JP2014101984A - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP2014101984A
JP2014101984A JP2012256157A JP2012256157A JP2014101984A JP 2014101984 A JP2014101984 A JP 2014101984A JP 2012256157 A JP2012256157 A JP 2012256157A JP 2012256157 A JP2012256157 A JP 2012256157A JP 2014101984 A JP2014101984 A JP 2014101984A
Authority
JP
Japan
Prior art keywords
joint member
torque transmission
constant velocity
velocity universal
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012256157A
Other languages
Japanese (ja)
Inventor
Mika Obara
美香 小原
Yukio Matsubara
幸生 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2012256157A priority Critical patent/JP2014101984A/en
Publication of JP2014101984A publication Critical patent/JP2014101984A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a frictional resistance of a slide contact part between a torque transmitting member and an inner joint member and between the torque transmitting member and an outer joint member in a constant velocity universal joint in which the torque transmitting member is placed between the inner joint member and the outer joint member.SOLUTION: A constant velocity universal joint of this invention comprises an outer joint member 20 having a hole 24 of a hexagonal shape of a sectional plane perpendicular to a rotating axis and an inner wall surface 26 of the hole 24 being a flat plane in parallel with a rotating axis P-P; an inner joint member 10 stored in the hole 24 of the outer joint member 20 with its outer peripheral surface 16 being spherical plane; and a plurality of torque transmitting members 30 placed between the inner wall surface 26 of the outer joint member 20 and the outer peripheral surface 16 of the inner joint member 10. Material constituting a surface of the torque transmitting member 30 of which part is contacted with the inner joint member 10 or the outer joint member 20 is metal with yield strength of 100 MPa or more and a low frictional coefficient against either the inner joint member 10 or the outer joint member 20 or both of them.

Description

この発明は等速自在継手に関する。   The present invention relates to a constant velocity universal joint.

等速自在継手は、角度変位だけが可能な固定式と、角度変位と軸方向変位(プランジング)が可能なしゅう動式とに大別され、用途に応じて適宜使い分けるようにしている。たとえば自動車のドライブシャフトの場合、車輪側(アウトボード)に固定式等速自在継手を使用し、ディファレンシャルギヤ側(インボード)にしゅう動式等速自在継手を使用する。   Constant velocity universal joints are roughly classified into a fixed type capable of only angular displacement and a sliding type capable of angular displacement and axial displacement (plunging), and is appropriately used depending on the application. For example, in the case of an automobile drive shaft, a fixed type constant velocity universal joint is used on the wheel side (outboard), and a sliding type constant velocity universal joint is used on the differential gear side (inboard).

しゅう動式等速自在継手の一例としてトリポード型等速自在継手が知られている。しかし、トリポード型等速自在継手は、部品点数が多い、内側継手部材と結合するシャフトの径寸法の割に継手の外径寸法が大きい、外側継手部材の内壁面の形状が複雑である、といった問題点を有する。これらの問題点を解消するため、特許文献1では、内側継手部材と外側継手部材の2部品からなり、トリポード型等速自在継手に比べて部品点数を大幅に減少させた等速自在継手が提案されている。その等速自在継手は、内側継手部材と、外側継手部材とからなり、内側継手部材は外側継手部材の内側に収容されている。外側継手部材の内壁面は、回転軸線に対して垂直な断面で見ると正六角形状で、回転軸線を含む断面で見ると回転軸線と平行な平坦面である。内側継手部材は、外側継手部材の内壁面を構成する各平坦面に対応した凸球面状の外周面を有する。このような構造であるため、内側継手部材と外側継手部材の相互間では、軸線方向の変位と角度変位(屈曲)が可能であるが、円周方向での相対移動は阻止され、したがってトルク伝達が可能である。   A tripod type constant velocity universal joint is known as an example of a sliding type constant velocity universal joint. However, the tripod type constant velocity universal joint has a large number of parts, the outer diameter of the joint is large relative to the diameter of the shaft coupled to the inner joint member, and the shape of the inner wall surface of the outer joint member is complicated. Has a problem. In order to solve these problems, Patent Document 1 proposes a constant velocity universal joint that consists of two parts, an inner joint member and an outer joint member, with a significantly reduced number of parts compared to the tripod type constant velocity universal joint. Has been. The constant velocity universal joint includes an inner joint member and an outer joint member, and the inner joint member is accommodated inside the outer joint member. The inner wall surface of the outer joint member has a regular hexagonal shape when viewed in a cross section perpendicular to the rotation axis, and is a flat surface parallel to the rotation axis when viewed in a cross section including the rotation axis. The inner joint member has a convex spherical outer peripheral surface corresponding to each flat surface constituting the inner wall surface of the outer joint member. Because of this structure, axial displacement and angular displacement (bending) are possible between the inner joint member and the outer joint member, but relative movement in the circumferential direction is prevented, and therefore torque transmission Is possible.

しかしながら、特許文献1のものでは、内側継手部材の凸球面状の外周面と、外側継手部材の内壁面の平坦面とが接触する。したがって、両者の接触部は点接触となる。そのため、接触部の面圧が非常に高くなり、接触部に損傷が生じやすい。かかる問題点を除去するため、特許文献2では、内側継手部材と外側継手部材との間に別途、トルク伝達部材を介在させることを提案している。これにより、特許文献1のものに比べて部品点数は増えるものの、接触部の面圧が低下し、継手寿命が向上する。   However, in the thing of patent document 1, the convex spherical outer peripheral surface of an inner joint member and the flat surface of the inner wall surface of an outer joint member contact. Therefore, the contact part of both becomes a point contact. Therefore, the surface pressure of the contact portion becomes very high, and the contact portion is easily damaged. In order to eliminate such a problem, Patent Document 2 proposes that a torque transmission member be separately provided between the inner joint member and the outer joint member. Thereby, although the number of parts increases compared with the thing of patent document 1, the surface pressure of a contact part falls and a joint lifetime improves.

特開平5−172152号公報JP-A-5-172152 特開平7−190081号公報Japanese Patent Laid-Open No. 7-190081

特許文献2の等速自在継手は、内側継手部材と外側継手部材の間にトルク伝達部材を介在させることにより、特許文献1のものよりも接触部の面圧は低下するものの、その接触の形態は滑り接触であるため、依然、継手が作動角をとった状態で回転するときのスライド抵抗は転がり接触の場合に比較して大きい。とりわけ自動車のドライブシャフトやプロペラシャフトに用いる等速自在継手の場合、継手の耐久性およびNVH特性の改善といった観点から、スライド抵抗を減少させる必要がある。   In the constant velocity universal joint of Patent Document 2, the surface pressure of the contact portion is lower than that of Patent Document 1 by interposing a torque transmission member between the inner joint member and the outer joint member. Because of the sliding contact, the sliding resistance when the joint rotates at the operating angle is still larger than that of the rolling contact. In particular, in the case of a constant velocity universal joint used for an automobile drive shaft or propeller shaft, it is necessary to reduce slide resistance from the viewpoint of improving the durability of the joint and NVH characteristics.

この発明は、トリポード型でも、ボールを用いるタイプでもない、上に述べた特許文献2に記載されたタイプの等速自在継手において、トルク伝達部材と内側継手部材との間およびトルク伝達部材と外側継手部材との間における滑り接触部分の摩擦抵抗を減少させることを目的とする。   The present invention relates to a constant velocity universal joint of the type described in Patent Document 2 described above, which is neither a tripod type nor a type using a ball, and between the torque transmission member and the inner joint member and between the torque transmission member and the outer side. It aims at reducing the frictional resistance of the sliding contact part between joint members.

この発明は、トルク伝達部材の表面のうち、すくなくとも内側継手部材または外側継手部材と接触する部分を、内側継手部材および/または外側継手部材に対する摩擦係数の低い金属で形成することによって課題を解決した。すなわち、この発明の等速自在継手は、回転軸線に垂直な断面が六角形状の穴を有し、前記穴の内壁面が回転軸線に平行な平坦面である外側継手部材と、前記穴に収容され、外周面が球面状である内側継手部材と、前記外側継手部材の前記内壁面と前記内側継手部材の前記外周面との間に介在させた複数のトルク伝達部材とを有し、前記トルク伝達部材の表面のうち、前記内側継手部材または前記外側継手部材と接触する部分を、降伏強度が100MPa以上で、前記内側継手部材もしくは前記外側継手部材または両方に対する摩擦係数の低い金属で形成したものである。   The present invention solves the problem by forming at least a portion of the surface of the torque transmission member that contacts the inner joint member or the outer joint member with a metal having a low coefficient of friction with respect to the inner joint member and / or the outer joint member. . That is, the constant velocity universal joint of the present invention includes an outer joint member having a hexagonal hole in a cross section perpendicular to the rotation axis, and an inner wall surface of the hole being a flat surface parallel to the rotation axis, and is accommodated in the hole. An inner joint member having a spherical outer peripheral surface, and a plurality of torque transmission members interposed between the inner wall surface of the outer joint member and the outer peripheral surface of the inner joint member, and the torque Of the surface of the transmission member, the portion that comes into contact with the inner joint member or the outer joint member is made of a metal having a yield strength of 100 MPa or more and a low friction coefficient with respect to the inner joint member or the outer joint member or both. It is.

簡略化のため、「内側継手部材もしくは外側継手部材または両方」を以下では「内側継手部材および/または外側継手部材」と表記する。トルク伝達部材は、内側継手部材と接触する側と、外側継手部材と接触する側の、二つの面を有する。そして、「内側継手部材および外側継手部材」というときはそれらの両面が対象であり、「内側継手部材または外側継手部材」というときはどちらか片面が対象であることを意味する。   For the sake of simplicity, “inner joint member or outer joint member or both” will hereinafter be referred to as “inner joint member and / or outer joint member”. The torque transmission member has two surfaces, a side in contact with the inner joint member and a side in contact with the outer joint member. And when it says "an inner joint member and an outer joint member", those both surfaces are object, and when it says "an inner joint member or an outer joint member", it means that either one side is object.

内側継手部材および/または外側継手部材に対する摩擦係数の低い金属であれば種類は問わないが、もちろん合金も含まれる。たとえば銅合金、好ましくは黄銅、より好ましくは高力黄銅であり、具体例としては高力黄銅鋳物1種CAC301(旧記号HBsC1)(JIS H 5120:97)を挙げることができる。これらの金属材料の摩擦係数は、通常内側継手部材と外側継手部材に用いられる炭素鋼に比べて十分低い。
トルク伝達部材の表面のみそのような金属材料で形成するほか、トルク伝達部材全体をそのような金属材料で形成してもよい。また、トルク伝達部材の表面から芯部に向かって2以上の層状とした多層構造としてもよい。
Any metal may be used as long as it has a low coefficient of friction with respect to the inner joint member and / or the outer joint member. For example, it is a copper alloy, preferably brass, more preferably high-strength brass, and specific examples thereof include high-strength brass casting type 1 CAC301 (old symbol HBsC1) (JIS H 5120: 97). The friction coefficient of these metal materials is sufficiently lower than that of carbon steel usually used for the inner joint member and the outer joint member.
In addition to forming only the surface of the torque transmission member with such a metal material, the entire torque transmission member may be formed with such a metal material. Moreover, it is good also as a multilayered structure made into two or more layers from the surface of a torque transmission member toward a core part.

また、トルク伝達部材と内側継手部材との間およびトルク伝達部材と外側継手部材との間の接触は弾性変形の範疇であることが好ましく、そのためにトルク伝達部材を構成する金属材料は100MPa以上の降伏強さまたは降伏強度(塑性変形が始まる点すなわち降伏点における応力)を有するものとする。等速自在継手の入力トルクや内部部品の設計によってトルク伝達部材に作用する応力は変わってくるが、たとえばドライブシャフトとしての使用を想定した場合、100MPa以上の降伏強度がないと、高い入力トルクや高作動角を取ったときにトルク伝達部材が変形する可能性がある。   Further, the contact between the torque transmission member and the inner joint member and between the torque transmission member and the outer joint member is preferably in the category of elastic deformation, and for this purpose, the metal material constituting the torque transmission member is 100 MPa or more. It shall have yield strength or yield strength (stress at the point where plastic deformation begins, ie yield point). Although the stress acting on the torque transmission member varies depending on the input torque of the constant velocity universal joint and the design of the internal parts, for example, assuming use as a drive shaft, if there is no yield strength of 100 MPa or higher, The torque transmission member may be deformed when a high operating angle is taken.

この発明によれば、トルク伝達部材の表面を内側継手部材および/または外側継手部材に対する摩擦係数の低い金属で構成することにより、内側継手部材とトルク伝達部材との間および外側継手部材とトルク伝達部材との間の摩擦力が低減し、振動特性の面でも有利となる。
また、従来の等速自在継手では、高面圧であることから、少なくとも接触部位に熱処理による硬化層を形成する必要があるところ、この発明によれば、低面圧であるため、熱処理しなくても必要な降伏強度を有する限り、熱処理を省略することができる。
According to the present invention, the surface of the torque transmission member is made of a metal having a low coefficient of friction with respect to the inner joint member and / or the outer joint member, so that the torque is transmitted between the inner joint member and the torque transmission member and between the outer joint member and the torque transmission. The frictional force with the member is reduced, which is advantageous in terms of vibration characteristics.
In addition, since the conventional constant velocity universal joint has a high surface pressure, it is necessary to form a hardened layer by heat treatment at least at the contact portion. According to the present invention, since the surface pressure is low, no heat treatment is performed. However, as long as it has the required yield strength, the heat treatment can be omitted.

この発明の実施例を示す等速自在継手の正面図である。It is a front view of the constant velocity universal joint which shows the Example of this invention. 図1に示す等速自在継手の最大作動角をとった状態の縦断面図である。It is a longitudinal cross-sectional view of the state where the maximum operating angle of the constant velocity universal joint shown in FIG. 1 is taken. 図1に示す等速自在継手の内側継手部材の正面図である。It is a front view of the inner joint member of the constant velocity universal joint shown in FIG. 図1に示す等速自在継手の内側継手部材の斜視図である。It is a perspective view of the inner side coupling member of the constant velocity universal joint shown in FIG. (A)はトルク伝達部材の断面図、(B)は側面図、(C)は外側面の拡大断面略図である。(A) is sectional drawing of a torque transmission member, (B) is a side view, (C) is an expanded sectional schematic diagram of an outer surface. トルク伝達部材の断面図である。It is sectional drawing of a torque transmission member. (A)はトルク伝達部材の断面図、(B)は側面図である。(A) is sectional drawing of a torque transmission member, (B) is a side view. (A)はトルク伝達部材の断面図、(B)は側面図である。(A) is sectional drawing of a torque transmission member, (B) is a side view. 摩擦係数の経時変化を示す線図である。It is a diagram which shows a time-dependent change of a friction coefficient. (A)、(B)、(C)はトルク伝達部材の側面図である。(A), (B), (C) is a side view of a torque transmission member. 微小凹部(ディンプル)を設けた面の模式図である。It is a schematic diagram of the surface which provided the micro recessed part (dimple).

以下、この発明の実施の形態を添付図面に基づいて説明する。
ここで、図1は作動角0の状態における等速自在継手を、外側継手部材の開口端面側から見た図である。図2は、図1のII−II線に沿う、等速自在継手が最大作動角θmaxをとった状態の縦断面を示している。図2中の符号Oは継手中心を表し、符号P‐Pは外側継手部材の回転軸線すなわち、継手中心Oを通り図1の紙面に対して垂直な線を表す。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Here, FIG. 1 is a view of the constant velocity universal joint in a state where the operating angle is 0 as viewed from the opening end face side of the outer joint member. FIG. 2 shows a longitudinal section of the constant velocity universal joint taken at the maximum operating angle θmax along the line II-II in FIG. The symbol O in FIG. 2 represents the joint center, and the symbol PP represents a rotation axis of the outer joint member, that is, a line perpendicular to the paper surface of FIG.

図1および図2に示すように、等速自在継手は、内側継手部材10と、外側継手部材20と、トルク伝達部材30を主要な構成要素としている。内側継手部材10は外側継手部材20の内側に位置し、両者間に複数のトルク伝達部材30が介在している。   As shown in FIGS. 1 and 2, the constant velocity universal joint includes an inner joint member 10, an outer joint member 20, and a torque transmission member 30 as main components. The inner joint member 10 is located inside the outer joint member 20, and a plurality of torque transmission members 30 are interposed therebetween.

内側継手部材10は、軸心に軸方向の貫通孔12を有し、この貫通孔12にはセレーション孔14が形成してある(図4参照)。そして、このセレーション孔14にシャフト18のセレーション軸を挿入して両者をトルク伝達可能に結合するようになっている。周知のように、セレーションに代えてスプラインその他の凹凸結合を採用することも可能である。   The inner joint member 10 has an axial through hole 12 at the shaft center, and a serration hole 14 is formed in the through hole 12 (see FIG. 4). Then, the serration shaft of the shaft 18 is inserted into the serration hole 14 so as to be coupled to transmit torque. As is well known, it is also possible to employ a spline or other uneven coupling instead of serration.

内側継手部材10の外周面には複数の内側トルク伝達面16が形成してある。図1、3、4の場合、合計6面の内側トルク伝達面16(a)〜16(c)がある。各内側トルク伝達面16は凸球面状である。内側継手部材10の回転軸線を含む断面すなわち縦断面(図2参照)で見ると、内側トルク伝達面16は継手中心Oを曲率中心とする円弧である。したがって、内側トルク伝達面16の曲率中心は回転軸線上にある。また、横断面(図3参照)で見ると、ピッチ円PC上に等間隔で配置した点C(a)〜C(c)のいずれかを曲率中心とする半径rの円弧である。ピッチ円PCは、継手中心面(継手中心Oを含み回転軸線に垂直な平面)上で継手中心Oを中心とする円であり、その半径r0は継手の使用条件(特に負荷条件)によって定まる。 A plurality of inner torque transmission surfaces 16 are formed on the outer peripheral surface of the inner joint member 10. In the case of FIGS. 1, 3, and 4, there are a total of six inner torque transmission surfaces 16 (a) to 16 (c). Each inner torque transmission surface 16 has a convex spherical shape. When viewed in a cross section including the rotation axis of the inner joint member 10, that is, in a longitudinal section (see FIG. 2), the inner torque transmission surface 16 is an arc having the joint center O as the center of curvature. Therefore, the center of curvature of the inner torque transmission surface 16 is on the rotation axis. Further, when viewed in a cross section (see FIG. 3), it is an arc having a radius r centered on one of the points C (a) to C (c) arranged at equal intervals on the pitch circle PC. The pitch circle PC is a circle centered on the joint center O on the joint center plane (a plane including the joint center O and perpendicular to the rotation axis), and its radius r 0 is determined by the use conditions (particularly load conditions) of the joint. .

より具体的に述べると、点C(a)を挟んで対向する一対の内側トルク伝達面16(a)は、点C(a)を曲率中心とする円弧であると同時に点C(a)を中心とする球面の一部でもある。同様に、点C(b)を挟んで対向する一対の内側トルク伝達面16(b)は、点C(b)を曲率中心とする円弧であると同時に点C(b)を中心とする球面の一部である。また、点C(c)を挟んで対向する一対の内側トルク伝達面16(c)は、点C(c)を曲率中心とする円弧であると同時に点C(c)を中心とする球面の一部である。このように、内側トルク伝達面16は、曲率中心(C(a)、C(b)またはC(c))を共通にするもの同士を一組として3組で構成される。   More specifically, the pair of inner torque transmission surfaces 16 (a) facing each other across the point C (a) is an arc having the center of curvature at the point C (a) and at the same time the point C (a). It is also part of the spherical surface at the center. Similarly, the pair of inner torque transmission surfaces 16 (b) facing each other across the point C (b) are arcs having the center of curvature at the point C (b) and at the same time spherical surfaces having the center at the point C (b). Is part of. Further, the pair of inner torque transmission surfaces 16 (c) facing each other across the point C (c) is a circular arc having the center of curvature at the point C (c) and at the same time a spherical surface having the center at the point C (c). It is a part. Thus, the inner torque transmission surface 16 is composed of three sets each having a common center of curvature (C (a), C (b) or C (c)).

円周方向で隣り合った二つの内側トルク伝達面16は、大径端縁同士を突き合わせて稜線を形成している。図3に関して述べるならば、同図の下部に、内側トルク伝達面16(b)と内側トルク伝達面16(c)とで形成される稜(隣り合う二つの面が交わった所に生じる線分または半直線)が同図の上下方向に走る直線として現れており、そこから反時計方向に120度進んだ位置に内側トルク伝達面16(a)と内側トルク伝達面16(b)とで形成される稜があり、さらにそこから反時計方向に120度進んだ位置に内側トルク伝達面16(c)と内側トルク伝達面16(a)とで形成される稜がある。このようにして、3組の内側トルク伝達面16(b)(c)、16(a)(b)、16(c)(a)がそれぞれ稜を形成している。内側継手部材10の外周の、稜と稜の間の部分は、内側継手部材10の強度や加工上の配慮をした上で、任意の形状とすることができる。   Two inner torque transmission surfaces 16 adjacent to each other in the circumferential direction face each other with large-diameter end edges to form ridge lines. Referring to FIG. 3, a ridge formed by the inner torque transmission surface 16 (b) and the inner torque transmission surface 16 (c) (a line segment formed at the intersection of two adjacent surfaces is shown at the bottom of the figure. Or a half straight line) appears as a straight line running in the vertical direction in the figure, and is formed by the inner torque transmission surface 16 (a) and the inner torque transmission surface 16 (b) at a position advanced 120 degrees counterclockwise therefrom. There is a ridge formed by the inner torque transmission surface 16 (c) and the inner torque transmission surface 16 (a) at a position advanced 120 degrees counterclockwise therefrom. In this way, the three sets of inner torque transmission surfaces 16 (b) (c), 16 (a) (b), 16 (c) (a) each form a ridge. A portion between the ridges on the outer periphery of the inner joint member 10 can be formed into an arbitrary shape after taking the strength of the inner joint member 10 and processing into consideration.

外側継手部材20は、図1および図2に示すように、カップ状のマウス部22と、マウス部22の底から延びたステム部28とからなり、ステム部28に形成したセレーション軸で他のシャフト(図示せず)とトルク伝達可能に結合するようになっている。ここでも、セレーションに代えてスプラインその他の凹凸結合を採用することも可能である。   As shown in FIGS. 1 and 2, the outer joint member 20 includes a cup-shaped mouth portion 22 and a stem portion 28 extending from the bottom of the mouth portion 22, and other serration shafts formed on the stem portion 28. A shaft (not shown) is coupled to be able to transmit torque. Here, it is also possible to adopt a spline or other uneven coupling instead of serration.

外側継手部材20のマウス部22は一端で開口した穴24を有し、その穴24の内壁面は、図1からわかるように、外側継手部材20の回転軸線P‐Pに垂直な断面で見て、正多角形状(図示例では正六角形)である。穴24の内壁面を構成するそれぞれの面26は外側継手部材20の回転軸線P‐Pと平行な平坦面である。この面26を、上述の内側トルク伝達面16に対して外側トルク伝達面と呼ぶこととする。なお、外側トルク伝達面26は、外側継手部材20の回転軸線P‐Pに垂直な断面で見て、文字どおり平坦(ストレート)とするほか、大きな曲率半径の円弧としてもよい。その場合、外側トルク伝達面26は回転軸線P‐Pと平行な部分円筒面となる。   The mouth portion 22 of the outer joint member 20 has a hole 24 opened at one end, and the inner wall surface of the hole 24 is seen in a cross section perpendicular to the rotation axis PP of the outer joint member 20 as can be seen from FIG. Thus, it is a regular polygon shape (regular hexagon in the illustrated example). Each surface 26 constituting the inner wall surface of the hole 24 is a flat surface parallel to the rotation axis PP of the outer joint member 20. The surface 26 is referred to as an outer torque transmission surface with respect to the inner torque transmission surface 16 described above. The outer torque transmission surface 26 may be literally flat (straight) as viewed in a cross section perpendicular to the rotation axis PP of the outer joint member 20, or may be an arc with a large curvature radius. In this case, the outer torque transmission surface 26 is a partial cylindrical surface parallel to the rotation axis PP.

図2に示すように、外側トルク伝達面26には、軸方向の2箇所に、クリップ25を装着するための周方向の溝が形成してある。なお、図1ではその溝を破線で示し、クリップ25は省略してある。ここではクリップ25の輪郭も正六角形で、弾性変形を利用して取り付け、取り外しができるように、周方向の一ヶ所で分断してある。図1はクリップ25を取り外した状態を示している。クリップ25は後に述べるトルク伝達部材30のしゅう動範囲を規定する役割を果たす。   As shown in FIG. 2, the outer torque transmission surface 26 is formed with circumferential grooves for mounting the clips 25 at two positions in the axial direction. In FIG. 1, the groove is indicated by a broken line, and the clip 25 is omitted. Here, the outline of the clip 25 is also a regular hexagon and is divided at one place in the circumferential direction so that it can be attached and detached using elastic deformation. FIG. 1 shows a state where the clip 25 is removed. The clip 25 plays a role of defining a sliding range of the torque transmitting member 30 described later.

内側トルク伝達面16と外側トルク伝達面26は対をなし、図示した例では6対存在する。各対の内側トルク伝達面16と外側トルク伝達面26は、互いに対向して相互間にくさび空間36を形成する。内側継手部材10と外側継手部材20との間に介在させるトルク伝達部材30は、上記くさび空間36に配置する。図5に例示したトルク伝達部材30は略円形(図5(B)参照)のボタン状である。内側継手部材10と接触する面を内側面32、外側継手部材20と接触する面を外側面34と呼ぶこととする。内側面32は凹球面状で、内側継手部材10の凸球面状の内側トルク伝達面16と球面接触する。図1および図2では両者の曲率半径は同じであるかのように示してあるが、必ずしも同じである必要はなく、たとえばトルク伝達部材30の内側面32の曲率半径を内側トルク伝達面16の曲率半径よりも小さくしてもよい。また、両者の曲率中心を適宜オフセットさせてもよい。   The inner torque transmission surface 16 and the outer torque transmission surface 26 form a pair, and there are six pairs in the illustrated example. Each pair of inner torque transmission surface 16 and outer torque transmission surface 26 face each other and form a wedge space 36 therebetween. The torque transmission member 30 interposed between the inner joint member 10 and the outer joint member 20 is disposed in the wedge space 36. The torque transmission member 30 illustrated in FIG. 5 has a substantially circular button shape (see FIG. 5B). A surface that contacts the inner joint member 10 is referred to as an inner surface 32, and a surface that contacts the outer joint member 20 is referred to as an outer surface 34. The inner side surface 32 has a concave spherical shape, and comes into spherical contact with the convex spherical inner torque transmission surface 16 of the inner joint member 10. In FIGS. 1 and 2, the radii of curvature of both are shown as being the same, but they are not necessarily the same. For example, the radius of curvature of the inner surface 32 of the torque transmitting member 30 is set to that of the inner torque transmitting surface 16. It may be smaller than the radius of curvature. Further, the centers of curvature of both may be appropriately offset.

トルク伝達部材30の外側面34は、外側継手部材20の平坦面状の外側トルク伝達面26と接触する。なお、図1では簡略化のため外側トルク伝達面34は平坦面であるかのように示してある。図5(A)は外側面34を凸球面とした例を示し、符号SRは外側面34の凸球面の曲率半径を表している。この場合、外側面34と外側トルク伝達面26との接触関係が点接触となるため、外周に向かってくさび状に開口したすきまが形成される。したがって、周囲の潤滑剤を引き込んで、接触部に潤滑剤を潤沢に供給することができる。   The outer surface 34 of the torque transmission member 30 is in contact with the flat outer torque transmission surface 26 of the outer joint member 20. In FIG. 1, for the sake of simplicity, the outer torque transmission surface 34 is shown as if it were a flat surface. FIG. 5A shows an example in which the outer surface 34 is a convex spherical surface, and the symbol SR represents the radius of curvature of the convex spherical surface of the outer surface 34. In this case, since the contact relationship between the outer surface 34 and the outer torque transmission surface 26 is a point contact, a gap that opens in a wedge shape toward the outer periphery is formed. Therefore, the surrounding lubricant can be drawn in and the lubricant can be supplied to the contact portion.

外側面34の凸球面の曲率半径SRを小さくするほど面圧が高くなる。そのため、面圧があまり高くならないようにしつつ、外周に向かってくさび状に開口したすきまを形成させる必要がある。しかも、外側継手部材20の外側トルク伝達面26のうちの対向する2面間の距離は、正六角形の内壁面に内接する円の直径に相当するため、当該2面間距離の半分よりも曲率半径SRを小さくすると、内側継手部材10と外側継手部材20の相対回転を許容してしまうおそれがある。しかし、それではトルク伝達という等速自在継手の基本的な機能を達成することができない。このような観点から、外側面34の凸球面の曲率半径SRは、外側継手部材20の外側トルク伝達面26のうちの対向する2面、具体的には、点C(a)、C(b)またはC(c)を挟んで対向する一対の外側トルク伝達面26(a)、26(b)または26(c)の対向する2面間の距離の半分よりも大きくするのが好ましく、より好ましくは、上記2面間距離の半分の5倍以上とする。   The surface pressure increases as the radius of curvature SR of the convex spherical surface of the outer surface 34 decreases. Therefore, it is necessary to form a gap that opens in a wedge shape toward the outer periphery while preventing the surface pressure from becoming too high. In addition, since the distance between two opposing surfaces of the outer torque transmission surface 26 of the outer joint member 20 corresponds to the diameter of a circle inscribed in the inner wall surface of the regular hexagon, the curvature is more than half of the distance between the two surfaces. If the radius SR is decreased, there is a possibility that relative rotation between the inner joint member 10 and the outer joint member 20 is permitted. However, this does not achieve the basic function of the constant velocity universal joint of torque transmission. From this point of view, the curvature radius SR of the convex spherical surface of the outer surface 34 is the two opposing surfaces of the outer torque transmission surface 26 of the outer joint member 20, specifically, points C (a) and C (b ) Or C (c), and is preferably larger than half of the distance between two opposing surfaces of the pair of outer torque transmission surfaces 26 (a), 26 (b) or 26 (c) facing each other. Preferably, it is 5 times or more the half of the distance between the two surfaces.

外側面34の凸球面の曲率半径SRは、上述のとおり外側継手部材20の外側トルク伝達面26のうちの対向する2面間の距離の半分よりも大きくすることにより、必然的に、内側トルク伝達面16の曲率半径よりも大きくなる。そのため、内側継手部材10と外側継手部材20との角度変位は内側トルク伝達面とトルク伝達部材との球面接触部分で行われることになる。したがって、継手の角度変位を内側継手部材10とトルク伝達部材30との間で許容し、継手の軸方向変位を外側継手部材20とトルク伝達部材30との間で許容する、といった分担が成り立ち、トルク伝達部材30の偏当たりによる偏摩耗を防ぎ、また、スライド抵抗の低減に寄与することができる。   As described above, the curvature radius SR of the convex spherical surface of the outer side surface 34 is inevitably larger than half of the distance between two opposing surfaces of the outer torque transmitting surface 26 of the outer joint member 20, so that the inner torque is inevitably increased. The radius of curvature of the transmission surface 16 is larger. Therefore, the angular displacement between the inner joint member 10 and the outer joint member 20 is performed at the spherical contact portion between the inner torque transmission surface and the torque transmission member. Therefore, the sharing of allowing the angular displacement of the joint between the inner joint member 10 and the torque transmission member 30 and allowing the axial displacement of the joint between the outer joint member 20 and the torque transmission member 30 is established, Uneven wear due to the uneven contact of the torque transmitting member 30 can be prevented, and the slide resistance can be reduced.

一方、外側面34の凸球面の曲率半径SRは、最大負荷下で生じる接触円がトルク伝達部材30の外周からはみ出さないような設定、言い換えれば、接触円がトルク伝達部材30の外径よりも小さくなるような設定とするのが好ましい(接触円とは接触面の形状を意味する。転がり軸受の分野では玉軸受の軌道と玉との接触面が楕円形となることから接触楕円と呼ばれているが、トルク伝達部材30の外側面34が凸球面の場合、平坦面状の外側トルク伝達面26との接触面の形状は円となるため接触円という)。そのような設定のための具体的な条件を例示するならば、SR/r0<350とする。ここに、SRは凸球面の曲率半径、r0は内側継手部材10の内側トルク伝達面16の曲率中心C(a)〜C(c)を配置するピッチ円PCの半径を表す。   On the other hand, the curvature radius SR of the convex spherical surface of the outer surface 34 is set so that the contact circle generated under the maximum load does not protrude from the outer periphery of the torque transmission member 30, in other words, the contact circle is larger than the outer diameter of the torque transmission member 30. (The contact circle means the shape of the contact surface. In the field of rolling bearings, the contact surface between the ball bearing raceway and the ball is an ellipse. However, when the outer surface 34 of the torque transmitting member 30 is a convex spherical surface, the shape of the contact surface with the flat outer torque transmitting surface 26 is a circle, which is referred to as a contact circle). To illustrate specific conditions for such setting, SR / r0 <350. Here, SR represents the radius of curvature of the convex spherical surface, and r0 represents the radius of the pitch circle PC on which the centers of curvature C (a) to C (c) of the inner torque transmission surface 16 of the inner joint member 10 are arranged.

図5(C)に、トルク伝達部材30の凸球面状の外側面34の高さHを測定する方法を示す。想像線で示す円は、トルク伝達部材30の外周面と外側面34を滑らかにつなぐ丸みを表している。この円と外側面34の接線との交点38を求め、交点38から外側面34の頂点までの距離を高さHとする。この場合、高さHは、トルク伝達部材30の外周に向かってくさび状に開口するすきの開口部高さをも意味する。このすきまの開口部高さを例示するならば、グリース潤滑の場合、20〜300μm、好ましくは40〜80μmである。   FIG. 5C shows a method for measuring the height H of the convex spherical outer surface 34 of the torque transmitting member 30. A circle indicated by an imaginary line represents a roundness that smoothly connects the outer peripheral surface and the outer surface 34 of the torque transmission member 30. An intersection point 38 between this circle and the tangent line of the outer surface 34 is obtained, and the distance from the intersection point 38 to the vertex of the outer surface 34 is defined as a height H. In this case, the height H also means the height of the opening of the plow that opens in a wedge shape toward the outer periphery of the torque transmission member 30. In the case of grease lubrication, the opening height of this gap is 20 to 300 μm, preferably 40 to 80 μm.

図6はトルク伝達部材30の外側面34を凸円筒面とした例を示す。同図において、符号Rは凸円筒面状の外側面34の曲率半径を表す。この場合、凸円筒面状の外側面34と平坦面状の外側トルク伝達面26との接触関係は線接触となるため、周囲の潤滑剤を引き込んで、接触部に潤滑剤を潤沢に供給することができるという点で、上述の点接触の場合と同様の作用効果が得られる。   FIG. 6 shows an example in which the outer side surface 34 of the torque transmitting member 30 is a convex cylindrical surface. In the same figure, the code | symbol R represents the curvature radius of the outer surface 34 of convex cylindrical surface shape. In this case, since the contact relationship between the convex cylindrical outer surface 34 and the flat outer torque transmission surface 26 is a line contact, the surrounding lubricant is drawn in and the lubricant is sufficiently supplied to the contact portion. In that respect, the same effects as those in the case of the point contact described above can be obtained.

凸曲面の例として上に挙げた凸球面や凸円筒面はいずれも回転体の一部であって、対称形であるが、必ずしもそのような対称形とする必要はない。また、いわゆるクラウニング形状とすることもできる。要するに、トルク伝達部材30の外側面34と外側継手部材20の外側トルク伝達面26との間に、トルク伝達部材30の外周に向かってくさび状に開口したすきまを形成することができる限り、任意の形状とすることができる。トルク伝達部材30の外形も、円形に限らず、多角形、矩形その他の任意の形状とすることができる。この意味で、ボタン状と称しても何ら外形を特定するものではない。   The convex spherical surface and the convex cylindrical surface mentioned above as examples of the convex curved surface are both a part of the rotating body and are symmetrical, but it is not always necessary to have such a symmetrical shape. Moreover, it can also be set as what is called a crowning shape. In short, as long as a clearance that opens in a wedge shape toward the outer periphery of the torque transmission member 30 can be formed between the outer surface 34 of the torque transmission member 30 and the outer torque transmission surface 26 of the outer joint member 20, it is arbitrary. It can be made into the shape. The outer shape of the torque transmission member 30 is not limited to a circle, but may be a polygon, a rectangle, or any other shape. In this sense, a button shape does not specify any external shape.

内側継手部材10、外側継手部材20、トルク伝達部材30は、いずれも鋼等の金属材料で形成される。内側継手部材10の内側トルク伝達面16および外側継手部材20の外側トルク伝達面26には、高周波焼入れその他の表面硬化処理を施して耐摩耗性を向上させるのが望ましい。継手が作動角をとった状態で回転すると、トルク伝達部材30は外側継手部材20の回転軸線P‐P方向に外側トルク伝達面26上をしゅう動する。このとき、外側トルク伝達面26とトルク伝達部材30との間で滑りが生ずる。そのため、外側トルク伝達面26のうち、少なくともトルク伝達部材30がしゅう動する領域に、表面硬化処理による硬化層を設けることにより、外側トルク伝達面26の摩耗抑制に加えて、外側継手部材20の捩り強度を確保することができる。   The inner joint member 10, the outer joint member 20, and the torque transmission member 30 are all formed of a metal material such as steel. The inner torque transmission surface 16 of the inner joint member 10 and the outer torque transmission surface 26 of the outer joint member 20 are preferably subjected to induction hardening or other surface hardening treatment to improve wear resistance. When the joint rotates with the operating angle taken, the torque transmission member 30 slides on the outer torque transmission surface 26 in the direction of the rotation axis PP of the outer joint member 20. At this time, slip occurs between the outer torque transmission surface 26 and the torque transmission member 30. Therefore, by providing a hardened layer by surface hardening treatment at least in a region where the torque transmitting member 30 slides in the outer torque transmitting surface 26, in addition to suppressing wear of the outer torque transmitting surface 26, the outer joint member 20 Torsional strength can be ensured.

等速自在継手は、内側継手部材10と外側継手部材20との間の空間にグリース等の潤滑剤を充填して使用する。そして、潤滑剤のもれ防止と、水その他の異物の侵入防止のため、ブーツを装着する。そのような等速自在継手用ブーツは周知であるため、詳細な説明は省略する。   The constant velocity universal joint is used by filling the space between the inner joint member 10 and the outer joint member 20 with a lubricant such as grease. Then, boots are attached to prevent the lubricant from leaking and to prevent water and other foreign substances from entering. Such boots for constant velocity universal joints are well known, and thus detailed description thereof is omitted.

上述の構成において、内側継手部材10と外側継手部材20は、角度変位と、軸方向変異と、両者が複合した変位とが可能である。角度変位は、縦断面(図2参照)における継手中心Oを中心として屈曲する内側継手部材10と外側継手部材20の相対運動である。軸方向変位は、内側継手部材20が外側継手部材10の回転軸線P‐P方向に移動する相対運動である。   In the above-described configuration, the inner joint member 10 and the outer joint member 20 are capable of angular displacement, axial variation, and displacement in which both are combined. The angular displacement is a relative motion of the inner joint member 10 and the outer joint member 20 that are bent around the joint center O in the longitudinal section (see FIG. 2). The axial displacement is a relative movement in which the inner joint member 20 moves in the direction of the rotation axis PP of the outer joint member 10.

トルク伝達部材30の外側面34は外側トルク伝達面26に沿って外側継手部材20の軸線方向にしゅう動可能であるため、等速自在継手のプランジングも可能となる。プランジング量は図2に符号Aで示してある一対のクリップ25間の距離に相当する。つまり、トルク伝達部材30は、クリップ25と当接するとそれ以上の軸方向移動を阻止される。クリップ25間の距離Aを小さくして、トルク伝達部材30の軸方向両側をクリップ25で拘束すれば、プランジングを許容しない固定式の等速自在継手として使用することが可能となる。   Since the outer surface 34 of the torque transmission member 30 can slide along the outer torque transmission surface 26 in the axial direction of the outer joint member 20, the constant velocity universal joint can also be plunge. The plunging amount corresponds to the distance between the pair of clips 25 indicated by symbol A in FIG. That is, when the torque transmission member 30 abuts on the clip 25, further axial movement is prevented. If the distance A between the clips 25 is reduced and both sides of the torque transmitting member 30 in the axial direction are restricted by the clips 25, it can be used as a fixed type constant velocity universal joint that does not allow plunging.

そして、図2に示すように作動角θをとった状態で継手が回転すると、トルク伝達部材30を介して内側継手部材10の内側トルク伝達面16と外側継手部材20の外側トルク伝達面26との間でトルク伝達が行われる。トルク伝達中のトルク伝達部材30は、作動角に応じた一定ストロークで外側自在継手20の回転軸線P‐P方向に往復移動する。その際発生する摩擦によって、トルク伝達部材30をその中心線を中心として回転(自転)させる力が作用する。トルク伝達部材30が自転することにより、偏当たりによる偏摩耗の進行といった問題が生じないばかりでなく、潤滑剤を引き込むうえでも有利に作用する。   When the joint rotates with the operating angle θ taken as shown in FIG. 2, the inner torque transmission surface 16 of the inner joint member 10 and the outer torque transmission surface 26 of the outer joint member 20 via the torque transmission member 30. Torque is transmitted between the two. The torque transmission member 30 during torque transmission reciprocates in the direction of the rotation axis PP of the outer universal joint 20 with a constant stroke corresponding to the operating angle. Due to the friction that occurs, a force that rotates (rotates) the torque transmission member 30 about its center line acts. The rotation of the torque transmitting member 30 does not cause a problem such as the progression of uneven wear due to uneven contact, and also advantageously works to draw in the lubricant.

トルク伝達部材30の内側面32と内側トルク伝達面16は球面接触するため、当該接触部での面圧は高くない。トルク伝達部材30の外側面34と外側トルク伝達面26は点接触または線接触となるが、すでに述べたように、外側面34の曲率半径を適宜設定することにより、面圧があまり高くならないようにしつつ、トルク伝達部材30の外周に向かってくさび状に開口したすきまを形成することができる。このようにして形成されたすきまによる潤滑剤の引き込み作用で、滑り接触部に潤沢な潤滑剤が供給される。したがって、滑り接触部での摩耗を抑制して等速自在継手の長寿命化を達成するとともに低トルク化を図ることが可能となる。また、振動や異音の発生も防止することができ、車両搭載時のNVH特性の改善を図ることができる。   Since the inner surface 32 of the torque transmission member 30 and the inner torque transmission surface 16 are in spherical contact, the surface pressure at the contact portion is not high. The outer surface 34 and the outer torque transmission surface 26 of the torque transmission member 30 are in point contact or line contact. However, as described above, the surface pressure is not so high by appropriately setting the radius of curvature of the outer surface 34. In addition, a gap that opens in a wedge shape toward the outer periphery of the torque transmission member 30 can be formed. Abundant lubricant is supplied to the sliding contact portion by the drawing action of the lubricant by the gap formed in this way. Therefore, it is possible to suppress the wear at the sliding contact portion, to achieve the long life of the constant velocity universal joint and to reduce the torque. In addition, generation of vibrations and abnormal noise can be prevented, and NVH characteristics when mounted on a vehicle can be improved.

次に、トルク伝達部材30の材質について述べる。トルク伝達部材30の材料一般としては、鋼、黄銅、アルミ合金などを挙げることができるが、トルク伝達部材30の少なくとも表面を構成する材料としては、内側継手部材10および/または外側継手部材20に対する摩擦係数の低い金属を採用する。また、摩耗を防ぐ観点から、トルク伝達部材30の少なくとも表面を構成する金属は、内側継手部材10および/または外側継手部材20とは異種のものとし、「ともがね」を避けるのが好ましい。   Next, the material of the torque transmission member 30 will be described. Examples of general materials for the torque transmission member 30 include steel, brass, aluminum alloy, and the like. However, as a material constituting at least the surface of the torque transmission member 30, the inner joint member 10 and / or the outer joint member 20 may be used. Use metal with low coefficient of friction. Further, from the viewpoint of preventing wear, it is preferable that the metal constituting at least the surface of the torque transmission member 30 is different from the inner joint member 10 and / or the outer joint member 20 and avoids “toggle”.

そのような金属材料の一例として、すでに例示した黄銅が挙げられる。高力黄銅鋳物1種CAC301の主要成分(質量%)は、Al:0.5〜1.5、Fe:0.5〜1.5、Mn:0.1〜1.5、Zn:33.0〜42.0、残余がCuである。高力黄銅鋳物1種CAC301の場合、その降伏強度は400MPa程度である。降伏強度が400MPaの場合、ヘルツ接触の最大接触面圧が降伏強度を0.6で除した667MPa以下であれば、マクロ的には塑性変形は生じない。さらに、接触面表層の降伏強度を向上させる手段としては、たとえばECAP(Equal Channel Angular Pressing)法などが挙げられる。ECAP法は比較的大きな材料を均一に強塑性変形させて結晶粒径をサブミクロンからナノメトリック領域まで微細化することのできる塑性加工法であり、加工前後で材料の断面形状が同一であるのが特徴である。たとえばトルク伝達部材を最終的なボタン状に加工する前の棒状の素材にECAPを施すことができる。   As an example of such a metal material, the already exemplified brass can be cited. The main components (mass%) of the high strength brass casting type 1 CAC301 are Al: 0.5 to 1.5, Fe: 0.5 to 1.5, Mn: 0.1 to 1.5, Zn: 33. 0 to 42.0, the balance is Cu. In the case of the high-strength brass casting type 1 CAC301, the yield strength is about 400 MPa. When the yield strength is 400 MPa, if the maximum contact surface pressure of Hertz contact is 667 MPa or less obtained by dividing the yield strength by 0.6, plastic deformation does not occur macroscopically. Furthermore, as means for improving the yield strength of the contact surface layer, for example, an ECAP (Equal Channel Angular Pressing) method can be cited. The ECAP method is a plastic processing method in which relatively large materials can be uniformly and plastically deformed to refine the crystal grain size from submicron to nanometric range, and the cross-sectional shape of the material is the same before and after processing. Is a feature. For example, ECAP can be applied to a rod-shaped material before the torque transmission member is processed into a final button shape.

また、トルク伝達部材30は内側継手部材10および外側継手部材20に対してしゅう動する部品であるため、ヤング率(縦弾性係数)は35GPa以上であることが望ましい。ヤング率が35GPa未満であると、しゅう動部に大きな摩擦力が働いたときに変形するおそれがある。周知のとおり、ヤング率は垂直応力(断面に垂直な方向に生ずる応力)と縦ひずみ(材料の軸方向に荷重が加わったときに生じる軸方向の変形量ともとの長さとの比)との比をいう。   Further, since the torque transmission member 30 is a component that slides with respect to the inner joint member 10 and the outer joint member 20, the Young's modulus (longitudinal elastic modulus) is desirably 35 GPa or more. If the Young's modulus is less than 35 GPa, it may be deformed when a large frictional force is applied to the sliding portion. As is well known, the Young's modulus is the vertical stress (stress generated in the direction perpendicular to the cross section) and longitudinal strain (ratio between the axial deformation and the original length when a load is applied in the axial direction of the material). A ratio.

トルク伝達部材30の全体を、内側継手部材10および/または外側継手部材20に対する摩擦係数の低い金属で形成してもよいし、内側継手部材10または外側継手部材20に対してしゅう動する表面のみを内側継手部材10および/または外側継手部材20に対する摩擦係数の低い金属で形成してもよい。さらに、そのような表面の全部または一部のみを内側継手部材10および/または外側継手部材20に対する摩擦係数の低い金属で形成してもよい。たとえば、トルク伝達部材30の一部を内側継手部材10および/または外側継手部材20に対する摩擦係数の低い金属で形成し、しゅう動に関わらない部分は別の、たとえば安価な金属とすることができる。   The entire torque transmission member 30 may be formed of a metal having a low coefficient of friction with respect to the inner joint member 10 and / or the outer joint member 20, or only the surface that slides with respect to the inner joint member 10 or the outer joint member 20. May be formed of a metal having a low coefficient of friction with respect to the inner joint member 10 and / or the outer joint member 20. Further, all or a part of such a surface may be formed of a metal having a low coefficient of friction with respect to the inner joint member 10 and / or the outer joint member 20. For example, a part of the torque transmission member 30 may be formed of a metal having a low coefficient of friction with respect to the inner joint member 10 and / or the outer joint member 20, and a portion not involved in the sliding may be another, for example, an inexpensive metal. .

トルク伝達部材30の表面のみをそのような金属で構成させる場合、一例として、トルク伝達部材30の母材表面に当該金属を被覆する方法がある。被覆の具体的な手段としては、めっき、溶射、化学蒸着、物理蒸着などが挙げられる。めっきの例としてはニッケル(合金)めっきやクロム(合金)めっきが挙げられる。溶射に用いる金属の例としては、ニッケル合金やニッケル−クロム合金といった金属のほか、酸化クロムや炭化クロムといった非金属が挙げられる。   When only the surface of the torque transmission member 30 is made of such a metal, as an example, there is a method of covering the surface of the base material of the torque transmission member 30 with the metal. Specific means for coating include plating, thermal spraying, chemical vapor deposition, physical vapor deposition and the like. Examples of plating include nickel (alloy) plating and chromium (alloy) plating. Examples of metals used for thermal spraying include metals such as nickel alloys and nickel-chromium alloys, and non-metals such as chromium oxide and chromium carbide.

あるいは、異種の材料を組み合わせる方法がある。組み合わせの例を図7および図8に示す。図7は、内側継手部材10とおよび外側継手部材20と接触する面(表面)のみ、内側継手部材10および/または外側継手部材20に対する摩擦係数の低い金属で形成し、内部はそれとは別の、安価な金属、たとえば機械構造用炭素鋼SCや一般構造用圧延鋼材SSとした例である。具体的には、内側継手部材10の内側トルク伝達面16と接触する内側面32と、外側継手部材20の外側トルク伝達面20と接触する面34に、内側継手部材10および外側継手部材20に対する摩擦係数の低い金属の層38aが表面に設けてある。したがって、図7のトルク伝達部材30は断面が3層になっている。図8は、トルク伝達部材30の中央のみを内側継手部材10および/または外側継手部材20に対する摩擦係数の低い金属38bで構成し、周囲はそれとは別の、安価な金属、たとえば機械構造用炭素鋼SCや一般構造用圧延鋼材SSとした例である。なお、図7、8に示すトルク伝達部材は削り出しや鍛造によって製造することができる。   Alternatively, there is a method of combining different materials. Examples of combinations are shown in FIGS. 7, only the surface (surface) that contacts the inner joint member 10 and the outer joint member 20 is formed of a metal having a low coefficient of friction with respect to the inner joint member 10 and / or the outer joint member 20, and the inside is different from that. This is an example of an inexpensive metal such as a carbon steel SC for mechanical structure or a rolled steel SS for general structure. Specifically, an inner surface 32 that contacts the inner torque transmission surface 16 of the inner joint member 10 and a surface 34 that contacts the outer torque transmission surface 20 of the outer joint member 20 are provided on the inner joint member 10 and the outer joint member 20. A metal layer 38a having a low coefficient of friction is provided on the surface. Therefore, the torque transmission member 30 of FIG. 7 has a three-layer cross section. FIG. 8 shows that only the center of the torque transmitting member 30 is made of a metal 38b having a low coefficient of friction with respect to the inner joint member 10 and / or the outer joint member 20, and the surroundings are other inexpensive metals such as carbon for machine structure. This is an example of steel SC or general structural rolled steel SS. The torque transmission member shown in FIGS. 7 and 8 can be manufactured by machining or forging.

サバン式摩擦摩耗試験機を用いて、摩擦を測定し、その経時的変化を確認する試験を行った(図9参照)。試験形態は平板状の試料を回転するリングの上部に押し付ける一方向すべりである。試料の材質は、高力黄銅鋳物1種CAC301(実施例)と非調質の機械構造用炭素鋼S30C(比較例)とである。リングは高炭素クロム軸受鋼SUJ2製で、転がり軸受の標準的な熱処理(焼入れ、焼戻し)を施した。潤滑方法は、粘度グレードVG2の潤滑油(Mobil Velocity Oil No. 3(VG2))を常温でフェルトパッドに浸み込ませ、それをリングの下部に押し付けた。表面粗さ(JIS B 0601:2001)は、試料が0.3μmRa、リングのしゅう動面(円筒面)は0.02μmRaとした。リングの回転方向は、試料の表面粗さに平行になるようにした。最大接触面圧は125MPa、リングの回転周速は3.8m/s、試験時間は10min(しゅう動距離2260m)とした。歪ケージにより試料の変位を検出し、動摩擦係数を算出した。   Using a Sabang friction and wear tester, the friction was measured, and a test for confirming the change with time was performed (see FIG. 9). The test form is a one-way slide in which a flat sample is pressed against the top of a rotating ring. The material of the sample is a high-strength brass casting type 1 CAC301 (Example) and a non-tempered carbon steel for mechanical structure S30C (Comparative Example). The ring was made of high carbon chrome bearing steel SUJ2 and subjected to standard heat treatment (quenching and tempering) of the rolling bearing. As a lubricating method, a viscosity grade VG2 lubricating oil (Mobil Velocity Oil No. 3 (VG2)) was immersed in a felt pad at room temperature and pressed against the lower part of the ring. The surface roughness (JIS B 0601: 2001) was 0.3 μmRa for the sample and 0.02 μmRa for the sliding surface (cylindrical surface) of the ring. The rotation direction of the ring was made parallel to the surface roughness of the sample. The maximum contact surface pressure was 125 MPa, the rotational peripheral speed of the ring was 3.8 m / s, and the test time was 10 min (sliding distance 2260 m). The displacement of the sample was detected by a strain cage, and the dynamic friction coefficient was calculated.

図9に摩擦係数の経時変化を示す。実施例は比較例に比べて、明らかに摩擦係数が終始小さかった。試験終了時の摩擦係数は、実施例が約0.002であったのに対して比較例は約0.025であった(約12.5倍)。この結果から、実施例は摩擦抵抗が小さく、したがって、しゅう動発熱が少なくなるといえる。   FIG. 9 shows the change over time in the friction coefficient. In the example, the friction coefficient was obviously smaller from the beginning than in the comparative example. The coefficient of friction at the end of the test was about 0.002 in the example, and about 0.025 in the comparative example (about 12.5 times). From this result, it can be said that the embodiment has a small frictional resistance, and therefore the sliding heat generation is reduced.

また、トルク伝達部材30に潤滑剤保持機構を設けることにより、接触部分の潤滑を促進し、摩耗や損傷の防止、摩擦力の低減を図ることができる。図10は、溝42の形態をした潤滑剤保持機構40の例を示す。溝42の本数は任意であるが、図10(A)は1条の例、図10(B)は直交2条の例を示す。もちろん3条以上の放射状の溝とすることも可能である。また、溝42に加えて潤滑剤溜まり44を設けてもよい。図10(C)は、直交した溝42の交差点に潤滑剤溜まり44を設けた例である。図10に示した潤滑剤保持機構40は、トルク伝達部材30の外側継手部材20と接触する外側面34に設けた場合の例であるが、内側継手部材10と接触する内側面32に設けてもよく、また、両面に設けてもよい。   Further, by providing the torque transmission member 30 with a lubricant holding mechanism, it is possible to promote lubrication of the contact portion, prevent wear and damage, and reduce frictional force. FIG. 10 shows an example of a lubricant holding mechanism 40 in the form of a groove 42. Although the number of the grooves 42 is arbitrary, FIG. 10 (A) shows an example of one line and FIG. 10 (B) shows an example of two orthogonal lines. Of course, it is also possible to set it as a radial groove | channel of 3 or more. In addition to the groove 42, a lubricant reservoir 44 may be provided. FIG. 10C shows an example in which a lubricant reservoir 44 is provided at the intersection of the orthogonal grooves 42. The lubricant holding mechanism 40 shown in FIG. 10 is an example in the case of being provided on the outer side surface 34 that contacts the outer joint member 20 of the torque transmission member 30, but is provided on the inner side surface 32 that contacts the inner joint member 10. Alternatively, it may be provided on both sides.

図11は、微小凹み(ディンプル)46の形態をした潤滑剤保持機構40の例を示す。図示するように、深さ数10ミクロン程度の微小凹み46を無数にランダムに形成することにより、微小凹み46に潤滑剤が保持される。微小凹み46は、バレル加工、ショットブラスト、ショットピーニング等によって形成することができる。   FIG. 11 shows an example of the lubricant holding mechanism 40 in the form of a minute dimple 46. As shown in the figure, the lubricant is held in the micro dents 46 by randomly forming innumerable micro dents 46 having a depth of several tens of microns. The micro dent 46 can be formed by barrel processing, shot blasting, shot peening or the like.

この発明の等速自在継手は、自動車の駆動系におけるドライブシャフトやプロペラシャフトに使用できるほか、自動車のステアリング用シャフトにも使用できる。さらに、自動車用に限らず、各種産業機械機の動力伝達系にも広く用いることができる。   The constant velocity universal joint of the present invention can be used not only for a drive shaft and a propeller shaft in an automobile drive system, but also for an automobile steering shaft. Furthermore, it can be widely used not only for automobiles but also for power transmission systems of various industrial machines.

10 内側継手部材
12 貫通孔
14 セレーション孔
16 内側トルク伝達面
18 シャフト
20 外側継手部材
22 マウス部
24 穴
25 クリップ
26 外側トルク伝達面
28 ステム部
30 トルク伝達部材
32 内側面
34 外側面
36 くさび空間
38a、38b 低摩擦金属
40 潤滑剤保持機構
42 溝
44 微小凹み(ディンプル)
46 潤滑剤溜まり
DESCRIPTION OF SYMBOLS 10 Inner joint member 12 Through-hole 14 Serration hole 16 Inner torque transmission surface 18 Shaft 20 Outer joint member 22 Mouse part 24 Hole 25 Clip 26 Outer torque transmission surface 28 Stem part 30 Torque transmission member 32 Inner side 34 Outer side 36 Wedge space 38a , 38b Low friction metal 40 Lubricant holding mechanism 42 Groove 44 Small dent (dimple)
46 Lubricant pool

Claims (9)

回転軸線に垂直な断面が六角形状の穴を有し、前記穴の内壁面が回転軸線と平行な平坦面である外側継手部材と、
前記穴に収容され、外周面が凸球面状である内側継手部材と、
前記外側継手部材の前記内壁面と前記内側継手部材の前記外周面との間に介在させた複数のトルク伝達部材と
を有し、前記トルク伝達部材の表面のうち、前記内側継手部材または前記外側継手部材と接する部分を構成する材料を、降伏強度が100MPa以上で、前記内側継手部材もしくは前記外側継手部材または両方に対する摩擦係数の低い金属とした等速自在継手。
An outer joint member in which a cross section perpendicular to the rotation axis has a hexagonal hole, and an inner wall surface of the hole is a flat surface parallel to the rotation axis;
An inner joint member housed in the hole and having an outer peripheral surface of a convex spherical shape;
A plurality of torque transmission members interposed between the inner wall surface of the outer joint member and the outer peripheral surface of the inner joint member, and the inner joint member or the outer side of the surfaces of the torque transmission member A constant velocity universal joint in which a material constituting a portion in contact with the joint member is a metal having a yield strength of 100 MPa or more and a low friction coefficient with respect to the inner joint member or the outer joint member or both.
前記トルク伝達部材に前記金属を被覆した請求項1の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the torque transmission member is covered with the metal. 前記トルク伝達部材が多層構造で、最外層は前記金属である請求項1または2の等速自在継手。   The constant velocity universal joint according to claim 1 or 2, wherein the torque transmission member has a multilayer structure and the outermost layer is the metal. 前記トルク伝達部材の中央部と周囲とが別々の材料で構成され、中央部の材料は前記金属である請求項1、2または3の等速自在継手。   4. The constant velocity universal joint according to claim 1, wherein the central portion and the periphery of the torque transmission member are made of different materials, and the material of the central portion is the metal. 前記金属は銅合金である請求項1ないし4のいずれか1項の等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 4, wherein the metal is a copper alloy. 前記トルク伝達部材の表面に潤滑剤保持機構を有する請求項1ないし5のいずれか1項の等速自在継手。   The constant velocity universal joint according to claim 1, further comprising a lubricant holding mechanism on a surface of the torque transmission member. 前記潤滑剤保持機構は前記トルク伝達部材の前記内側継手部材と接触する面にある請求項6の等速自在継手。   The constant velocity universal joint according to claim 6, wherein the lubricant holding mechanism is on a surface of the torque transmission member that contacts the inner joint member. 前記潤滑剤保持機構は前記トルク伝達部材の前記外側継手部材と接触する面にある請求項6の等速自在継手。   The constant velocity universal joint according to claim 6, wherein the lubricant holding mechanism is on a surface of the torque transmission member that contacts the outer joint member. 前記潤滑剤保持機構に加えて潤滑剤溜りを設けた請求項6、7または8の等速自在継手。   The constant velocity universal joint according to claim 6, 7 or 8, wherein a lubricant reservoir is provided in addition to the lubricant holding mechanism.
JP2012256157A 2012-11-22 2012-11-22 Constant velocity universal joint Pending JP2014101984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256157A JP2014101984A (en) 2012-11-22 2012-11-22 Constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256157A JP2014101984A (en) 2012-11-22 2012-11-22 Constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2014101984A true JP2014101984A (en) 2014-06-05

Family

ID=51024655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256157A Pending JP2014101984A (en) 2012-11-22 2012-11-22 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2014101984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540339A (en) * 2015-06-11 2017-01-18 Punk Couplings Ltd Nuts and bolts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540339A (en) * 2015-06-11 2017-01-18 Punk Couplings Ltd Nuts and bolts
GB2540339B (en) * 2015-06-11 2020-09-30 Punk Couplings Ltd Nuts and bolts

Similar Documents

Publication Publication Date Title
US7052400B2 (en) Constant velocity universal joint
US7094155B2 (en) Constant velocity universal joint
US4167860A (en) Universal joint
KR20140039660A (en) Shaft joint of universal joint for vehicle and manufacturing method thereof
JP4813062B2 (en) Sliding constant velocity universal joint
US8177649B2 (en) Constant velocity joint of tripod type
JP2009250342A (en) Constant velocity universal joint
JP2011236976A (en) Constant velocity universal joint
JP2014101984A (en) Constant velocity universal joint
JP2011185346A (en) Constant velocity universal joint
JP3949864B2 (en) Constant velocity universal joint
JP3949865B2 (en) Constant velocity universal joint
JP2003294038A (en) Conical roller bearing
US8348772B2 (en) Plunging type constant velocity universal joint
JP5165488B2 (en) Inner joint member of constant velocity universal joint
JP2006275101A (en) Tripod type constant velocity universal joint
JP2014020414A (en) Constant velocity universal joint
JP2008196635A (en) Fixed type constant velocity universal joint
JP4188312B2 (en) Constant velocity universal joint
JP2017133685A (en) Rolling bearing, rolling device, and manufacturing method of rolling device
JP2002005186A (en) Constant velocity universal joint
JP4188311B2 (en) Constant velocity universal joint
JP4188310B2 (en) Constant velocity universal joint
JP2017026025A (en) Stationary constant velocity universal joint
KR100742478B1 (en) Inner Race of a Constant Velocity Joint for a Vehicle