JP2014104669A - Method for molding twist yarn-reinforced composite material - Google Patents

Method for molding twist yarn-reinforced composite material Download PDF

Info

Publication number
JP2014104669A
JP2014104669A JP2012259724A JP2012259724A JP2014104669A JP 2014104669 A JP2014104669 A JP 2014104669A JP 2012259724 A JP2012259724 A JP 2012259724A JP 2012259724 A JP2012259724 A JP 2012259724A JP 2014104669 A JP2014104669 A JP 2014104669A
Authority
JP
Japan
Prior art keywords
resin
tpi
composite material
fiber
twisted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012259724A
Other languages
Japanese (ja)
Other versions
JP6065546B2 (en
Inventor
Junji Noda
淳二 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2012259724A priority Critical patent/JP6065546B2/en
Publication of JP2014104669A publication Critical patent/JP2014104669A/en
Application granted granted Critical
Publication of JP6065546B2 publication Critical patent/JP6065546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a twist yarn-reinforced composite material using natural fiber as a reinforcing material at a low cost by simple equipment, to increase the mechanical properties of the twist yarn-reinforced composite material, and to increase its moldability by resin impregnation.SOLUTION: The twist yarns of natural fiber are used as reinforcing fiber, the molten resin of a natural resin-based matrix resin is impregnated in a vacuum state, and curing is performed to mold a twist yarn-reinforced composite material by a vacuum auxiliary resin impregnation process. The twist per inch (TPI) of the twist yarns of the natural fiber is controlled to 1 to 10, and further, the twist yarns with different TPI are arranged in parallel in a plurality of groups in such a manner that the twist yarns are present extensively to the direction of the impregnation of the resin, and the twist per inch (TPI) changes in a direction crossed therewith.

Description

本発明は、撚糸強化複合材料の成形方法に関し、より詳細には、VaRTMによる一方向性撚糸強化グリーンコンポジットの成形性、引っ張り特性を向上させた撚糸強化複合材料の成形方法に関する。   The present invention relates to a method for forming a twisted yarn reinforced composite material, and more particularly to a method for forming a twisted yarn reinforced composite material with improved formability and tensile properties of a unidirectional twisted yarn reinforced green composite by VaRTM.

繊維強化プラスチック(FRP)は強度、耐熱性、耐食性に優れ、軽量化のメリットが大きいことから、自動車、航空機等の輸送機器をはじめ、種々の汎用構造部材として利用されている。FRPの成形方法に関して、真空補助樹脂含浸成形法(VaRTM: Vacuum assisted Resin Transfer Molding)があり、これは、大がかりな設備が不要であり、低コストであること、大型構造部材の一体成形が容易であり、ボイド(気泡)含有率が低いというような特徴を有しており、様々な研究開発がなされている。   Since fiber reinforced plastic (FRP) is excellent in strength, heat resistance and corrosion resistance and has great advantages in weight reduction, it is used as various general-purpose structural members such as automobiles and aircraft. There is a vacuum assisted resin impregnation molding method (VaRTM: Vacuum Assisted Resin Transfer Molding) for the FRP molding method, which does not require large-scale equipment, is low in cost, and facilitates the integral molding of large structural members. It has a feature that the void (bubble) content is low, and various research and development have been made.

FRPとして現在では炭素繊維やガラス繊維のような人工繊維とエポキシ樹脂等の熱硬化性樹脂を用いたCFRP、GFRPが優れた機械的特性を有するものとして実用化されているが、これらは製造過程でのエネルギー消費量が多く、廃棄後の処理が行いにくく、環境負荷が大きいという難点がある。このようなことから、最近では高強度植物系繊維を強化材とした天然繊維強化樹脂が環境に優しいグリーンコンポジット(GC)として注目され、研究開発がなされている。GCのように、天然繊維を強化材とするものでは、連続繊維の形態をとる必要性から紡績糸(撚糸)が用いられるが、このような天然繊維による撚糸とそれを用いて形成された複合材料の機械的特性との関係については、いまだそれほど解明されていない。   At present, CFRP and GFRP using artificial fibers such as carbon fiber and glass fiber and thermosetting resins such as epoxy resin have been put into practical use as FRP, which have excellent mechanical properties. However, there is a problem that the amount of energy consumption is large, the disposal after disposal is difficult to perform, and the environmental load is large. For these reasons, recently, a natural fiber reinforced resin using a high-strength plant fiber as a reinforcing material has attracted attention as an environmentally friendly green composite (GC) and has been researched and developed. In the case of using natural fiber as a reinforcing material like GC, spun yarn (twisted yarn) is used because of the need to take the form of continuous fiber, and twisted yarn made of such natural fiber and a composite formed using it The relationship with the mechanical properties of materials has not yet been elucidated.

特許文献1には、構成部材の少なくとも1つの層となるロービング束が成形型内に配置される前にマトリックス材料で湿潤されるようにする繊維強化構造物の構成部材の製造方法について記載されており、特許文献2には、VaRTM法による繊維強化プラスチックの成形に際し、密封媒体と成形型との間の空隙を満たす樹脂量を注入し、強化繊維材に含浸される樹脂量を制御して、成形品の厚み、繊維体積含有率を制御するようにした繊維強化プラスチックの成形方法について記載されている。また、非特許文献1には、GCにおける織物密度、糸撚りが力学的特性に及ぼす影響について記載され、非特許文献2には、VaRTMによりガラス繊維を用いた風車用に用いるような大型FRP構造体を製造する技術について記載されている。   Patent Document 1 describes a method of manufacturing a constituent member of a fiber reinforced structure in which a roving bundle as at least one layer of the constituent member is wetted with a matrix material before being placed in a mold. In Patent Document 2, when molding fiber reinforced plastic by the VaRTM method, a resin amount that fills the gap between the sealing medium and the mold is injected, and the resin amount impregnated in the reinforcing fiber material is controlled, It describes a method for molding a fiber reinforced plastic in which the thickness of the molded product and the fiber volume content are controlled. Non-Patent Document 1 describes the effects of fabric density and yarn twist on the mechanical properties in GC, and Non-Patent Document 2 describes a large FRP structure used for wind turbines using glass fibers by VaRTM. Describes techniques for manufacturing the body.

特許文献1に記載のものは、風車翼等の構成部材に関するものであり、GCに関してのものではなく、特許文献2においては、天然繊維を強化繊維とするものも含まれるが、強度、軽量化の点に関しては、繊維強化プラスチックの繊維体積含有率を制御することについて示され、強化繊維を実際にどのようにするかについては特に示されてはいない。また、非特許文献1では、GCにおける織物密度、糸撚りが力学的特性に及ぼす影響について示されているが、VaRTMによるGCの成形については特に示されず、非特許文献2における風車翼等の大型構造部材に適用されるFRPはVaRTMにより成形されるが、特にGCに関しては示されていない。   The thing of patent document 1 is related to structural members, such as a windmill blade, and is not related to GC, and in patent document 2, the thing which uses natural fiber as a reinforced fiber is included, but strength and weight reduction are included. In regard to this point, it is shown that the fiber volume content of the fiber reinforced plastic is controlled, and there is no specific indication as to how the reinforcing fiber is actually used. Further, Non-Patent Document 1 shows the influence of the fabric density and yarn twist in GC on the mechanical properties, but it does not specifically show the forming of GC by VaRTM. The FRP applied to the structural member is molded by VaRTM, but is not specifically shown for GC.

特開2012−16948号公報JP 2012-16948 A 特開2010−173165号公報JP 2010-173165 A

中村理恵他「テキスタイル・グリーンコンポジットの力学的特性に及ぼす織物密度および糸撚りの影響」、材料(Journal of the Society of Materials Science, Japan), Vol. 58, No. 5, May 2009, pp.382-388Rie Nakamura et al. “Effects of Fabric Density and Yarn Twist on Mechanical Properties of Textile Green Composites”, Materials (Journal of the Society of Materials Science, Japan), Vol. 58, No. 5, May 2009, pp.382 -388 新藤健太郎他「VaRTM(真空含浸工法)による大型複合材製造技術」、三菱重工技報、Vol. 43 No. 1, 2006, pp. 11-12Kentaro Shindo et al. “Manufacturing technology of large composite materials by VaRTM (vacuum impregnation method)”, Mitsubishi Heavy Industries Technical Review, Vol. 43 No. 1, 2006, pp. 11-12

繊維の強化材と樹脂との複合材料である繊維強化プラスチック(FRP)として現在多く製造、使用がなされているのは炭素繊維やガラス繊維のような人工繊維とエポキシ樹脂等の熱硬化性樹脂を用いたCFRP、GFRPであるが、これらは製造過程でのエネルギー消費量が多く、廃棄後の処理が行いにくく、環境負荷が大きいという問題点がある。このことから、天然繊維を強化材としたグリーンコンポジットの製造、使用するための技術開発を行うことが求められている。   Many fiber reinforced plastics (FRP), which is a composite material of fiber reinforcement and resin, are currently manufactured and used for artificial fibers such as carbon fibers and glass fibers and thermosetting resins such as epoxy resins. The CFRP and GFRP used are problematic in that they consume a large amount of energy in the manufacturing process, are difficult to perform after disposal, and have a large environmental load. For this reason, it is required to develop a technology for producing and using a green composite using natural fibers as a reinforcing material.

また、製造過程で大がかりな設備を必要とせずに複合材料を製造するものとして、真空補助樹脂含浸成形法により成形することが行われるが、例えば人工繊維である炭素繊維を強化材とする複合材料の場合、炭素繊維平織織布は織り機を用いて製織されるため、繊維間隔を任意に制御することはできず、そのため、真空補助樹脂含浸成形法による成形の際に樹脂流動速度を制御することができないものである。さらに、グリーンコンポジットの複合材料の機械的特性を高めることについての要求も高まっているが、そのような天然繊維を強化材とする複合材料を成形方法における条件についてはいまだ明確にされていない。   In addition, as a method of manufacturing a composite material without requiring large-scale equipment in the manufacturing process, molding is performed by a vacuum auxiliary resin impregnation molding method. For example, a composite material using carbon fiber, which is an artificial fiber, as a reinforcing material In this case, since the carbon fiber plain woven fabric is woven using a weaving machine, the fiber spacing cannot be arbitrarily controlled. Therefore, the resin flow rate is controlled during molding by the vacuum assisted resin impregnation molding method. It is something that cannot be done. Furthermore, although the demand for enhancing the mechanical properties of the composite material of the green composite is increasing, the conditions for the molding method of the composite material using such natural fibers as a reinforcing material have not yet been clarified.

本発明は、天然繊維を強化材とする撚糸強化複合材料について、真空補助樹脂含浸成形法により大がかりな設備を必要とせずに、低コストで製造し、かつ、撚糸強化複合材料の機械的特性を高めることを目的とする。   The present invention relates to a twisted yarn reinforced composite material made of natural fiber as a reinforcing material, and does not require a large-scale facility by a vacuum assisted resin impregnation molding method. The purpose is to increase.

本発明は前述した課題を解決すべくなしたものであり、本発明による撚糸強化複合材料を成形する方法は、天然繊維の撚糸を強化繊維とし、真空状態で天然樹脂系のマトリックス樹脂の溶融樹脂を含浸させ硬化させて撚糸強化複合材料を真空補助樹脂含浸法により成形する方法であって、強化繊維としての天然繊維の撚糸のインチ当たり撚り数TPIを1以上10以下であるようにしたものである。   The present invention has been made to solve the above-mentioned problems, and a method for molding a twisted yarn-reinforced composite material according to the present invention uses a natural fiber twisted yarn as a reinforcing fiber, and a molten resin of a natural resin matrix resin in a vacuum state. Is a method of forming a twisted yarn reinforced composite material by a vacuum assisted resin impregnation method, wherein the twist number TPI per inch of the twisted yarn of natural fiber as the reinforcing fiber is 1 or more and 10 or less. is there.

また、本発明による撚糸強化複合材料を成形する方法は、天然繊維の撚糸を強化繊維とし、真空状態で天然樹脂系のマトリックス樹脂の溶融樹脂を含浸させ硬化させて撚糸強化複合材料を真空補助樹脂含浸法により成形する方法であって、強化繊維としての天然繊維の撚糸を、撚糸が樹脂の含浸の方向に延在し、それに交差する方向ではインチ当たり撚り数をTPIとして撚糸のTPIが変化するように異なるTPIの撚糸を複数組並列して配置することにより、樹脂の流動性を制御するようにしたものとしてもよい。   In addition, the method for molding the twisted yarn reinforced composite material according to the present invention includes a natural fiber twisted yarn as a reinforcing fiber, impregnated with a molten resin of a natural resin matrix resin in a vacuum state and cured to form the twisted yarn reinforced composite material as a vacuum auxiliary resin. This is a method of molding by an impregnation method, in which twisted yarns of natural fibers as reinforcing fibers extend in the direction of impregnation of the resin, and the TPI of the twisted yarn changes in the direction intersecting with the twist number per inch as TPI. Thus, it is good also as what controlled the fluidity | liquidity of resin by arrange | positioning several sets of twisted yarns of different TPI in parallel.

本発明による撚糸強化複合材料の成形方法は、天然繊維の撚糸を強化繊維とし、真空状態で天然樹脂系のマトリックス樹脂の溶融樹脂を含浸させ硬化させて撚糸強化複合材料を真空補助樹脂含浸法により成形する方法を採用し、強化繊維としての天然繊維の撚糸のインチ当たり撚り数TPIを1以上10以下であるようにすることにより、撚糸強化複合材料の機械的特性を高めるとともに、成形される複合材料の形状形態に応じてTPIの異なる撚糸を組み合わせ並置して配置することにより、樹脂含浸速度の制御性を高めて、複合材料の成形性を高め、ボイドの発生を格段に減ずることができるものである。   The method for forming a twisted yarn reinforced composite material according to the present invention uses natural yarn twisted yarn as a reinforcing fiber, impregnated with a molten resin of a natural resin-based matrix resin in a vacuum state, and cured to form a twisted yarn reinforced composite material by a vacuum auxiliary resin impregnation method. By adopting a molding method, the twist number TPI per inch of the twisted yarn of the natural fiber as the reinforcing fiber is 1 or more and 10 or less, thereby improving the mechanical properties of the twisted yarn reinforced composite material and molding the composite By combining and arranging twisted yarns with different TPIs according to the shape and form of the material, the controllability of the resin impregnation speed can be improved, the moldability of the composite material can be improved, and the generation of voids can be significantly reduced. It is.

真空補助樹脂含浸法による撚糸強化複合材料を成形する装置形態を断面図として示す図である。It is a figure which shows the apparatus form which shape | molds the twisted-yarn reinforcement | strengthening composite material by a vacuum auxiliary resin impregnation method as sectional drawing. 成形された撚糸強化複合材料試験片の機械的特性を示すグラフである。It is a graph which shows the mechanical characteristic of the shape | molded twisted yarn reinforcement | strengthening composite material test piece. 試験片断面を撮影したものであり、(a)TPIが1.5の撚糸、(b)TPIが9.5の撚糸についてのものを示している。It is a photograph of a cross section of a test piece, showing (a) a twisted yarn having a TPI of 1.5 and (b) a twisted yarn having a TPI of 9.5. TPIの異なる撚糸を配置した1次元流れについてのVaRTM成形試験における樹脂の流れ状態を示す図である。It is a figure which shows the flow state of the resin in the VaRTM shaping | molding test about the one-dimensional flow which has arrange | positioned the twisted yarn from which TPI differs. TPIが均一な撚糸束と、TPIが異なる撚糸束とについてのVaRTM成形試験における樹脂の流れ状態を示す図である。It is a figure which shows the flow state of the resin in the VaRTM shaping | molding test about the twisted yarn bundle with uniform TPI, and the twisted yarn bundle from which TPI differs.

以下、本発明による撚糸強化複合材料のVaRTM成形方法の実施形態について説明する。
(a)VaRTMによるFRPの成形
VaRTM(真空補助樹脂含浸成形法)による天然繊維を強化繊維としたFRPの成形の装置形態について概略説明する。
図1はVaRTMによる成形を行う形態を概略的に示す図である。図1において、1は
ステンレス等の材料からなる型であり、型1上にテフロン(ポリテトラフルオロエチレンの登録商標)等の離型用シート2を配置し、その上に強化繊維3を載置し、さらにこれをピールプライ4(エアテック社製、Bleeder Lease B)で覆い、その上にメディアメッシュ5を重ねる。メディアメッシュ5はマトリックス樹脂を拡散させるために配置される網状シート材であり、ピールプライ4はメディアメッシュ5の除去を容易にするために配置される。
Hereinafter, an embodiment of a method for forming a VaRTM of a twist-reinforced composite material according to the present invention will be described.
(A) Molding of FRP by VaRTM An apparatus configuration for molding FRP using natural fibers as reinforcing fibers by VaRTM (vacuum assist resin impregnation molding method) will be schematically described.
FIG. 1 is a diagram schematically showing a form of forming by VaRTM. In FIG. 1, reference numeral 1 denotes a mold made of a material such as stainless steel. A mold release sheet 2 such as Teflon (registered trademark of polytetrafluoroethylene) is arranged on the mold 1 and a reinforcing fiber 3 is placed thereon. Then, this is covered with peel ply 4 (Bleeder Lease B manufactured by Airtech Co., Ltd.), and the media mesh 5 is overlaid thereon. The media mesh 5 is a net-like sheet material arranged to diffuse the matrix resin, and the peel ply 4 is arranged to facilitate the removal of the media mesh 5.

これらを積載したものに対し、樹脂注入管路6(図1で右側)、真空吸引管路7(図1で左側)を配置し、周囲をシーラントテープ8(エアテック社製、AT-200Y)で囲み、さらにシーラントテープ8で囲まれる全体をバッギングフィルム9で覆って、内部が樹脂注入管路6、真空吸引管路7の部分以外は密閉されるようにする。バッギングフィルム9は真空圧でシワが寄らず、耐熱性を有するものであり、伸張率350%、170℃耐熱フィルムWrightlon5400(エアテック社製)等が使用される。   A resin injection line 6 (on the right side in FIG. 1) and a vacuum suction line 7 (on the left side in FIG. 1) are arranged on those loaded with sealant tape 8 (Air-Tech, AT-200Y). The entire portion surrounded by the sealant tape 8 is covered with a bagging film 9 so that the inside is sealed except for the resin injection conduit 6 and the vacuum suction conduit 7. The bagging film 9 does not wrinkle due to vacuum pressure and has heat resistance, and an elongation rate of 350%, a 170 ° C. heat resistant film Wrightlon 5400 (manufactured by Airtech), etc. are used.

樹脂注入管路6、真空吸引管路7はそれぞれ開閉弁により開閉され、樹脂注入管路6側は溶融樹脂供給源(図示せず)に連結され、真空吸引管路7は真空ポンプ(図示せず)に連結されている。図1の装置形態において、型、真空ポンプは多数回の複合材料の成形を通じて用いられ、他の部分は樹脂の付着、変形等が残るため、成形後に新たなものに代えて、装置が構成される。   The resin injection line 6 and the vacuum suction line 7 are each opened and closed by an on-off valve, the resin injection line 6 side is connected to a molten resin supply source (not shown), and the vacuum suction line 7 is a vacuum pump (not shown). Z). In the apparatus configuration of FIG. 1, the mold and the vacuum pump are used through many times of molding of the composite material, and other parts remain attached and deformed, so that the apparatus is configured instead of a new one after molding. The

図1のような装置形態において、VaRTM成形による撚糸強化複合材料の成形を行う。
強化繊維3が図1のように配置された装置形態において、樹脂注入側の開閉弁を閉じた状態とし樹脂、重合開始剤、希釈剤を撹拌した状態で保持しておく。次に、真空排気側の開閉弁を開き、真空吸引することにより、強化繊維3を含む型1とバッギングフィルム9との間の部分を減圧状態にする。その後に、樹脂注入側の開閉弁を開き、樹脂を注入し、強化繊維3に含浸させる。樹脂注入量としては、強化繊維3の全体にわたって含浸される量を予め求めておき、所定量の樹脂を注入した時点で、樹脂注入側の開閉弁を閉じる。樹脂の含浸後に、真空吸引側の開閉弁を閉じ、強化繊維3に樹脂を含浸させたものを、高温乾燥機内において所定温度で所定時間硬化させ、複合材の成形工程が終了する。
In the apparatus configuration as shown in FIG. 1, the twisted reinforced composite material is molded by VaRTM molding.
In the apparatus configuration in which the reinforcing fibers 3 are arranged as shown in FIG. 1, the on-off valve on the resin injection side is closed, and the resin, polymerization initiator, and diluent are held in a stirred state. Next, the opening / closing valve on the evacuation side is opened and vacuum suction is performed, so that the portion between the mold 1 including the reinforcing fibers 3 and the bagging film 9 is in a reduced pressure state. Thereafter, the on-off valve on the resin injection side is opened, the resin is injected, and the reinforcing fibers 3 are impregnated. As the resin injection amount, the amount impregnated over the entire reinforcing fiber 3 is obtained in advance, and when a predetermined amount of resin is injected, the on-off valve on the resin injection side is closed. After the impregnation of the resin, the on-off valve on the vacuum suction side is closed, and the reinforcing fiber 3 impregnated with the resin is cured for a predetermined time at a predetermined temperature in a high-temperature dryer, and the composite material forming process is completed.

(b)天然繊維を用いた撚糸強化複合材料の成形の実施
本発明においては、強化繊維としては、トスコ社製のラミー単糸(16番手)を使用し、TPI(Twist per inch)がそれぞれ1.5、3.5、6.5、9.5の撚糸を手動撚り機(山口大学製)を用いて5本撚りにし所定の形状に固定したものを用い、またマトリックス樹脂としては、アクリル酸エステル部位をもつエポキシ化大豆油アクリレート(ダイセル・サイテック社製、BECRYL860;以下、AESO樹脂という)を用いた。AESO樹脂は、主に中性脂肪からなる大豆油をエポキシ化した後、アクリル酸と反応させた後にラジカル化させることで得られる。重合開始剤には和光純薬工業社製のペルオキシ安息香酸t−ブチルを用い、粘度制御のための希釈剤にはスチレンモノマーを用いている。AESO樹脂と重合開始剤及び希釈剤の混合比率は200:3:30である。
(B) Implementation of molding of twisted yarn reinforced composite material using natural fibers In the present invention, ramie single yarn (16th) manufactured by Tosco Corporation is used as the reinforcing fiber, and TPI (Twist per inch) is 1.5 respectively. , 3.5, 6.5, 9.5 twisted yarn using a manual twister (manufactured by Yamaguchi University) and fixed in the prescribed shape, and the matrix resin is an epoxidized soybean oil with an acrylate moiety Acrylate (Daicel Cytec, BECRYL860; hereinafter referred to as AESO resin) was used. The AESO resin can be obtained by epoxidizing soybean oil mainly composed of neutral fat and then radicalizing it after reacting with acrylic acid. As a polymerization initiator, t-butyl peroxybenzoate manufactured by Wako Pure Chemical Industries, Ltd. is used, and a styrene monomer is used as a diluent for viscosity control. The mixing ratio of the AESO resin, the polymerization initiator, and the diluent is 200: 3: 30.

図1のような装置形態において、如上のような撚糸の強化繊維を配置し、密閉し排気した上で如上のマトリックス樹脂を注入して撚糸強化複合材料の試験片を成形し、それらについて機械的特性、成形性を測定する試験を行った。   In the apparatus configuration as shown in FIG. 1, the reinforcing fibers of the twisted yarn as described above are arranged, sealed and evacuated, and then the matrix resin as described above is injected to form a test piece of the twisted yarn reinforced composite material. Tests for measuring properties and moldability were conducted.

成形される試験片の強化繊維としては、TPIが1.5、3.5、6.5、9.5の撚糸を用い、各TPIの撚糸の場合について、AESO樹脂、重合開始剤、希釈剤を300rpmで1分間混合した樹脂を注入し、注入後100℃で2時間、さらに120℃で2時間硬化させて、強化繊維の撚糸のTPI1.5、3.5、6.5、9.5に応じた撚糸強化複合材料の試験片AR1.5、AR3.5、AR6.5、AR9.5を作製した。   As the reinforcing fiber of the test piece to be molded, a twisted yarn having a TPI of 1.5, 3.5, 6.5, or 9.5 is used, and for each TPI twisted yarn, an AESO resin, a polymerization initiator, and a diluent are mixed at 300 rpm for 1 minute. , And cured at 100 ° C. for 2 hours and further at 120 ° C. for 2 hours, and a twisted-reinforced composite specimen AR1.5 according to TPI1.5, 3.5, 6.5, 9.5 of the reinforcing fiber twisted yarn, AR3.5, AR6.5, and AR9.5 were prepared.

また、別個に、NEAT試験片を作製した。これは樹脂のみの試験片であり、AESO樹脂、重合開始剤、希釈剤を300rpmで1分間混合した後に真空ポンプで気泡を除去した後、離型性・耐熱性に優れたテフロン板の枠に樹脂を流し、高温乾燥機を用いて100℃で2時間、120℃で2時間硬化させたものである。   Moreover, the NEAT test piece was produced separately. This is a resin-only test piece. After mixing AESO resin, polymerization initiator, and diluent at 300 rpm for 1 minute, air bubbles are removed with a vacuum pump, and then a Teflon plate frame with excellent releasability and heat resistance is used. The resin was poured and cured using a high temperature dryer at 100 ° C. for 2 hours and at 120 ° C. for 2 hours.

試験片の寸法はゲージ長さ90mm、幅15mm、厚さ2mmとし、試験片の両側にGFRPタブを張り付け供試状態とした。引張試験機はインストロン型引張試験機(島津製作所製オートグラフIS-5000)を用い、歪みの測定はゲージ法によるものであり、引張速度は1mm/minとし、試験片が破断するまで実施した。   The dimensions of the test piece were a gauge length of 90 mm, a width of 15 mm, and a thickness of 2 mm, and GFRP tabs were attached to both sides of the test piece to prepare a test state. The tensile tester was an Instron type tensile tester (Autograph IS-5000 manufactured by Shimadzu Corporation), the strain was measured by the gauge method, the tensile speed was 1 mm / min, and the test was carried out until the test piece broke. .

如上のように作製された撚糸強化複合材料の試験片AR1.5、AR3.5、AR6.5、AR9.5及びNEAT試験片について引張試験を行った。その結果による各試験片の機械的特性、流速を表1に示し、また、各試験片の代表的な応力歪み線図を図2に示す。   Tensile tests were performed on specimens AR1.5, AR3.5, AR6.5, AR9.5 and NEAT specimens of twisted yarn reinforced composite material produced as described above. Table 1 shows the mechanical properties and flow velocity of each test piece as a result, and FIG. 2 shows a typical stress strain diagram of each test piece.

引張試験の結果から、樹脂単体(NEAT試験片)ではほとんど荷重を受け持つことができないが、撚糸を強化繊維とした複合材料にすることで、強度、ヤング率ともに大幅に向上することがわかる。また、その向上率は撚糸の撚り数に依存しており、TPI(撚り数)が小さい方が強度、ヤング率ともに向上率が高いことがわかった。ただし、TPIが小さくなるにつれて破断歪みも小さくなる傾向にある。   From the results of the tensile test, it can be seen that the resin alone (NEAT test piece) can hardly handle the load, but the strength and Young's modulus are greatly improved by using a composite material in which the twisted yarn is a reinforcing fiber. Further, the improvement rate depends on the number of twists of the twisted yarn, and it has been found that the smaller the TPI (twist number), the higher the improvement rate in both strength and Young's modulus. However, the fracture strain tends to decrease as TPI decreases.

成形性についての試験として、撚り数の異なる撚糸試験片AR1.5、AR3.5、AR6.5、AR9.5の場合の樹脂の含浸速度を調査したが、表1においてその結果も示してある。 表1に示す含浸速度の結果から、撚り数が大きいほど流動速度が速くなることがわかる。流量一定の法則(Q=AV、Q:流量[m/s]、A:断面積[m]、V:流速[m/s])から、撚り数が大きい撚糸の方が、流動速度が大きくなると言える。 As a test for formability, the impregnation speed of the resin in the case of twisted yarn specimens AR1.5, AR3.5, AR6.5, AR9.5 with different numbers of twists was investigated, and the results are also shown in Table 1. . From the results of the impregnation rate shown in Table 1, it can be seen that the flow rate increases as the number of twists increases. From the law of constant flow rate (Q = AV, Q: flow rate [m 3 / s], A: cross-sectional area [m 2 ], V: flow velocity [m / s]), twisted yarn with a larger number of twists has a higher flow rate. Can be said to grow.

図3(a)はTPI=1.5の場合について、(b)はTPI=9.5の場合について、観察した試験片断面を撮影したものであるが、撚り数の違いによりVaRTM成形時のボイドの発現は確認されない。また、TPI3.5の20本撚りの撚糸を用いた試験片についてスチレンモノマーの含有量を調整し樹脂の粘度を変えた試験においても同様の観察結果となっている。このことから、懸念された一方向撚糸強化の複合体のVaRTM成形性(ボイドの有無)は撚糸構造には左右されず、VaRTM成形性は良好であることが確認される。   FIG. 3 (a) shows a case where TPI = 1.5, and FIG. 3 (b) shows a photograph of the cross section of the observed test piece, where TPI = 9.5. Not confirmed. The same observation results were obtained in a test using a TPI3.5 20-twisted twisted yarn, in which the styrene monomer content was adjusted to change the viscosity of the resin. This confirms that the VaRTM moldability (presence or absence of voids) of the unidirectional twisted-yarn-reinforced composite concerned is not affected by the twisted yarn structure, and the VaRTM moldability is good.

TPIが小さいほど引張軸に対して撚りの角度が小さくなり、このことは強度、ヤング率が高くなることに対応するものと考えられる。撚糸に関して、TPI=0は一方向に並んでいる繊維束であり、この場合に最大強度、最大ヤング率を示すことになるはずである。ただし、TPI=0では撚りによる拘束がないために、繊維束の隙間が制御できず、VaRTM成形での樹脂含浸速度を制御することができない。このことから考えて、TPIの適用下限はTPI=1になると言える。また、TPIが増大すると、樹脂含浸速度が制御し易くなるが、機械強度、ヤング率が低下することになる。そのため実際的には、TPIの上限はTPI=10であると考えられる。TPIが1以上10以下の範囲であれば、実際に諸用途に使用する上での引張強度、ヤング率のような機械的特性、VaRTMによる成形性においても好適である。   The smaller the TPI, the smaller the twist angle with respect to the tensile axis, which is considered to correspond to an increase in strength and Young's modulus. For twisted yarns, TPI = 0 is a fiber bundle that is aligned in one direction, and in this case it should exhibit maximum strength and maximum Young's modulus. However, when there is no constraint due to twisting at TPI = 0, the gap between the fiber bundles cannot be controlled, and the resin impregnation rate in VaRTM molding cannot be controlled. Considering this, it can be said that the lower limit of application of TPI is TPI = 1. Further, when the TPI increases, the resin impregnation rate can be easily controlled, but the mechanical strength and Young's modulus decrease. Therefore, in practice, the upper limit of TPI is considered to be TPI = 10. When the TPI is in the range of 1 or more and 10 or less, it is suitable in terms of tensile strength, mechanical properties such as Young's modulus, and formability by VaRTM when actually used in various applications.

(c)樹脂成形性の試験
前述したように、撚糸強化複合材料の成形において、強化繊維撚糸のTPIが小さい方が強度、ヤング率ともに高く、TPIが大きいほど流動速度が速くなるものであるが、複合材料の成形性としてはこの流動速度が直接関わることになる。TPIが大きくなると、撚糸中の単糸間の距離が小さくなるため、毛管圧が大きくなり、樹脂の流動速度が高くなる。樹脂含浸の入口と出口で高い圧力差がある樹脂含浸成形では繊維束間の樹脂流れの速度は繊維束の樹脂流れの速度より速くなるが、VaRTMのように真空圧と大気圧の差による樹脂含浸成形では繊維束間の樹脂流れの速度は繊維束内の樹脂流れの速度より遅くなるのであるが、このことを確認することから、TPIの異なる撚糸を配置した1次元流れについてのVaRTM成形試験を行った。
(C) Resin moldability test As described above, in the formation of a twisted yarn reinforced composite material, the smaller the TPI of the reinforcing fiber twisted yarn, the higher the strength and Young's modulus, and the higher the TPI, the faster the flow rate. The flow rate is directly related to the moldability of the composite material. When the TPI increases, the distance between the single yarns in the twisted yarn decreases, so that the capillary pressure increases and the flow rate of the resin increases. In resin impregnation molding where there is a high pressure difference between the inlet and outlet of resin impregnation, the speed of resin flow between fiber bundles is faster than the speed of resin flow in the fiber bundle, but as with VaRTM, the resin due to the difference between vacuum pressure and atmospheric pressure. In impregnation molding, the speed of the resin flow between the fiber bundles is slower than the speed of the resin flow in the fiber bundles. To confirm this, VaRTM molding test for one-dimensional flow with twisted yarns with different TPIs. Went.

図4はその試験結果における樹脂の流れ状態を示すものであり、それぞれTPIが1.5、3.5、6.5、9.5の撚糸を5本ずつ並列して配置したものに樹脂を含浸させた状態で、樹脂の流動開始4分後の撮影に基づく樹脂流動の様子を示している。撚糸は撚糸が樹脂の含浸の方向に延在するように配置し、それに交差する方向では撚糸のTPIが変化するように、異なるTPIの撚糸を組み合わせ並列して配置する。この結果から、樹脂流動速度のTPI依存性が確認でき、繊維束間の樹脂流れの速度は繊維束内の樹脂流れの速度より遅いか同程度であることから、真空圧程度の圧力差によるVaRTMでは、樹脂は主に繊維束内を流動して含浸することがわかる。   FIG. 4 shows the flow state of the resin in the test results. In the state where the resin is impregnated with five twisted yarns each having a TPI of 1.5, 3.5, 6.5, and 9.5 arranged in parallel. The state of the resin flow based on the photographing after 4 minutes from the flow start is shown. The twisted yarns are arranged so that the twisted yarns extend in the direction of impregnation with the resin, and the twisted yarns of different TPIs are arranged in parallel so that the TPI of the twisted yarns changes in the direction crossing the twisted yarns. From this result, the TPI dependence of the resin flow rate can be confirmed, and the speed of the resin flow between the fiber bundles is lower or the same as the speed of the resin flow in the fiber bundle. Then, it turns out that resin mainly flows and impregnates the inside of a fiber bundle.

さらに、TPIが均一な撚糸束の場合と、TPIが異なる撚糸束を並置した場合との比較として、2次元流れについてのVaRTM成形試験を行った。図5はその結果を示すものであり、中心における菱形の非流動部分を包囲するように上回りの経路にTPIが1.5の撚糸を12本配置し、下回りの経路にそれぞれTPIが1.5、3.5、6.5、9.5の撚糸を3本ずつ並列して配置したものに対し、同時に樹脂を含浸させていき、流動開始5分後の撮影に基づく樹脂流動の状態を示している。下回りの経路では、流動速度が遅くなる撚糸を内側(上側)に配置している。   Furthermore, a VaRTM molding test for a two-dimensional flow was performed as a comparison between a twisted yarn bundle having a uniform TPI and a twisted yarn bundle having a different TPI juxtaposed. FIG. 5 shows the results. Twelve yarns having a TPI of 1.5 are arranged in the upper path so as to surround the non-flowing portion of the rhombus in the center, and the TPI is 1.5, 3.5, 6.5 in the lower path, respectively. , 9.5 twisted yarns arranged in parallel, the resin is impregnated at the same time, and shows the state of resin flow based on photographing 5 minutes after the start of flow. In the lower path, the twisted yarn whose flow rate is slow is arranged on the inner side (upper side).

この結果から、TPIが同一の撚糸で構成した上回りの経路では、経路の短い内側の樹脂流れの速度が速くなり、一方TPIが異なる撚糸を並置した下回りの経路では、流動速度の速さに依存した樹脂流動が見られることがわかる。   From this result, the speed of the resin flow inside the short path becomes faster in the upper path composed of the same twisted yarn with TPI, while the lower path with juxtaposed twisted yarns with different TPIs depends on the flow velocity. It can be seen that the resin flow is observed.

このように、撚糸の強化繊維に樹脂を含浸させ複合材料を成形する場合に、撚糸のTPIは複合材料の機械的特性に関わるものであるとともに、樹脂流動による成形性にも関わる要因になっている。図5に示す結果からわかるように、上回りの経路における一様なTPIの撚糸を配置した場合には、その流動経路に応じた樹脂の流れ状態となるが、下回り経路における異なるTPIの撚糸を組み合わせ並置した場合には、TPIに応じた流動速度に依存した樹脂流れ状態になり、このことは成形される複合材料の形状形態に応じて、TPIの組み合わせ配置を変えることにより樹脂含浸による成形性を制御することができることを表すものである。   In this way, when a composite material is formed by impregnating a resin into a reinforcing fiber of twisted yarn, the TPI of the twisted yarn is related to the mechanical properties of the composite material, and is also a factor related to moldability by resin flow. Yes. As can be seen from the results shown in FIG. 5, when a uniform TPI twist yarn in the upper path is arranged, the resin flows according to the flow path, but different TPI twist threads in the lower path are combined. When juxtaposed, the resin flow state depends on the flow rate according to the TPI, which means that the moldability by resin impregnation can be improved by changing the combination arrangement of TPI according to the shape and form of the composite material to be molded. It represents that it can be controlled.

例えば、肉厚で曲面をもつパネルを成形する場合に、同じTPIの撚糸を用いて成形すると、最外層は樹脂流動速度の差からボイドができ易くなり、成形される複合材料の強度低下をもたらすことにもなるのであるが、成形されるパネルの形状形態と撚糸への樹脂の含浸形態に応じて異なるTPIの撚糸を組み合わせ並置するというように配置形態をとることにより、ボイドの発生を防止することも可能になる。   For example, when molding a panel having a thick wall and a curved surface, if the same TPI twisted yarn is used, the outermost layer is likely to be voided due to the difference in resin flow rate, resulting in a decrease in strength of the composite material to be molded. However, the occurrence of voids can be prevented by adopting the arrangement form such that the twisted yarns of different TPI are combined and juxtaposed according to the shape form of the panel to be molded and the resin impregnation form into the twisted yarn. It becomes possible.

以上において、実施例では、強化繊維としてラミー麻撚糸を用いたものを示したが、植物系天然繊維はほとんどがセルロース、ヘミセルロース、リグニン等の物質からなり、その割合が異なるだけであることから、他に、例えばFlax麻も同様に使用できる。また、マトリックス樹脂として、実施例ではエポキシ化大豆油アクリレートを用いたものを示したが、他にBIOMUP 639P(日本ユピカ社製)等の天然由来樹脂が使用される。   In the above, in the examples, ramie hemp twisted yarn was used as the reinforcing fiber, but the plant-based natural fibers are mostly composed of substances such as cellulose, hemicellulose, lignin, and the ratio is only different. Besides, for example, Flax hemp can be used as well. Moreover, although what used the epoxidized soybean oil acrylate was shown in the Example as a matrix resin, natural origin resin, such as BIOMUP 639P (made by Nippon Iupika Co., Ltd.), is used for others.

1 型
2 シート
3 強化繊維
4 ピールプライ
5 メディアメッシュ
6 樹脂注入管路
7 真空吸引管路
8 シーラントテープ
9 バッギングフィルム
1 type 2 sheet 3 reinforced fiber 4 peel ply 5 media mesh 6 resin injection line 7 vacuum suction line 8 sealant tape 9 bagging film

Claims (2)

天然繊維の撚糸を強化繊維とし、真空状態で天然樹脂系のマトリックス樹脂の溶融樹脂を含浸させ硬化させて撚糸強化複合材料を真空補助樹脂含浸法により成形する方法であって、強化繊維としての天然繊維の撚糸のインチ当たり撚り数TPIを1以上10以下であるようにしたことを特徴とする真空補助樹脂含浸法により撚糸強化複合材料を成形する方法。   A method of forming a twisted fiber reinforced composite material by a vacuum auxiliary resin impregnation method using a natural fiber twisted yarn as a reinforcing fiber and impregnating and curing a molten resin of a natural resin matrix resin in a vacuum state. A method for forming a twisted reinforced composite material by a vacuum assisted resin impregnation method, wherein the twist number TPI per inch of the twisted yarn of the fiber is 1 or more and 10 or less. 天然繊維の撚糸を強化繊維とし、真空状態で天然樹脂系のマトリックス樹脂の溶融樹脂を含浸させ硬化させて撚糸強化複合材料を真空補助樹脂含浸法により成形する方法であって、強化繊維としての天然繊維の撚糸を、撚糸が樹脂の含浸の方向に延在し、それに交差する方向ではインチ当たり撚り数をTPIとして撚糸のTPIが変化するように異なるTPIの撚糸を複数組並列して配置することにより、樹脂の流動性を制御するようにしたことを特徴とする真空補助樹脂含浸法により撚糸強化複合材料を成形する方法。   A method of forming a twisted fiber reinforced composite material by a vacuum auxiliary resin impregnation method using a natural fiber twisted yarn as a reinforcing fiber and impregnating and curing a molten resin of a natural resin matrix resin in a vacuum state. A plurality of twisted yarns of different TPIs are arranged in parallel so that the twisted yarns of the fibers extend in the direction of impregnation of the resin, and the TPI of the twisted yarns changes in the direction intersecting with the number of twists per inch as TPI. A method for forming a twisted reinforced composite material by a vacuum assisted resin impregnation method, wherein the fluidity of the resin is controlled by:
JP2012259724A 2012-11-28 2012-11-28 Method for forming twisted yarn reinforced composite material Expired - Fee Related JP6065546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012259724A JP6065546B2 (en) 2012-11-28 2012-11-28 Method for forming twisted yarn reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012259724A JP6065546B2 (en) 2012-11-28 2012-11-28 Method for forming twisted yarn reinforced composite material

Publications (2)

Publication Number Publication Date
JP2014104669A true JP2014104669A (en) 2014-06-09
JP6065546B2 JP6065546B2 (en) 2017-01-25

Family

ID=51026563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259724A Expired - Fee Related JP6065546B2 (en) 2012-11-28 2012-11-28 Method for forming twisted yarn reinforced composite material

Country Status (1)

Country Link
JP (1) JP6065546B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157184A (en) * 1991-12-03 1993-06-22 Jitensha Sangyo Shinko Kyokai Natural fiber-reinforced composite pipe and manufacture thereof
JP2002113788A (en) * 2000-10-11 2002-04-16 Teijin Ltd Fiber-reinforced resin composite material
JP2003055871A (en) * 2001-08-10 2003-02-26 Araco Corp Biodegradable molded product and method for producing the same
JP2007098583A (en) * 2005-09-30 2007-04-19 Toyota Boshoku Corp Manufacturing method of woody fiber molded product
WO2011065576A1 (en) * 2009-11-26 2011-06-03 帝人株式会社 Composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157184A (en) * 1991-12-03 1993-06-22 Jitensha Sangyo Shinko Kyokai Natural fiber-reinforced composite pipe and manufacture thereof
JP2002113788A (en) * 2000-10-11 2002-04-16 Teijin Ltd Fiber-reinforced resin composite material
JP2003055871A (en) * 2001-08-10 2003-02-26 Araco Corp Biodegradable molded product and method for producing the same
JP2007098583A (en) * 2005-09-30 2007-04-19 Toyota Boshoku Corp Manufacturing method of woody fiber molded product
WO2011065576A1 (en) * 2009-11-26 2011-06-03 帝人株式会社 Composite material

Also Published As

Publication number Publication date
JP6065546B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
Kalali et al. Highly-aligned cellulose fibers reinforced epoxy composites derived from bulk natural bamboo
Li et al. Permeability and mechanical properties of plant fiber reinforced hybrid composites
Goutianos et al. Development of flax fibre based textile reinforcements for composite applications
Gu et al. Hot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion molding
Xue et al. Mechanical properties of biaxial weft-knitted flax composites
CN108284619B (en) Interlayer toughening composite material, preparation method and application thereof
CN104761880B (en) Short fiber reinforced pultrusion composite materials solar components frame and preparation method thereof
CN102979097B (en) Weaving sleeve pipe type fiber reinforce plastic (FRP) rib and preparation method thereof
Pothan et al. Tensile and flexural behavior of sisal fabric/polyester textile composites prepared by resin transfer molding technique
Ma et al. Improving the interlaminar properties of polymer composites using a situ accumulation method to construct the multi-scale reinforcement of carbon nanofibers/carbon fibers
US20140119936A1 (en) Wind turbine blade comprising metal filaments and carbon fibres and a method of manufacturing thereof
CN104743087B (en) A kind of ship D braided composites propeller blade and preparation method thereof
CN103994031B (en) A kind of carbon fibre fabric strengthens polymer matrix composites main beam cap and manufacture method thereof
CN109648890B (en) Preparation method of self-supporting semi-impregnated self-adhesive non-buckling pre-set fabric
CN102205649B (en) Method for producing glass fiber reinforced plastic anchor pole
Ratim et al. The effect of woven and non-woven fiber structure on mechanical properties polyester composite reinforced kenaf
Hafizah et al. Tensile behaviour of kenaf fiber reinforced polymer composites
CN106626436A (en) Hybrid fiber woven roving composite material automobile battery box and manufacturing method thereof
CN105050801A (en) Point bridged fiber bundle
Saidi et al. Tensile strength of natural fiber in different type of matrix
JP6065546B2 (en) Method for forming twisted yarn reinforced composite material
He et al. Unique silk-carbon fiber core-spun yarns for developing an advanced hybrid fiber composite with greatly enhanced impact properties
David et al. CFRP laminates with recycled carbon fiber: resin infusion and mechanical characterisation
Hajdaei Extending the fatigue life of a T-joint in a composite wind turbine blade
CN108394109A (en) A kind of built-in fitting, preparation method and the composite structure comprising the built-in fitting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R150 Certificate of patent or registration of utility model

Ref document number: 6065546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees