JP2014105648A - Internal gear pump - Google Patents

Internal gear pump Download PDF

Info

Publication number
JP2014105648A
JP2014105648A JP2012259936A JP2012259936A JP2014105648A JP 2014105648 A JP2014105648 A JP 2014105648A JP 2012259936 A JP2012259936 A JP 2012259936A JP 2012259936 A JP2012259936 A JP 2012259936A JP 2014105648 A JP2014105648 A JP 2014105648A
Authority
JP
Japan
Prior art keywords
discharge
discharge port
load side
external gear
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012259936A
Other languages
Japanese (ja)
Other versions
JP6144039B2 (en
Inventor
Katsunori Ishikawa
勝則 石河
Masahiro Hanji
正廣 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP2012259936A priority Critical patent/JP6144039B2/en
Publication of JP2014105648A publication Critical patent/JP2014105648A/en
Application granted granted Critical
Publication of JP6144039B2 publication Critical patent/JP6144039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal gear pump capable of sufficiently suppressing increase of driving force for rotating and driving an external gear according to increase of a rotational frequency of the external gear by increasing a reflowing amount to a low pressure-side, of a liquid discharged from a discharge port according to the increase of the rotational frequency of the external gear.SOLUTION: At least three discharge ports 13A, 13B, 13C communicated with a discharge area space P and discharging a liquid, are opened while separating from each other in the rotating direction of gears 3, 4. An initial form in which all of discharge ports 13A-13C are connected to the same load side, an intermediate form in which discharge ports disconnected from the load side and connected with a tank T are successively increased by the third discharge port 13C and the second discharge port 13B, and a final form in which one discharge port 13A is connected to the load side and the remaining discharge ports 13B, 13C are disconnected from the load side and connected to the tank T, are switchable according to the increase of the rotational frequency for rotating and driving the external gear 4.

Description

本発明は、内歯歯車の内歯と外歯歯車の外歯とを内接噛み合いするよう内歯歯車の内部に外歯歯車を偏心して収容した内接歯車ポンプに関する。   The present invention relates to an internal gear pump in which an external gear is eccentrically housed inside an internal gear so that the internal teeth of the internal gear and the external teeth of the external gear mesh with each other.

この種の内接歯車ポンプは、ポンプハウジングの収容孔に、内歯を有するリング状の内歯歯車を回転自在に収容し、この内歯歯車の内歯と内接噛み合いする外歯を有する外歯歯車を内歯歯車の内部に偏心して収容し、両歯車の回転に伴い両歯間の噛み合い隙間が増加する吸入域空間に連通して吸入ポートを開口すると共に、両歯間の噛み合い隙間が減少する吐出域空間に連通して第1吐出ポートと第2吐出ポートとを開口して形成し、吸入域空間と吐出域空間との間に両歯間の噛み合い隙間が最大となる最大容積域空間を形成している。また、第1形態と第2形態とに切換可能な制御弁を具備している。そして、外歯歯車の回転駆動により吸入域空間に吸入した液体としての油を最大容積域空間より吐出域空間に搬送して第1吐出ポートと第2吐出ポートから吐出し、外歯歯車の回転数が低速回転で、第1吐出ポートの油圧が所定圧よりも低圧の時には、制御弁が第1形態となり、第1吐出ポートから吐出する油と第2吐出ポートから吐出する油とを合流して負荷に送給する。また、外歯歯車の回転数が高速回転になり、第1吐出ポートの油圧が所定圧よりも高圧になると、制御弁が第2形態となり、第2吐出ポートから吐出する油を低圧側としてのタンクに還流して排出し第1吐出ポートから吐出する油のみを負荷に送給する。このようにして、回転数が上昇すると第2吐出ポートからの油をタンクに還流して吐出量の増加を抑制し、外歯歯車を回転駆動する駆動力が増大することを抑制している。   In this type of internal gear pump, a ring-shaped internal gear having internal teeth is rotatably accommodated in an accommodation hole of the pump housing, and an external tooth having external teeth that mesh with the internal teeth of the internal gear. The toothed gear is eccentrically housed inside the internal gear, opens the suction port in communication with the suction area space where the meshing gap between both teeth increases as both gears rotate, and the meshing gap between both teeth The maximum volume area in which the first discharge port and the second discharge port are opened to communicate with the decreasing discharge area space, and the meshing gap between both teeth is maximized between the suction area space and the discharge area space. A space is formed. Moreover, the control valve which can be switched to a 1st form and a 2nd form is comprised. Then, the oil as the liquid sucked into the suction area space by the rotation driving of the external gear is transported from the maximum volume area space to the discharge area space and discharged from the first discharge port and the second discharge port, and the external gear rotates. When the number is low-speed rotation and the hydraulic pressure of the first discharge port is lower than the predetermined pressure, the control valve is in the first form, and the oil discharged from the first discharge port and the oil discharged from the second discharge port are merged. To the load. Further, when the rotation speed of the external gear becomes high speed rotation and the hydraulic pressure of the first discharge port becomes higher than a predetermined pressure, the control valve becomes the second form, and the oil discharged from the second discharge port is set to the low pressure side. Only the oil that is returned to the tank and discharged and discharged from the first discharge port is fed to the load. In this way, when the rotational speed increases, the oil from the second discharge port is returned to the tank to suppress an increase in the discharge amount, and an increase in driving force for rotationally driving the external gear is suppressed.

特開平9−126153号公報JP-A-9-126153

ところが、かかる従来の内接歯車ポンプでは、吐出ポートが、第1吐出ポートと第2吐出ポートの2個であるため、外歯歯車の回転数の上昇に応じて吐出量の増加を十分に抑制することができず、外歯歯車を回転駆動する駆動力の増大を満足いくほど抑制できるものではなかった。   However, in such a conventional internal gear pump, since there are two discharge ports, the first discharge port and the second discharge port, an increase in the discharge amount is sufficiently suppressed as the rotational speed of the external gear increases. The increase in the driving force for rotationally driving the external gear cannot be suppressed to a satisfactory level.

本発明の課題は、外歯歯車の回転数の上昇に応じて吐出ポートから吐出する液体の低圧側へ還流する量を増大し、外歯歯車の回転数の上昇に応じて外歯歯車を回転駆動する駆動力の増加を十分に抑制し得る内接歯車ポンプを提供するものである。   The object of the present invention is to increase the amount of liquid discharged from the discharge port to the low pressure side as the rotational speed of the external gear increases, and to rotate the external gear as the rotational speed of the external gear increases. An internal gear pump that can sufficiently suppress an increase in driving force to be driven is provided.

かかる課題を達成すべく、本発明は次の手段をとった。即ち、
ポンプハウジングの収容孔に内歯を有するリング状の内歯歯車を回転自在に収容し、内歯歯車の内歯と内接噛み合いする外歯を有する外歯歯車を内歯歯車の内部に偏心して収容し、外歯歯車は駆動軸で回転駆動され、両歯車間には両歯車の回転により両歯間の噛み合い隙間が増加する領域に吸入域空間を形成し、両歯車の回転により両歯間の噛み合い隙間が減少する領域に吐出域空間を形成し、内歯歯車の内歯と外歯歯車の外歯とによりポンプ室を区画形成し、ポンプ室は両歯車の回転により吸入域空間で容積を増加すると共に、吐出域空間で容積を減少して設け、収容孔に収容した両歯車の側面が摺接するポンプハウジングの摺接面には、吸入域空間に連通して液体を吸入する吸入ポートを開口すると共に、吐出域空間に連通して液体を吐出する吐出ポートを両歯車の回転方向に離間して少なくとも3個を開口して設け、全ての吐出ポートを同一の負荷側に接続する初期形態と、1つの吐出ポートを負荷側に接続して残りの吐出ポートを負荷側と遮断して低圧側に接続する最終形態と、初期形態と最終形態との間で負荷側と遮断して低圧側に接続する吐出ポートを順次増加する中間形態を有し、外歯歯車を回転駆動する回転数の上昇に応じて、初期形態から中間形態を経て最終形態へ切換自在にしたことを特徴とする内接歯車ポンプがそれである。
In order to achieve this problem, the present invention has taken the following measures. That is,
A ring-shaped internal gear having internal teeth is rotatably accommodated in the housing hole of the pump housing, and the external gear having external teeth that are in mesh with the internal teeth of the internal gear is eccentric to the internal gear. The external gear is driven to rotate by the drive shaft, and a suction area space is formed between the two gears in the region where the meshing gap between the two teeth increases due to the rotation of the two gears. A discharge area space is formed in an area where the meshing clearance of the internal gear decreases, and a pump chamber is defined by the internal teeth of the internal gear and the external teeth of the external gear, and the pump chamber has a volume in the suction area space by the rotation of both gears. And a suction port for sucking liquid in communication with the suction area space on the sliding contact surface of the pump housing where the side surfaces of both gears received in the accommodation hole are in sliding contact with each other. At the same time as communicating with the discharge area space. Disposed at least three discharge ports that are spaced apart in the rotational direction of both gears, and an initial configuration in which all discharge ports are connected to the same load side, and one discharge port is connected to the load side and remains A final configuration in which the discharge port is disconnected from the load side and connected to the low pressure side, and an intermediate configuration in which the discharge port that is disconnected from the load side and connected to the low pressure side is sequentially increased between the initial configuration and the final configuration. The internal gear pump is characterized in that it can be switched from the initial form to the final form through the intermediate form in accordance with the increase in the rotational speed for rotationally driving the external gear.

この場合、前記吐出ポートの個数は4個以上で前記吐出域空間に位置する前記ポンプ室の個数と同数であってもよい。   In this case, the number of the discharge ports may be four or more and the same number as the number of the pump chambers located in the discharge area space.

以上詳述したように、請求項1に記載の発明は、吐出域空間に連通して液体を吐出する吐出ポートを両歯車の回転方向に離間して少なくとも3個を開口して設け、全ての吐出ポートを同一の負荷側に接続する初期形態と、1つの吐出ポートを負荷側に接続して残りの吐出ポートを負荷側と遮断して低圧側に接続する最終形態と、初期形態と最終形態との間で負荷側と遮断して低圧側に接続する吐出ポートを順次増加する中間形態を有し、外歯歯車を回転駆動する回転数の上昇に応じて、初期形態から中間形態を経て最終形態へ切換自在にした。このため、外歯歯車の回転数の上昇に応じて吐出ポートから吐出する液体の低圧側へ還流する量を順次増加できるから、これと相反して吐出ポートから負荷側に送給する液体の吐出量増加を十分に抑制でき、外歯歯車の回転数の上昇に応じて外歯歯車を回転駆動する駆動力の増加を十分に抑制することができる。   As described in detail above, the invention described in claim 1 is provided with discharge ports that communicate with the discharge area space and discharge liquid, spaced apart in the rotational direction of both gears, and provided with at least three openings. An initial configuration in which discharge ports are connected to the same load side, a final configuration in which one discharge port is connected to the load side and the remaining discharge ports are disconnected from the load side and connected to the low pressure side, and an initial configuration and final configuration The intermediate port has an intermediate configuration that sequentially increases the discharge port connected to the low pressure side by cutting off from the load side, and from the initial configuration to the final configuration according to the increase in the number of rotations for rotationally driving the external gear. Changeable to form. For this reason, the amount of liquid recirculated from the discharge port to the low pressure side can be increased sequentially as the rotational speed of the external gear increases, so that the discharge of liquid fed from the discharge port to the load side is contrary to this. An increase in the amount can be sufficiently suppressed, and an increase in driving force for rotationally driving the external gear according to an increase in the rotational speed of the external gear can be sufficiently suppressed.

また、請求項2に記載の発明は、吐出ポートの個数は4個以上で吐出域空間に位置するポンプ室の個数と同数とした。このため、吐出ポートから吐出する液体の低圧側へ還流する量をより高回転域まで外歯歯車の回転数の上昇に応じて順次増加できるから、これと相反して吐出ポートから負荷側に送給する液体の吐出量増加をより高回転域まで十分に抑制でき、外歯歯車の回転数の上昇に応じて外歯歯車を回転駆動する駆動力の増加をより高回転域まで十分に抑制することができる。   In the invention according to claim 2, the number of discharge ports is four or more and is the same as the number of pump chambers located in the discharge area space. For this reason, since the amount of liquid discharged from the discharge port to the low pressure side can be increased sequentially as the rotational speed of the external gear increases to a higher rotation range, it is contrary to this and sent from the discharge port to the load side. The increase in the discharge amount of the liquid to be supplied can be sufficiently suppressed to a higher rotation range, and the increase in the driving force for rotating the external gear according to the increase in the rotation speed of the external gear can be sufficiently suppressed to the higher rotation range. be able to.

本発明の一実施形態を示した内接歯車ポンプの一部を油圧回路図で示した断面図である。It is sectional drawing which showed a part of internal gear pump which showed one Embodiment of this invention with the hydraulic circuit diagram. 図1のポンプ特性を示し、(A)は吐出量―回転数の特性図、(B)は回転駆動力―回転数の特性図である。The pump characteristics of FIG. 1 are shown, in which (A) is a discharge amount-rotation speed characteristic chart, and (B) is a rotational drive force-rotation speed characteristic chart. 他の実施形態を示した一部を油圧回路図で示した断面図である。It is sectional drawing which showed a part which showed other embodiment with the hydraulic circuit diagram. 図3のポンプ特性を示し、(A)は吐出量―回転数の特性図、(B)は回転駆動力―回転数の特性図である。FIG. 3 shows the pump characteristics of FIG. 3, (A) is a characteristic chart of discharge amount-rotation speed, and (B) is a characteristic chart of rotational driving force-rotation speed. さらに他の実施形態を示した一部を油圧回路図で示した断面図である。It is sectional drawing which showed a part which showed further embodiment with the hydraulic circuit diagram. 図5のポンプ特性を示し、(A)は吐出量―回転数の特性図、(B)は回転駆動力―回転数の特性図である。FIG. 5 shows the pump characteristics of FIG. 5, (A) is a characteristic chart of discharge amount-rotation speed, and (B) is a characteristic chart of rotational driving force-rotation speed.

以下、本発明の一実施形態を図面に基づき説明する。
図1において、1はポンプハウジングで、収容孔2を穿設している。3はリング状の内歯歯車で、10個の内歯3Aを有し、収容孔2へ回転自在に収容している。4は外歯歯車で、内歯3Aと内接噛み合いして内歯3Aより歯数が1個少ない9個の外歯4Aを有し、内歯歯車3の内部に偏心して回転自在に収容している。そして、収装孔2の底面を両歯車3、4の側面が摺接するポンプハウジング1の摺接面としている。外歯歯車4は中心に貫通孔5を軸方向へ貫通形成し、貫通孔5の径方向へ対向する2箇所に凸部6、7を径方向内方に突出形成している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a pump housing having a receiving hole 2. Reference numeral 3 denotes a ring-shaped internal gear, which has ten internal teeth 3 </ b> A and is rotatably accommodated in the accommodation hole 2. Reference numeral 4 denotes an external gear, which has nine external teeth 4A which are in mesh with the internal teeth 3A and have one fewer teeth than the internal teeth 3A, and are eccentrically housed inside the internal gear 3 and accommodated rotatably. ing. The bottom surface of the housing hole 2 is used as a sliding contact surface of the pump housing 1 where the side surfaces of both gears 3 and 4 are in sliding contact. The external gear 4 has a through-hole 5 penetrating in the axial direction at the center, and convex portions 6 and 7 projecting radially inward at two locations facing the radial direction of the through-hole 5.

8は外歯歯車4の貫通孔5に挿入する駆動軸で、径方向の対向する2箇所に凹部9、10を窪み形成し、凹部9、10に外歯歯車4の凸部6、7を係合して外歯歯車4を回転駆動する。Sは吸入域空間、Pは吐出域空間、Mは最大容積空間、Nは最小容積空間でそれぞれ両歯車3、4間に備えている。吸入域空間Sは両歯車3、4の回転により両歯3A、4A間の噛み合い隙間が増加する領域に形成している。吐出域空間Pは両歯車3、4の回転により両歯3A、4A間の噛み合い隙間が減少する領域に形成している。最大容積空間Mは吸入域空間Sと吐出域空間Pとの間で両歯車3、4の回転により両歯3A、4A間の噛み合い隙間が最大となる領域に形成している。最小容積空間Nは最大容積空間Mと径方向に対向して両歯3A、4Aが最深に噛み合う領域に形成している。11は吸入域空間Sに連通する吸入ポートで、ポンプハウジング1の収容孔2の底面に窪み形成して開口し、低圧側としてのタンクTに接続してタンクTの液体としての油を吸入する。   A drive shaft 8 is inserted into the through-hole 5 of the external gear 4. The concave portions 9, 10 are formed in two radially opposite positions, and the convex portions 6, 7 of the external gear 4 are formed in the concave portions 9, 10. The external gear 4 is rotationally driven by engaging. S is a suction area space, P is a discharge area space, M is a maximum volume space, and N is a minimum volume space. The suction zone space S is formed in a region where the meshing gap between the teeth 3A and 4A increases as the gears 3 and 4 rotate. The discharge area space P is formed in an area where the meshing gap between the teeth 3A, 4A is reduced by the rotation of the gears 3, 4. The maximum volume space M is formed between the suction area space S and the discharge area space P in an area where the meshing gap between the teeth 3A and 4A is maximized by the rotation of the gears 3 and 4. The minimum volume space N is formed in a region where both teeth 3A and 4A are engaged with each other in the deepest direction, facing the maximum volume space M in the radial direction. Reference numeral 11 denotes a suction port communicating with the suction area space S. The suction port 11 is formed in a recess in the bottom surface of the accommodation hole 2 of the pump housing 1 and is connected to the tank T on the low pressure side to suck oil as liquid in the tank T. .

13A、13B、13Cは吐出域空間Pに連通する3個の第1〜第3の吐出ポートで、ポンプハウジング1の収容孔2の底面に、両歯車3、4の回転方向Aに離間して窪み形成して開口し、図示しない負荷側に油を吐出する。第1の吐出ポート13Aは第1接続流路14Aを介して負荷側に接続している。第2の吐出ポート13Bは第1接続流路14Aに分岐接続する第2接続流路14Bを介して負荷側に接続している。第3の吐出ポート13Cは第1接続流路14Aに分岐接続する第3接続流路14Cを介して負荷側に接続している。15Aは第2接続流路14Bに配設した第1の逆止め弁で、第2の吐出ポート13Bから第1接続流路14Aへの流れを許容すると共に、第1接続流路14Aから第2の吐出ポート13Bへの流れを阻止する向きに設けている。15Bは第3接続流路14Cに配設した第2の逆止め弁で、第3の吐出ポート13Cから第1接続流路14Aへの流れを許容すると共に、第1接続流路14Aから第3の吐出ポート13Cへの流れを阻止する向きに設けている。   13A, 13B, and 13C are three first to third discharge ports communicating with the discharge area space P. The first and third discharge ports are spaced apart from each other in the rotational direction A of the gears 3 and 4 on the bottom surface of the housing hole 2 of the pump housing 1. A recess is formed and opened, and oil is discharged to a load side (not shown). The first discharge port 13A is connected to the load side via the first connection flow path 14A. The second discharge port 13B is connected to the load side via a second connection channel 14B that is branched and connected to the first connection channel 14A. The third discharge port 13C is connected to the load side via a third connection channel 14C that branches and connects to the first connection channel 14A. Reference numeral 15A denotes a first check valve disposed in the second connection flow path 14B, which allows a flow from the second discharge port 13B to the first connection flow path 14A and from the first connection flow path 14A to the second. Is provided in a direction to prevent the flow to the discharge port 13B. Reference numeral 15B denotes a second check valve disposed in the third connection flow path 14C, which allows the flow from the third discharge port 13C to the first connection flow path 14A and from the first connection flow path 14A to the third connection flow path. Is provided in a direction to prevent the flow to the discharge port 13C.

16Aは第2接続流路14BをタンクTに接続する第1排出流路で、第2接続流路14Bの第1の逆止め弁15A配設箇所より第2の吐出ポート13B側に接続している。16Bは第3接続流路14CをタンクTに接続する第2排出流路で、第3接続流路14Cの第2の逆止め弁15B配設箇所より第3の吐出ポート13C側に接続している。17Aは第1排出流路16Aに配設した第1電磁弁で、通電により開作動して第2接続流路14BとタンクTとの間を連通すると共に、非通電により閉作動して第2接続流路14BとタンクTとの間を遮断する。17Bは第2排出流路16Bに配設した第2電磁弁で、通電により開作動して第3接続流路14CとタンクTとの間を連通すると共に、非通電により閉作動して第3接続流路14CとタンクTとの間を遮断する。   16A is a first discharge channel that connects the second connection channel 14B to the tank T, and is connected to the second discharge port 13B side from the location of the first check valve 15A of the second connection channel 14B. Yes. 16B is a second discharge channel that connects the third connection channel 14C to the tank T, and is connected to the third discharge port 13C side from the location of the second check valve 15B of the third connection channel 14C. Yes. Reference numeral 17A denotes a first electromagnetic valve disposed in the first discharge flow path 16A. The first electromagnetic valve opens when energized to communicate between the second connection flow path 14B and the tank T, and closes when de-energized to operate second. The connection flow path 14B and the tank T are blocked. Reference numeral 17B denotes a second electromagnetic valve disposed in the second discharge flow path 16B. The second solenoid valve opens when energized to communicate between the third connection flow path 14C and the tank T, and closes when deenergized. The connection channel 14C and the tank T are blocked.

第1〜第3の全ての吐出ポート13A、13B、13Cを同一の負荷側に接続する初期形態と、1つの第1の吐出ポート13Aを負荷側に接続して残りの第2、第3の吐出ポート13B、13Cを負荷側と遮断してタンクTに接続する最終形態と、初期形態と最終形態との間で負荷側と遮断してタンクTに接続する吐出ポートを第3の吐出ポート13Cに第2の吐出ポート13Bを加えて順次増加する中間形態を有している。初期形態では第1電磁弁17A、第2電磁弁17Bがともに閉作動して第2接続流路14B、第3接続流路14CとタンクTとの間を遮断する。中間形態では第2電磁弁17Bが開作動して第3接続流路14CとタンクTとの間を連通すると共に、第1電磁弁17Aが閉作動して第2接続流路14BとタンクTとの間を遮断している。最終形態では第1電磁弁17A、第2電磁弁17Bがともに開作動して第2接続流路14B、第3接続流路14CとタンクTとの間を連通する。そして、外歯歯車4を回転駆動する回転数の上昇に応じて、初期形態から中間形態を経て最終形態へ切換自在にする。   An initial configuration in which all of the first to third discharge ports 13A, 13B, and 13C are connected to the same load side, and one first discharge port 13A is connected to the load side and the remaining second and third The third discharge port 13C is a final configuration in which the discharge ports 13B and 13C are disconnected from the load side and connected to the tank T, and the discharge port that is disconnected from the load side and connected to the tank T between the initial configuration and the final configuration. In addition, the second discharge port 13B is added to the intermediate form that increases sequentially. In the initial configuration, the first electromagnetic valve 17A and the second electromagnetic valve 17B are both closed to shut off the second connection flow path 14B, the third connection flow path 14C and the tank T. In the intermediate configuration, the second electromagnetic valve 17B is opened to communicate between the third connection flow path 14C and the tank T, and the first electromagnetic valve 17A is closed to activate the second connection flow path 14B and the tank T. Between the two. In the final configuration, the first solenoid valve 17A and the second solenoid valve 17B are both opened to communicate between the second connection flow path 14B, the third connection flow path 14C and the tank T. And according to the raise of the rotation speed which rotationally drives the external gear 4, it makes it possible to switch from the initial form to the final form through the intermediate form.

Vはポンプ室で、内歯歯車3の内歯3Aと外歯歯車4の外歯4Aとにより区画形成し、両歯車3、4の回転により吸入域空間Sで容積を増加し、最大容積空間Mで容積を最大にし、吐出域空間Pで容積を減少し、最小容積空間Nで容積を最小にする。吐出域空間Pには最大容積空間M側から最小容積空間N側に向けて順次容積を減少する4個の第1〜第4のポンプ室V1〜V4が位置している。第1のポンプ室V1は第1の吐出ポート13Aに接続し、第2のポンプ室V2と第3のポンプ室V3は第2の吐出ポート13Bに接続し、第4のポンプ室V4は第3の吐出ポート13Cに接続している。   V is a pump chamber, which is defined by the internal teeth 3A of the internal gear 3 and the external teeth 4A of the external gear 4, and increases the volume in the suction area S by the rotation of both gears 3 and 4, and the maximum volume space The volume is maximized at M, the volume is decreased at the discharge area P, and the volume is minimized at the minimum volume N. In the discharge area space P, four first to fourth pump chambers V1 to V4 whose volumes are sequentially reduced from the maximum volume space M side to the minimum volume space N side are located. The first pump chamber V1 is connected to the first discharge port 13A, the second pump chamber V2 and the third pump chamber V3 are connected to the second discharge port 13B, and the fourth pump chamber V4 is the third pump port. The discharge port 13C is connected.

次に、かかる構成の作動を説明する。
駆動軸8により外歯歯車4を回転方向Aに回転駆動すると、外歯歯車4と内接噛み合いする内歯歯車3が回転駆動され、タンクTの油が吸入ポート11より吸入域空間Sで容積を増大するポンプ室Vに吸入されて最大容積空間Mを経て吐出域空間Pに搬送され、吐出域空間Pでポンプ室V1〜V4が容積を減少することで3個の吐出ポート13A、13B、13Cより吐出する。
Next, the operation of this configuration will be described.
When the external gear 4 is rotationally driven in the rotational direction A by the drive shaft 8, the internal gear 3 that is in mesh with the external gear 4 is rotationally driven, and the oil in the tank T is volumetric in the suction area S from the suction port 11. The pump chamber V is increased and is transferred to the discharge region space P through the maximum volume space M. In the discharge region space P, the pump chambers V1 to V4 reduce the volume, so that the three discharge ports 13A, 13B, Discharge from 13C.

いま、外歯歯車4の回転数が、図2(A)に示す第1設定値A(1500rpm)に達するまでは初期形態で、第1電磁弁17A、第2電磁弁17Bがともに閉作動状態で、第2接続流路14B、第3接続流路14CとタンクTとの間を遮断し、第1の吐出ポート13Aから吐出した油が第1接続流路14Aを流れ、第2の吐出ポート13Bから吐出した油が第2接続流路14B、第1の逆止め弁15Aを流れて第1接続流路14Aに合流すると共に、第3の吐出ポート13Cから吐出した油が第3接続流路14C、第2の逆止め弁15Bを流れて第1接続流路14Aに合流し、第1〜第3の全ての吐出ポート13A、13B、13Cから吐出した油が負荷側に供給される。そして、回転数の上昇に伴い、図2(A)に示す如き、吐出量が増加すると共に、図2(B)に示す如き、外歯歯車4を回転駆動する回転駆動力が増加する。   Now, until the rotational speed of the external gear 4 reaches the first set value A (1500 rpm) shown in FIG. 2A, both the first electromagnetic valve 17A and the second electromagnetic valve 17B are in the closed operation state. Then, the second connection flow path 14B, the third connection flow path 14C and the tank T are blocked, and the oil discharged from the first discharge port 13A flows through the first connection flow path 14A, and the second discharge port The oil discharged from 13B flows through the second connection flow path 14B and the first check valve 15A to join the first connection flow path 14A, and the oil discharged from the third discharge port 13C is the third connection flow path. 14C flows through the second check valve 15B, joins the first connection flow path 14A, and the oil discharged from all the first to third discharge ports 13A, 13B, 13C is supplied to the load side. As the rotational speed increases, the discharge amount increases as shown in FIG. 2A, and the rotational driving force for rotationally driving the external gear 4 increases as shown in FIG. 2B.

いま、外歯歯車4の回転数が第1設定値Aに達すると、中間形態となり、第2電磁弁17Bが開作動して第3接続流路14CとタンクTとの間を連通すると共に、第1電磁弁17Aは閉作動状態を維持して第2接続流路14BとタンクTとの間を遮断している。第1の吐出ポート13Aから吐出した油が第1接続流路14Aを流れ、第2の吐出ポート13Bから吐出した油が第2接続流路14B、第1の逆止め弁15Aを流れて第1接続流路14Aに合流し、第1の吐出ポート13Aと第2の吐出ポート13Bから吐出した油が負荷側に供給され、回転数の上昇に伴い吐出量が増加する。このとき、第3接続流路14CはタンクTに接続して第1接続流路14Aより低圧となるため、第3の吐出ポート13Cから吐出した油は、第2の逆止め弁15Bで第1接続流路14A側への流れを阻止され、開作動した第2電磁弁17Bより第2排出流路16Bを流れてタンクTに排出される。そして、吐出量は、図2(A)に示す如き、第1設定値Aで第3の吐出ポート15Cから吐出する油がタンクTに排出されることで低減し、この後、回転数の上昇に伴い増加する。また、回転駆動力は、図2(B)に示す如き、第1設定値Aで第3の吐出ポート15Cから吐出する油がタンクTに排出されることで低減し、この後、回転数の上昇に伴い増加する。   Now, when the rotational speed of the external gear 4 reaches the first set value A, an intermediate configuration is established, the second electromagnetic valve 17B is opened to communicate between the third connection flow path 14C and the tank T, The first electromagnetic valve 17A maintains a closed operation state and blocks between the second connection flow path 14B and the tank T. Oil discharged from the first discharge port 13A flows through the first connection flow path 14A, and oil discharged from the second discharge port 13B flows through the second connection flow path 14B and the first check valve 15A to the first. The oil that joins the connection flow path 14A and is discharged from the first discharge port 13A and the second discharge port 13B is supplied to the load side, and the discharge amount increases as the rotational speed increases. At this time, since the third connection flow path 14C is connected to the tank T and has a lower pressure than the first connection flow path 14A, the oil discharged from the third discharge port 13C is first in the second check valve 15B. The flow to the connection flow path 14A side is blocked, and the second electromagnetic valve 17B that has been opened flows through the second discharge flow path 16B and is discharged to the tank T. Then, as shown in FIG. 2A, the discharge amount is reduced by the oil discharged from the third discharge port 15C at the first set value A being discharged to the tank T, and then the rotation speed is increased. Increase with. Further, as shown in FIG. 2 (B), the rotational driving force is reduced by discharging the oil discharged from the third discharge port 15C to the tank T at the first set value A, and thereafter the rotational speed is reduced. Increase with the rise.

いま、外歯歯車4の回転数が第1設定値Aより高回転の第2設定値B(3500rpm)に達すると、最終形態となり、第2電磁弁17Bに加えて第1電磁弁17Aが開作動し、第3接続流路14Cに加えて第2接続流路14BがタンクTに接続する。第1の吐出ポート13Aから吐出した油が第1接続流路14Aを流れて負荷側に供給される。このとき、第3接続流路14Cに加えて第2接続流路14BがタンクTに接続して第1接続流路14Aより低圧となるため、第3の吐出ポート13Cから吐出してタンクTに排出される油に加え、第2の吐出ポート13Bから吐出した油が、第1の逆止め弁15Aで第1接続流路14A側への流れを阻止され、開作動した第1電磁弁17Aより第1排出流路16Aを流れてタンクTに排出される。吐出量は、図2(A)に示す如き、第2設定値Bで第3の吐出ポート15Cから吐出する油に加え第2の吐出ポート15Bから吐出する油がタンクTに排出されることで低減し、この後、回転数の上昇に伴い増加する。また、回転駆動力は、図2(B)に示す如き、第2設定値Bで第3の吐出ポート15Cから吐出する油に加え第2の吐出ポート15Bから吐出する油がタンクTに排出されることで低減し、この後、回転数の上昇に伴い増加する。   Now, when the rotational speed of the external gear 4 reaches the second set value B (3500 rpm) which is higher than the first set value A, the final form is reached, and the first solenoid valve 17A is opened in addition to the second solenoid valve 17B. The second connection channel 14B is connected to the tank T in addition to the third connection channel 14C. Oil discharged from the first discharge port 13A flows through the first connection flow path 14A and is supplied to the load side. At this time, in addition to the third connection flow path 14C, the second connection flow path 14B is connected to the tank T and has a lower pressure than the first connection flow path 14A, so that it is discharged from the third discharge port 13C to the tank T. In addition to the discharged oil, the oil discharged from the second discharge port 13B is prevented from flowing toward the first connection flow path 14A by the first check valve 15A, and is opened from the first electromagnetic valve 17A that is opened. It flows through the first discharge channel 16A and is discharged to the tank T. 2A, the oil discharged from the second discharge port 15B is discharged into the tank T in addition to the oil discharged from the third discharge port 15C at the second set value B as shown in FIG. After that, it increases as the rotational speed increases. Further, as shown in FIG. 2B, the rotational driving force is the second set value B, and the oil discharged from the second discharge port 15B is discharged to the tank T in addition to the oil discharged from the third discharge port 15C. And then increases as the rotational speed increases.

かかる作動で、吐出域空間Pに連通して油を吐出する吐出ポート13A、13B、13Cを両歯車3、4の回転方向に離間して少なくとも3個を開口して設け、全ての吐出ポート13A、13B、13Cを同一の負荷側に接続する初期形態と、1つの吐出ポート13Aを負荷側に接続して残りの吐出ポート13B、13Cを負荷側と遮断してタンクTに接続する最終形態と、初期形態と最終形態との間で負荷側と遮断してタンクTに接続する吐出ポートを第3の吐出ポート13C、第2の吐出ポート13Bと順次増加する中間形態を有し、外歯歯車4を回転駆動する回転数の上昇に応じて、初期形態から中間形態を経て最終形態へ切換自在にした。このため、外歯歯車4の回転数の上昇に応じて吐出ポート13A、13B、13Cから吐出する油のタンクTへ還流する量を順次増加できるから、これと相反して吐出ポート13A、13B、13Cから負荷側に送給する油の吐出量増加を十分に抑制でき、外歯歯車4の回転数の上昇に応じて外歯歯車4を回転駆動する駆動力の増加を十分に抑制することができる。   With this operation, at least three discharge ports 13A, 13B, 13C communicating with the discharge area space P and discharging oil are provided apart from each other in the rotational direction of the gears 3, 4, and all the discharge ports 13A are provided. , 13B, and 13C are connected to the same load side, and the final form is that one discharge port 13A is connected to the load side and the remaining discharge ports 13B and 13C are disconnected from the load side and connected to the tank T. The external gear has an intermediate configuration in which the discharge port connected to the tank T by being disconnected from the load side between the initial configuration and the final configuration is sequentially increased to the third discharge port 13C and the second discharge port 13B. In accordance with the increase in the rotational speed for rotationally driving 4, the initial form can be switched to the final form through the intermediate form. For this reason, the amount of oil recirculated from the discharge ports 13A, 13B, 13C to the tank T can be sequentially increased in accordance with the increase in the rotational speed of the external gear 4, so that the discharge ports 13A, 13B, It is possible to sufficiently suppress an increase in the amount of oil discharged from 13C to the load side, and to sufficiently suppress an increase in driving force that rotationally drives the external gear 4 in accordance with an increase in the rotational speed of the external gear 4. it can.

図3は本発明の他の実施形態を示し、一実施形態と同一個所には同符号を付して説明を省略し、異なる個所についてのみ説明する。
吐出域空間Pに連通する4個の第1〜第4の吐出ポート18A、18B、18C、18Dをポンプハウジング1の収容孔2の底面に、両歯車3、4の回転方向Aに離間して窪み形成して開口している。第1の吐出ポート18Aは第1のポンプ室V1に接続し、第1接続流路19Aを介して負荷側に接続している。第2の吐出ポート18Bは第2のポンプ室V2に接続し、第1接続流路19Aに分岐接続する第2接続流路19Bを介して負荷側に接続している。第3の吐出ポート18Cは第3のポンプ室V3に接続し、第1接続流路19Aに分岐接続する第3接続流路19Cを介して負荷側に接続している。第4の吐出ポート18Dは第4のポンプ室V4に接続し、第1接続流路19Aに分岐接続する第4接続流路19Dを介して負荷側に接続している。すなわち、第1実施形態のポンプでは、第2の吐出ポート13Bを第2のポンプ室V2と第3のポンプ室V3とに接続しているのに対し、本実施形態では、第1〜第4の吐出ポート18A〜18Dをそれぞれ第1〜第4のポンプ室V1〜V4に接続している。
FIG. 3 shows another embodiment of the present invention. The same reference numerals are given to the same portions as those of the first embodiment, the description thereof is omitted, and only different portions will be described.
Four first to fourth discharge ports 18A, 18B, 18C, 18D communicating with the discharge area space P are spaced apart from each other in the rotational direction A of the gears 3, 4 on the bottom surface of the housing hole 2 of the pump housing 1. A recess is formed and opened. The first discharge port 18A is connected to the first pump chamber V1, and is connected to the load side via the first connection flow path 19A. The second discharge port 18B is connected to the second pump chamber V2, and is connected to the load side via a second connection flow path 19B branchingly connected to the first connection flow path 19A. The third discharge port 18C is connected to the third pump chamber V3, and is connected to the load side via a third connection channel 19C branchingly connected to the first connection channel 19A. The fourth discharge port 18D is connected to the fourth pump chamber V4, and is connected to the load side via a fourth connection flow path 19D that branches and connects to the first connection flow path 19A. That is, in the pump of the first embodiment, the second discharge port 13B is connected to the second pump chamber V2 and the third pump chamber V3, whereas in the present embodiment, the first to fourth pumps are connected. The discharge ports 18A to 18D are respectively connected to the first to fourth pump chambers V1 to V4.

第2〜第4接続流路19B〜19Dには第1〜第3の逆止め弁20A〜20Cを配設し、第2〜第4の吐出ポート18B〜18Dから第1接続流路14Aへの流れを許容すると共に、第1接続流路14Aから第2〜第4の吐出ポート18B〜18Dへの流れを阻止する向きに設けている。また、第2〜第4接続流路19B〜19Dには各逆止め弁20A〜20Cの配設箇所より各吐出ポート18B〜18D側に第1〜第3排出流路21A〜21Cを接続し、各排出流路21A〜21CよりタンクTに接続している。第1〜第3排出流路21A〜21Cには第1〜第3電磁弁22A〜22Cを配設し、通電により開作動して各接続流路19B〜19DとタンクTとの間を連通すると共に、非通電により閉作動して各接続流路19B〜19DとタンクTとの間を遮断する。   The first to third check valves 20A to 20C are disposed in the second to fourth connection flow paths 19B to 19D, and the second to fourth discharge ports 18B to 18D are connected to the first connection flow path 14A. While permitting the flow, it is provided in such a direction as to prevent the flow from the first connection flow path 14A to the second to fourth discharge ports 18B to 18D. In addition, the first to third discharge channels 21A to 21C are connected to the discharge ports 18B to 18D from the locations where the check valves 20A to 20C are disposed in the second to fourth connection channels 19B to 19D, Each discharge channel 21A to 21C is connected to the tank T. The first to third discharge passages 21A to 21C are provided with first to third solenoid valves 22A to 22C, and are opened by energization to communicate between the connection passages 19B to 19D and the tank T. At the same time, it is closed by non-energization to shut off the connection flow paths 19B to 19D and the tank T.

第1〜第4の全ての吐出ポート18A、18B、18C、18Dを同一の負荷側に接続する初期形態と、1つの第1の吐出ポート18Aを負荷側に接続して残りの第2、第3、第4の吐出ポート18B、18C、18Dを負荷側と遮断してタンクTに接続する最終形態と、初期形態と最終形態との間で負荷側と遮断してタンクTに接続する吐出ポートを第4の吐出ポート18Dに第3の吐出ポート18Cと第2の吐出ポート18Bを順次加えて増加する中間形態を有している。初期形態では全ての電磁弁22A、22B、22Cが閉作動して第2〜第4接続流路19B〜19DとタンクTとの間を遮断する。中間形態では第3電磁弁22Cが開作動して第4接続流路19DとタンクTとの間を連通すると共に、第2電磁弁22B、第1電磁弁22Aが閉作動して第3接続流路19C、第2接続流路19BとタンクTとの間を遮断する第1状態から、第3電磁弁22C、第2電磁弁22Bが開作動して第4接続流路19D、第3接続流路19CとタンクTとの間を連通すると共に、第1電磁弁22Aが閉作動して第2接続流路19BとタンクTとの間を遮断する第2状態へと移行する。最終形態では第1〜第3電磁弁22A〜22Cが開作動して第2〜第4接続流路19B〜19DとタンクTとの間を連通する。そして、外歯歯車4を回転駆動する回転数の上昇に応じて、初期形態から中間形態を経て最終形態へ切換自在にする。   An initial configuration in which all the first to fourth discharge ports 18A, 18B, 18C, and 18D are connected to the same load side, and one first discharge port 18A is connected to the load side and the remaining second and second 3. The final form in which the fourth discharge ports 18B, 18C, 18D are disconnected from the load side and connected to the tank T, and the discharge port that is disconnected from the load side and connected to the tank T between the initial form and the final form The third discharge port 18C and the second discharge port 18B are sequentially added to the fourth discharge port 18D to increase the intermediate form. In the initial configuration, all the electromagnetic valves 22A, 22B, and 22C are closed to shut off the second to fourth connection flow paths 19B to 19D and the tank T. In the intermediate configuration, the third electromagnetic valve 22C is opened to communicate between the fourth connection flow path 19D and the tank T, and the second electromagnetic valve 22B and the first electromagnetic valve 22A are closed to operate the third connection flow. From the first state in which the path 19C and the second connection flow path 19B are disconnected from the tank T, the third electromagnetic valve 22C and the second electromagnetic valve 22B are opened to operate the fourth connection flow path 19D and the third connection flow. While communicating between the path 19C and the tank T, the first electromagnetic valve 22A is closed to shift to the second state in which the connection between the second connection flow path 19B and the tank T is blocked. In the final form, the first to third electromagnetic valves 22A to 22C are opened to communicate between the second to fourth connection flow paths 19B to 19D and the tank T. And according to the raise of the rotation speed which rotationally drives the external gear 4, it makes it possible to switch from the initial form to the final form through the intermediate form.

作動は、タンクTの油が吸入ポート11より吸入域空間Sで容積を増大するポンプ室Vに吸入されて最大容積空間Mを経て吐出域空間Pに搬送され、吐出域空間Pでポンプ室V1〜V4が容積を減少することで4個の吐出ポート18A、18B、18C、18Dより吐出する。   In operation, the oil in the tank T is sucked into the pump chamber V whose volume is increased in the suction area space S from the suction port 11 and is conveyed to the discharge area space P through the maximum volume space M, and the pump chamber V1 in the discharge area space P. -V4 discharges from four discharge ports 18A, 18B, 18C, 18D by reducing the volume.

いま、外歯歯車4の回転数が、図4(A)に示す第1設定値A1(1500rpm)に達するまでは初期形態で、第1〜第3電磁弁22A〜22Cがともに閉作動状態で、第1〜第4の全ての吐出ポート18A〜18Dから吐出した油が合流して負荷側に供給される。そして、回転数の上昇に伴い、図4(A)(B)に示す如き、吐出量および外歯歯車4を回転駆動する回転駆動力が増加する。   Now, until the rotational speed of the external gear 4 reaches the first set value A1 (1500 rpm) shown in FIG. 4 (A), the first to third solenoid valves 22A to 22C are all in the closed operation state. The oil discharged from all the first to fourth discharge ports 18A to 18D merges and is supplied to the load side. As the rotational speed increases, the discharge amount and the rotational driving force for rotationally driving the external gear 4 increase as shown in FIGS.

いま、外歯歯車4の回転数が第1設定値A1に達すると、中間形態の第1状態となり、第3電磁弁22Cが開作動すると共に、第2電磁弁22B、第1電磁弁22Aは閉作動状態を維持し、第1〜第3の吐出ポート18A〜18Cから吐出した油が合流して負荷側に供給され、回転数の上昇に伴い吐出量が増加する。このとき、第4の吐出ポート18Dから吐出した油は第3排出流路21Cを流れてタンクTに排出される。そして、吐出量および回転駆動力は、図4(A)(B)に示す如き、第1設定値A1で第4の吐出ポート18Dから吐出する油がタンクTに排出されることで低減し、この後、回転数の上昇に伴い増加する。   Now, when the rotational speed of the external gear 4 reaches the first set value A1, the first state of the intermediate form is entered, the third electromagnetic valve 22C is opened, and the second electromagnetic valve 22B and the first electromagnetic valve 22A are The closed operation state is maintained, the oil discharged from the first to third discharge ports 18A to 18C merges and is supplied to the load side, and the discharge amount increases as the rotational speed increases. At this time, the oil discharged from the fourth discharge port 18D flows through the third discharge passage 21C and is discharged to the tank T. The discharge amount and the rotational driving force are reduced by discharging the oil discharged from the fourth discharge port 18D to the tank T at the first set value A1, as shown in FIGS. Thereafter, it increases as the rotational speed increases.

いま、外歯歯車4の回転数が第2設定値B1(2500rpm)に達すると、中間形態の第2状態となり、第3、第2電磁弁22C、22Bが開作動すると共に、第1電磁弁22Aは閉作動状態を維持し、第1、第2の吐出ポート18A、18Bから吐出した油が合流して負荷側に供給され、回転数の上昇に伴い吐出量が増加する。このとき、第4、第3の吐出ポート18D、18Cから吐出した油は第3、第2排出流路21C、21Bを流れてタンクTに排出される。そして、吐出量および回転駆動力は、図4(A)(B)に示す如き、第2設定値B1で第4の吐出ポート18Dから吐出する油に加え第3の吐出ポート18Cから吐出する油がタンクTに排出されることで低減し、この後、回転数の上昇に伴い増加する。   Now, when the rotation speed of the external gear 4 reaches the second set value B1 (2500 rpm), the second state of the intermediate configuration is entered, and the third and second electromagnetic valves 22C and 22B are opened and the first electromagnetic valve is operated. 22A maintains the closed operation state, the oil discharged from the first and second discharge ports 18A, 18B merges and is supplied to the load side, and the discharge amount increases as the rotational speed increases. At this time, the oil discharged from the fourth and third discharge ports 18D and 18C flows through the third and second discharge passages 21C and 21B and is discharged to the tank T. The discharge amount and the rotational driving force are oil discharged from the third discharge port 18C in addition to the oil discharged from the fourth discharge port 18D at the second set value B1, as shown in FIGS. Is reduced by being discharged into the tank T, and thereafter increases with an increase in the rotational speed.

いま、外歯歯車4の回転数が第3設定値C1(4000rpm)に達すると、最終形態となり、全ての電磁弁22C〜22Aが開作動し、第4〜第2の吐出ポート18D〜18Bから吐出した油はタンクTに排出され、第1の吐出ポート18Aから吐出した油のみが負荷側に供給される。吐出量および回転駆動力は、図4(A)(B)示す如き、第3設定値C1で第4、第3の吐出ポート18D、18Bから吐出する油に加え第2の吐出ポート18Bから吐出する油がタンクTに排出されることで低減し、この後、回転数の上昇に伴い増加する。   Now, when the rotation speed of the external gear 4 reaches the third set value C1 (4000 rpm), the final form is reached, and all the solenoid valves 22C to 22A are opened, and the fourth to second discharge ports 18D to 18B are operated. The discharged oil is discharged to the tank T, and only the oil discharged from the first discharge port 18A is supplied to the load side. As shown in FIGS. 4A and 4B, the discharge amount and the rotational driving force are discharged from the second discharge port 18B in addition to the oil discharged from the fourth and third discharge ports 18D and 18B at the third set value C1. The oil to be discharged is reduced by being discharged to the tank T, and thereafter increases with an increase in the rotational speed.

かかる作動で、吐出域空間Pに連通して油を吐出する吐出ポート18A〜18Dを両歯車3、4の回転方向に離間して少なくとも3個としての4個を開口して設け、全ての吐出ポート18A〜18Dを同一の負荷側に接続する初期形態と、1つの吐出ポート18Aを負荷側に接続して残りの吐出ポート18B、18C、18Dを負荷側と遮断してタンクTに接続する最終形態と、初期形態と最終形態との間で負荷側と遮断してタンクTに接続する吐出ポートを第4の吐出ポート18D、第3の吐出ポート18Cと順次増加する中間形態を有し、外歯歯車4を回転駆動する回転数の上昇に応じて、初期形態から中間形態を経て最終形態へ切換自在にした。このため、外歯歯車4の回転数の上昇に応じて吐出ポート18A、18B、18C、18Dから吐出する油のタンクTへ還流する量を順次増加できるから、これと相反して吐出ポート18A、18B、18C、18Dから負荷側に送給する油の吐出量増加を十分に抑制でき、外歯歯車4の回転数の上昇に応じて外歯歯車4を回転駆動する駆動力の増加を十分に抑制することができる。   With this operation, the discharge ports 18A to 18D communicating with the discharge area space P and discharging oil are provided in the rotation direction of the two gears 3 and 4 so that at least four of them are opened and all the discharge ports are provided. An initial configuration in which the ports 18A to 18D are connected to the same load side, and a final discharge state in which one discharge port 18A is connected to the load side and the remaining discharge ports 18B, 18C, 18D are disconnected from the load side and connected to the tank T. And an intermediate configuration in which the discharge port connected to the tank T is disconnected from the load side between the initial configuration and the final configuration and the fourth discharge port 18D and the third discharge port 18C are sequentially increased, In accordance with an increase in the rotational speed for rotating the toothed gear 4, the initial form can be switched to the final form through the intermediate form. For this reason, the amount of oil recirculated from the discharge ports 18A, 18B, 18C, 18D to the tank T can be sequentially increased as the rotational speed of the external gear 4 increases, so that the discharge ports 18A, 18B, 18C, 18D can sufficiently suppress an increase in the amount of oil delivered to the load side, and sufficiently increase the driving force for driving the external gear 4 to rotate in response to an increase in the rotational speed of the external gear 4. Can be suppressed.

また、吐出ポート18A〜18Dの個数は4個以上で吐出域空間Pに位置するポンプ室V1〜V4の個数と同数とした。このため、吐出ポート18A〜18Dから吐出する液体のタンクTへ還流する量をより高回転域まで外歯歯車4の回転数の上昇に応じて順次増加できるから、これと相反して吐出ポート18A〜18Dから負荷側に送給する液体の吐出量増加をより高回転域まで十分に抑制でき、外歯歯車4の回転数の上昇に応じて外歯歯車4を回転駆動する駆動力の増加をより高回転域まで十分に抑制することができる。   The number of discharge ports 18A to 18D is four or more, and is the same as the number of pump chambers V1 to V4 located in the discharge area space P. For this reason, the amount of the liquid discharged from the discharge ports 18A to 18D to be returned to the tank T can be sequentially increased as the rotational speed of the external gear 4 increases to a higher rotation range. The increase in the discharge amount of the liquid fed from 18D to the load side can be sufficiently suppressed to a higher rotation range, and an increase in the driving force for rotationally driving the external gear 4 according to the increase in the rotational speed of the external gear 4 can be increased. It is possible to sufficiently suppress even a higher rotation range.

図5は本発明のさらに他の実施形態を示し、前述の各実施形態と同一個所には同符号を付して説明を省略し、異なる個所についてのみ説明する。
内歯歯車31は、12個の内歯31Aを有している。外歯歯車41は、内歯31Aと内接噛み合いする11個の外歯41Aを有し、内歯31Aより1個少ない。吐出域空間Pには最大容積空間M側から最小容積空間N側に向けて順次容積を減少する5個の第1〜第5のポンプ室V1〜V5を位置している。また、吐出域空間Pに連通する5個の第1〜第5の吐出ポート23A、23B、23C、23D、23Eをポンプハウジング1の収容孔2の底面に、両歯車31、41の回転方向Aに離間して窪み形成して開口し、第1〜第5の吐出ポート23A〜23Eはそれぞれ第1〜第5のポンプ室V1〜V5に接続している。そして、第1の吐出ポート23Aは第1接続流路24Aを介して負荷側に接続し、第2〜第5の吐出ポート23B〜23Eはそれぞれ第1接続流路24Aに分岐接続する第2〜第5接続流路24B〜24Eを介して負荷側に接続している。
FIG. 5 shows still another embodiment of the present invention. The same portions as those of the above-described embodiments are denoted by the same reference numerals, description thereof is omitted, and only different portions will be described.
The internal gear 31 has 12 internal teeth 31A. The external gear 41 has 11 external teeth 41A that are in mesh with the internal teeth 31A, and is one fewer than the internal teeth 31A. In the discharge area space P, five first to fifth pump chambers V1 to V5 whose volumes are sequentially reduced from the maximum volume space M side to the minimum volume space N side are located. Further, the five first to fifth discharge ports 23A, 23B, 23C, 23D, and 23E communicating with the discharge area space P are provided on the bottom surface of the housing hole 2 of the pump housing 1, and the rotational direction A of both the gears 31 and 41 is set. The first to fifth discharge ports 23A to 23E are connected to the first to fifth pump chambers V1 to V5, respectively. The first discharge port 23A is connected to the load side via the first connection flow path 24A, and the second to fifth discharge ports 23B to 23E are branched to the first connection flow path 24A, respectively. It is connected to the load side via the fifth connection flow paths 24B to 24E.

第2〜第5接続流路24B〜24Eには第1〜第4の逆止め弁25A〜25Dを配設し、第2〜第5の吐出ポート23B〜23Eから第1接続流路24Aへの流れを許容すると共に、第1接続流路24Aから第2〜第5の吐出ポート23B〜23Eへの流れを阻止する向きに設けている。また、第2〜第5接続流路24B〜24Eには各逆止め弁25A〜25Dの配設箇所より各吐出ポート23B〜23E側に第1〜第4排出流路26A〜26Dを接続し、各排出流路21A〜21CよりタンクTに接続している。第1〜第4排出流路26A〜26Dには第1〜第4電磁弁27A〜27Dを配設し、通電により開作動して各接続流路24B〜24EとタンクTとの間を連通すると共に、非通電により閉作動して各接続流路24B〜24EとタンクTとの間を遮断する。   The first to fourth check valves 25A to 25D are disposed in the second to fifth connection flow paths 24B to 24E, and the second to fifth discharge ports 23B to 23E are connected to the first connection flow path 24A. While permitting the flow, it is provided in a direction to prevent the flow from the first connection flow path 24A to the second to fifth discharge ports 23B to 23E. In addition, the first to fourth discharge flow paths 26A to 26D are connected to the discharge ports 23B to 23E from the locations where the check valves 25A to 25D are disposed in the second to fifth connection flow paths 24B to 24E, Each discharge channel 21A to 21C is connected to the tank T. The first to fourth discharge channels 26A to 26D are provided with first to fourth solenoid valves 27A to 27D, which are opened by energization to communicate between the connection channels 24B to 24E and the tank T. At the same time, it is closed by non-energization to shut off the connection flow paths 24B to 24E and the tank T.

5個の全ての吐出ポート23A〜23Eを同一の負荷側に接続する初期形態と、1つの第1の吐出ポート24Aを負荷側に接続して残りの第2〜第5の吐出ポート23B〜23Eを負荷側と遮断してタンクTに接続する最終形態と、初期形態と最終形態との間で負荷側と遮断してタンクTに接続する吐出ポートを第5の吐出ポート23Eに第4の吐出ポート23Bと第3の吐出ポート23Cと第2の吐出ポート23Bを順次加えて増加する中間形態を有している。初期形態では全ての電磁弁27A〜27Dが閉作動して第2〜第5接続流路24B〜24EとタンクTとの間を遮断する。中間形態では第4電磁弁27Dが開作動して第5接続流路24EとタンクTとの間を連通すると共に、第3電磁弁27C〜第1電磁弁27Aが閉作動して第4接続流路24D〜第2接続流路24BとタンクTとの間を遮断する第1状態から、第4電磁弁27D、第3電磁弁27Cが開作動して第5接続流路24E、第4接続流路24DとタンクTとの間を連通すると共に、第2電磁弁27B、第1電磁弁27Aが閉作動して第3接続流路24C、第2接続流路24BとタンクTとの間を遮断する第2状態へ移行し、さらに、第4電磁弁27D〜第2電磁弁27Bが開作動して第5接続流路24E〜第3接続流路24CとタンクTとの間を連通すると共に、第1電磁弁27Aが閉作動して第2接続流路24BとタンクTとの間を遮断する第3状態へと移行する。最終形態では第1〜第4電磁弁27A〜27Dが開作動して第2〜第5接続流路24B〜24EとタンクTとの間を連通する。そして、外歯歯車41を回転駆動する回転数の上昇に応じて、初期形態から中間形態を経て最終形態へ切換自在にする。   An initial configuration in which all five discharge ports 23A to 23E are connected to the same load side, and one second discharge port 24A to the load side and the remaining second to fifth discharge ports 23B to 23E. And the discharge port connected to the tank T between the initial form and the final form and connected to the tank T between the initial form and the final form is connected to the fifth discharge port 23E as the fourth discharge. It has an intermediate configuration in which the port 23B, the third discharge port 23C, and the second discharge port 23B are sequentially added and increased. In the initial configuration, all the solenoid valves 27A to 27D are closed to shut off the second to fifth connection flow paths 24B to 24E and the tank T. In the intermediate configuration, the fourth solenoid valve 27D is opened to communicate between the fifth connection flow path 24E and the tank T, and the third solenoid valve 27C to the first solenoid valve 27A are closed to actuate the fourth connection flow. From the first state in which the path 24D to the second connection flow path 24B and the tank T are blocked, the fourth solenoid valve 27D and the third solenoid valve 27C are opened to operate the fifth connection flow path 24E and the fourth connection flow. The channel 24D communicates with the tank T, and the second solenoid valve 27B and the first solenoid valve 27A are closed to shut off the third connection channel 24C, the second connection channel 24B, and the tank T. The second electromagnetic valve 27D to the second electromagnetic valve 27B are opened to communicate between the fifth connection flow path 24E to the third connection flow path 24C and the tank T, and A third shape in which the first electromagnetic valve 27A is closed to shut off the connection between the second connection flow path 24B and the tank T. To migrate to. In the final configuration, the first to fourth electromagnetic valves 27A to 27D are opened to communicate between the second to fifth connection flow paths 24B to 24E and the tank T. And according to the raise of the rotation speed which rotationally drives the external gear 41, it can be switched to a final form from an initial form through an intermediate form.

作動は、タンクTの油が吸入ポート11より吸入域空間Sで容積を増大するポンプ室Vに吸入されて最大容積空間Mを経て吐出域空間Pに搬送され、吐出域空間Pでポンプ室V1〜V5が容積を減少することで5個の吐出ポート23A〜23Eより吐出する。   In operation, the oil in the tank T is sucked into the pump chamber V whose volume is increased in the suction area space S from the suction port 11 and is conveyed to the discharge area space P through the maximum volume space M, and the pump chamber V1 in the discharge area space P. -V5 discharges from five discharge ports 23A-23E by reducing the volume.

いま、外歯歯車41の回転数が、図6(A)に示す第1設定値A2(1200rpm)に達するまでは初期形態で、第1〜第4電磁弁27A〜27Dがともに閉作動状態で、第1〜第5の全ての吐出ポート23A〜23Eから吐出した油が合流して負荷側に供給される。そして、回転数の上昇に伴い、図6(A)(B)に示す如き、吐出量および外歯歯車41を回転駆動する回転駆動力が増加する。   Now, until the rotational speed of the external gear 41 reaches the first set value A2 (1200 rpm) shown in FIG. 6A, the first to fourth solenoid valves 27A to 27D are all in the closed operation state. The oil discharged from all the first to fifth discharge ports 23A to 23E merges and is supplied to the load side. As the rotational speed increases, as shown in FIGS. 6A and 6B, the discharge amount and the rotational driving force for rotationally driving the external gear 41 increase.

いま、外歯歯車41の回転数が第1設定値A2に達すると、中間形態の第1状態となり、第4電磁弁27Dが開作動すると共に、第3電磁弁27C〜第1電磁弁27Aは閉作動状態を維持し、第1〜第4の吐出ポート23A〜23Dから吐出した油が合流して負荷側に供給され、回転数の上昇に伴い吐出量が増加する。このとき、第5の吐出ポート23Eから吐出した油は第4排出流路26Dを流れてタンクTに排出される。そして、吐出量および回転駆動力は、図6(A)(B)に示す如き、第1設定値A2で第5の吐出ポート23Eから吐出する油がタンクTに排出されることで低減し、この後、回転数の上昇に伴い増加する。   Now, when the rotation speed of the external gear 41 reaches the first set value A2, the first state of the intermediate form is entered, the fourth electromagnetic valve 27D is opened, and the third electromagnetic valve 27C to the first electromagnetic valve 27A are The closed operation state is maintained, and the oil discharged from the first to fourth discharge ports 23A to 23D merges and is supplied to the load side, and the discharge amount increases as the rotational speed increases. At this time, the oil discharged from the fifth discharge port 23E flows through the fourth discharge flow path 26D and is discharged to the tank T. The discharge amount and the rotational driving force are reduced by discharging the oil discharged from the fifth discharge port 23E to the tank T at the first set value A2, as shown in FIGS. Thereafter, it increases as the rotational speed increases.

いま、外歯歯車41の回転数が第2設定値B2(2000rpm)に達すると、中間形態の第2状態となり、第4、第3電磁弁27D、27Cが開作動すると共に、第2、第1電磁弁27B、27Aは閉作動状態を維持し、第1〜第3の吐出ポート23A〜23Cから吐出した油が合流して負荷側に供給され、回転数の上昇に伴い吐出量が増加する。このとき、第5、第4の吐出ポート23E、23Dから吐出した油は第4、第3排出流路26D、26Cを流れてタンクTに排出される。そして、吐出量および回転駆動力は、図6(A)(B)に示す如き、第2設定値B2で第5の吐出ポート23Eから吐出する油に加え第4の吐出ポート23Dから吐出する油がタンクTに排出されることで低減し、この後、回転数の上昇に伴い増加する。   Now, when the rotational speed of the external gear 41 reaches the second set value B2 (2000 rpm), the second state of the intermediate form is entered, the fourth and third electromagnetic valves 27D and 27C are opened, and the second and second 1 Solenoid valves 27B and 27A maintain a closed operation state, the oil discharged from the first to third discharge ports 23A to 23C merges and is supplied to the load side, and the discharge amount increases as the rotational speed increases. . At this time, the oil discharged from the fifth and fourth discharge ports 23E and 23D flows through the fourth and third discharge passages 26D and 26C and is discharged to the tank T. The discharge amount and the rotational driving force are oil discharged from the fourth discharge port 23D in addition to oil discharged from the fifth discharge port 23E at the second set value B2, as shown in FIGS. Is reduced by being discharged into the tank T, and thereafter increases with an increase in the rotational speed.

いま、外歯歯車41の回転数が第3設定値C2(2900rpm)に達すると、中間形態の第3状態となり、第4〜第2電磁弁27D〜27Bが開作動すると共に、第1電磁弁27Aは閉作動状態を維持し、第1、第2の吐出ポート23A、23Bから吐出した油が合流して負荷側に供給され、回転数の上昇に伴い吐出量が増加する。このとき、第5〜第3の吐出ポート23E〜23Cから吐出した油は第4〜第2排出流路26D〜26Bを流れてタンクTに排出される。そして、吐出量および回転駆動力は、図6(A)(B)に示す如き、第3設定値C2で第5、第4の吐出ポート23E、23Dから吐出する油に加え第3の吐出ポート23Cから吐出する油がタンクTに排出されることで低減し、この後、回転数の上昇に伴い増加する。   Now, when the rotation speed of the external gear 41 reaches the third set value C2 (2900 rpm), the third state of the intermediate form is entered, and the fourth to second solenoid valves 27D to 27B are opened and the first solenoid valve is operated. 27A maintains a closed operation state, the oil discharged from the first and second discharge ports 23A and 23B merges and is supplied to the load side, and the discharge amount increases as the rotational speed increases. At this time, the oil discharged from the fifth to third discharge ports 23E to 23C flows through the fourth to second discharge passages 26D to 26B and is discharged to the tank T. As shown in FIGS. 6A and 6B, the discharge amount and the rotational driving force are set to the third discharge port in addition to the oil discharged from the fifth and fourth discharge ports 23E and 23D at the third set value C2. The oil discharged from 23C is reduced by being discharged into the tank T, and thereafter increases with an increase in the rotational speed.

いま、外歯歯車4の回転数が第4設定値D2(4000rpm)に達すると、最終形態となり、全ての電磁弁27D〜27Aが開作動し、第5〜第2の吐出ポート23E〜23Bから吐出した油はタンクTに排出され、第1の吐出ポート23Aから吐出した油のみが負荷側に供給される。吐出量および回転駆動力は、図6(A)(B)示す如き、第4設定値D2で第5〜第3の吐出ポート23E〜23Cから吐出する油に加え第2の吐出ポート23Bから吐出する油がタンクTに排出されることで低減し、この後、回転数の上昇に伴い増加する。   Now, when the rotation speed of the external gear 4 reaches the fourth set value D2 (4000 rpm), the final form is reached, all the solenoid valves 27D to 27A are opened, and the fifth to second discharge ports 23E to 23B are operated. The discharged oil is discharged to the tank T, and only the oil discharged from the first discharge port 23A is supplied to the load side. The discharge amount and the rotational driving force are discharged from the second discharge port 23B in addition to the oil discharged from the fifth to third discharge ports 23E to 23C at the fourth set value D2, as shown in FIGS. The oil to be discharged is reduced by being discharged to the tank T, and thereafter increases with an increase in the rotational speed.

かかる作動で、前述の各実施形態と同様に、外歯歯車41の回転数の上昇に応じて吐出ポート23A、23B、23C、23D、23Eから吐出する液体のタンクTへ還流する量を順次増加できるから、これと相反して吐出ポート23A、23B、23C、23D、23Eから負荷側に送給する油の吐出量増加を十分に抑制でき、外歯歯車41の回転数の上昇に応じて外歯歯車41を回転駆動する駆動力の増加を十分に抑制することができる。   With this operation, the amount of liquid recirculated from the discharge ports 23A, 23B, 23C, 23D, and 23E to the tank T of the liquid is sequentially increased as the rotational speed of the external gear 41 increases as in the above-described embodiments. Therefore, contrary to this, an increase in the amount of oil discharged from the discharge ports 23A, 23B, 23C, 23D, and 23E to the load side can be sufficiently suppressed, and the external speed increases as the rotational speed of the external gear 41 increases. An increase in driving force for rotationally driving the toothed gear 41 can be sufficiently suppressed.

また、吐出ポート23A〜23Eの個数は4個以上の5個で、吐出域空間Pに位置するポンプ室V1〜V5の個数と同数とした。このため、吐出ポート23A〜23Eから吐出する油のタンクTへ還流する量をより一層高回転域まで外歯歯車41の回転数の上昇に応じて順次増加できるから、これと相反して吐出ポート23A〜23Eから負荷側に送給する油の吐出量増加をより一層高回転域まで十分に抑制でき、外歯歯車41の回転数の上昇に応じて外歯歯車41を回転駆動する駆動力の増加をより高回転域まで十分に抑制することができる。   The number of discharge ports 23A to 23E is four, five or more, and is the same as the number of pump chambers V1 to V5 located in the discharge area space P. For this reason, the amount of oil returned from the discharge ports 23A to 23E to the tank T can be increased in sequence as the rotational speed of the external gear 41 is increased to a higher rotation range. The increase in the discharge amount of oil fed from 23A to 23E to the load side can be sufficiently suppressed to a higher rotational speed range, and the driving force for rotationally driving the external gear 41 as the rotational speed of the external gear 41 increases. The increase can be sufficiently suppressed to a higher rotation range.

なお、一実施形態では、吐出ポート13A〜13Cを3個設け、他の実施形態では、吐出ポート18A〜18Dを4個設け、さらに他の実施形態では、吐出ポート23A〜23Eを5個設けたが、これらに限定されるものではなく、吐出ポートは少なくとも3個以上であれば、用途に応じて6個や7個であっても良いことは勿論である。   In one embodiment, three discharge ports 13A to 13C are provided, in another embodiment, four discharge ports 18A to 18D are provided, and in another embodiment, five discharge ports 23A to 23E are provided. However, the present invention is not limited to these, and it is a matter of course that the number of discharge ports may be six or seven as long as it is at least three or more.

1:ポンプハウジング
2:収容孔
3、31:内歯歯車
3A、31A:内歯
4、41:外歯歯車
4A、41A:外歯
11:吸入ポート
13A、13B、13C、18A、18B、18C、18D、23A、23B、23 C、23D、23E:吐出ポート
S:吸入域空間
P:吐出域空間
V、V1、V2、V3、V4、V5:ポンプ室
1: pump housing 2: accommodation hole 3, 31: internal gear 3A, 31A: internal gear 4, 41: external gear 4A, 41A: external gear 11: suction port 13A, 13B, 13C, 18A, 18B, 18C, 18D, 23A, 23B, 23C, 23D, 23E: Discharge port S: Suction area space P: Discharge area space V, V1, V2, V3, V4, V5: Pump chamber

Claims (2)

ポンプハウジングの収容孔に内歯を有するリング状の内歯歯車を回転自在に収容し、内歯歯車の内歯と内接噛み合いする外歯を有する外歯歯車を内歯歯車の内部に偏心して収容し、外歯歯車は駆動軸で回転駆動され、両歯車間には両歯車の回転により両歯間の噛み合い隙間が増加する領域に吸入域空間を形成し、両歯車の回転により両歯間の噛み合い隙間が減少する領域に吐出域空間を形成し、内歯歯車の内歯と外歯歯車の外歯とによりポンプ室を区画形成し、ポンプ室は両歯車の回転により吸入域空間で容積を増加すると共に、吐出域空間で容積を減少して設け、収容孔に収容した両歯車の側面が摺接するポンプハウジングの摺接面には、吸入域空間に連通して液体を吸入する吸入ポートを開口すると共に、吐出域空間に連通して液体を吐出する吐出ポートを両歯車の回転方向に離間して少なくとも3個を開口して設け、全ての吐出ポートを同一の負荷側に接続する初期形態と、1つの吐出ポートを負荷側に接続して残りの吐出ポートを負荷側と遮断して低圧側に接続する最終形態と、初期形態と最終形態との間で負荷側と遮断して低圧側に接続する吐出ポートを順次増加する中間形態を有し、外歯歯車を回転駆動する回転数の上昇に応じて、初期形態から中間形態を経て最終形態へ切換自在にしたことを特徴とする内接歯車ポンプ。   A ring-shaped internal gear having internal teeth is rotatably accommodated in the housing hole of the pump housing, and the external gear having external teeth that are in mesh with the internal teeth of the internal gear is eccentric to the internal gear. The external gear is driven to rotate by the drive shaft, and a suction area space is formed between the two gears in the region where the meshing gap between the two teeth increases due to the rotation of the two gears. A discharge area space is formed in an area where the meshing clearance of the internal gear decreases, and a pump chamber is defined by the internal teeth of the internal gear and the external teeth of the external gear, and the pump chamber has a volume in the suction area space by the rotation of both gears. And a suction port for sucking liquid in communication with the suction area space on the sliding contact surface of the pump housing where the side surfaces of both gears received in the accommodation hole are in sliding contact with each other. At the same time as communicating with the discharge area space. Disposed at least three discharge ports that are spaced apart in the rotational direction of both gears, and an initial configuration in which all discharge ports are connected to the same load side, and one discharge port is connected to the load side and remains A final configuration in which the discharge port is disconnected from the load side and connected to the low pressure side, and an intermediate configuration in which the discharge port that is disconnected from the load side and connected to the low pressure side is sequentially increased between the initial configuration and the final configuration. An internal gear pump characterized in that the internal gear pump can be switched from the initial configuration to the final configuration in response to an increase in the rotational speed for rotationally driving the external gear. 前記吐出ポートの個数は、4個以上で前記吐出域空間に位置する前記ポンプ室の個数と同数としたことを特徴とする請求項1に記載の内接歯車ポンプ。
The internal gear pump according to claim 1, wherein the number of the discharge ports is four or more and is equal to the number of the pump chambers located in the discharge area space.
JP2012259936A 2012-11-28 2012-11-28 Internal gear pump Active JP6144039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012259936A JP6144039B2 (en) 2012-11-28 2012-11-28 Internal gear pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012259936A JP6144039B2 (en) 2012-11-28 2012-11-28 Internal gear pump

Publications (2)

Publication Number Publication Date
JP2014105648A true JP2014105648A (en) 2014-06-09
JP6144039B2 JP6144039B2 (en) 2017-06-07

Family

ID=51027367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259936A Active JP6144039B2 (en) 2012-11-28 2012-11-28 Internal gear pump

Country Status (1)

Country Link
JP (1) JP6144039B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191315A (en) * 2015-03-30 2016-11-10 富士重工業株式会社 Oil pump
JP2016191313A (en) * 2015-03-30 2016-11-10 富士重工業株式会社 Oil pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240166A (en) * 1992-02-28 1993-09-17 Toyooki Kogyo Co Ltd Internal gear pump
JPH05263770A (en) * 1992-03-24 1993-10-12 Unisia Jecs Corp Oil pump
JPH0617765A (en) * 1992-03-20 1994-01-25 Siegfried A Eisenmann Suction control type ring gear pump
JPH0742443U (en) * 1993-12-28 1995-08-04 株式会社ユニシアジェックス Inscribed oil pump
JPH09126153A (en) * 1995-10-30 1997-05-13 Aisin Seiki Co Ltd Oil pump device
US5722815A (en) * 1995-08-14 1998-03-03 Stackpole Limited Three stage self regulating gerotor pump
JP2003328959A (en) * 2003-06-13 2003-11-19 Hitachi Unisia Automotive Ltd Oil pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240166A (en) * 1992-02-28 1993-09-17 Toyooki Kogyo Co Ltd Internal gear pump
JPH0617765A (en) * 1992-03-20 1994-01-25 Siegfried A Eisenmann Suction control type ring gear pump
JPH05263770A (en) * 1992-03-24 1993-10-12 Unisia Jecs Corp Oil pump
JPH0742443U (en) * 1993-12-28 1995-08-04 株式会社ユニシアジェックス Inscribed oil pump
US5722815A (en) * 1995-08-14 1998-03-03 Stackpole Limited Three stage self regulating gerotor pump
JPH09126153A (en) * 1995-10-30 1997-05-13 Aisin Seiki Co Ltd Oil pump device
JP2003328959A (en) * 2003-06-13 2003-11-19 Hitachi Unisia Automotive Ltd Oil pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191315A (en) * 2015-03-30 2016-11-10 富士重工業株式会社 Oil pump
JP2016191313A (en) * 2015-03-30 2016-11-10 富士重工業株式会社 Oil pump

Also Published As

Publication number Publication date
JP6144039B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP5104656B2 (en) Variable displacement rotary pump
JP2009191754A (en) Variable displacement gear pump
JP6144039B2 (en) Internal gear pump
JP2010014101A (en) Multiple vane pump
JP2012002189A (en) Internal gear type oil pump for vehicle
US10451060B2 (en) Positive displacement pump having multiple operating stages
JP2010025266A (en) Hydraulic pump
JPH05263770A (en) Oil pump
WO2014171567A1 (en) Silent gear pump suppressing tooth contact noise
JP2003328959A (en) Oil pump
JP2009127569A (en) Internal gear pump
JP6220025B2 (en) Dual pump system
WO2010095505A1 (en) Internal gear pump
WO2016194933A1 (en) Pump device
JP6193068B2 (en) Double-rotating double internal gear pump
KR20080022584A (en) Internal gear pump
JP5469875B2 (en) Internal gear pump
JP2009228642A (en) Oil pump
KR20160083386A (en) Double Rows Phase Displacement type External Gear Pump and Hydraulic System thereby
JP2020051331A (en) Internal gear pump
JP5540925B2 (en) Vane pump
KR101684108B1 (en) Oil pump for car engine
JP2014234771A (en) Internal gear pump
JP2010053692A (en) Variable displacement rotary pump
JP6470612B2 (en) Oil pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170510

R150 Certificate of patent or registration of utility model

Ref document number: 6144039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350