JP2014105347A - 水電解システム及びその排水方法 - Google Patents

水電解システム及びその排水方法 Download PDF

Info

Publication number
JP2014105347A
JP2014105347A JP2012257742A JP2012257742A JP2014105347A JP 2014105347 A JP2014105347 A JP 2014105347A JP 2012257742 A JP2012257742 A JP 2012257742A JP 2012257742 A JP2012257742 A JP 2012257742A JP 2014105347 A JP2014105347 A JP 2014105347A
Authority
JP
Japan
Prior art keywords
water
pressure
drainage
liquid
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012257742A
Other languages
English (en)
Inventor
Daisuke Kurashina
大輔 倉品
Masanori Okabe
昌規 岡部
Koji Nakazawa
孝治 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012257742A priority Critical patent/JP2014105347A/ja
Publication of JP2014105347A publication Critical patent/JP2014105347A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】簡単な構成及び工程で、高圧水が作用する開閉弁の制御回数を可及的に削減し、前記開閉弁の耐久性を向上させることを可能にする。
【解決手段】水電解システム10は、高圧水素を発生させる高圧水電解装置12と、前記高圧水素を気液分離する高圧気液分離装置22と、分離された高圧液状水を排出する高圧排水ライン26と、前記高圧排水ライン26に配設される可変圧損発生部94及び電磁弁96と、コントローラ28とを備える。コントローラ28は、液状水の注水速度を検知する注水速度検知機構98、前記液状水の排水速度を設定する排水速度設定機構100、及び可変圧損発生部94の開度を調整する開度調整機構102とを有する。
【選択図】図1

Description

本発明は、高圧水素を発生させる高圧水電解装置と、前記高圧水素を気液分離する高圧気液分離装置と、前記高圧気液分離装置で分離された液状水を排出する排水ラインと、前記排水ラインに配設され、開度が調整されることにより排水流量を可変させる可変圧損発生部と、前記排水ラインに、前記可変圧損発生部よりも下流に配設される開閉弁と、を備える水電解システム及びその排水方法に関する。
一般的に、燃料電池の発電反応に使用される燃料ガスとして、水素が使用されている。この水素は、例えば、水電解装置により製造されている。水電解装置は、水を分解して水素(及び酸素)を発生させるため、固体高分子電解質膜(イオン交換膜)を用いている。固体高分子電解質膜の両面には、電極触媒層が設けられて電解質膜・電極構造体が構成されるとともに、前記電解質膜・電極構造体の両側には、給電体を配設して単位セルが構成されている。
そこで、複数の単位セルが積層されたセルユニットには、積層方向両端に電圧が付与されるとともに、アノード側の給電体に水が供給される。このため、電解質膜・電極構造体のアノード側では、水が電気分解されて水素イオン(プロトン)が生成され、この水素イオンが固体高分子電解質膜を透過してカソード側に移動し、電子と結合して水素が製造される。一方、アノード側では、水素と共に生成された酸素が、余剰の水を伴ってセルユニットから排出される。
例えば、特許文献1に開示されている水電解装置は、純水補給ラインから電解セルに達した純水を該電解セルにおいて電解して水素ガスと酸素ガスを生成し、該水素ガスと酸素ガスを、それぞれ水素分離タンクと酸素分離タンクを経て外部に排出している。
そして、酸素分離タンクに純水を補給する純水補給ラインには、熱交換器が設置され、前記酸素分離タンクから電解セルを経て該酸素分離タンクに至る純水循環ラインが形成されている。さらに、電解セルから水素分離タンクに至る水素供給ラインが設けられるとともに、前記水素分離タンクの底部から延びる純水排出ラインは、熱交換器を経て系外に達している。この純水排出ラインには、流量制御弁が配設されている。
特開2001−152378号公報
ところで、上記の水電解装置では、水素分離タンクの底部から延びる純水排出ラインには、流量制御弁が配設されており、前記水素分離タンク内の液状水は、前記流量制御弁を介して排水制御されている。
しかしながら、電解セルで高圧水素(例えば、70MPa以上の水素)が製造される場合、水素分離タンクから高圧の水が排出されるため、流量制御弁の入口側と出口側との圧力差が相当に大きくなってしまう。これにより、水位調整を行うために流量制御弁が開度調整される際、キャビテーション等が惹起され易く、前記流量制御弁が損傷して寿命が低下するという問題がある。
本発明は、この種の問題を解決するものであり、簡単な構成及び工程で、高圧水が作用する開閉弁の制御回数を可及的に削減し、前記開閉弁の耐久性を向上させることが可能な水電解システム及びその排水方法を提供することを目的とする。
本発明は、アノード側に供給される水を電気分解し、前記アノード側に酸素を、カソード側に前記酸素よりも高圧な高圧水素を、それぞれ発生させる高圧水電解装置と、前記高圧水電解装置から導出される前記高圧水素を、気液分離する高圧気液分離装置と、前記高圧気液分離装置で分離された液状水を排出する排水ラインと、前記排水ラインに配設され、開度が調整されることにより排水流量を可変させる可変圧損発生部と、前記排水ラインに、前記可変圧損発生部よりも下流に配設される開閉弁と、を備える水電解システム及びその排水方法に関するものである。
この水電解システムでは、高圧水電解装置から高圧気液分離装置に注水される液状水の注水速度を検知する注水速度検知機構と、検知された前記注水速度に基づいて、前記高圧気液分離装置から排出される前記液状水の排水速度を設定する排水速度設定機構と、設定された前記排水速度に基づいて、可変圧損発生部の開度を調整する開度調整機構と、を備えている。
また、この水電解システムの排水方法は、高圧水電解装置から高圧気液分離装置に注水される液状水の注水速度を検知する注水速度検知工程と、検知された前記注水速度に基づいて、前記高圧気液分離装置から排出される前記液状水の排水速度を設定する排水速度設定工程と、設定された前記排水速度に基づいて、可変圧損発生部の開度を調整する開度調整工程と、前記可変圧損発生部の開度が調整された後、開閉弁を開弁して前記高圧気液分離装置からの排水を行うとともに、水電解を継続する排水及び水電解工程と、を有している。
さらに、この排水方法では、注水速度検知工程は、高圧水電解装置のアノード側からカソード側に透過する透過水量に基づいて、注水速度を検知することが好ましい。
さらにまた、この排水方法では、開度調整工程は、注水速度と排水速度とが同一速度になるように、開度を調整することが好ましい。
また、この排水方法では、高圧気液分離装置内の水位を検知する水位検知工程を有し、排水及び水電解工程では、前記水位検知工程により前記水位が変化していると検知された際、開度を再度調整する開度再調整工程に移行することが好ましい。
さらに、この排水方法では、水位検知工程により水位が減少していると検知された際、前記水位の減少速度を算出する水位減少速度算出工程に移行するとともに、前記水位減少速度算出工程により算出された前記減少速度が、閾値以上である際、水電解を停止する緊急停止工程に移行することが好ましい。
本発明によれば、高圧気液分離装置に注水される液状水の注水速度に基づいて、前記高圧水電解装置から排出される前記液状水の排水速度が設定され、この排水速度に基づいて、可変圧損発生部の開度が調整されている。このため、高圧気液分離装置内の水位の調整が容易に遂行されるとともに、高圧な液状水が開閉弁のみにより直接排水されることを抑制することが可能になる。従って、キャビテーションの発生を抑制することができ、開閉弁の耐久性を向上させることが可能になる。
しかも、排水ラインに配設された開閉弁は、開閉回数を低減させることができる。これにより、簡単な構成及び工程で、高圧水が作用する開閉弁の制御回数を可及的に削減し、前記開閉弁の耐久性を向上させることが可能になる。
本発明の第1以降の実施形態に係る排水方法が適用される水電解システムの概略構成説明図である。 第1の実施形態に係る排水方法を説明するフローチャートである。 前記排水方法を説明する水位変動と電磁弁の開閉状態の関係図である。 可変圧損発生部の開度と排水速度との関係説明図である。 本発明の第2の実施形態に係る排水方法を説明するフローチャートである。 前記排水方法を説明する水位変動と電磁弁の開閉状態の関係図である。 本発明の第3の実施形態に係る排水方法を説明するフローチャートである。 本発明の第4の実施形態に係る排水方法を説明するフローチャートである。
図1に示すように、本発明の第1以降の実施形態に係る排水方法が適用される水電解システム10は、水(純水)を電気分解することによって酸素及び高圧水素(常圧である酸素圧力よりも高圧、例えば、1MPa〜70MPaの水素)を製造する高圧水電解装置(差圧式水電解装置)12と、前記高圧水電解装置12から排出される前記酸素及び余剰の水を分離し、前記水を貯留する水貯留装置14と、前記水貯留装置14に貯留される前記水を、前記高圧水電解装置12に循環させる水循環装置16と、前記水貯留装置14に市水から生成された純水を供給する水供給装置18と、前記高圧水電解装置12から高圧水素配管20に導出される前記高圧水素に含まれる液状水を除去(気液分離)する高圧気液分離装置22と、前記高圧気液分離装置22から液状水が分離された前記高圧水素を導出する高圧水素導出ライン24と、前記高圧気液分離装置22から高圧な液状水を排出する高圧排水ライン26と、コントローラ(制御装置)28とを備える。
高圧水電解装置12は、複数の単位セル30を積層したセルユニットを備える。単位セル30の積層方向一端には、ターミナルプレート32a、絶縁プレート34a及びエンドプレート36aが外方に向かって、順次、配設される。単位セル30の積層方向他端には、同様にターミナルプレート32b、絶縁プレート34b及びエンドプレート36bが外方に向かって、順次、配設される。エンドプレート36a、36b間は、一体的に締め付け保持される。
ターミナルプレート32a、32bの側部には、端子部38a、38bが外方に突出して設けられる。端子部38a、38bは、配線39a、39bを介して電解電源40に電気的に接続される。
単位セル30は、電解質膜・電極構造体42と、この電解質膜・電極構造体42を挟持するアノード側セパレータ44及びカソード側セパレータ46とを備える。電解質膜・電極構造体42は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜48と、前記固体高分子電解質膜48の両面に設けられるアノード側給電体50及びカソード側給電体52とを備える。
固体高分子電解質膜48の両面には、アノード電極触媒層50a及びカソード電極触媒層52aが形成される。アノード電極触媒層50aは、例えば、Ru(ルテニウム)系触媒を使用する一方、カソード電極触媒層52aは、例えば、白金触媒を使用する。
単位セル30の外周縁部には、積層方向に互いに連通して、水(純水)を供給するための水供給連通孔56と、反応により生成された酸素及び未反応の水(混合流体)を排出するための排出連通孔58と、反応により生成された水素を流すための水素連通孔60とが設けられる。
アノード側セパレータ44の電解質膜・電極構造体42に対向する面には、水供給連通孔56及び排出連通孔58に連通する第1流路64が設けられる。この第1流路64は、アノード側給電体50の表面積に対応する範囲内に設けられるとともに、複数の流路溝や複数のエンボス等で構成される。第1流路64には、反応により生成された酸素及び使用済みの水が流通する。
カソード側セパレータ46の電解質膜・電極構造体42に向かう面には、水素連通孔60に連通する第2流路68が形成される。この第2流路68は、カソード側給電体52の表面積に対応する範囲内に設けられるとともに、複数の流路溝や複数のエンボス等で構成される。第2流路68には、反応により生成された高圧水素が流通する。
水循環装置16は、高圧水電解装置12の水供給連通孔56に連通する循環配管72を備え、この循環配管72は、循環ポンプ74を配置して水貯留装置14を構成するタンク部76の底部に接続される。
タンク部76の上部には、ブロア78及び戻り配管80の一端部が連通するとともに、前記戻り配管80の他端は、高圧水電解装置12の排出連通孔58に連通する。戻り配管80の一端部は、タンク部76内に貯留される水の中で、常時、開口する位置に設定される。
タンク部76には、水供給装置18に接続された純水供給配管84と、前記タンク部76で純水から分離された酸素を排出するための酸素排気配管86とが連結される。
高圧水電解装置12の水素連通孔60には、高圧水素配管20の一端が接続され、この高圧水素配管20の他端が高圧気液分離装置22に接続される。高圧気液分離装置22で水分が除去された高圧水素は、ドライ水素として高圧水素導出ライン24に導出される。高圧水素導出ライン24には、規定圧力値(例えば、70MPa)に設定された背圧弁88が設けられる。
高圧気液分離装置22は、水を貯留するためのタンク部90を備える。タンク部90には、前記タンク部90内の水位WSを検出する水位検出機構、例えば、水位検出センサ(LS)92が設けられる。水位検出センサ92の検出信号は、コントローラ28に入力される。
高圧気液分離装置22の下部には、高圧排水ライン26が接続され、前記高圧排水ライン26には、開度が調整されることにより排水流量を可変させる可変圧損発生部94が配設される。可変圧損発生部94としては、例えば、ボールバルブ、調整弁又は可変オリフィス等が使用される。高圧排水ライン26には、可変圧損発生部94の下流に位置して開閉弁、例えば、電磁弁96が配設される。
コントローラ28は、高圧水電解装置12から高圧気液分離装置22に注水される液状水の注水速度を検知する注水速度検知機構98としての機能、検知された前記注水速度に基づいて、前記高圧気液分離装置22から排出される前記液状水の排水速度を設定する排水速度設定機構100としての機能、及び設定された前記排水速度に基づいて、可変圧損発生部94の開度を調整する開度調整機構102としての機能を有する。
高圧水電解装置12には、前記高圧水電解装置12の温度を検知する温度センサ(温度検知機構)104と、前記高圧水電解装置12に印加する電流を検知する電流計106とが設けられる。温度センサ104による検知温度及び電流計106による検知電流は、コントローラ28に送られる。
このように構成される水電解システム10の動作について、第1の実施形態に係る排水方法との関連で、図2に示すフローチャートに沿って、以下に説明する。
水電解システム10の運転が開始されると(ステップS1)、ステップS2の準備工程に進む。準備工程では、例えば、水供給装置18を介して市水から生成された純水が、水貯留装置14を構成するタンク部76に供給される。そして、ステップS3に進んで、水電解システム10による電解通常運転(水素充填)が開始される。
図1に示すように、水循環装置16では、循環ポンプ74の作用下に、タンク部76内の水が循環配管72を介して高圧水電解装置12の水供給連通孔56に供給される。一方、ターミナルプレート32a、32bの端子部38a、38bには、電気的に接続されている電解電源40を介して電圧が付与される。
このため、各単位セル30では、水供給連通孔56からアノード側セパレータ44の第1流路64に水が供給され、この水がアノード側給電体50内に沿って移動する。
従って、水は、アノード電極触媒層50aで電気により分解され、水素イオン、電子及び酸素が生成される。この陽極反応により生成された水素イオンは、固体高分子電解質膜48を透過してカソード電極触媒層52a側に移動し、電子と結合して水素が得られる。
これにより、カソード側セパレータ46とカソード側給電体52との間に形成される第2流路68に沿って水素が流動する。この水素は、水供給連通孔56よりも高圧に維持されており、水素連通孔60を流れて高圧水電解装置12の外部に取り出し可能となる。
一方、第1流路64には、反応により生成した酸素と、未反応の水とが流動しており、これらの混合流体が排出連通孔58に沿って水循環装置16の戻り配管80に排出される。この未反応ガスの水及び酸素は、タンク部76に導入されて分離された後、水は、循環ポンプ74を介して循環配管72を通って水供給連通孔56に導入される。水から分離された酸素は、酸素排気配管86から外部に排出される。
高圧水電解装置12内に生成された水素は、高圧水素配管20を介して高圧気液分離装置22に送られる。この高圧気液分離装置22では、水素に含まれる液状水が、この水素から分離されてタンク部90に貯留される一方、前記水素は、高圧水素導出ライン24に導出される。
上記の電解運転時において、高圧気液分離装置22内の水位WSが、水位検出センサ92により検出される(ステップS4)。水位検出センサ92の検出信号は、コントローラ28に入力される。コントローラ28では、検出された水位WSが上限水位に至るまでの間、高圧水電解装置12のアノード側からカソード側に透過した透過水量、実質的には、高圧気液分離装置22への注水速度が算出される(ステップS5)(注水速度検知工程)。注水速度検知機構98では、具体的には、図3に示すように、タンク部90内の容量Vと注水時間とから、注水速度が算出される。
そして、検出された水位WSが、上限水位に至ったと判断されると(ステップS4中、YES)、ステップS6に進んで、電磁弁96が開弁される。このため、高圧気液分離装置22から高圧排水ライン26に高圧な液状体が排水され、前記高圧気液分離装置22内の水位WSが下降する(図3及びステップS7)。高圧気液分離装置22内の水位WSが下限水位に下降するまでの間、排水速度が算出される(ステップS8)。排水速度は、図3に示すように、タンク部90内の容量Vと排水時間とから算出される。
検出された水位WSが、下限水位に至ったと判断されると(ステップS7中、YES)、ステップS9に進んで、電磁弁96が閉弁される。従って、タンク部90内に液状水が貯留されて水位WSが上昇する(図3参照)。さらに、ステップS10に進んで、排水速度設定機構100では、算出された注水速度に基づいて、高圧気液分離装置22からの排水速度Qが設定される(ステップS10)(排水速度設定工程)。排水速度Qは、注水速度と同一速度であることが好ましい。
次に、ステップS11に進んで、開度調整機構102は、設定された排水速度Qに基づいて可変圧損発生部94の開度を調整する(開度調整工程)。可変圧損発生部94の開度が調整された後(ステップS11中、YES)、ステップS12に進んで、電磁弁96が開弁される。
これにより、高圧気液分離装置22からの排水制御が、高圧水電解装置12からの注水量に対応して行われる(図3参照)。その際、高圧水電解装置12による水電解処理が継続されている(排水及び水電解工程)。次いで、電解停止信号が発せられると(ステップS13中、YES)、ステップS14に進んで、水電解システム10の運転が停止される。
この場合、第1の実施形態では、高圧気液分離装置22に注水される液状水の注水速度に基づいて、前記高圧気液分離装置22から排出される前記液状水の排水速度Qが設定されている。そして、この排水速度Qに基づいて、可変圧損発生部94の開度が調整されている。
このため、高圧気液分離装置22内の水位WSの調整が容易に遂行されるとともに、高圧な液状水が電磁弁96のみにより直接排水されることを抑制することが可能になる。従って、キャビテーションの発生を抑制することができ、電磁弁96の耐久性を向上させることが可能になる。
しかも、高圧排水ライン26に配設された電磁弁96は、開閉回数を大幅に低減させることができる。これにより、簡単な構成及び工程で、高圧水が作用する電磁弁96の制御回数を可及的に削減し、前記電磁弁96の耐久性を向上させることが可能になるという効果が得られる。
さらに、高圧水電解装置12では、排水制御のために、アノード側からカソード側に透過する透過水量を変化させることがない。このため、高圧水電解装置12による高圧水素の製造量は、排水制御に影響されることがなく、所望の量だけ良好に得ることができ、水素製造作業の効率化を図ることが可能になる。
また、図3に示すように、電磁弁96には、該電磁弁96に削れ等が発生して排水速度が速くなり、水位が低下することがある(図3中、一点鎖線参照)(水位検知工程)。ここで、図4に示すように、開度調整機構102では、可変圧損発生部94の開度を狭める方向に再度調整することにより、所望の排水速度Qに制御することができる(開度再調整工程)。
一方、電磁弁96に詰まり等が発生して排水速度Qが遅くなった際、すなわち、水位WSが上昇する際には、開度調整機構102では、可変圧損発生部94の開度を広げる方向に再度調整する。これにより、所望の排水速度Qに確実に制御される(開度再調整工程)。
図5は、本発明の第2の実施形態に係る排水方法を説明するフローチャートである。なお、第1の実施形態に係る排水方法と同様の工程について、その詳細な説明は省略する。また、以下に説明する第3以降の実施形態においても同様に、その詳細な説明は省略する。
第2の実施形態では、ステップS101〜ステップS112までの処理が、第1の実施形態のステップS1〜ステップS12と同様に行われる。そして、図6に示すように、水位WSが減少していることが検知されると、ステップS113に進む。
ステップS113では、水位WSの減少速度、すなわち、排水速度Qが算出され(水位減少速度算出工程)、算出された排水速度Qが、予め設定された閾値QNGと比較される。閾値QNGは、電磁弁96の耐久開閉回数から算出された排水速度のNGラインである。算出された排水速度Qが、閾値QNG以上である際(ステップS113中、YES)ステップS114に進んで、電磁弁96が閉弁される。さらに、ステップS115に進んで、停止シーケンス(及び警告等)が行われる(緊急停止工程)。
これにより、第2の実施形態では、電磁弁96に使用不能な異常が発生した際、前記電磁弁96を自動停止させるとともに、所定の停止シーケンスが遂行される。このため、上記の第1の実施形態と同様の効果が得られる他、水電解システム10を良好に緊急停止させることが可能になる。
図7は、本発明の第3の実施形態に係る排水方法を説明するフローチャートである。
第1の実施形態のステップS1〜ステップS3と同様に、ステップS201〜ステップS203が行われる。そして、ステップS204に進んで、高圧水電解装置12のアノード側からカソード側への液状水の透過水量が算出される。ステップS204では、温度センサ104により検知される高圧水電解装置12の温度と、電流計106による検知電流値とに基づいて、透過水量が算出される。算出された透過水量から注水速度が算出される。
次いで、ステップS205に進んで、算出された注水速度に基づいて、高圧気液分離装置22からの排水速度Qが設定された後、電磁弁96が開弁される(ステップS206)。このため、高圧気液分離装置22では、高圧水電解装置12からの注水と高圧排水ライン26への排水とが行われており、前記高圧気液分離装置22内の水位WSが検知されている(ステップS207)。
高圧気液分離装置22内の水位WSが一定水位に維持されていないと(ステップS207中、NO)、ステップS208に進んで、排水速度Qに基づいて可変圧損発生部94の開度が調整される。従って、電解運転中、高圧気液分離装置22内の水位WSが一定に維持され(ステップS207中、YES)、ステップS209に進む。その際、電解停止信号が発せられると(ステップS209中、YES)、ステップS210に進んで、電磁弁96が閉弁された後、水電解システム10の運転が停止される(ステップS211)。
このように、第3の実施形態では、排水制御中において、電磁弁96は、常時、開弁されたままである。これにより、電磁弁96の開閉回数が一層削減され、前記電磁弁96の損傷が可及的に抑制されるという効果が得られる。
図8は、本発明の第4の実施形態に係る排水方法を説明するフローチャートである。
第1の実施形態のステップS1〜ステップS5と同様に、ステップS301〜ステップS305が行われる。そして、ステップS306に進んで、算出された注水速度に基づいて、高圧気液分離装置22からの排水速度Q1が設定される。この排水速度Q1は、注水速度よりも大きな速度に設定される。
ステップS307では、設定された排水速度Q1に基づいて、可変圧損発生部94の開度が調整される。さらに、電磁弁96が開弁されることにより(ステップS308)、高圧気液分離装置22では、高圧水電解装置12からの注水と高圧排水ライン26への排水とが行われる。その際、排水速度Q1は、注水速度よりも大きな速度に設定されており、前記高圧気液分離装置22内の水位WSが減少する(ステップS309)。
高圧気液分離装置22内の水位WSが、下限水位まで減少すると(ステップS309中、YES)、ステップS310に進んで、電磁弁96が閉弁される。電解運転中(ステップS311中、NO)は、上記のステップS304〜ステップS310の制御が繰り返される。一方、電解停止信号が発せられると(ステップS311中、YES)、ステップS312に進んで、水電解システム10の運転が停止される。
このように、第4の実施形態では、排水制御中において、電磁弁96の開弁と閉弁とが繰り返されるものの、前記電磁弁96の開閉回数が良好に削減される。これにより、電磁弁96の損傷が抑制される等、上記の第1の実施形態等と同様の効果が得られる。
10…水電解システム 12…高圧水電解装置
14…水貯留装置 16…水循環装置
18…水供給装置 20…高圧水素配管
22…高圧気液分離装置 24…高圧水素導出ライン
26…高圧排水ライン 28…コントローラ
30…単位セル 40…電解電源
42…電解質膜・電極構造体 44…アノード側セパレータ
46…カソード側セパレータ 48…固体高分子電解質膜
50…アノード側給電体 52…カソード側給電体
56…水供給連通孔 58…排出連通孔
60…水素連通孔 76、90…タンク部
88…背圧弁 92…水位検出センサ
94…可変圧損発生部 96…電磁弁
98…注水速度検知機構 100…排水速度設定機構
102…開度調整機構

Claims (6)

  1. アノード側に供給される水を電気分解し、前記アノード側に酸素を、カソード側に前記酸素よりも高圧な高圧水素を、それぞれ発生させる高圧水電解装置と、
    前記高圧水電解装置から導出される前記高圧水素を、気液分離する高圧気液分離装置と、
    前記高圧気液分離装置で分離された液状水を排出する排水ラインと、
    前記排水ラインに配設され、開度が調整されることにより排水流量を可変させる可変圧損発生部と、
    前記排水ラインに、前記可変圧損発生部よりも下流に配設される開閉弁と、
    を備える水電解システムであって、
    前記高圧水電解装置から前記高圧気液分離装置に注水される前記液状水の注水速度を検知する注水速度検知機構と、
    検知された前記注水速度に基づいて、前記高圧気液分離装置から排出される前記液状水の排水速度を設定する排水速度設定機構と、
    設定された前記排水速度に基づいて、前記可変圧損発生部の開度を調整する開度調整機構と、
    を備えることを特徴とする水電解システム。
  2. アノード側に供給される水を電気分解し、前記アノード側に酸素を、カソード側に前記酸素よりも高圧な高圧水素を、それぞれ発生させる高圧水電解装置と、
    前記高圧水電解装置から導出される前記高圧水素を、気液分離する高圧気液分離装置と、
    前記高圧気液分離装置で分離された液状水を排出する排水ラインと、
    前記排水ラインに配設され、開度が調整されることにより排水流量を可変させる可変圧損発生部と、
    前記排水ラインに、前記可変圧損発生部よりも下流に配設される開閉弁と、
    を備える水電解システムの排水方法であって、
    前記高圧水電解装置から前記高圧気液分離装置に注水される前記液状水の注水速度を検知する注水速度検知工程と、
    検知された前記注水速度に基づいて、前記高圧気液分離装置から排出される前記液状水の排水速度を設定する排水速度設定工程と、
    設定された前記排水速度に基づいて、前記可変圧損発生部の開度を調整する開度調整工程と、
    前記可変圧損発生部の開度が調整された後、前記開閉弁を開弁して前記高圧気液分離装置からの排水を行うとともに、水電解を継続する排水及び水電解工程と、
    を有することを特徴とする水電解システムの排水方法。
  3. 請求項2記載の排水方法において、前記注水速度検知工程は、前記高圧水電解装置の前記アノード側から前記カソード側に透過する透過水量に基づいて、前記注水速度を検知することを特徴とする水電解システムの排水方法。
  4. 請求項2又は3記載の排水方法において、前記開度調整工程は、前記注水速度と前記排水速度とが同一速度になるように、前記開度を調整することを特徴とする水電解システムの排水方法。
  5. 請求項2〜4のいずれか1項に記載の排水方法において、前記高圧気液分離装置内の水位を検知する水位検知工程を有し、
    前記排水及び水電解工程では、前記水位検知工程により前記水位が変化していると検知された際、前記開度を再度調整する開度再調整工程に移行することを特徴とする水電解システムの排水方法。
  6. 請求項5記載の排水方法において、前記水位検知工程により前記水位が減少していると検知された際、該水位の減少速度を算出する水位減少速度算出工程に移行するとともに、
    前記水位減少速度算出工程により算出された前記減少速度が、閾値以上である際、水電解を停止する緊急停止工程に移行することを特徴とする水電解システムの排水方法。
JP2012257742A 2012-11-26 2012-11-26 水電解システム及びその排水方法 Pending JP2014105347A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012257742A JP2014105347A (ja) 2012-11-26 2012-11-26 水電解システム及びその排水方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012257742A JP2014105347A (ja) 2012-11-26 2012-11-26 水電解システム及びその排水方法

Publications (1)

Publication Number Publication Date
JP2014105347A true JP2014105347A (ja) 2014-06-09

Family

ID=51027117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012257742A Pending JP2014105347A (ja) 2012-11-26 2012-11-26 水電解システム及びその排水方法

Country Status (1)

Country Link
JP (1) JP2014105347A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926776B1 (ko) 2017-06-19 2018-12-07 윤재우 수소발생장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926776B1 (ko) 2017-06-19 2018-12-07 윤재우 수소발생장치

Similar Documents

Publication Publication Date Title
US8815075B2 (en) Water electrolysis system and method of operating same
JP5394458B2 (ja) 水電解システムの運転停止方法
JP2012082496A (ja) 水電解システム
JP6059116B2 (ja) 差圧式水電解システムの制御方法
JP5355623B2 (ja) 水電解システム及びその運転方法
JP5192004B2 (ja) 水電解システムの停止方法
JP2010236087A (ja) 水電解システム
JP2012180554A (ja) 高圧水素製造装置
JP2014062311A (ja) 高圧水電解システム及びその起動方法
JP5341547B2 (ja) 水電解システム
JP6090862B2 (ja) 水電解装置の起動方法
JP6348143B2 (ja) 高圧水電解システムの脱圧方法
JP5318144B2 (ja) 水電解システム及びその運転方法
JP5355636B2 (ja) 水電解システムの運転方法
JP5378439B2 (ja) 水電解システム及びその運転方法
JP2014105347A (ja) 水電解システム及びその排水方法
JP5653278B2 (ja) 水電解システムの運転停止方法
JP2013241638A (ja) 水電解システム及びその運転方法
JP2014043615A (ja) 水電解システム及びその制御方法
JP2013241639A (ja) 水電解システム及びその運転方法
JP5613084B2 (ja) 水電解システム
JP2012219277A (ja) 水電解システム及びその排水制御方法
JP2021130857A (ja) 水電解システムおよび水位誤差算出装置
JP2017206730A (ja) 高圧水電解システムの起動方法
JP2012036453A (ja) 水電解システム及びその運転方法