JP2012201194A - Control apparatus for hybrid drive apparatus - Google Patents

Control apparatus for hybrid drive apparatus Download PDF

Info

Publication number
JP2012201194A
JP2012201194A JP2011066891A JP2011066891A JP2012201194A JP 2012201194 A JP2012201194 A JP 2012201194A JP 2011066891 A JP2011066891 A JP 2011066891A JP 2011066891 A JP2011066891 A JP 2011066891A JP 2012201194 A JP2012201194 A JP 2012201194A
Authority
JP
Japan
Prior art keywords
engine
torque
clutch
motor
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011066891A
Other languages
Japanese (ja)
Inventor
Nobuhiro Ueda
庸祐 上田
Hiroaki Kioka
弘昭 木岡
Masaki Nomura
昌樹 野村
Yoshinori Ono
佳紀 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2011066891A priority Critical patent/JP2012201194A/en
Publication of JP2012201194A publication Critical patent/JP2012201194A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

PROBLEM TO BE SOLVED: To provide a control apparatus for a hybrid drive apparatus that reduces hesitation caused upon engine starting without reducing an EV travel area.SOLUTION: The hybrid drive apparatus 1 includes a cone ring type transmission mechanism 3; a motor 2 drivingly connected to an input shaft 6; and a clutch 4 disposed between the engine 9 and the input shaft 6. When starting the engine during EV travel, the clutch 4 is engaged to increase rotation of the engine 9. The control apparatus 100 for the hybrid drive apparatus 1 includes a start-time upshift controlling means 107 for upshifting the transmission mechanism 3 in accordance with engagement control of the clutch 4 when starting the engine so as to output inertia torque. When starting the engine, an output torque Tout including a drive torque Tm of the motor 2 to which the inertia torque Ti by speed reduction of an input cone 22, a rotor of the motor 2, and the input shaft 6 is added is output to a drive wheel 10.

Description

本発明は、例えば変速機構と、該変速機構の入力部材に駆動連結されたモータと、エンジンと該入力部材との間に介在するクラッチとを制御するハイブリッド駆動装置の制御装置に係り、詳しくは、エンジンの始動時にクラッチを係合して該エンジンの回転上昇を行うハイブリッド駆動装置の制御装置に関する。   The present invention relates to a control device for a hybrid drive device that controls, for example, a speed change mechanism, a motor drivingly connected to an input member of the speed change mechanism, and a clutch interposed between an engine and the input member. The present invention relates to a control device for a hybrid drive device that engages a clutch when starting an engine to increase the rotation of the engine.

近年、環境問題の取り組み等から、車両の燃費向上を図ったハイブリッド駆動装置が種々開発されている。このようなハイブリッド駆動装置の中には、変速機構と、該変速機構の入力部材に駆動連結されたモータと、エンジンと該入力部材との間に介在するクラッチとを備えた、いわゆる1モータ・パラレル型のハイブリッド駆動装置が提案されている(特許文献1参照)。   In recent years, various hybrid drive devices designed to improve the fuel efficiency of vehicles have been developed due to environmental issues. In such a hybrid drive device, a so-called one-motor, comprising a speed change mechanism, a motor drivingly connected to an input member of the speed change mechanism, and a clutch interposed between the engine and the input member. A parallel hybrid drive device has been proposed (see Patent Document 1).

上記特許文献1のものは、クラッチを解放してエンジンを切離した状態で、モータによるEV走行を行うことを可能としており、例えばこのEV走行中において運転者が要求する要求トルクがモータトルクよりも大きくなると(アクセル開度が所定の低下開度領域を出るとき)、エンジンの始動を判定し、エンジン及びモータの駆動力による走行状態に移行する。   In the above-mentioned Patent Document 1, it is possible to perform EV traveling by a motor in a state where the clutch is released and the engine is disconnected. For example, the required torque requested by the driver during this EV traveling is higher than the motor torque. When it becomes larger (when the accelerator opening departs from the predetermined lowering opening range), it is determined that the engine is started, and a transition is made to a running state by the driving force of the engine and motor.

特開平11−82260号公報JP-A-11-82260

ところで、上記特許文献1のような1モータ・パラレル型のハイブリッド駆動装置にあって、モータのみの駆動力によるEV走行中からエンジンを始動する場合には、クラッチを係合しつつモータの駆動力によってエンジンの回転数を上昇させた後、該エンジンの燃焼を開始している。   By the way, in the one-motor / parallel type hybrid drive apparatus as described in Patent Document 1, when the engine is started during EV traveling by the drive force of only the motor, the drive force of the motor while engaging the clutch. After the engine speed is increased by the above, combustion of the engine is started.

このエンジンの始動において、特許文献1のものは、自動変速機のクラッチC1を解放することで、車両の惰性走行中にエンジンを始動し、エンジンのクランキング負荷が駆動車輪に伝達されることを防止して、減速ショックが生じることの防止を図っているが、エンジンを始動する必要がある場合は、例えば運転者がアクセルを踏み込んで車両としての出力トルクの増大(つまり車両の加速)を要求している場合が多いので、瞬間的に車両の加速が無くなることは、ドライバビリティとして違和感を生じる虞もある。   In starting the engine, Patent Document 1 discloses that the clutch C1 of the automatic transmission is released to start the engine while the vehicle is coasting and the cranking load of the engine is transmitted to the drive wheels. In order to prevent a deceleration shock from occurring, if the engine needs to be started, for example, the driver depresses the accelerator to request an increase in the output torque of the vehicle (that is, acceleration of the vehicle). Since there are many cases where the vehicle is not accelerated instantaneously, there is a risk that the drivability may be uncomfortable.

しかし、例えばクラッチC1を解放せずに、モータと駆動車輪とが駆動伝達状態にあったとしても、エンジンの回転数を上昇するためにモータの駆動力の一部が用いられるので、瞬間的に車両の加速が鈍る、いわゆるヘジテーションが生じてしまう。   However, even if the motor and the driving wheel are in the drive transmission state without releasing the clutch C1, for example, a part of the driving force of the motor is used to increase the engine speed. So-called hesitation occurs, where the acceleration of the vehicle slows down.

このヘジテーションの発生を防止するためには、EV走行中にあって、常時モータにエンジン始動のための余力を残しておくことが考えられるが、そのためには、エンジン始動タイミングを早めるようにEV走行領域を縮小する必要があり、エンジン始動の頻度が多くなり、車両の燃費向上の妨げになるという問題がある。   In order to prevent the occurrence of this hesitation, it is conceivable that the motor is always left with a surplus power for starting the engine during EV traveling. For this purpose, EV traveling is performed so as to advance the engine start timing. There is a problem that the area needs to be reduced, the frequency of engine start increases, and hinders the improvement of fuel consumption of the vehicle.

そこで本発明は、EV走行領域を縮小することなく、かつエンジン始動時に生じるヘジテーションの低減を図ることが可能なハイブリッド駆動装置の制御装置を提供することを目的とするものである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for a hybrid drive device that can reduce the hesitation that occurs when the engine is started without reducing the EV travel range.

本発明は(例えば図1乃至図5参照)、入力部材(6)に接続される円錐形状のインプットコーン(22)と、駆動車輪(10)に駆動連結される出力部材(39r,39l)に接続されると共に該インプットコーン(22)と平行な軸線上に配置されかつ大径側と小径側とが軸方向逆向きになるように配置された円錐形状のアウトプットコーン(23)と、前記インプットコーン(22)又は前記アウトプットコーン(23)を囲むように配置されかつ該インプットコーン(22)と該アウトプットコーン(23)が対向する傾斜面に挟持されるリング(25)と、を有する変速機構(3)の変速比を、該リング(25)を軸方向に移動制御することで変速制御する変速制御手段(101)と、
前記入力部材(6)に駆動連結されるモータ(2)を駆動制御するモータ制御手段(102)と、
エンジン(9)と前記入力部材(6)との間に介在するクラッチ(4)を係合制御するクラッチ制御手段(103)と、
車両走行中に前記クラッチ(4)を解放して前記エンジン(9)を停止している状態から、前記エンジン(9)の始動を判定するエンジン始動判定手段(106)と、
前記エンジン始動判定手段(106)により前記エンジン(9)の始動が判定された際に、前記クラッチ制御手段(103)に指令して前記クラッチ(4)を係合制御しつつ該クラッチ(4)のトルク容量を上昇していくことで前記入力部材(6)の回転に基づき前記エンジン(9)の回転速度を上昇させ、前記エンジン(9)の燃焼を開始させるエンジン始動制御手段(105)と、
前記エンジン始動制御手段(105)による前記クラッチ(4)の係合制御時に、前記変速制御手段(101)に指令して前記変速機構(3)の変速比をアップシフト変速する始動時アップシフト制御手段(107)と、を備えたことを特徴とするハイブリッド駆動装置(1)の制御装置(100)で構成される。
The present invention (see, for example, FIGS. 1 to 5) includes a conical input cone (22) connected to the input member (6) and an output member (39r, 39l) connected to the driving wheel (10). A conical output cone (23) which is connected and arranged on an axis parallel to the input cone (22) and arranged so that the large diameter side and the small diameter side are opposite to each other in the axial direction; A ring (25) disposed so as to surround the input cone (22) or the output cone (23) and sandwiched between inclined surfaces facing the input cone (22) and the output cone (23); Shift control means (101) for controlling the shift ratio of the transmission mechanism (3) by shifting the ring (25) in the axial direction;
Motor control means (102) for driving and controlling a motor (2) drivingly connected to the input member (6);
Clutch control means (103) for controlling engagement of a clutch (4) interposed between the engine (9) and the input member (6);
Engine start determination means (106) for determining start of the engine (9) from a state in which the clutch (4) is released and the engine (9) is stopped while the vehicle is running;
When the engine start determination means (106) determines that the engine (9) is started, the clutch control means (103) is instructed to engage and control the clutch (4) while the clutch (4) Engine starting control means (105) for increasing the rotational speed of the engine (9) based on the rotation of the input member (6) by increasing the torque capacity of the engine (9) and starting combustion of the engine (9). ,
At the time of engagement control of the clutch (4) by the engine start control means (105), a command is given to the speed change control means (101) to upshift the speed ratio of the speed change mechanism (3). And a control device (100) of the hybrid drive device (1).

また、本発明は(例えば図1参照)、運転者の要求トルク(Tr)を検出する要求トルク検出手段(108)を備え、
前記始動時アップシフト制御手段(107)は、前記要求トルク(Tr)と前記モータ(2)の駆動トルク(Tm)とに基づき、前記アップシフト変速における変速速度を制御することを特徴とする。
Further, the present invention (see, for example, FIG. 1) includes requested torque detection means (108) for detecting a driver's requested torque (Tr),
The start-up upshift control means (107) controls a shift speed in the upshift based on the required torque (Tr) and the drive torque (Tm) of the motor (2).

なお、上記カッコ内の符号は、図面と対照するためのものであるが、これは、発明の理解を容易にするための便宜的なものであり、特許請求の範囲の構成に何等影響を及ぼすものではない。   In addition, although the code | symbol in the said parenthesis is for contrast with drawing, this is for convenience for making an understanding of invention easy, and has no influence on the structure of a claim. It is not a thing.

請求項1に係る本発明によると、始動時アップシフト制御手段が、エンジン始動制御手段によるクラッチの係合制御に合わせて、変速制御手段に指令してコーンリング式の変速機構の変速比をアップシフト変速して、比較的重量が重いインプットコーン、モータのロータ、及び入力部材の回転速度を低下させることで、それらインプットコーン、モータのロータ、及び入力部材の減速による十分な大きさのイナーシャトルクを発生させるので、エンジンの始動時に、モータの駆動トルクに上記イナーシャトルクを加えた出力トルクを駆動車輪に出力することができる。これにより、例えばEV走行領域を縮小することなく、エンジン始動時に生じるヘジテーションの低減を図ることができる。   According to the first aspect of the present invention, the start-up upshift control means instructs the shift control means to increase the gear ratio of the cone ring type transmission mechanism in accordance with the clutch engagement control by the engine start control means. By shifting the speed of the input cone, the rotor of the motor, and the input member, which are relatively heavy, the rotational speed of the input cone, the rotor of the motor, and the input member is reduced. Therefore, when the engine is started, output torque obtained by adding the inertia torque to the drive torque of the motor can be output to the drive wheels. Thus, for example, hesitation that occurs when the engine is started can be reduced without reducing the EV travel range.

請求項2に係る本発明によると、始動時アップシフト制御手段が、要求トルクとモータの駆動トルクとに基づき、アップシフト変速における変速速度を制御することで、発生するイナーシャトルクの大きさを制御することができるので、インプットコーン、モータのロータ、及び入力部材の減速によるイナーシャトルクを要求トルクに応じて出力することができ、エンジン始動時に生じる出力トルクの変動を精度良く抑制することができる。   According to the second aspect of the present invention, the starting upshift control means controls the shift speed in the upshift based on the required torque and the motor driving torque, thereby controlling the magnitude of the generated inertia torque. Therefore, the inertia torque generated by the deceleration of the input cone, the motor rotor, and the input member can be output according to the required torque, and the fluctuation of the output torque that occurs when starting the engine can be suppressed with high accuracy.

本実施の形態に係るハイブリッド駆動装置の制御装置の概略構成を示すブロック図。The block diagram which shows schematic structure of the control apparatus of the hybrid drive device which concerns on this Embodiment. 本ハイブリッド駆動装置の構成を示すスケルトン図。The skeleton figure which shows the structure of this hybrid drive device. 本ハイブリッド駆動装置の制御装置による制御を示すメインフローチャート。The main flowchart which shows the control by the control apparatus of this hybrid drive device. アップ変速処理の制御を示すサブフローチャート。The sub-flowchart which shows control of an upshift process. エンジン始動時における走行例を示すタイムチャート。The time chart which shows the example of driving | running | working at the time of engine starting.

[ハイブリッド駆動装置の概略構成]
以下、本発明に係る実施の形態を図1乃至図5に沿って説明する。まず、本発明に係るハイブリッド駆動装置1を搭載した車両の駆動系を図1及び図2に沿って説明する。図1に示すように、ハイブリッド駆動装置1は、エンジン(E/G)9と駆動車輪10との間に介在するように配置されており、入力軸(入力部材)6とディファレンシャル装置5を介して駆動車輪10に駆動連結されるアスクル軸(出力部材)39r,39lとの間の変速比を変速する変速機構(T/M)3と、該入力軸6に駆動連結されるモータ・ジェネレータ(M/G)2と、エンジン9と入力軸6との間に介在するクラッチ4とを備えて構成されている。
[Schematic configuration of hybrid drive unit]
Hereinafter, embodiments according to the present invention will be described with reference to FIGS. 1 to 5. First, a drive system of a vehicle equipped with a hybrid drive device 1 according to the present invention will be described with reference to FIGS. As shown in FIG. 1, the hybrid drive device 1 is disposed so as to be interposed between an engine (E / G) 9 and a drive wheel 10, and is connected via an input shaft (input member) 6 and a differential device 5. A speed change mechanism (T / M) 3 for changing the speed ratio between the axle shafts (output members) 39r and 39l that are drivingly connected to the driving wheel 10 and a motor generator that is drivingly connected to the input shaft 6 ( M / G) 2 and a clutch 4 interposed between the engine 9 and the input shaft 6.

詳細には、図2に示すように、クラッチ4は、乾式単板クラッチからなり、エンジン出力軸54に連結されているクラッチディスク4a及び入力軸6にダンパスプリング55を介して連結されている出力側となるプレッシャプレート4bを有し、プレッシャプレート4bは、ダイヤフラムスプリング56により常時クラッチディスク4aに接続するように付勢されている。また、レリーズベアリング57が上記プレッシャプレート4bの中心部分に回転自在に当接しており、該ベアリング57がレリーズフォーク58により押圧されることにより、上記クラッチ4が切操作される。レリーズフォーク58は、ロッド53を介してウォームホイール50に連結されており、該ホイール50には電動アクチュエータである電気モータA1の出力軸に連動されているウォーム52が噛合している。   Specifically, as shown in FIG. 2, the clutch 4 is a dry single-plate clutch, and is connected to the clutch disk 4 a connected to the engine output shaft 54 and the input shaft 6 via a damper spring 55. The pressure plate 4b is urged so as to be always connected to the clutch disk 4a by a diaphragm spring 56. A release bearing 57 is rotatably in contact with the central portion of the pressure plate 4b. When the bearing 57 is pressed by a release fork 58, the clutch 4 is turned off. The release fork 58 is connected to a worm wheel 50 through a rod 53, and the worm 52 that is interlocked with the output shaft of the electric motor A1 that is an electric actuator meshes with the wheel 50.

上記電気モータA1、ウォーム52、ウォームホイール50及びロッド53は、クラッチ操作部51を構成しており、上記電動アクチュエータ(電気モータ)A1に基づく該クラッチ操作部51の操作により上記クラッチ4を係合・解放操作すると共に、上記非可逆機構からなるウォーム52及びウォームホイール50が介在して、電気モータA1が停止した状態でのクラッチ4の操作位置(係合又は解放)に保持される。   The electric motor A1, the worm 52, the worm wheel 50, and the rod 53 constitute a clutch operation unit 51, and the clutch 4 is engaged by the operation of the clutch operation unit 51 based on the electric actuator (electric motor) A1. The release operation is performed, and the worm 52 and the worm wheel 50 including the nonreciprocal mechanism are interposed, and the clutch 4 is held at the operation position (engaged or released) in a state where the electric motor A1 is stopped.

モータ・ジェネレータ(以下、単に「モータ」という)2は、ステータ(不図示)とモータ出力軸8に設けられたロータ(不図示)とを有し、モータ出力軸8は、両端部が不図示のケース部材にベアリングを介して回転自在に支持されている。モータ出力軸8の一方側には、歯車(ピニオン)からなる出力ギヤ16が形成されており、該出力ギヤ16はアイドラ歯車17を介して入力軸6に設けられた中間ギヤ19に噛合して、これら出力ギヤ16、アイドラ歯車17、及び中間ギヤ19によってモータ2と入力軸6とを駆動連結するギヤ伝動装置7を構成している。   A motor generator (hereinafter simply referred to as “motor”) 2 has a stator (not shown) and a rotor (not shown) provided on the motor output shaft 8, and both ends of the motor output shaft 8 are not shown. The case member is rotatably supported via a bearing. An output gear 16 composed of a gear (pinion) is formed on one side of the motor output shaft 8, and the output gear 16 meshes with an intermediate gear 19 provided on the input shaft 6 via an idler gear 17. The output gear 16, the idler gear 17, and the intermediate gear 19 constitute a gear transmission 7 that drives and connects the motor 2 and the input shaft 6.

変速機構3は、いわゆる無段変速機構であるコーンリング式CVTからなり、入力軸6に接続されて入力側となる円錐形状のインプットコーン22と、出力側となる同じく円錐形状のアウトプットコーン23と、金属製のリング25とからなる。アウトプットコーン23は、インプットコーン22と平行な軸線上に配置されかつ大径側と小径側とが軸方向逆向きになるように配置されており、上記リング25が、これら両コーン22,23の対向する傾斜面に挟持されるようにかつ両コーンのいずれか一方(本実施の形態ではインプットコーン22)を取囲むように配置されている。これら両コーン22,23は例えば鋼鉄製からなり、比較的重量の重い重量物からなるので、回転変化時には比較的大きなイナーシャトルクが出る。   The transmission mechanism 3 is formed of a cone ring type CVT which is a so-called continuously variable transmission mechanism. The transmission mechanism 3 is connected to the input shaft 6 and has a conical input cone 22 on the input side, and a conical output cone 23 on the output side. And a metal ring 25. The output cone 23 is arranged on an axis parallel to the input cone 22 and is arranged so that the large diameter side and the small diameter side are opposite to each other in the axial direction, and the ring 25 includes the two cones 22, 23. Are arranged so as to be sandwiched between the opposing inclined surfaces and to surround either one of the cones (in this embodiment, the input cone 22). Since both the cones 22 and 23 are made of, for example, steel and are made of a heavy material, a relatively large inertia torque is generated when the rotation changes.

両摩擦車の少なくとも一方には大きなスラスト力が作用しており、上記リング25は上記スラスト力に基づく比較的大きな挟圧力により挟持されている。具体的には、アウトプットコーン23と無段変速装置出力軸24との間には軸方向で対向する面にボールを介在した傾斜カム機構からなる軸力付与機構28が配設されており、該軸力付与機構28は、アウトプットコーン23に、伝達トルクに応じたスラスト力を付与し、該スラスト力に対抗する方向に支持されているインプットコーン22との間でリング25に大きな挟圧力を付与する。   A large thrust force acts on at least one of the two friction wheels, and the ring 25 is clamped by a relatively large clamping pressure based on the thrust force. Specifically, between the output cone 23 and the continuously variable transmission output shaft 24, an axial force applying mechanism 28 including an inclined cam mechanism having a ball interposed on an axially opposed surface is disposed. The axial force imparting mechanism 28 imparts a thrust force corresponding to the transmission torque to the output cone 23, and a large clamping pressure on the ring 25 with the input cone 22 supported in a direction opposed to the thrust force. Is granted.

上記リング25は、例えば電動アクチュエータである電気モータA2によって軸方向に移動駆動(移動制御)されると共に該リング25を回転自在に支持する移動部材を備えた変速操作機構60によって、両コーン22,23に対する軸方向位置が位置制御され、それによって、両コーン22,23に対する接触半径を変更することで、両コーン22,23の間で変速比を変更する。   The ring 25 is driven to move in the axial direction (movement control) by, for example, an electric motor A2 which is an electric actuator, and the two cones 22 and 22 are moved by a speed change operation mechanism 60 having a moving member that rotatably supports the ring 25. The position in the axial direction relative to the cone 23 is controlled, and the gear ratio is changed between the cones 22 and 23 by changing the contact radius with respect to the cones 22 and 23.

そして、上記アウトプットコーン23に駆動連結された無段変速装置出力軸24にはギヤ(ピニオン)44が形成されており、該歯車44にはディファレンシャル装置5のデフリングギヤ41が噛合している。ディファレンシャル装置5は、該デフリングギヤ41に伝達された回転を、左右の差回転を吸収しつつ左右のアクスル軸39l,39rに出力し、それらアクスル軸39l,39rに駆動連結された左右駆動車輪10に伝達する。   A gear (pinion) 44 is formed on the continuously variable transmission output shaft 24 that is drivingly connected to the output cone 23, and the gear 44 is engaged with the diff ring gear 41 of the differential device 5. The differential device 5 outputs the rotation transmitted to the differential ring gear 41 to the left and right axle shafts 39l and 39r while absorbing the left and right differential rotation, and the left and right drive wheels 10 connected to the axle shafts 39l and 39r. To communicate.

[ハイブリッド駆動装置の制御装置について]
ついで、本発明に係るハイブリッド駆動装置1の制御装置100について図1、図3及び図4に沿って説明する。図1に示すように、本ハイブリッド駆動装置1の制御装置(制御部(ECU))100は、変速制御手段101、モータ制御手段102、クラッチ制御手段103、エンジン制御手段104、エンジン始動制御手段105、エンジン始動判定手段106、始動時アップシフト制御手段107、要求トルク検出手段108などを備えている。
[Control device for hybrid drive unit]
Next, the control device 100 of the hybrid drive device 1 according to the present invention will be described with reference to FIGS. 1, 3, and 4. As shown in FIG. 1, the control device (control unit (ECU)) 100 of the hybrid drive device 1 includes a shift control means 101, a motor control means 102, a clutch control means 103, an engine control means 104, and an engine start control means 105. The engine start determination means 106, the start-up upshift control means 107, the required torque detection means 108, and the like are provided.

また、制御部100には、エンジン回転数Neを検出するエンジン回転数センサ91、入力軸6の回転数(モータ2の回転数)を検出する入力軸(モータ)回転数センサ92、アスクル軸39r,39l或いは無段変速装置出力軸24の回転数(即ち車速)を検出する出力軸回転数(車速)センサ93、不図示のアクセルペダルの踏込量(アクセル開度)を検出するアクセル開度センサ94などが接続されている。   The control unit 100 also includes an engine speed sensor 91 that detects the engine speed Ne, an input shaft (motor) speed sensor 92 that detects the speed of the input shaft 6 (the speed of the motor 2), and an axle shaft 39r. , 39l or an output shaft rotational speed (vehicle speed) sensor 93 for detecting the rotational speed (that is, the vehicle speed) of the continuously variable transmission output shaft 24, and an accelerator opening sensor for detecting a depression amount (accelerator opening) of an accelerator pedal (not shown). 94 etc. are connected.

なお、本実施の形態では、便宜的に、変速制御手段101、モータ制御手段102、クラッチ制御手段103、エンジン制御手段104などを同じ制御部(ECU)100内に備えたものとして説明しているが、各手段を2個以上の制御部(ECU)で相互に通信可能に構成してもよく、それぞれ個別の制御部(ECU)を備えているような形態であってもよい。   In the present embodiment, for the sake of convenience, it is assumed that the shift control unit 101, the motor control unit 102, the clutch control unit 103, the engine control unit 104, and the like are provided in the same control unit (ECU) 100. However, each unit may be configured to be able to communicate with each other by two or more control units (ECUs), and may be configured to have individual control units (ECUs).

上記変速制御手段101は、走行中にあって、例えば出力軸回転数センサ93により検出される車速とアクセル開度センサ94により検出されるアクセル開度(要求トルク検出手段108により検出される運転者の要求トルクTr)とに基づき、エンジン9における燃料消費やモータ2における電力消費が最適となるように(要求された駆動力を出力しつつ燃費が良好となるように)あらかじめ準備された不図示のマップ等を参照することで、随時最適な変速比を判定し、上記電気モータA2を駆動制御して変速機構3の変速比を変速制御する。   The speed change control means 101 is a driver who is traveling, for example, a vehicle speed detected by the output shaft rotational speed sensor 93 and an accelerator opening detected by the accelerator opening sensor 94 (a driver detected by the required torque detecting means 108). (Not shown) prepared in advance so that the fuel consumption in the engine 9 and the power consumption in the motor 2 are optimized (to improve the fuel efficiency while outputting the required driving force). By referring to the map and the like, the optimum gear ratio is determined at any time, and the electric motor A2 is driven to control the gear ratio of the transmission mechanism 3.

上記モータ制御手段102は、モータ2の駆動力のみを用いて走行するEV走行中にあっては、要求トルク検出手段108により検出される運転者の要求トルクTrが駆動車輪10から出力されるようにモータ2の駆動トルク(以下、「モータトルク」という)Tmの大きさを制御し、また、エンジン9の駆動力を用いて走行するエンジン走行中にあっては、エンジン9の出力トルク(以下、「エンジントルク」という)TeとモータトルクTmとの合計が駆動車輪10から出力される要求トルクTrとなるように、モータトルクTmの大きさ(力行・回生を含む)を制御する。なお、モータ制御手段102は、モータ2を定電力制御することで、モータ回転数(変速機構3の変速比)に拘らず、駆動車輪10に出力するモータトルクTmの大きさを一定に制御し得る。   The motor control means 102 outputs the driver's required torque Tr detected by the required torque detection means 108 from the drive wheel 10 during EV traveling that uses only the driving force of the motor 2. When the engine travels using the driving force of the engine 9 to control the magnitude of the driving torque (hereinafter referred to as “motor torque”) Tm of the motor 2, The motor torque Tm (including power running / regeneration) is controlled so that the sum of Te and the motor torque Tm (referred to as “engine torque”) becomes the required torque Tr output from the drive wheel 10. The motor control means 102 controls the motor 2 at a constant power, thereby controlling the magnitude of the motor torque Tm output to the drive wheel 10 to be constant regardless of the motor speed (speed ratio of the speed change mechanism 3). obtain.

上記クラッチ制御手段103は、上記EV走行中にあっては、上記電気モータA1を駆動制御してクラッチ4を解放するように制御し、上記エンジン走行中にあっては、上記電気モータA1を駆動制御してクラッチ4を係合するように制御する。また、詳しくは後述するように、エンジン9の始動時には、クラッチ4をスリップ制御して該クラッチ4の伝達トルク容量(以下、「クラッチトルク」)Tcを制御し、エンジン回転数Ne(エンジン9の回転速度)を上昇させるように制御する。なお、本ハイブリッド駆動装置1にあって後進走行する場合には、クラッチ4は解放制御して、モータ2を逆転回転させることで駆動車輪10の後進回転を達成する。   The clutch control means 103 controls to drive the electric motor A1 to release the clutch 4 during the EV traveling, and drives the electric motor A1 during the engine traveling. Control is performed so that the clutch 4 is engaged. Further, as will be described in detail later, when the engine 9 is started, the clutch 4 is slip-controlled to control the transmission torque capacity (hereinafter referred to as “clutch torque”) Tc of the clutch 4, and the engine speed Ne (the engine 9) (Rotational speed) is controlled to increase. In the hybrid drive device 1, when the vehicle travels backward, the clutch 4 is controlled to release and the motor 2 is rotated in the reverse direction to achieve the reverse rotation of the drive wheel 10.

上記エンジン制御手段104は、エンジン走行中にあって、エンジン9におけるスロットル開度や燃料噴射量の制御などを行って、エンジントルクTeやエンジン回転数Neを自在に制御する。また、エンジン制御手段104は、詳しくは後述するエンジン始動時にあって、エンジン始動制御手段105からの指令に基づきエンジン9の点火制御を行う。   The engine control means 104 controls the engine torque Te and the engine speed Ne freely by controlling the throttle opening and the fuel injection amount in the engine 9 while the engine is running. The engine control means 104 controls the ignition of the engine 9 based on a command from the engine start control means 105 at the time of engine start to be described in detail later.

上記エンジン始動判定手段106は、クラッチ4を解放してエンジン9を停止している状態のEV走行中(車両走行中)にあって、要求トルク検出手段108により検出される運転者の要求トルクTr(つまりアクセル開度)が、例えば不図示のマップ等により参照されるモータ2により走行可能なEV走行可能領域を超えた場合に、エンジン9の駆動力が必要と判断し、エンジン始動を判定する。   The engine start determining means 106 is the driver's required torque Tr detected by the required torque detecting means 108 during EV traveling (vehicle traveling) in a state where the clutch 4 is released and the engine 9 is stopped. For example, when the accelerator opening exceeds the EV travelable area where the motor 2 can travel that is referred to by a map (not shown), for example, it is determined that the driving force of the engine 9 is necessary, and engine start is determined. .

上記エンジン始動制御手段105は、エンジン始動判定手段106によりエンジン9の始動が判定された際に、クラッチ制御手段103に指令してクラッチ4を係合制御しつつ該クラッチ4のトルク容量を上昇していくことで入力軸6の回転に基づきエンジン回転数Neを上昇させ、エンジン制御手段104に指令してエンジン9の燃焼(点火)を開始させる。   The engine start control means 105 increases the torque capacity of the clutch 4 while controlling the engagement of the clutch 4 by instructing the clutch control means 103 when the engine start determination means 106 determines that the engine 9 is started. As a result, the engine speed Ne is increased based on the rotation of the input shaft 6, and the engine control means 104 is instructed to start combustion (ignition) of the engine 9.

上記始動時アップシフト制御手段107は、詳しくは後述するように、エンジン始動制御手段105からクラッチ制御手段103に指令されたクラッチ4の係合制御に合わせて、変速制御手段101に指令して変速機構3の変速比をアップシフト変速して入力軸6の回転数を低下させることで、ハイブリッド駆動装置1の入力側の回転部材(即ちインプットコーン22、入力軸6、ギヤ伝動装置7、モータ出力軸8、及びモータ2のロータなど)にてイナーシャトルクを発生させる。   The start-up upshift control means 107 instructs the shift control means 101 to change gears in accordance with the engagement control of the clutch 4 commanded from the engine start control means 105 to the clutch control means 103, as will be described in detail later. The speed change ratio of the mechanism 3 is upshifted to reduce the rotational speed of the input shaft 6, thereby rotating the input side rotating member of the hybrid drive device 1 (that is, the input cone 22, the input shaft 6, the gear transmission 7, the motor output). An inertia torque is generated by the shaft 8 and the rotor of the motor 2.

[エンジン始動時のアップシフト制御について]
ついで、上記制御部100によるエンジン始動時の制御について、図1を参照しつつ図3及び図4のフローチャートに沿って詳細に説明する。
[Upshift control when starting the engine]
Next, the control at the time of engine start by the control unit 100 will be described in detail along the flowcharts of FIGS. 3 and 4 with reference to FIG.

図3に示すように、例えば車両走行が開始された状態、特にEV走行状態にあっては、本エンジン始動時制御が開始され(S1)、エンジン始動判定手段106がエンジン9の始動を判定していない場合は、該エンジン始動判定手段106からエンジン始動要求フラグが出力されないので(フラグOFFであるので)(S2のNO)、そのままリターンして(S13)、エンジン始動判定手段106によりエンジン始動が判定されるまで待機する。   As shown in FIG. 3, for example, in the state where the vehicle travel is started, particularly in the EV travel state, the engine start control is started (S 1), and the engine start determination means 106 determines the start of the engine 9. If not, the engine start determination means 106 does not output the engine start request flag (because the flag is OFF) (NO in S2), the process returns as it is (S13), and the engine start determination means 106 starts the engine start. Wait until it is judged.

上述のように、要求トルク検出手段108により検出される運転者の要求トルクTrが、モータ2により走行可能なEV走行可能領域を超えると、エンジン始動判定手段106によりエンジン始動が判定され、該エンジン始動判定手段106はエンジン始動要求をONし(S2のYES)、ステップS3に進む。   As described above, when the required torque Tr of the driver detected by the required torque detection means 108 exceeds the EV travelable area where the motor 2 can travel, the engine start determination means 106 determines engine start, and the engine The start determination means 106 turns on the engine start request (YES in S2), and proceeds to step S3.

{エンジン回転上昇フェーズ}
ステップS3に進むと、エンジン始動制御手段105は、入力軸6の回転数(インプット回転数Nin)とエンジン回転数Neとの差回転が所定の係合判定差回転数(クラッチ4が係合状態にあると判定できる回転数)より小さいか否かを判定し、ここではエンジン9が停止したEV走行状態であるので、インプット回転数Ninとエンジン回転数Neとの差回転が上記係合判定差回転より大きい(クラッチ4が解放状態にあって差回転が大きい)ので(S3のNO)、「エンジン回転上昇フェーズ」に入り、クラッチ制御手段103によりクラッチ4のクラッチトルクTcを制御する「クラッチトルク制御」(S10)に進む。
{Engine rotation rising phase}
In step S3, the engine start control means 105 determines that the differential rotation between the rotation speed of the input shaft 6 (input rotation speed Nin) and the engine rotation speed Ne is a predetermined engagement determination differential rotation speed (the clutch 4 is engaged). Since the engine 9 is in an EV traveling state where the engine 9 is stopped, the differential rotation between the input rotation speed Nin and the engine rotation speed Ne is the above engagement determination difference. Since it is greater than the rotation (the clutch 4 is in the disengaged state and the differential rotation is large) (NO in S3), the “engine rotation increasing phase” is entered, and the clutch control means 103 controls the clutch torque Tc of the clutch 4. Control proceeds to (S10).

「クラッチトルク制御」に進むと、クラッチ制御手段103は、クラッチトルクTcの大きさをエンジン9のフリクショントルク(エンジン9の内部摩擦抵抗やエンジンイナーシャトルク)よりも僅かに大きいエンジン始動用クラッチトルクTefに設定し、クラッチ制御手段103は、電気モータA1に指令して該設定されたエンジン始動用クラッチトルクTefにクラッチトルクTcが上昇するようにクラッチ4を徐々にスリップ係合制御する。これにより、クラッチトルクTcがエンジン9のフリクショントルクよりも大きくなるので、徐々にエンジン回転数Neが入力軸6の回転によって上昇されることになる。   When proceeding to “clutch torque control”, the clutch control means 103 causes the clutch torque Tc to be slightly larger than the friction torque of the engine 9 (the internal friction resistance of the engine 9 or the engine inertia torque). Then, the clutch control means 103 instructs the electric motor A1 to gradually slip-engage the clutch 4 so that the clutch torque Tc increases to the set engine starting clutch torque Tef. As a result, the clutch torque Tc becomes larger than the friction torque of the engine 9, so that the engine speed Ne is gradually increased by the rotation of the input shaft 6.

上記「クラッチトルク制御」に続いて、モータ制御手段102によりモータトルクTmを制御する「モータトルク制御」(S11,S12)が行われる。即ち、モータ制御手段102は、モータトルクTmを、要求トルク検出手段108により検出される要求トルクTrに上記設定されたクラッチトルクTc(エンジン始動用クラッチトルク)を加算した値に設定し、モータ2に対して該設定したモータトルクTmを出力するように指令する(S11)。しかし、実際には、モータ2の出力性能限界があるので、EV走行していた際のモータトルクに出力性能の限界であるモータ最大トルクで制限された形で、上乗せトルクTmupを加算したモータトルクTmを出力し(S12)、例えばその後、要求トルクTrが上昇すると、後述するように不足トルクが生じることになる(S100−3参照)。   Subsequent to the “clutch torque control”, “motor torque control” (S11, S12) for controlling the motor torque Tm by the motor control means 102 is performed. In other words, the motor control means 102 sets the motor torque Tm to a value obtained by adding the set clutch torque Tc (engine starting clutch torque) to the required torque Tr detected by the required torque detection means 108. To output the set motor torque Tm (S11). However, since the output performance limit of the motor 2 is actually limited, the motor torque obtained by adding the additional torque Tmup in a form limited to the motor maximum torque that is the limit of the output performance to the motor torque during EV traveling. When Tm is output (S12) and then the required torque Tr increases, for example, insufficient torque is generated as described later (see S100-3).

上記「モータトルク制御」に続いて、始動時アップシフト制御手段107により変速機構3の変速比をアップシフト制御する「変速制御」が行われる。即ち、この「変速制御」においては、図4に示すように、始動時アップシフト制御手段107によって「アップ変速処理」の制御が行われる。   Subsequent to the “motor torque control”, the “upshift control” 107 for upshifting the transmission ratio of the transmission mechanism 3 is performed by the upshift control means 107 at the time of starting. That is, in this “shift control”, as shown in FIG. 4, the “upshift process” is controlled by the starting upshift control means 107.

「アップ変速処理」が開始されると(S100−1)、まず、始動時アップシフト制御手段107は、入力軸6の回転数(インプット回転数Nin)がエンジン始動目標回転数よりも大きいか否かを判定する(S100−2)。インプット回転数Ninがエンジン始動目標回転数よりも小さい場合は(S100−2のNO)、つまりこれ以上アップシフトしてしまうと、インプット回転数Ninがエンジン始動目標回転数よりも低くなって、クラッチ4を係合した際に、エンジン9が低回転となってエンジン始動が困難となるので、アップシフトは行わず、ステップS100−7に進む。   When the “upshift processing” is started (S100-1), first, the starting upshift control means 107 first determines whether or not the rotational speed of the input shaft 6 (input rotational speed Nin) is larger than the engine starting target rotational speed. Is determined (S100-2). When the input rotational speed Nin is smaller than the engine start target rotational speed (NO in S100-2), that is, when the engine is further shifted up, the input rotational speed Nin becomes lower than the engine start target rotational speed, and the clutch When the engine 4 is engaged, the engine 9 is rotated at a low speed and it is difficult to start the engine. Therefore, the upshift is not performed and the process proceeds to step S100-7.

ステップS100−7に進んだ場合は、インプット回転数Ninがエンジン始動目標回転数となるように、該エンジン始動目標回転数を実際のアウトプット回転数Noutで除算した値を、変速比の指令値(レシオ指令値)として設定し、変速制御手段101によって電気モータA2に指令する形で、変速機構3の変速比を該設定したレシオ指令値となるように制御する。この場合、インプット回転数Ninの大きさによっては、ダウンシフトすることもある。   When the process proceeds to step S100-7, a value obtained by dividing the target engine speed by the actual output speed Nout so that the input speed Nin is equal to the target engine speed is set as a gear ratio command value. The ratio is set as (ratio command value), and the transmission control means 101 controls the electric motor A2 to control the speed ratio of the speed change mechanism 3 to be the set ratio command value. In this case, depending on the magnitude of the input rotational speed Nin, a downshift may occur.

また、モータトルクTmを上昇しても、モータ2の性能限界によって、要求トルクTrにクラッチトルクTcを加算した値まで上昇できない場合は、駆動車輪10に出力されるトルクが僅かに不足して、エンジン始動に伴うヘジテーションが発生することになるが、エンジン回転数Neは、上記設定されたレシオ指令値に基づく変速比で回転するインプット回転数Ninにクラッチ4の係合に伴って上昇されるため、エンジン始動目標回転数まで上昇されて、エンジン始動は達成される。   Further, even if the motor torque Tm is increased, if the motor 2 cannot be increased to the value obtained by adding the clutch torque Tc to the required torque Tr due to the performance limit of the motor 2, the torque output to the drive wheel 10 is slightly insufficient, Although hesitation occurs when the engine is started, the engine speed Ne is increased with the engagement of the clutch 4 to the input speed Nin that rotates at a gear ratio based on the set ratio command value. The engine start is achieved by raising the engine start target speed.

一方、上記ステップS100−2において、インプット回転数Ninがエンジン始動目標回転数よりも大きい場合は(S100−2のYES)、インプット回転数Ninがエンジン始動目標回転数になるまでアップシフトすることが可能であるので、始動時アップシフト制御手段107は、上記モータ2の出力性能限界によって要求トルクTrに対して不足した分をアップシフト時のイナーシャトルクで補うため、アップシフトする際のレシオ指令値の算出し、変速制御手段101から電気モータA2に指令する形で、変速機構3の変速比を制御する。   On the other hand, in step S100-2, when the input rotation speed Nin is larger than the engine start target rotation speed (YES in S100-2), an upshift may be performed until the input rotation speed Nin reaches the engine start target rotation speed. Since the upshift control means 107 at the time of start-up can compensate for the shortage of the required torque Tr due to the output performance limit of the motor 2 with the inertia torque at the time of upshift, the ratio command value at the time of upshift And the gear ratio of the speed change mechanism 3 is controlled in the form of commanding the electric motor A2 from the speed change control means 101.

詳細には、ステップS100−3において、まず、上記クラッチトルクTcから現在のモータトルクTm(EV走行していた際のモータトルクに出力性能の限界まで上乗せ分を加算したモータトルクTm)を減算した値に実際の変速比(例えば入力軸回転数センサ92により検出される実インプット回転数Ninを出力軸回転数センサ93により検出される実アウトプット回転数Noutで除算した値)を乗算した値を、要求トルク検出手段108により検出される要求トルクTrに加算し、駆動車輪10における不足分のトルクを算出する。   Specifically, in step S100-3, first, the current motor torque Tm (the motor torque Tm obtained by adding the added amount to the limit of the output performance to the motor torque when the vehicle is running on EV) is subtracted from the clutch torque Tc. A value obtained by multiplying the actual speed ratio (for example, a value obtained by dividing the actual input rotational speed Nin detected by the input shaft rotational speed sensor 92 by the actual output rotational speed Nout detected by the output shaft rotational speed sensor 93). Then, the torque is added to the required torque Tr detected by the required torque detecting means 108 to calculate the insufficient torque in the drive wheel 10.

次に、ステップS100−4において、上記算出した不足分のトルクを実際の変速比で除算し、不足分のトルクをインプットトルクに換算し、つまり不足分を補うトルクとして必要なインプットイナーシャトルクを算出する。続いて、ステップS100−5において、上記算出されたインプットイナーシャトルクをインプットイナーシャ(上述した変速機構3の入力側の回転部材の重量)で除算して、単位系(例えば毎分を毎秒に合わせるために60を乗算し、角加速度に合わせるために2πを除算する)を整えて、上記必要なインプットイナーシャトルクを実現するインプット角加速度を算出する。   Next, in step S100-4, the calculated shortage torque is divided by the actual gear ratio, and the shortage torque is converted into input torque, that is, the necessary input inertia torque is calculated as the torque to compensate for the shortage. To do. Subsequently, in step S100-5, the calculated input inertia torque is divided by the input inertia (the weight of the rotating member on the input side of the speed change mechanism 3 described above) to set a unit system (for example, to adjust every minute to every second). (2π is divided to match the angular acceleration), and the input angular acceleration for realizing the necessary input inertia is calculated.

そして、ステップS100−6において、実インプット回転数Ninと上記インプット角加速度に所定の制御周期(ステップS100−6が繰り返される周期)Δtを乗算した値とを加算した値を、実アウトプット回転数Noutで除算することで、次に変速機構3に指令すべきレシオ指令値を算出し、この算出したレシオ指令値を、変速制御手段101から電気モータA2に指令する形で変速機構3に指令し、変速比を不足分のトルクを補うイナーシャトルクTiが出力されるようにアップシフト制御する。   In step S100-6, a value obtained by adding the actual input rotational speed Nin and a value obtained by multiplying the input angular acceleration by a predetermined control period (period in which step S100-6 is repeated) Δt is obtained as the actual output rotational speed. By dividing by Nout, the ratio command value to be commanded next to the transmission mechanism 3 is calculated, and the calculated ratio command value is commanded to the transmission mechanism 3 in the form of commanding from the shift control means 101 to the electric motor A2. Then, the upshift control is performed so that an inertia torque Ti that compensates for the insufficient torque in the gear ratio is output.

以上の制御を、インプット回転数Ninとエンジン回転数Neとの差回転が所定の係合判定差回転数より小さくなるまで(つまりクラッチ4の差回転が略々無くなって係合状態となるまで)繰り返すことで(即ち図3のS1,S2のYES、S3のNO、S10,S11,S12,S100,S13)、運転者の要求トルクTrにクラッチトルクTc(エンジンフリクショントルク)が加わった値に対してモータトルクTm(EV走行時のモータトルクに上乗せしたトルクTmup)で不足したトルクを、アップシフト変速の変速速度を制御する形で(変速比を制御周期毎に変更することで)、随時イナーシャトルクTiによって補うことができるので、駆動車輪10から出力される出力トルクToutが要求トルクTr通り出力され、ヘジテーションが生じることが防止される。   The above control is performed until the differential rotation between the input rotational speed Nin and the engine rotational speed Ne becomes smaller than a predetermined engagement determination differential rotational speed (that is, until the differential rotation of the clutch 4 is substantially eliminated and the engaged state is established). By repeating (that is, S1, S2 YES, S3 NO, S10, S11, S12, S100, S13 in FIG. 3), a value obtained by adding clutch torque Tc (engine friction torque) to driver's required torque Tr The torque that is insufficient in the motor torque Tm (torque Tmup added to the motor torque during EV travel) is controlled by controlling the speed of the upshift (by changing the gear ratio at each control cycle), and the inertia at any time Since it can be supplemented by the torque Ti, the output torque Tout output from the drive wheel 10 is output in accordance with the required torque Tr. Shon is prevented to occur.

{エンジン始動フェーズ}
図3に示すように、上記ステップS3において、インプット回転数Ninとエンジン回転数Neとの差回転が所定の係合判定差回転数より小さくなったことを判定すると(S3のYES)、「エンジン始動フェーズ」に入り、エンジン始動制御手段105によりエンジン9を点火して始動する「エンジン点火制御」(S4,S5,S6,S7,S8)に進む。「エンジン点火制御」に進むと、エンジン始動制御手段105は、まず、エンジン点火フラグをONし(S4)、エンジントルクTeを上記運転者の要求トルクTrに設定する(S5)。
{Engine start phase}
As shown in FIG. 3, when it is determined in step S3 that the differential rotation between the input rotational speed Nin and the engine rotational speed Ne is smaller than a predetermined engagement determination differential rotational speed (YES in S3), “Engine” The engine enters the "starting phase" and proceeds to "engine ignition control" (S4, S5, S6, S7, S8) in which the engine 9 is ignited and started by the engine starting control means 105. When proceeding to “engine ignition control”, the engine start control means 105 first turns on the engine ignition flag (S4), and sets the engine torque Te to the driver's required torque Tr (S5).

上記「エンジン点火制御」に続いて、モータ制御手段102によりモータトルクTmを制御する「モータトルク制御」(S6)が行われる。即ち、この状態では、運転者の要求トルクTrが例えば一定であるのに、エンジントルクTeが上昇していくので、それに合わせてモータトルクTmを設定する必要があり、つまり要求トルクTrからエンジントルクTeを減算した値をモータトルクTmとして設定し、モータ2に対して該設定したモータトルクTmを出力するように指令する。   Subsequent to the “engine ignition control”, “motor torque control” (S6) is performed in which the motor control means 102 controls the motor torque Tm. That is, in this state, the driver's required torque Tr is constant, for example, and the engine torque Te increases. Therefore, it is necessary to set the motor torque Tm accordingly, that is, from the required torque Tr to the engine torque. A value obtained by subtracting Te is set as the motor torque Tm, and the motor 2 is instructed to output the set motor torque Tm.

上記「モータトルク制御」に続いて、クラッチ制御手段103によりクラッチトルクTcを制御する「クラッチトルク制御」が行われる。即ち、この「クラッチトルク制御」においては、クラッチトルクTcを、クラッチ4が完全係合状態となるようなクラッチ完全係合トルクに設定し、つまりクラッチ制御手段103によりクラッチ4が完全係合状態となるように制御される(S7)。   Subsequent to the “motor torque control”, the clutch control means 103 performs “clutch torque control” for controlling the clutch torque Tc. That is, in this “clutch torque control”, the clutch torque Tc is set to a clutch complete engagement torque that causes the clutch 4 to be fully engaged, that is, the clutch control means 103 causes the clutch 4 to be fully engaged. It is controlled to become (S7).

上記「クラッチトルク制御」に続いて、変速制御手段101により変速機構3の変速比を制御する「変速制御」が行われる。即ち、この「変速制御」においては、エンジン9をエンジン始動目標回転数に維持するため、エンジン始動目標回転数を上記出力軸回転数センサ93により検出される実アウトプット回転数で除算した値を、次に変速機構3に指令すべきレシオ指令値として算出し、変速制御手段101から変速機構3に指令して、つまり入力軸6の回転数が車速V(出力軸回転数)に応じてエンジン始動目標回転数となるように変速制御される。   Subsequent to the “clutch torque control”, the transmission control unit 101 performs “transmission control” for controlling the transmission ratio of the transmission mechanism 3. That is, in this “shift control”, in order to maintain the engine 9 at the engine start target speed, a value obtained by dividing the engine start target speed by the actual output speed detected by the output shaft speed sensor 93 is Next, it is calculated as a ratio command value to be commanded to the speed change mechanism 3, and is commanded from the speed change control means 101 to the speed change mechanism 3. That is, the engine speed depends on the vehicle speed V (output shaft speed). Shift control is performed so that the target rotation speed is reached.

以上の制御(S4,S5,S6,S7,S8)により、運転者の要求トルクTrを出力する駆動源として、徐々にモータ2からエンジン9に切換り、エンジントルクTeによって要求トルクTrが出力されるようになり、つまりEV走行からエンジン走行に切換えられていく。   By the above control (S4, S5, S6, S7, S8), the motor 2 is gradually switched from the motor 9 to the engine 9 as a drive source for outputting the driver's required torque Tr, and the required torque Tr is output by the engine torque Te. In other words, the vehicle is switched from EV traveling to engine traveling.

その後は、エンジン始動判定手段106によってエンジン始動要求フラグがOFFされ(S9)、ステップS2においてエンジン始動要求フラグのONが検出されなくなり(S2のNO)、つまりEV走行からエンジン走行に完全に切換えられた状態となる。   After that, the engine start request flag is turned off by the engine start determination means 106 (S9), and it is not detected that the engine start request flag is turned on in step S2 (NO in S2), that is, the EV running is completely switched to the engine running. It becomes a state.

[エンジン始動時における走行例]
ついで、エンジン始動時における走行例を、図1乃至図4を参照しつつ図5のタイムチャートに沿って説明する。
[Running example when starting the engine]
Next, an example of traveling when the engine is started will be described along the time chart of FIG. 5 with reference to FIGS.

例えばEV走行中から、運転者がアクセルを徐々に踏み込んでいくような(アクセル開度が徐々に大きくされていくような)走行状態にあって、要求トルク検出手段108により徐々に大きくされていく要求トルクTrが検出されている状態では、モータ制御手段102によりモータ2が制御されて該要求トルクTrに応じてモータトルクTmが出力され、車両が加速して車速Vが上昇していくと共に、インプット回転数(入力軸回転数)Nin(モータ回転数Nm)も上昇していく。   For example, in a traveling state where the driver gradually depresses the accelerator from EV traveling (accelerator opening gradually increases), it is gradually increased by the required torque detection means 108. In the state where the required torque Tr is detected, the motor 2 is controlled by the motor control means 102 and the motor torque Tm is output according to the required torque Tr, the vehicle is accelerated and the vehicle speed V is increased. The input rotational speed (input shaft rotational speed) Nin (motor rotational speed Nm) also increases.

時点t1において、例えば所定の車速Vに到達し、エンジン始動判定手段106がモータ2の出力限界(モータ最大トルクから上乗せトルクTmupを減算した値)に到達したことに基づきエンジン9の始動を判定し、エンジン始動要求フラグをONにする(S2のYES)。すると、エンジン始動制御手段105は、インプット回転数Ninとエンジン回転数Neとの差回転数が、クラッチ4が係合しているか否かを判定する係合判定差回転数よりも大きいので(つまりクラッチ4が係合していないので)(S3のNO)、「エンジン回転上昇フェーズ」を開始する。   At a time t1, for example, a predetermined vehicle speed V is reached, and the engine start determination means 106 determines the start of the engine 9 based on reaching the output limit of the motor 2 (a value obtained by subtracting the additional torque Tmup from the motor maximum torque). Then, the engine start request flag is turned on (YES in S2). Then, the engine start control means 105 has a differential rotational speed between the input rotational speed Nin and the engine rotational speed Ne larger than the engagement determination differential rotational speed for determining whether or not the clutch 4 is engaged (that is, Since the clutch 4 is not engaged (NO in S3), the “engine rotation increasing phase” is started.

すると、クラッチ制御手段103は「クラッチトルク制御」を行って(S10)、クラッチトルクTcがエンジン9のフリクショントルクよりも僅かに大きなエンジン始動用クラッチトルクTefとなるようにクラッチ4をスリップ係合し、続けてモータ制御手段102が「モータトルク制御」を行って(S11,S12)、要求トルクTrに基づき出力していたモータトルクTmに加えて、モータ2の最大トルクまで上乗せしたトルクTmupを出力する。   Then, the clutch control means 103 performs “clutch torque control” (S10), and the clutch 4 is slip-engaged so that the clutch torque Tc becomes the engine starting clutch torque Tef slightly larger than the friction torque of the engine 9. Subsequently, the motor control means 102 performs “motor torque control” (S11, S12), and outputs the torque Tmup added to the maximum torque of the motor 2 in addition to the motor torque Tm output based on the required torque Tr. To do.

その後、時点t1から時点t2までにあって、運転者によりアクセルが更に踏み込まれて要求トルクTrが上昇すると、モータ2が上乗せトルクTmupを出力して最大トルクの出力状態であり、かつクラッチトルクTcがエンジン始動用クラッチトルクTefとなって負方向に作用する分、モータ2の出力トルクだけでは要求トルクTrを出力することができず、このままでは出力トルクToutが、図5中破線で示すように要求トルクTrより離れて、つまりヘジテーションを生じることになる。   Thereafter, from time t1 to time t2, when the accelerator is further depressed by the driver and the required torque Tr rises, the motor 2 outputs the additional torque Tmup and is in the maximum torque output state, and the clutch torque Tc. As the engine starting clutch torque Tef acts in the negative direction, the required torque Tr cannot be output only by the output torque of the motor 2, and the output torque Tout is as shown by the broken line in FIG. This results in hesitation away from the required torque Tr.

そこで、始動時アップシフト制御手段107は、変速制御手段101に指令する形で「変速制御」を行って「アップ変速処理」を開始し(S100)、不足分のトルクに見合うイナーシャトルクTiが出力されるように変速機構3をアップシフト変速する。このため、入力軸回転数Ninが低下していくと共に変速比も下降していき、インプット角加速度も負方向に低下(つまり減速)される。   Therefore, the start upshift control means 107 performs "shift control" in the form of command to the shift control means 101 to start "upshift processing" (S100), and an inertia torque Ti corresponding to the insufficient torque is output. Thus, the transmission mechanism 3 is upshifted. For this reason, the input shaft rotational speed Nin decreases and the gear ratio also decreases, and the input angular acceleration also decreases (that is, decelerates) in the negative direction.

これにより、出力トルクToutは、モータ2の上乗せトルクTmup(モータ最大トルク)が出力された状態で、かつクラッチ4を係合してエンジン始動用クラッチトルクTef分(エンジン9のフリクショントルク分)が負方向に作用した状態から、ハイブリッド駆動装置1の入力側の回転系におけるイナーシャトルクTiによって不足分トルク分が補われ、つまり合計トルクとしての出力トルクToutが要求トルクTr通りに出力される。   As a result, the output torque Tout is equal to the amount of the engine starting clutch torque Tef (the amount of friction torque of the engine 9) when the clutch 4 is engaged with the addition torque Tmup (motor maximum torque) of the motor 2 being output. From the state of acting in the negative direction, the shortage torque is compensated by the inertia torque Ti in the rotary system on the input side of the hybrid drive device 1, that is, the output torque Tout as the total torque is output according to the required torque Tr.

そして、時点t2になると、「エンジン始動フェーズ」を開始する。すると、エンジン制御手段104が「エンジン点火制御」を行って、エンジン9を点火し(S4)、エンジントルクTeを要求トルクTrまで上昇する(S5)と共に、モータ制御手段102が「モータトルク制御」を行って、モータトルクTmを要求トルクTrからエンジントルクTeを減算した値(ここではエンジントルクTeにより要求トルクTrを全て出力するのでモータトルクTmは0)にし(S6)、更に、クラッチ制御手段103が「クラッチトルク制御」を行って、クラッチトルクTcがクラッチ完全係合トルクとなるように制御され(S7)、つまりクラッチ4が完全係合状態とされる。   At time t2, the “engine start phase” is started. Then, the engine control means 104 performs “engine ignition control” to ignite the engine 9 (S4), increases the engine torque Te to the required torque Tr (S5), and the motor control means 102 performs “motor torque control”. And the motor torque Tm is set to a value obtained by subtracting the engine torque Te from the required torque Tr (here, since all the required torque Tr is output by the engine torque Te, the motor torque Tm is 0) (S6), and the clutch control means 103 performs “clutch torque control” and the clutch torque Tc is controlled to be the clutch full engagement torque (S7), that is, the clutch 4 is brought into the full engagement state.

なお、その後は、エンジン9のエンジントルクTeを主として、モータ2によるモータトルクTmによりアシスト乃至回生を適宜に行いつつ要求トルクTrとなるように制御し、変速比は、エンジン9が最適燃費曲線になるべく近づくように適宜に制御されることになる。   After that, the engine torque Te of the engine 9 is mainly controlled by the motor torque Tm by the motor 2 so that the required torque Tr is obtained while appropriately assisting or regenerating, and the gear ratio is changed to the optimum fuel consumption curve. It is appropriately controlled so as to be as close as possible.

[本実施の形態のまとめ]
以上説明したように本ハイブリッド駆動装置1の制御装置100によると、始動時アップシフト制御手段107が、エンジン始動制御手段105によるクラッチ4の係合制御に合わせて、変速制御手段101に指令してコーンリング式の変速機構3の変速比をアップシフト変速して、比較的重量が重いインプットコーン22、モータ2のロータ、及び入力軸6の回転速度を低下させることで、それらインプットコーン22、モータ2のロータ、及び入力軸6の減速による十分な大きさのイナーシャトルクTiを発生させるので、エンジン9の始動時に、モータ2のモータトルクTmに上記イナーシャトルクTiを加えた出力トルクToutを駆動車輪10に出力することができる。これにより、例えばEV走行領域を縮小することなく(エンジン始動時にモータ2が最大トルクとなる限界付近までEV走行領域として用いることができ)、エンジン始動時に生じるヘジテーションの低減を図ることができる。
[Summary of this embodiment]
As described above, according to the control device 100 of the hybrid drive device 1, the start-up upshift control means 107 commands the shift control means 101 in accordance with the engagement control of the clutch 4 by the engine start control means 105. The gear ratio of the cone ring type transmission mechanism 3 is upshifted to reduce the rotational speed of the relatively heavy weight of the input cone 22, the rotor of the motor 2, and the input shaft 6. 2 and a sufficiently large inertia torque Ti due to the deceleration of the input shaft 6 are generated, so that when the engine 9 is started, an output torque Tout obtained by adding the inertia torque Ti to the motor torque Tm of the motor 2 is driven. 10 can be output. Accordingly, for example, without reducing the EV travel area (can be used as the EV travel area up to the limit where the motor 2 has the maximum torque when the engine is started), it is possible to reduce hesitation that occurs when the engine is started.

また、始動時アップシフト制御手段107が、要求トルクTrとモータ2のモータトルクTmとに基づき、アップシフト変速における変速速度を制御することで、発生するイナーシャトルクTiの大きさを制御することができるので、インプットコーン22、モータ2のロータ、及び入力軸6の減速によるイナーシャトルクTiを要求トルクTrに応じて出力することができ、エンジン始動時に生じる出力トルクToutの変動を精度良く抑制することができる。   Further, the start upshift control means 107 can control the speed of the upshift gear shift based on the required torque Tr and the motor torque Tm of the motor 2, thereby controlling the magnitude of the generated inertia torque Ti. Therefore, the inertia torque Ti generated by the deceleration of the input cone 22, the rotor of the motor 2, and the input shaft 6 can be output according to the required torque Tr, and the fluctuation of the output torque Tout that occurs when the engine is started can be accurately suppressed. Can do.

なお、以上説明した本実施の形態においては、モータ2をエンジン9と変速機構3との間に1つ備えたハイブリッド駆動装置1を一例に説明したが、これに限らず、例えば出力軸24等に駆動連結された第2モータを備えたり、駆動車輪10にインホイールモータを備えたようなハイブリッド駆動装置であっても構わない。   In the present embodiment described above, the hybrid drive device 1 provided with one motor 2 between the engine 9 and the speed change mechanism 3 has been described as an example. However, the present invention is not limited to this. It may be a hybrid drive device that includes a second motor that is drivingly connected to the drive wheel 10 or that includes an in-wheel motor on the drive wheel 10.

また、本実施の形態においては、エンジン始動時にあって、モータトルクTmを上昇して上乗せ分Tmupを出力しているが(図3のS6,図5参照)、コーンリング式の変速機構3における入力側の回転系、特にインプットコーン22やモータ2のロータは重量物であるので、モータトルクTmを上乗せせずに、アップシフト変速によるイナーシャトルクTiだけでクラッチトルクTcの負方向トルクを穴埋めし、ヘジテーションを無くすように構成してもよい。   In the present embodiment, the motor torque Tm is increased and the added amount Tmup is output when the engine is started (see S6 in FIG. 3 and FIG. 5). Since the rotation system on the input side, particularly the input cone 22 and the rotor of the motor 2 are heavy, the negative torque of the clutch torque Tc is filled with only the inertia torque Ti by the upshift without adding the motor torque Tm. The hesitation may be eliminated.

1 ハイブリッド駆動装置
2 モータ
3 変速機構
4 クラッチ
6 入力部材(入力軸)
9 エンジン
10 駆動車輪
22 インプットコーン
23 アウトプットコーン
25 リング
39r,39l 出力部材(アスクル軸)
100 ハイブリッド駆動装置の制御装置(制御部)
101 変速制御手段
102 モータ制御手段
103 クラッチ制御手段
105 エンジン始動制御手段
106 エンジン始動判定手段
107 始動時アップシフト制御手段
108 要求トルク検出手段
Tm 駆動トルク
Tr 要求トルク
DESCRIPTION OF SYMBOLS 1 Hybrid drive device 2 Motor 3 Transmission mechanism 4 Clutch 6 Input member (input shaft)
9 Engine 10 Driving wheel 22 Input cone 23 Output cone 25 Ring 39r, 39l Output member (Askle shaft)
100 Control device (control unit) of hybrid drive device
101 Transmission control means 102 Motor control means 103 Clutch control means 105 Engine start control means 106 Engine start determination means 107 Start upshift control means 108 Required torque detection means Tm Drive torque Tr Request torque

Claims (2)

入力部材に接続される円錐形状のインプットコーンと、駆動車輪に駆動連結される出力部材に接続されると共に該インプットコーンと平行な軸線上に配置されかつ大径側と小径側とが軸方向逆向きになるように配置された円錐形状のアウトプットコーンと、前記インプットコーン又は前記アウトプットコーンを囲むように配置されかつ該インプットコーンと該アウトプットコーンが対向する傾斜面に挟持されるリングと、を有する変速機構の変速比を、該リングを軸方向に移動制御することで変速制御する変速制御手段と、
前記入力部材に駆動連結されるモータを駆動制御するモータ制御手段と、
エンジンと前記入力部材との間に介在するクラッチを係合制御するクラッチ制御手段と、
車両走行中に前記クラッチを解放して前記エンジンを停止している状態から、前記エンジンの始動を判定するエンジン始動判定手段と、
前記エンジン始動判定手段により前記エンジンの始動が判定された際に、前記クラッチ制御手段に指令して前記クラッチを係合制御しつつ該クラッチのトルク容量を上昇していくことで前記入力部材の回転に基づき前記エンジンの回転速度を上昇させ、前記エンジンの燃焼を開始させるエンジン始動制御手段と、
前記エンジン始動制御手段による前記クラッチの係合制御時に、前記変速制御手段に指令して前記変速機構の変速比をアップシフト変速する始動時アップシフト制御手段と、を備えた、
ことを特徴とするハイブリッド駆動装置の制御装置。
A conical input cone connected to the input member and an output member connected to the driving wheel and connected to the output member, and arranged on an axis parallel to the input cone, the large diameter side and the small diameter side are opposite in the axial direction. A cone-shaped output cone disposed so as to face, and a ring disposed so as to surround the input cone or the output cone and sandwiched between inclined surfaces facing the input cone and the output cone. Shift control means for controlling the shift ratio of the transmission mechanism by shifting the ring in the axial direction;
Motor control means for driving and controlling a motor drivingly connected to the input member;
Clutch control means for controlling engagement of a clutch interposed between the engine and the input member;
Engine start determination means for determining start of the engine from a state in which the clutch is released and the engine is stopped while the vehicle is running;
When the engine start is determined by the engine start determination means, the clutch control means is instructed to increase the torque capacity of the clutch while controlling the engagement of the clutch, thereby rotating the input member. Engine start control means for increasing the rotational speed of the engine on the basis of and starting combustion of the engine;
A start-up upshift control means for commanding the speed change control means to upshift the speed ratio of the speed change mechanism during the clutch engagement control by the engine start control means;
A control device for a hybrid drive device.
運転者の要求トルクを検出する要求トルク検出手段を備え、
前記始動時アップシフト制御手段は、前記要求トルクと前記モータの駆動トルクとに基づき、前記アップシフト変速における変速速度を制御する、
ことを特徴とする請求項1記載のハイブリッド駆動装置の制御装置。
Equipped with demand torque detection means for detecting the demand torque of the driver;
The starting upshift control means controls a shift speed in the upshift based on the required torque and the driving torque of the motor.
The control device for a hybrid drive device according to claim 1.
JP2011066891A 2011-03-25 2011-03-25 Control apparatus for hybrid drive apparatus Withdrawn JP2012201194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011066891A JP2012201194A (en) 2011-03-25 2011-03-25 Control apparatus for hybrid drive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011066891A JP2012201194A (en) 2011-03-25 2011-03-25 Control apparatus for hybrid drive apparatus

Publications (1)

Publication Number Publication Date
JP2012201194A true JP2012201194A (en) 2012-10-22

Family

ID=47182622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011066891A Withdrawn JP2012201194A (en) 2011-03-25 2011-03-25 Control apparatus for hybrid drive apparatus

Country Status (1)

Country Link
JP (1) JP2012201194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151908A (en) * 2013-02-05 2014-08-25 Toyota Motor Corp Control device for hybrid vehicle
DE102015109605A1 (en) 2014-07-14 2016-01-14 Toyota Jidosha Kabushiki Kaisha Vehicle control device and vehicle control method
US10717427B2 (en) 2017-04-17 2020-07-21 Hyundai Motor Company Hybrid vehicle and method of controlling engine start

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151908A (en) * 2013-02-05 2014-08-25 Toyota Motor Corp Control device for hybrid vehicle
DE102015109605A1 (en) 2014-07-14 2016-01-14 Toyota Jidosha Kabushiki Kaisha Vehicle control device and vehicle control method
CN105270395A (en) * 2014-07-14 2016-01-27 丰田自动车株式会社 Vehicle control device and vehicle control method
US9434390B2 (en) 2014-07-14 2016-09-06 Toyota Jidosha Kabushiki Kaisha Vehicle control device and vehicle control method
US10717427B2 (en) 2017-04-17 2020-07-21 Hyundai Motor Company Hybrid vehicle and method of controlling engine start

Similar Documents

Publication Publication Date Title
JP5477319B2 (en) Control device for hybrid drive
JP4127142B2 (en) Control device for hybrid vehicle
US8825253B2 (en) Hybrid vehicle control device
JP4200999B2 (en) Control device for vehicle drive device
US9415675B2 (en) Hybrid vehicle driving device
WO2012105601A1 (en) Kick-down control device for electric vehicle
US20140163799A1 (en) Vehicle drive control apparatus
JP5024274B2 (en) Engine start control device for hybrid vehicle
JP5233658B2 (en) Engine start control device for hybrid vehicle
JP2012228960A (en) Control apparatus for hybrid drive device
JP5930541B2 (en) Shift control device for electric vehicle
JP6358207B2 (en) Hybrid vehicle
JP2012201194A (en) Control apparatus for hybrid drive apparatus
JP2006118590A (en) Hybrid vehicle
JP2012228961A (en) Control apparatus for hybrid drive device
JP2012245877A (en) Control device for vehicle
JP5453847B2 (en) Control device for hybrid vehicle
JP4844493B2 (en) Control device for hybrid vehicle
JP5338958B2 (en) Control device for hybrid vehicle
JP2013001282A (en) Control device of vehicle
JP2014136491A (en) Running gear for hybrid vehicles
JP2014124975A (en) Vehicle
WO2015019789A1 (en) Flywheel regeneration system, and method of controlling same
JP5810977B2 (en) Vehicle control device
JP6354739B2 (en) Powertrain control device with centrifugal pendulum damper

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603