torques are alternately applied to the transmission gear by the electric motor around the zero torque capable of maintaining the rotational speed of the transmission gear after completion of the rotation synchronization by the rotation synchronization control means. 5. The shift control apparatus for an electric vehicle according to claim 1, further comprising torque fluctuation control means for executing 上記トルク変動制御手段によるトルク変動制御の実行中に、上記変速ギヤの回転速度を上記出力軸側の回転速度に対応して設定された第2の目標回転速度近傍に保持すべく、上記トルク変動制御手段によって付加される上記正側及び負側の微小トルクを補正するトルク補正手段を備え、
上記トルク補正手段は、上記変速ギヤの回転速度が第2の目標回転速度を下回ったときに、上記ゼロトルクを基準として負側の微小トルクよりも正側の微小トルクが大となるように補正し、上記変速ギヤの回転速度が上記第2の目標回転速度を予め設定されたヒステリシス設定値だけ上回ったときに、上記ゼロトルクを基準として正側の微小トルクよりも負側の微小トルクが大となるように補正することを特徴とする請求項5に記載の電気自動車の変速制御装置。
During the execution of the torque fluctuation control by the torque fluctuation control means, the torque fluctuation is controlled in order to keep the rotation speed of the transmission gear near the second target rotation speed set corresponding to the rotation speed on the output shaft side. Torque correcting means for correcting the positive and negative minute torques added by the control means;
The torque correcting means corrects the positive minute torque to be larger than the negative minute torque with respect to the zero torque when the rotational speed of the transmission gear is lower than the second target rotational speed. When the rotational speed of the transmission gear exceeds the second target rotational speed by a preset hysteresis setting value, the negative minute torque is greater than the positive minute torque with reference to the zero torque. The shift control device for an electric vehicle according to claim 5, wherein the shift control device corrects as follows.
上記トルク変動制御手段は、上記正側及び負側の微小トルクの間で予め設定された継続時間に亘って上記ゼロトルクを継続することを特徴とする請求項5または6に記載の電気自動車の変速制御装置。   7. The electric vehicle shift according to claim 5, wherein the torque fluctuation control means continues the zero torque for a preset duration between the positive and negative minute torques. Control device.
JP2012261082A 2012-11-29 2012-11-29 Shift control device for electric vehicle Active JP5930541B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012261082A JP5930541B2 (en) 2012-11-29 2012-11-29 Shift control device for electric vehicle
PCT/JP2013/081302 WO2014084102A1 (en) 2012-11-29 2013-11-20 Speed change controller for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012261082A JP5930541B2 (en) 2012-11-29 2012-11-29 Shift control device for electric vehicle

Publications (2)

Publication Number Publication Date
JP2014108011A true JP2014108011A (en) 2014-06-09
JP5930541B2 JP5930541B2 (en) 2016-06-08

Family

ID=50827743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012261082A Active JP5930541B2 (en) 2012-11-29 2012-11-29 Shift control device for electric vehicle

Country Status (2)

Country Link
JP (1) JP5930541B2 (en)
WO (1) WO2014084102A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105822760A (en) * 2015-01-08 2016-08-03 蔡文田 Electric vehicle gears control method and apparatus
JP2018043597A (en) * 2016-09-13 2018-03-22 本田技研工業株式会社 Control device of hybrid vehicle
JP2018043596A (en) * 2016-09-13 2018-03-22 本田技研工業株式会社 Control device of hybrid vehicle
WO2019194078A1 (en) * 2018-04-06 2019-10-10 日本電産株式会社 Motor unit
WO2019194076A1 (en) * 2018-04-06 2019-10-10 日本電産株式会社 Motor unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306170A (en) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd Drive control device and drive control method for hybrid vehicle
JP2009067256A (en) * 2007-09-13 2009-04-02 Toyota Motor Corp Controller of vehicle drive
JP2010265951A (en) * 2009-05-13 2010-11-25 Nissan Motor Co Ltd Shift control device of motor-driven vehicle
JP2012046003A (en) * 2010-08-25 2012-03-08 Toyota Motor Corp Control device of power transmission device for vehicle
JP2012157199A (en) * 2011-01-27 2012-08-16 Honda Motor Co Ltd Control device of electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306170A (en) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd Drive control device and drive control method for hybrid vehicle
JP2009067256A (en) * 2007-09-13 2009-04-02 Toyota Motor Corp Controller of vehicle drive
JP2010265951A (en) * 2009-05-13 2010-11-25 Nissan Motor Co Ltd Shift control device of motor-driven vehicle
JP2012046003A (en) * 2010-08-25 2012-03-08 Toyota Motor Corp Control device of power transmission device for vehicle
JP2012157199A (en) * 2011-01-27 2012-08-16 Honda Motor Co Ltd Control device of electric vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105822760A (en) * 2015-01-08 2016-08-03 蔡文田 Electric vehicle gears control method and apparatus
CN105822760B (en) * 2015-01-08 2019-11-12 蔡文田 Electric vehicle gear control method and device
JP2018043597A (en) * 2016-09-13 2018-03-22 本田技研工業株式会社 Control device of hybrid vehicle
JP2018043596A (en) * 2016-09-13 2018-03-22 本田技研工業株式会社 Control device of hybrid vehicle
US10525971B2 (en) 2016-09-13 2020-01-07 Honda Motor Co., Ltd. Control device in hybrid vehicle
WO2019194078A1 (en) * 2018-04-06 2019-10-10 日本電産株式会社 Motor unit
WO2019194076A1 (en) * 2018-04-06 2019-10-10 日本電産株式会社 Motor unit

Also Published As

Publication number Publication date
WO2014084102A1 (en) 2014-06-05
JP5930541B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5062494B2 (en) Vehicle control device
US9216734B2 (en) Control device
US8793045B2 (en) Control device of hybrid drive device
WO2011052305A1 (en) Vehicle controller
KR101801981B1 (en) Method for controlling an automated manual transmission
WO2012133059A1 (en) Transmission control device for hybrid vehicle
WO2013145896A1 (en) Hybrid vehicle drive control device
JP5930541B2 (en) Shift control device for electric vehicle
CN104670217A (en) Drive device for vehicle
CN111434549A (en) Vehicle control method and system and vehicle
US8352139B2 (en) Vehicular power transmission control apparatus
JP5322751B2 (en) Vehicle power transmission control device
JP2014098452A (en) Shift control device for electric car
US10279795B2 (en) Control device
JP2013022999A (en) Power transmission control device for vehicle
JP5185994B2 (en) Vehicle power transmission control device
JP5409526B2 (en) Vehicle power transmission control device
JP2010260373A (en) Power transmission controller for vehicle
US10322715B2 (en) Control device for performing a start control
JP5379554B2 (en) Vehicle power transmission control device
JP2014094596A (en) Gear shift controller for hybrid vehicle
JP2012201194A (en) Control apparatus for hybrid drive apparatus
JP5692919B2 (en) Control device for dual clutch automatic transmission
JP5367445B2 (en) Vehicle power transmission control device
JP5801669B2 (en) Control device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5930541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250