JP2014106217A - Detection device - Google Patents

Detection device Download PDF

Info

Publication number
JP2014106217A
JP2014106217A JP2012261958A JP2012261958A JP2014106217A JP 2014106217 A JP2014106217 A JP 2014106217A JP 2012261958 A JP2012261958 A JP 2012261958A JP 2012261958 A JP2012261958 A JP 2012261958A JP 2014106217 A JP2014106217 A JP 2014106217A
Authority
JP
Japan
Prior art keywords
substrate
flow path
channel
sample solution
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012261958A
Other languages
Japanese (ja)
Other versions
JP6022911B2 (en
Inventor
Masaru Nagata
優 永田
Koji Miyamoto
康治 宮本
Tetsuro Umemura
鉄郎 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012261958A priority Critical patent/JP6022911B2/en
Publication of JP2014106217A publication Critical patent/JP2014106217A/en
Application granted granted Critical
Publication of JP6022911B2 publication Critical patent/JP6022911B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a detection device which is excellent in detecting sensitivity.SOLUTION: The detection device includes: a substrate 10; an on-substrate channel 20 arranged on one main surface 10a of the substrate 10, and extended in parallel with one main surface 10a of the substrate 10 from one end 20a to the other end 20b; a detection part 30 arranged inside the on-substrate channel 20 for detecting an analyte contained in analyte solution; and an inlet channel 40 connected to one end 20a of the on-substrate channel 20 for introducing the analyte solution. The inlet channel 40 is configured such that the side connected to the on-substrate channel 20 is a double pipe structure, and that the analyte solution flowing through an inner pipe 41 is introduced from one end 20a to the on-substrate channel 20, and that the analyte solution flowing between the inner pipe 41 and an outer pipe 42 is delivered to the outside of the on-substrate channel 20.

Description

本発明は、検体溶液中の検体の性質あるいは検体溶液に含まれる標的を測定するための検出装置に関するものである。   The present invention relates to a detection apparatus for measuring a property of a sample in a sample solution or a target contained in the sample solution.

血液等の液体試料に含まれる成分の測定を行なう場合には、センサ部に液体試料を連続流として通過させる検出装置が知られている。このような検出装置において、液体試料を連続流として供給するための流路の一部にチューブが用いられている(例えば、特許文献1,2参照)。   When measuring a component contained in a liquid sample such as blood, a detection device is known that allows a liquid sample to pass through a sensor unit as a continuous flow. In such a detection device, a tube is used as a part of a flow path for supplying a liquid sample as a continuous flow (see, for example, Patent Documents 1 and 2).

そして、このような検出装置において、検出精度を高めるために、センサ部において検出する検出信号の立上り及び立下りをシャープにすることが求められている。   And in such a detection apparatus, in order to raise detection accuracy, it is calculated | required that the rise and fall of the detection signal detected in a sensor part are sharpened.

特開2002−174610号公報JP 2002-174610 A 特開2004−219325号公報JP 2004-219325 A

しかしながら、特許文献1,2に記載されているような流路を用いる検出装置では、検出信号の立上り及び立下りがブロードになってしまうという問題があった。   However, in the detection apparatus using the flow path as described in Patent Documents 1 and 2, there is a problem that the rising and falling edges of the detection signal become broad.

そこで、本発明の目的は、検出信号の立上り、立下りをシャープにすることで、検出精度の高い検出装置を提供することにある。   Therefore, an object of the present invention is to provide a detection device with high detection accuracy by sharpening rising and falling edges of a detection signal.

本発明の一態様に係る検出装置は、基板と、前記基板の前記一主面上に配置された、一端から他端まで前記基板の一主面と平行に延びる基板上流路と、前記基板上流路の内部に配置された、検体溶液中に含まれる検体を検出する検出部と、前記基板上流路の前記一端に接続される、前記検体溶液を導入する入口流路とを有し、前記入口流路は、前記基板上流路に接続される側が二重管構造であり、内側の管を流れる前記検体溶液が前記基板上流路に前記一端から導入され、内側の管と外側の管との間を流れる前記検体溶液は前記基板上流路外に送られるものである。   A detection apparatus according to an aspect of the present invention includes a substrate, a substrate flow path disposed on the one principal surface of the substrate and extending in parallel with one principal surface of the substrate from one end to the other end, and the substrate upstream A detection unit that detects a sample contained in the sample solution, and an inlet channel that introduces the sample solution and that is connected to the one end of the channel on the substrate. The flow path has a double tube structure on the side connected to the flow path on the substrate, and the sample solution flowing through the inner tube is introduced into the flow path on the substrate from the one end, and between the inner tube and the outer tube. The sample solution flowing through the substrate is sent out of the flow path on the substrate.

本発明によれば、検出精度の高い検出装置を提供できる。   According to the present invention, a detection device with high detection accuracy can be provided.

本発明の実施形態に係る検出装置の模式的な断面図である。It is typical sectional drawing of the detection apparatus which concerns on embodiment of this invention. 従来の検出装置における検体溶液の速度分布及び濃度分布を流体解析した結果を示す図である。It is a figure which shows the result of having analyzed the velocity distribution and density | concentration distribution of the sample solution in the conventional detection apparatus. 図1に示す検出装置における検体溶液の速度分布及び濃度分布を流体解析した結果を示す図である。It is a figure which shows the result of having analyzed the velocity distribution and density | concentration distribution of the sample solution in the detection apparatus shown in FIG. 図2A,図2Bに示す入口流路を用いたときの検出信号の検出強度の時間的変化を示す線図である。It is a diagram which shows the time change of the detection strength of a detection signal when the inlet flow path shown to FIG. 2A and FIG. 2B is used.

以下、本発明にかかる検出装置の実施形態について、図面を参照しつつ詳細に説明する。なお、以下に説明する各図面において同じ構成部材には同じ符号を付すものとする。また、各部材の大きさや部材同士の間の距離などは模式的に図示しており、現実のものとは異なる場合がある。また、検出装置1は、いずれの方向が上方または下方とされてもよい。   Hereinafter, embodiments of a detection device according to the present invention will be described in detail with reference to the drawings. In addition, in each drawing demonstrated below, the same code shall be attached | subjected to the same structural member. Further, the size of each member, the distance between members, and the like are schematically illustrated, and may differ from actual ones. In addition, any direction of the detection apparatus 1 may be upward or downward.

図1は、検出装置1の概略を示す断面図である。検出装置1は、基板10と、基板上流路20と、検出部30と、入口流路40と、カバー部材50と、出口流路60とを有する。   FIG. 1 is a cross-sectional view showing an outline of the detection apparatus 1. The detection device 1 includes a substrate 10, a substrate upper channel 20, a detection unit 30, an inlet channel 40, a cover member 50, and an outlet channel 60.

検体溶液は入口流路40から供給され、基板上流路20を介し出口流路60へと排出される。一般に、リファレンス溶液を流し、途中から検体を含む検体溶液を流すことにより、検体の検出を行なう。   The sample solution is supplied from the inlet channel 40 and discharged to the outlet channel 60 via the substrate upper channel 20. In general, the sample is detected by flowing a reference solution and a sample solution containing the sample from the middle.

基板10は、その上に構成される構造物を支持するためのものであり、そのための強度を有するものであれば特に材料は限定されない。例えば、Si等の半導体基板、樹脂基板、セラミックス基板、単結晶基板、それらの複合基板等を用いることができる。図1において、基板10は平板状としたが、一主面10aに沿って延びる後述の基板上流路20を配置することが可能であれば平板状に限定されることはない。この例では、タンタル酸リチウム(LiTaO)単結晶,ニオブ酸リチウム(LiNbO)単結晶、水晶などの圧電性を有する単結晶の基板からなる。基板10の平面形状及び各種寸法は適宜に設定されてよい。一例として、その厚みは、0.3mm〜1.0mmである。 The substrate 10 is for supporting a structure formed thereon, and the material is not particularly limited as long as it has strength for that purpose. For example, a semiconductor substrate such as Si, a resin substrate, a ceramic substrate, a single crystal substrate, a composite substrate thereof, or the like can be used. In FIG. 1, the substrate 10 has a flat plate shape, but the substrate 10 is not limited to a flat plate shape as long as a below-described substrate flow path 20 extending along one main surface 10 a can be disposed. In this example, it is composed of a single crystal substrate having piezoelectricity, such as a lithium tantalate (LiTaO 3 ) single crystal, a lithium niobate (LiNbO 3 ) single crystal, or quartz. The planar shape and various dimensions of the substrate 10 may be set as appropriate. As an example, the thickness is 0.3 mm to 1.0 mm.

基板上流路20は、基板10の一主面10aに沿って延びるように配置される。言い換えると、基板10の一主面10aに平行に延びるように配置される。そして、基板上流路20は、一端20aと他端20bとを有する。この一端20aと他端20bとの間は一主面10aに沿っていれば、直線状に延びていても、屈曲部を有していてもよい。この例では、一端20aから他端20bまで直線状の流路としている。このような構成とすることにより、基板上流路20内における検体溶液の流れに乱れが生じることを抑制することができる。   The substrate upper flow path 20 is disposed so as to extend along one main surface 10 a of the substrate 10. In other words, the substrate 10 is arranged so as to extend in parallel to the one principal surface 10a. The on-substrate flow path 20 has one end 20a and the other end 20b. The one end 20a and the other end 20b may extend linearly or have a bent portion as long as they extend along one main surface 10a. In this example, a straight flow path is formed from one end 20a to the other end 20b. By adopting such a configuration, it is possible to suppress the disturbance of the flow of the sample solution in the substrate flow path 20.

このような基板上流路20は、検体溶液が流動することが可能であれば自由な形状とすることができる。例えば、基板10の一部に凹部を設けて流路としてもよい。この例では、基板10の一主面10aと後述のカバー部材50とで囲われた空間を基板上流路20としている。この場合には、基板10の一主面10a及びカバー部材50のうち空間を臨む部位は、検体溶液に対して反応性を有さない化学的に安定したものであるとともに、難溶性であり、検体溶液を透過させない材料で構成されることが望ましい。   Such an on-substrate flow path 20 can have any shape as long as the sample solution can flow. For example, a recess may be provided in a part of the substrate 10 to form a flow path. In this example, a space surrounded by one main surface 10 a of the substrate 10 and a cover member 50 described later is used as the substrate upper flow path 20. In this case, the portion of the substrate 10 that faces the space on the one principal surface 10a and the cover member 50 is chemically stable and not soluble to the sample solution, and is hardly soluble. It is desirable to be made of a material that does not allow the specimen solution to permeate.

このような基板上流路20の一部を構成するカバー部材50は、この例では基板10上に配置されているが、基板10の側面及び底面も保護するような構成よしてもよい。また、カバー部材50の材料は特に限定されない。樹脂材料やセラミック材料、金属材料及びそれらの複合材料等、自由に選択することができる。   The cover member 50 that constitutes a part of the substrate flow path 20 is disposed on the substrate 10 in this example, but may be configured to protect the side surface and the bottom surface of the substrate 10. Further, the material of the cover member 50 is not particularly limited. Resin materials, ceramic materials, metal materials and composite materials thereof can be freely selected.

検出部30は、基板上流路20を流れる検体溶液に含まれる検体を検出するものである。例えば、検体溶液中に存在する検体の吸着またはこの検体との反応に応じて、重量が変化し、この変化を検知することにより検体を検出することができる。。この検出部30は、例えば検体溶液の導電率などの電気的性質の影響を受けないAuの膜に、検体に対して特異的に吸着させるような反応性を有する反応基を固定化させることで実現できる。なお、検体自体を吸着させなくてもよい。例えば、Auの膜に、検体に対して反応すると同時
に、検体溶液中に存在する検体以外の物質と反応するような特性を有する反応基を固定化させてもよい。また、検体との反応により、固定化された反応基の一部が分離し、放出するような構成としてもよい。なお、このAu膜は電気的に短絡していることが望ましい。
The detection unit 30 detects a sample contained in the sample solution flowing through the substrate flow path 20. For example, the weight changes according to the adsorption of the sample present in the sample solution or the reaction with the sample, and the sample can be detected by detecting this change. . The detection unit 30 immobilizes a reactive group having a reactivity that specifically adsorbs to a specimen on an Au film that is not affected by electrical properties such as conductivity of the specimen solution. realizable. Note that the specimen itself may not be adsorbed. For example, a reactive group having such a characteristic that it reacts with a substance other than the sample present in the sample solution at the same time as reacting with the sample may be immobilized on the Au film. Alternatively, a configuration may be adopted in which a part of the immobilized reactive group is separated and released by reaction with the specimen. In addition, it is desirable that this Au film is electrically short-circuited.

なお、検出部30は検体との接触により検体を検出可能であれば、Au等の金属膜に限定されない。例えば、検体溶液が検出部30において検体量に応じて吸光度、導電性、粘度等が変わり、それを検出させるものであってもよい。   The detection unit 30 is not limited to a metal film such as Au as long as the sample can be detected by contact with the sample. For example, the sample solution may be one in which the absorbance, conductivity, viscosity, and the like change according to the amount of the sample in the detection unit 30 and are detected.

この例では、平面視で検出部30を挟むように基板10上に不図示の櫛歯状電極(IDT電極)が2つ形成されている。これにより、一方のIDT電極から発生し他方のIDT電極で受信する弾性表面波の位相が、検体の検出により検出部30の重量変化に応じて変化する。この信号変化を不図示の計測部で算出することにより、検体の検出量を測定することができる。   In this example, two comb-like electrodes (IDT electrodes) (not shown) are formed on the substrate 10 so as to sandwich the detection unit 30 in plan view. Thereby, the phase of the surface acoustic wave generated from one IDT electrode and received by the other IDT electrode changes according to the change in the weight of the detection unit 30 by detecting the specimen. By calculating this signal change by a measurement unit (not shown), the detection amount of the sample can be measured.

このような検出部30は、基板上流路20の内部に露出するように配置されている。具体的には、検出部30は基板10の一主面10a上に形成されており、基板10の一主面10aのうち検出部30が配置された領域が基板上流路20の一部を構成する。   Such a detection unit 30 is disposed so as to be exposed inside the substrate upper flow path 20. Specifically, the detection unit 30 is formed on one main surface 10 a of the substrate 10, and a region where the detection unit 30 is disposed on one main surface 10 a of the substrate 10 constitutes a part of the on-substrate flow path 20. To do.

入口流路40は、外部から検出装置1に検体溶液を導くためのものであり、基板上流路20の一端20aに接続される。入口流路40が延びる方向は自由に設定できる。図1に示す例では、基板10の一主面10aの法線方向に延びる例を示している。   The inlet channel 40 is for guiding the sample solution from the outside to the detection device 1, and is connected to one end 20 a of the on-substrate channel 20. The direction in which the inlet channel 40 extends can be freely set. In the example shown in FIG. 1, the example extended in the normal line direction of the one main surface 10a of the board | substrate 10 is shown.

入口流路40を構成する材料は、検体溶液に対して化学的に安定している材料であれば特に限定されないが、樹脂材料を採用することができる。その硬度等にも特に限定はなく、図1に示す例では、樹脂材料からなるチューブを用いている。   The material constituting the inlet channel 40 is not particularly limited as long as it is a material that is chemically stable with respect to the specimen solution, but a resin material can be employed. The hardness is not particularly limited, and in the example shown in FIG. 1, a tube made of a resin material is used.

一般に管の直径が大きい程、管内における速度分布の発生を抑制し、かつ速度分布が生じるまでに必要な管の長さが長くなる。このため、入口流路40の直径は大きいほうが好ましい。   In general, the larger the diameter of the tube, the longer the length of the tube required to suppress the generation of the velocity distribution in the tube and to generate the velocity distribution. For this reason, the diameter of the inlet channel 40 is preferably larger.

この例では入口流路40の内径は基板上流路の内径よりも大きくなっている。そして、検体溶液に毛細管現象が働かないように十分な太さを有するもとする。   In this example, the inner diameter of the inlet channel 40 is larger than the inner diameter of the channel on the substrate. It is assumed that the sample solution has a sufficient thickness so that capillarity does not work.

そして、この入口流路40の基板上流路20に接続される側が二重管構造となっている。具体的には、内側の管41と外側の管42とを有している。そして、内側の管41のみが基板上流路20に接続され、内側の管41内を通過する検体溶液のみが基板上流路20に供給され、基板上流路20の他端20bに接続された出口流路60より排出される。外側の管42と内側の管41との間を流れる検体溶液は基板上流路20外に排出される。この例では、外側の管42と内側の管41との間を流れる検体溶液は基板上流路20と隣接して配置された不図示の流路70を流れ、流路70から出口流路60に流れ排出される。   And the side connected to the board | substrate upper flow path 20 of this inlet flow path 40 has a double-pipe structure. Specifically, it has an inner tube 41 and an outer tube 42. Only the inner tube 41 is connected to the substrate upper flow path 20, and only the sample solution passing through the inner tube 41 is supplied to the substrate upper flow path 20, and the outlet flow connected to the other end 20 b of the substrate upper flow path 20. It is discharged from the path 60. The sample solution flowing between the outer tube 42 and the inner tube 41 is discharged out of the substrate flow path 20. In this example, the sample solution flowing between the outer tube 42 and the inner tube 41 flows through a flow channel 70 (not shown) arranged adjacent to the substrate flow channel 20, and flows from the flow channel 70 to the outlet flow channel 60. The stream is discharged.

内側の管41の管の直径をDとすると、内側の管41内において速度分布が形成されるまでに必要な距離は、層流であれば約140D、乱流であれば約80Dである。このことから、内側の管41内で新たな速度分布が生じる前に基板上流路20に接続することを目的として、入口流路40の内、二重管構造となっている部分の長さは、140D以下とすることが好ましい。より好ましくは80D以下とすることが好ましい。   Assuming that the diameter of the inner tube 41 is D, the distance required to form a velocity distribution in the inner tube 41 is about 140D for laminar flow and about 80D for turbulent flow. From this, for the purpose of connecting to the substrate flow path 20 before a new velocity distribution is generated in the inner pipe 41, the length of the portion of the inlet flow path 40 that has a double tube structure is 140D or less. More preferably, it is preferably 80 D or less.

また、内側の管41の直径は外側の管42の直径の40%以上70%以下とすればよい。このような構成とすることにより、外側の管42の管壁近傍の速度分布の大きい検体溶液を除外しつつ、内側の管41内における新たな速度分布を生じることを抑制することが
できる。
The diameter of the inner tube 41 may be 40% or more and 70% or less of the diameter of the outer tube 42. By adopting such a configuration, it is possible to suppress generation of a new velocity distribution in the inner tube 41 while excluding a specimen solution having a large velocity distribution near the tube wall of the outer tube 42.

このような構成とすることにより、検出部30で検出する検出信号の立上り、立下りをシャープにすることができ、検出精度の高い検出装置1を提供することができる。これは、以下のようなメカニズムが推察される。   By setting it as such a structure, the rising and falling of the detection signal detected by the detection part 30 can be sharpened, and the detection apparatus 1 with high detection accuracy can be provided. The following mechanism is assumed for this.

すなわち、従来、チューブ等で形成される入口流路から検出部に向けて検体溶液を供給していた場合には、チューブ内において検体溶液の速度勾配が生じ、この速度勾配に応じて検出部に到着する速さにも分布が生じていた。言い換えると、チューブの中央を流れる検体溶液は速度が速いため検出部に早く到着し排出される。その一方で、チューブの壁側付近を流れる検体溶液は速度が遅いため、検出部に後で到着し排出される。この検出部への到着時間の差と、検出部からの排出時間の差とが、検出信号の立上り及び立下りをブロードにしていたものと推察される。   That is, conventionally, when a sample solution is supplied from an inlet channel formed of a tube or the like toward the detection unit, a velocity gradient of the sample solution is generated in the tube, and the detection unit receives the velocity gradient according to the velocity gradient. There was also a distribution in the speed of arrival. In other words, since the sample solution flowing in the center of the tube has a high speed, it quickly arrives at the detection unit and is discharged. On the other hand, since the sample solution flowing near the wall side of the tube has a low speed, it arrives at the detection unit later and is discharged. The difference in the arrival time to the detection unit and the difference in the discharge time from the detection unit are presumed that the rise and fall of the detection signal were broad.

これに対して、検出装置1は、基板上流路20に到達する直前に、速度分布の大きく異なる内側(中央部)と外側とを流れる検体溶液を分離して、比較的均一な速度分布を有する中央部を流れる検体溶液のみを内側の管41に導く。これにより、入口流路40の直径方向における断面でみたときに、速度分布もそれに伴う検体の濃度分布も少なくすることができ、その結果、検出信号の立上り及び立下りをシャープにすることができるものと推察する。   In contrast, the detection apparatus 1 has a relatively uniform velocity distribution by separating the specimen solution flowing between the inner side (center portion) and the outer side where the velocity distribution is greatly different immediately before reaching the substrate flow path 20. Only the sample solution flowing through the center is guided to the inner tube 41. As a result, when viewed in a cross section in the diameter direction of the inlet channel 40, both the velocity distribution and the concentration distribution of the specimen accompanying it can be reduced, and as a result, the rise and fall of the detection signal can be sharpened. I guess that.

以上のメカニズムを検証するために、入口流路内における検体溶液の速度分布及び濃度分布をシミュレーションした。具体的には、入口流路に水、NaCl溶液、水をこの順に連続的に注入したときのNaClの入口流路内における速度分布及び濃度分布をシミュレーションした。シミュレーション条件は、以下の通りとした。
入口流路の管の半径:0.127mm
入口流路の長さ:530mm
二重管構造となっている部位の内側の管41の半径:0.085mm
検体溶液の粘度:8.9×10−4Pa/s
検体溶液の密度:997Kg/m
その結果を図2に示す。図2Aは従来の一重管の入口流路を用いた例であり、図2Bは検出装置1の入口流路40を用いた例である。なお、いずれも入口流路において太さ方向(直径方向)と直交する方向の断面を示しており、左端が入口流路の中央部分を示している。
In order to verify the above mechanism, the velocity distribution and concentration distribution of the sample solution in the inlet channel were simulated. Specifically, the velocity distribution and the concentration distribution of NaCl in the inlet channel when water, NaCl solution, and water were sequentially injected into the inlet channel in this order were simulated. The simulation conditions were as follows.
Pipe radius of inlet channel: 0.127 mm
Inlet channel length: 530 mm
Radius of the tube 41 inside the portion having the double tube structure: 0.085 mm
Viscosity of sample solution: 8.9 × 10 −4 Pa / s
Density of sample solution: 997 Kg / m 3
The result is shown in FIG. FIG. 2A is an example using an inlet channel of a conventional single tube, and FIG. 2B is an example using an inlet channel 40 of the detection apparatus 1. In addition, all have shown the cross section of the direction orthogonal to the thickness direction (diameter direction) in an inlet flow path, and the left end has shown the center part of the inlet flow path.

図2からも明らかなように、入口流路40を用いた場合には速度分布及び濃度分布が大きく改善できていることが確認できた。これにより、図3に示すように、検出信号の立上り及び立下りをシャープにすることができる。   As apparent from FIG. 2, it was confirmed that the velocity distribution and the concentration distribution were greatly improved when the inlet channel 40 was used. Thereby, as shown in FIG. 3, the rise and fall of the detection signal can be sharpened.

なお、入口流路40と基板上流路20との接合部において流路は屈曲することとなり、流路の断面積も変化するが、このような形状による流れの澱みの影響よりも入口流路40の二重管構造以外の部位における速度分布が検出信号の立上り及び立下りに影響を与えることも確認している。   The flow path bends at the joint between the inlet flow path 40 and the substrate flow path 20, and the cross-sectional area of the flow path also changes. However, the inlet flow path 40 is more affected by the flow stagnation due to such a shape. It has also been confirmed that the velocity distribution in parts other than the double pipe structure affects the rise and fall of the detection signal.

ここで、基板上流路20の管壁は入口流路40の管壁に比べ、検体溶液に対する濡れ性が高い材料で構成することが好ましい。このような構成とすることにより、入口流路40の内側の管41から基板上流路20の検出部30に到達するまでの間に、基板上流路20の管壁の影響により新たな濃度分布が生じることを抑制することができる。   Here, it is preferable that the tube wall of the substrate upper flow path 20 is made of a material having higher wettability with respect to the specimen solution than the tube wall of the inlet flow path 40. By adopting such a configuration, a new concentration distribution is generated due to the influence of the tube wall of the substrate upper flow path 20 from the tube 41 inside the inlet flow path 40 to the detection unit 30 of the substrate upper flow path 20. It is possible to suppress the occurrence.

このように、本発明の検出装置1によれば、検体溶液が検出部30に到達する前にその
濃度分布を緩和する機構を追加することで、検出信号の立上り及び立下りをシャープにすることができる。
As described above, according to the detection apparatus 1 of the present invention, the rise and fall of the detection signal are sharpened by adding a mechanism that relaxes the concentration distribution of the sample solution before reaching the detection unit 30. Can do.

このような、濃度分布の緩和機構は、上述のような入口流路40の二重管構造に限定されない。例えば、入口流路40の基板上流路20に接続される側の領域において、外側から振動を加え検体溶液が入口流路の管壁から離すようにしてもよい。このような振動は、超音波を印加してもよいし、流路の外側から圧電体で振動を印加してもよい。   Such a concentration distribution relaxation mechanism is not limited to the double tube structure of the inlet channel 40 as described above. For example, in the region of the inlet channel 40 on the side connected to the substrate upper channel 20, vibration may be applied from the outside so that the sample solution is separated from the tube wall of the inlet channel. For such vibration, ultrasonic waves may be applied, or vibration may be applied by a piezoelectric body from the outside of the flow path.

また、入口流路40と基板上流路20との接続部に弁を設け、基板上流路20へ検体溶液が流入する前に検体溶液をせき止め、一度濃度分布を均一にさせた後に弁を開くようにしてもよい。同様に弁で検体溶液をせき止めた後に、外部から強制的に圧力を加えた状態で弁を開放してもよい。   In addition, a valve is provided at a connection portion between the inlet channel 40 and the substrate upper channel 20, so that the sample solution is damped before the sample solution flows into the substrate upper channel 20, and the valve is opened after the concentration distribution is made uniform once. It may be. Similarly, after the sample solution is blocked by the valve, the valve may be opened in a state where the pressure is forcibly applied from the outside.

本発明は、以上の実施形態に限定されず、種々の態様で実施されてよい。例えば、上述した検出装置1では、内側の管41と外側の管42との間を流れる検体溶液は流路70へと導かれたが、そのまま排出してもよい。   The present invention is not limited to the above embodiment, and may be implemented in various aspects. For example, in the detection apparatus 1 described above, the sample solution flowing between the inner tube 41 and the outer tube 42 is guided to the flow path 70, but may be discharged as it is.

1・・・検出装置
10・・・基板
20・・・基板上流路
30・・・検出部
40・・・入口流路
41・・・内側の管
42・・・外側の管
DESCRIPTION OF SYMBOLS 1 ... Detection apparatus 10 ... Board | substrate 20 ... Flow path on board | substrate 30 ... Detection part 40 ... Inlet flow path 41 ... Inner pipe | tube 42 ... Outer pipe | tube

Claims (2)

基板と、
前記基板の一主面上に配置された、一端から他端まで前記基板の前記一主面と平行に延びる基板上流路と、
前記基板上流路の内部に配置された、検体溶液中に含まれる検体を検出する検出部と、
前記基板上流路の前記一端に接続される、前記検体溶液を導入する入口流路とを有し、
前記入口流路は、前記基板上流路に接続される側が二重管構造であり、内側の管を流れる前記検体溶液が前記基板上流路に前記一端から導入され、内側の管と外側の管との間を流れる前記検体溶液は前記基板上流路外に送られる、検出装置。
A substrate,
A substrate flow path disposed on one principal surface of the substrate and extending in parallel with the one principal surface of the substrate from one end to the other;
A detection unit for detecting a sample contained in the sample solution, disposed inside the flow path on the substrate;
An inlet channel for introducing the analyte solution, connected to the one end of the channel on the substrate,
The inlet channel has a double tube structure on the side connected to the substrate upper channel, and the analyte solution flowing through the inner tube is introduced into the substrate upper channel from the one end, and the inner tube and the outer tube The specimen solution flowing between them is sent out of the flow path on the substrate.
前記検出部は、前記検体溶液に含まれる標的の吸着または前記標的との反応に応じて質量が変化するものであり、
前記検出部における質量変化を検出する計測部をさらに有する、請求項1記載の検出装置。
The detection unit has a mass that changes in accordance with adsorption of a target contained in the sample solution or reaction with the target.
The detection device according to claim 1, further comprising a measurement unit that detects a mass change in the detection unit.
JP2012261958A 2012-11-30 2012-11-30 Detection device Expired - Fee Related JP6022911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012261958A JP6022911B2 (en) 2012-11-30 2012-11-30 Detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012261958A JP6022911B2 (en) 2012-11-30 2012-11-30 Detection device

Publications (2)

Publication Number Publication Date
JP2014106217A true JP2014106217A (en) 2014-06-09
JP6022911B2 JP6022911B2 (en) 2016-11-09

Family

ID=51027815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012261958A Expired - Fee Related JP6022911B2 (en) 2012-11-30 2012-11-30 Detection device

Country Status (1)

Country Link
JP (1) JP6022911B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030167A (en) * 2004-06-15 2006-02-02 Seiko Instruments Inc Microchip system
JP2006322822A (en) * 2005-05-19 2006-11-30 Konica Minolta Medical & Graphic Inc Microchip for inspection and inspection device using it
JP2007069202A (en) * 2005-08-09 2007-03-22 Canon Inc Fluid-processing device and fluid-processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030167A (en) * 2004-06-15 2006-02-02 Seiko Instruments Inc Microchip system
JP2006322822A (en) * 2005-05-19 2006-11-30 Konica Minolta Medical & Graphic Inc Microchip for inspection and inspection device using it
JP2007069202A (en) * 2005-08-09 2007-03-22 Canon Inc Fluid-processing device and fluid-processing method

Also Published As

Publication number Publication date
JP6022911B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6568126B2 (en) Sample sensor and sample sensing method
JP4933956B2 (en) A surface acoustic wave sensor and a biomolecule measuring apparatus including the surface acoustic wave sensor.
TWI568992B (en) Ultrasonic sensors and use of this ultrasonic flowmeter
JP2011519422A5 (en)
JP6042774B2 (en) Sample sensor and sample sensing method
JP6043061B2 (en) Surface acoustic wave sensor
CN105934667B (en) Sensor device
JP2007225546A (en) Elastic surface wave sensor
JP6604238B2 (en) Elastic wave sensor
JP6022911B2 (en) Detection device
EP2419722B1 (en) Method and apparatus for investigating a flexible hollow element using acoustic sensors
CN111373658A (en) Method and apparatus for bonding sensors of fluid materials
WO2016068339A1 (en) Sensor device
JP4616123B2 (en) Microsensor for analysis
JP5917973B2 (en) SAW sensor and SAW sensor device
JP6154103B2 (en) Surface acoustic wave sensor and manufacturing method thereof
JP2017120240A (en) Sensor device and detection method using the same
JP6154570B2 (en) Surface acoustic wave sensor
JP6471084B2 (en) Sensing sensor
JP2006038584A (en) Chemical sensor and measuring instrument
KR100820120B1 (en) Surface acoustic wave sensor for viscosity measurement of liquid using love wave
JP6284220B2 (en) Surface acoustic wave sensor and surface acoustic wave sensor device
KR100955254B1 (en) A fluid- viscosity measuring method and a apparatus thereof using a shear horizontal surface acoustic wave
JP5157828B2 (en) Surface acoustic wave device
JP6391653B2 (en) Sample sensor and sample sensing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161006

R150 Certificate of patent or registration of utility model

Ref document number: 6022911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees