JP4188310B2 - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP4188310B2
JP4188310B2 JP2004371380A JP2004371380A JP4188310B2 JP 4188310 B2 JP4188310 B2 JP 4188310B2 JP 2004371380 A JP2004371380 A JP 2004371380A JP 2004371380 A JP2004371380 A JP 2004371380A JP 4188310 B2 JP4188310 B2 JP 4188310B2
Authority
JP
Japan
Prior art keywords
joint member
constant velocity
velocity universal
ball
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004371380A
Other languages
Japanese (ja)
Other versions
JP2005133949A (en
Inventor
明 脇田
啓助 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2004371380A priority Critical patent/JP4188310B2/en
Publication of JP2005133949A publication Critical patent/JP2005133949A/en
Application granted granted Critical
Publication of JP4188310B2 publication Critical patent/JP4188310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、中空状連結軸を備えた等速自在継手に関する。 The present invention relates to a constant velocity universal joint provided with a hollow connecting shaft .

等速自在継手には、大別して、2軸間の角度変位のみを許容する固定型と、角度変位および軸方向変位を許容する摺動型とがあり、それぞれ使用条件、用途等に応じて機種選択される。固定型としてはツェッパー型等速自在継手(ボールフィックスドジョイント)、摺動型としてはダブルオフセット型等速自在継手が代表的である。   Constant velocity universal joints can be broadly divided into fixed types that allow only angular displacement between two axes, and sliding types that allow angular displacement and axial displacement, depending on the use conditions and applications. Selected. The fixed type is typically a Zepper type constant velocity universal joint (ball-fixed joint), and the sliding type is typically a double offset type constant velocity universal joint.

上記のような等速自在継手は、自動車の動力伝達装置用、例えば自動車のドライブシャフトやプロペラシャフトの連結用に広く用いられている。自動車のドライブシャフトやプロペラシャフトの連結には、通常、固定型と摺動型の等速自在継手が一対として用いられる。例えば、自動車のエンジンの動力を車輪に伝達する動力伝達装置は、エンジンと車輪との相対的位置関係の変化による角度変位と軸方向変位に対応する必要があるため、図5に示すように、エンジン側と車輪側との間に介装されるドライブシャフト20の一端を摺動型等速自在継手21を介してディファレンシャル22に連結し、他端を固定型等速自在継手23を介して車輪24に連結している。   The constant velocity universal joint as described above is widely used for a power transmission device of an automobile, for example, for connecting a drive shaft or a propeller shaft of an automobile. Usually, a fixed type and a sliding type constant velocity universal joint are used as a pair for connecting a drive shaft and a propeller shaft of an automobile. For example, a power transmission device that transmits the power of an automobile engine to a wheel needs to cope with an angular displacement and an axial displacement caused by a change in the relative positional relationship between the engine and the wheel. One end of a drive shaft 20 interposed between the engine side and the wheel side is connected to a differential 22 via a sliding type constant velocity universal joint 21, and the other end is connected to a wheel via a fixed type constant velocity universal joint 23. 24.

等速自在継手では、車輌等の振動対策として、内側継手部材の嵌合部に連結される連結軸(図5に示す例ではドライブシャフト20)にダンパを装着したり、あるいは、上記連結軸を大径かつ中空化して、高い捩り剛性と曲げ剛性を確保すると同時に、軽量化を図る場合がある。また、ビート音や中・高速こもり音等の対策には、曲げ一次固有振動数のチューニングが効果的であることが分かっており、上述のダンパや、連結軸の大径・中空化によって対応している。しかし、ダンパの装着はコストアップにつながり、さらに、振動数のチューニングは可能であるが、連結軸の捩り剛性の向上は望めない。   In a constant velocity universal joint, a damper is attached to a connecting shaft (drive shaft 20 in the example shown in FIG. 5) connected to the fitting portion of the inner joint member as a countermeasure against vibration of a vehicle or the like. There is a case where a large-diameter and hollow structure ensures high torsional rigidity and bending rigidity, while at the same time reducing weight. In addition, it has been found that tuning of the primary natural frequency of bending is effective for measures against beat noise, medium / high-speed booming noise, etc. ing. However, the installation of the damper leads to an increase in cost and the frequency can be tuned, but the torsional rigidity of the connecting shaft cannot be improved.

一方、中空状の連結軸としては、現在、スタブにパイプ材を溶接(又は摩擦圧接)したもの、パイプ素材をスウェージング加工等により絞り成形した一体型のものが使用されている。しかしながら、前者は製造コストが高く、また、高剛性と軽量化とを同時に達成することが設計的に困難である。後者は、一般的には前者より低コストであるが、振動対策として必要な軸剛性を確保し得るサイズのパイプ素材を用い、これを等速自在継手の内側継手部材の嵌合部に嵌合することができる寸法まで絞るためには、絞り率δ(%)を大きくする必要があり、そのために製造コストが高くなる。   On the other hand, as a hollow connecting shaft, currently, a pipe material welded (or friction welded) to a stub, or an integral type pipe material drawn by swaging or the like is used. However, the former has a high manufacturing cost, and it is difficult to achieve high rigidity and light weight simultaneously in terms of design. The latter is generally less expensive than the former, but uses a pipe material of a size that can secure the required shaft rigidity as a vibration countermeasure and fits it to the fitting part of the inner joint member of the constant velocity universal joint In order to squeeze to a size that can be achieved, it is necessary to increase the squeezing rate δ (%), which increases the manufacturing cost.

絞り率δ(%)={(dm−ds)/dm}×100
dm:パイプ素材の外径
ds:絞り成形後の外径
一般に、ロータリースウェージングやリンクタイプスウェージング(絞り率の大きな中空軸製品に適した加工法である。)の場合、絞り率δが一工程で50%以上の絞りが可能であると言われているが、実際には、絞り率δが60%を越えると、材料コストや熱処理コスト(焼鈍等の前処理が必要になる。)が高くなり、また、加工性を過度に優先させると製品機能を満足できない可能性が有る。一方、絞り率δを低くおさえ、かつ、必要な軸剛性を確保するために、等速自在継手のサイズを必要以上に大きくしなければならない場合もあり、装着スペース、重量の増大となって、設計上不利な点が出てくる。
Aperture ratio δ (%) = {(dm−ds) / dm} × 100
dm: Outer diameter of pipe material
ds: outer diameter after drawing In general, in the case of rotary swaging or link type swaging (a processing method suitable for hollow shaft products having a large drawing ratio), drawing with a drawing ratio δ of 50% or more in one step. However, in reality, when the drawing ratio δ exceeds 60%, the material cost and the heat treatment cost (pretreatment such as annealing is required) are increased, and the workability is increased. If too much priority is given, product functions may not be satisfied. On the other hand, in order to keep the drawing ratio δ low and to secure the required shaft rigidity, the size of the constant velocity universal joint may have to be increased more than necessary, which increases the mounting space and weight, Design disadvantages come out.

本発明は、この種の等速自在継手における中空状連結軸の高剛性と軽量化とを同時に達成し、かつ、製造コストの低減を図ることをその目的とする。 An object of the present invention is to simultaneously achieve high rigidity and light weight of the hollow connecting shaft in this type of constant velocity universal joint , and to reduce the manufacturing cost.

上記課題を解決するため、本発明は、内径面に軸方向に延びる8本の案内溝を形成した外側継手部材と、外径面に軸方向に延びる8本の案内溝を形成し、内径面に歯型を有する嵌合部を形成した内側継手部材と、外側継手部材の案内溝とこれに対応する内側継手部材の案内溝とが協働して形成される8本のボールトラックにそれぞれ配された8個のトルク伝達ボールと、内側継手部材の嵌合部に連結される歯型を有する軸端部、及び、軸端部に連続した中間部を有する中空状連結軸とを備え、外側継手部材の外径(D OUTER )と内側継手部材の嵌合部の歯型のピッチ円径(PCD SERR )との比r2(=D OUTER /PCD SERR )が2.5≦r2≦3.5であり、連結軸の中間部の外径(dm)と内側継手部材の嵌合部の歯型のピッチ円径(PCDSERR)との比r4(=dm/PCDSERR)が1≦r4≦3.5であることを特徴とする等速自在継手を提供する。 In order to solve the above-mentioned problems, the present invention provides an outer joint member in which eight guide grooves extending in the axial direction are formed on the inner diameter surface, and eight guide grooves extending in the axial direction on the outer diameter surface. The inner joint member having a fitting portion having a tooth shape on the inner joint member, the guide groove of the outer joint member and the corresponding guide groove of the inner joint member are arranged on eight ball tracks formed in cooperation with each other. comprising the eight torque transmitting balls is, the axial end portion having a tooth die to be connected to the fitting portion of the inner joint member, and, a hollow connecting shaft having an intermediate portion which is continuous to the axial end portion, The ratio r2 (= D OUTER / PCD SERR ) between the outer diameter (D OUTER ) of the outer joint member and the pitch circle diameter (PCD SERR ) of the fitting portion of the inner joint member is 2.5 ≦ r 2 ≦ 3. 5, and the fitting portion of the outer diameter (dm) and the inner joint member of the intermediate portion of the connecting shaft Providing constant velocity universal joint, wherein the ratio of the tooth form of the pitch circle diameter (PCD SERR) r4 (= dm / PCD SERR) is 1 ≦ r4 ≦ 3.5.

本発明は以下に示す効果を有する。   The present invention has the following effects.

(1)連結軸の中空化と大径化によって、連結軸の高剛性と軽量化とを同時に達成することができる。   (1) By making the connecting shaft hollow and increasing the diameter, it is possible to simultaneously achieve high rigidity and light weight of the connecting shaft.

(2)軸部の固有振動数が増大することにより、振動数選択(チューニング)の選択範囲が広がるので、振動低減のための最適チューニングを行うことが容易になる。   (2) Since the selection range of the frequency selection (tuning) is expanded by increasing the natural frequency of the shaft portion, it is easy to perform optimum tuning for vibration reduction.

(3)以上により、車輌のNVH特性を向上させることができる。   (3) As described above, the NVH characteristics of the vehicle can be improved.

(4)連結軸をパイプ素材から絞り成形する場合、絞り率を低く抑えることができるので、製造コストを低減することができる。   (4) When the connecting shaft is drawn from a pipe material, the drawing rate can be kept low, so that the manufacturing cost can be reduced.

以下、本発明の実施形態を図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1及び図2に示す第1の実施形態は、本発明を固定型等速自在継手としてのツェパー型等速自在継手(ボールフィックスドジョイント)の連結軸に適用したものである。この実施形態の等速自在継手は、球面状の内径面1aに8本の曲線状の案内溝1bを軸方向に形成した外側継手部材1と、球面状の外径面2aに8本の曲線状の案内溝2bを軸方向に形成し、内径面に歯型(セレーション又はスプライン)を有する嵌合部2cを形成した内側継手部材2と、外側継手部材1の案内溝1bとこれに対応する内側継手部材2の案内溝2bとが協働して形成される8本のボールトラックにそれぞれ配された8個のトルク伝達ボール3と、トルク伝達ボール3を保持する保持器4と、内側継手部材2の嵌合部2cに連結された中空状連結軸5とで構成される。   In the first embodiment shown in FIGS. 1 and 2, the present invention is applied to a connecting shaft of a Zepper type constant velocity universal joint (ball-fixed joint) as a fixed type constant velocity universal joint. The constant velocity universal joint of this embodiment includes an outer joint member 1 in which eight curved guide grooves 1b are formed in an axial direction on a spherical inner surface 1a, and eight curves on a spherical outer surface 2a. The inner joint member 2 is formed with a fitting guide 2c having a tooth shape (serration or spline) on the inner diameter surface, and the guide groove 1b of the outer joint member 1 corresponding thereto. Eight torque transmission balls 3 respectively disposed on eight ball tracks formed in cooperation with the guide groove 2b of the inner joint member 2, a cage 4 for holding the torque transmission balls 3, and an inner joint It is comprised with the hollow connection shaft 5 connected with the fitting part 2c of the member 2. FIG.

この実施形態において、外側継手部材1の案内溝1bの中心O1は内径面1aの球面中心に対して、内側継手部材2の案内溝2bの中心O2は外径面2aの球面中心に対して、それぞれ、軸方向に等距離(F)だけ反対側に(中心O1は継手の開口側、中心O2は継手の奥部側に)オフセットされている。そのため、案内溝1bとこれに対応する案内溝2bとが協働して形成されるボールトラックは、継手の開口側に向かって楔状に開いた形状になる。   In this embodiment, the center O1 of the guide groove 1b of the outer joint member 1 is relative to the spherical center of the inner surface 1a, and the center O2 of the guide groove 2b of the inner joint member 2 is relative to the spherical center of the outer surface 2a. Each is offset to the opposite side by an equal distance (F) in the axial direction (center O1 is the opening side of the joint and center O2 is the back side of the joint). Therefore, the ball track formed by the cooperation of the guide groove 1b and the corresponding guide groove 2b has a shape opened in a wedge shape toward the opening side of the joint.

保持器4の外径面4aの球面中心、および、保持器4の外径面4aの案内面となる外側継手部材1の内径面1aの球面中心は、いずれも、トルク伝達ボール3の中心O3を含む継手中心面O内にある。また、保持器4の内径面4bの球面中心、および、保持器4の内径面4bの案内面となる内側継手部材2の外径面2aの球面中心は、いずれも、継手中心面O内にある。それ故、外側継手部材1の上記オフセット量(F)は、案内溝1bの中心O1と継手中心面Oとの間の軸方向距離、内側継手部材2の上記オフセット量(F)は、案内溝2bの中心O2と継手中心面Oとの間の軸方向距離になり、両者は等しい。外側継手部材1の案内溝1bの中心O1と内側継手部材2の案内溝2bの中心O2とは、継手中心面Oに対して軸方向に等距離(F)だけ反対側(案内溝1bの中心O1は継手の開口側、案内溝2bの中心O2は継手の奥部側)にずれた位置にある。   The spherical center of the outer diameter surface 4a of the cage 4 and the spherical center of the inner diameter surface 1a of the outer joint member 1 that serves as a guide surface for the outer diameter surface 4a of the cage 4 are both the center O3 of the torque transmitting ball 3. In the joint center plane O. Further, the spherical center of the inner diameter surface 4b of the cage 4 and the spherical center of the outer diameter surface 2a of the inner joint member 2 that serves as a guide surface for the inner diameter surface 4b of the cage 4 are both within the joint center plane O. is there. Therefore, the offset amount (F) of the outer joint member 1 is the axial distance between the center O1 of the guide groove 1b and the joint center plane O, and the offset amount (F) of the inner joint member 2 is the guide groove. The axial distance between the center O2 of 2b and the joint center plane O is the same. The center O1 of the guide groove 1b of the outer joint member 1 and the center O2 of the guide groove 2b of the inner joint member 2 are opposite to the joint center plane O by an equal distance (F) in the axial direction (the center of the guide groove 1b). O1 is in a position shifted to the opening side of the joint and the center O2 of the guide groove 2b is shifted to the back side of the joint.

外側継手部材1と内側継手部材2とが角度θだけ角度変位すると、保持器4に案内されたトルク伝達ボール3は常にどの作動角θにおいても、角度θの2等分面(θ/2)内に維持され、継手の等速性が確保される。   When the outer joint member 1 and the inner joint member 2 are angularly displaced by an angle θ, the torque transmitting ball 3 guided by the cage 4 always has a bisection plane (θ / 2) of the angle θ at any operating angle θ. The constant velocity of the joint is ensured.

トルク伝達ボール3のピッチ円径(PCDBALL)と直径(DBALL)との比r1(=PCDBALL/DBALL)は3.3≦r1≦5.0の範囲内の値とすることができる。ここで、トルク伝達ボールのピッチ円径(PCDBALL)は、PCRの2倍の寸法である(PCDBALL=2×PCR)。外側継手部材1の案内溝1bの中心O1とトルク伝達ボール3の中心O3を結ぶ線分の長さ、内側継手部材2の案内溝2bの中心O2とトルク伝達ボール3の中心O3を結ぶ線分の長さが、それぞれPCRであり、両者は等しい。 The ratio r1 (= PCD BALL / D BALL ) between the pitch circle diameter (PCD BALL ) and the diameter (D BALL ) of the torque transmitting ball 3 can be set to a value within the range of 3.3 ≦ r1 ≦ 5.0. . Here, the pitch circle diameter (PCD BALL ) of the torque transmitting ball is twice the size of PCR (PCD BALL = 2 × PCR). The length of the line connecting the center O1 of the guide groove 1b of the outer joint member 1 and the center O3 of the torque transmission ball 3, and the line connecting the center O2 of the guide groove 2b of the inner joint member 2 and the center O3 of the torque transmission ball 3 The length of each is PCR, and both are equal.

3.3≦r1≦5.0とした理由は、外側継手部材等の強度、継手の負荷容量および耐久性を比較品(6個ボールの固定型等速自在継手)と同等以上に確保するためである。すなわち、等速自在継手においては、限られたスペースの範囲で、トルク伝達ボールのピッチ円径(PCDBALL)を大幅に変更することは困難である。そのため、r1の値は主にトルク伝達ボールの直径(DBALL)に依存することになる。r1<3.3であると(主に直径DBALLが大きい場合)、他の部品(外側継手部材、内側継手部材等)の肉厚が薄くなりすぎて、強度の点で懸念が生じる。逆にr1>5.0であると(主に直径DBALLが小さい場合)、負荷容量が小さくなり、耐久性の点で懸念が生じる。また、トルク伝達ボールと案内溝との接触部分の面圧が上昇し(直径DBALLが小さくなると、接触部分の接触楕円が小さくなるため)、案内溝の溝肩エッジ部分の欠け等の要因になることが懸念される。 The reason for 3.3 ≦ r1 ≦ 5.0 is to ensure that the strength of the outer joint member, etc., the load capacity and durability of the joint are equal to or greater than those of the comparative product (6-ball fixed type constant velocity universal joint). It is. That is, in the constant velocity universal joint, it is difficult to significantly change the pitch circle diameter (PCD BALL ) of the torque transmitting ball within a limited space. For this reason, the value of r1 mainly depends on the diameter (D BALL ) of the torque transmission ball. If r1 <3.3 (mainly when the diameter D BALL is large), the thickness of the other parts (outer joint member, inner joint member, etc.) becomes too thin, which raises concerns about strength. On the contrary, when r1> 5.0 (mainly when the diameter D BALL is small), the load capacity becomes small, and there is a concern in terms of durability. In addition, the surface pressure of the contact portion between the torque transmission ball and the guide groove increases (because the contact ellipse of the contact portion decreases when the diameter D BALL decreases). There is concern about becoming.

3.3≦r1≦5.0とすることにより、外側継手部材等の強度、継手の負荷容量および耐久性を比較品(6個ボールの固定型等速自在継手)と同等以上に確保することができる。より好ましくは、3.5≦r1≦5.0の範囲、例えば、r1=3.83、又はその近傍の値に設定するのが良い。   By ensuring that 3.3 ≦ r1 ≦ 5.0, the strength of the outer joint member, etc., the load capacity and durability of the joint must be equal to or better than those of the comparative product (6-ball fixed type constant velocity universal joint). Can do. More preferably, it is set to a range of 3.5 ≦ r1 ≦ 5.0, for example, r1 = 3.83 or a value in the vicinity thereof.

外側継手部材1の外径(DOUTER)と内側継手部材2の嵌合部2cの歯型(セレーション又はスプライン)のピッチ円径(PCDSERR)との比r2(=DOUTER /PCDSERR)は2.5≦r2≦3.5、好ましくは、2.5≦r2<3.2の範囲内の値に設定することができる。 The ratio r2 (= D OUTER / PCD SERR ) between the outer diameter (D OUTER ) of the outer joint member 1 and the pitch circle diameter (PCD SERR ) of the tooth shape (serration or spline) of the fitting portion 2 c of the inner joint member 2 is It is possible to set the value within the range of 2.5 ≦ r2 ≦ 3.5, preferably 2.5 ≦ r2 <3.2.

2.5≦r2≦3.5とした理由は次にある。すなわち、内側継手部材2の嵌合部2cの歯型のピッチ円径(PCDSERR)は、連結軸5の強度等との関係で大幅に変更することはできない。そのため、r2の値は、主に外側継手部材1の外径(DOUTER)に依存することになる。r2<2.5であると(主に外径DOUTERが小さい場合)、各部品(外側継手部材1、内側継手部材2等)の肉厚が薄くなりすぎて、強度の点で懸念が生じる。一方、r2>3.5であると(主に外径DOUTERが大きい場合)、寸法的な面等から実用上の問題が生じる場合があり、また、コンパクト化という目的も達成できない。2.5≦r2≦3.5とすることにより、外側継手部材1等の強度および継手の耐久性を比較品(6個ボールの等速自在継手)と同等以上に確保することができ、かつ、実用上の要請も満足できる。 The reason why 2.5 ≦ r2 ≦ 3.5 is as follows. That is, the pitch circle diameter (PCD SERR ) of the tooth mold of the fitting portion 2 c of the inner joint member 2 cannot be changed significantly in relation to the strength of the connecting shaft 5 and the like. For this reason, the value of r2 mainly depends on the outer diameter (D OUTER ) of the outer joint member 1. If r2 <2.5 (mainly when the outer diameter D OUTER is small), the thickness of each component (outer joint member 1, inner joint member 2, etc.) becomes too thin, and there is concern in terms of strength. . On the other hand, if r2> 3.5 (mainly when the outer diameter D OUTER is large), there may be practical problems in terms of dimensions and the like, and the purpose of downsizing cannot be achieved. By satisfying 2.5 ≦ r2 ≦ 3.5, the strength of the outer joint member 1 and the like and the durability of the joint can be ensured to be equal to or greater than those of the comparative product (6-ball constant velocity universal joint), and Satisfying practical requirements.

この実施形態の等速自在継手は、トルク伝達ボール3の個数が8個であり、比較品(6個ボールの固定型等速自在継手)に比べ、継手の全負荷容量に占めるトルク伝達ボール1個当りの負荷割合が少ないので、同じ呼び形式の比較品(6個ボールの固定型等速自在継手)に対して、トルク伝達ボール3の直径(DBALL)を小さくし、外側継手部材1の肉厚および内側継手部材2の肉厚を比較品(6個ボールの固定型等速自在継手)と同程度に確保することが可能である。また、同じ呼び形式の比較品(6個ボールの固定型等速自在継手)に対して、比r2(=DOUTER/PCDSERR)を小さくして(6個ボールの固定型等速自在継手におけるr2の一般的な値はr2≧3.2である。)、比較品と同等以上の強度、負荷容量および耐久性を確保しつつ、外径寸法(DOUTER)のより一層のコンパクト化を図ることができる。また、比較品(6個ボールの固定型等速自在継手)に比べて低発熱であることが実験の結果確認されている。 In the constant velocity universal joint of this embodiment, the number of torque transmission balls 3 is eight, and the torque transmission ball 1 occupies the total load capacity of the joint as compared with the comparative product (fixed constant velocity universal joint with six balls). Since the load ratio per unit is small, the diameter (D BALL ) of the torque transmission ball 3 is made smaller than that of the comparative product of the same nominal type (6-ball fixed type constant velocity universal joint). It is possible to secure the wall thickness and the wall thickness of the inner joint member 2 to the same level as the comparative product (6-ball fixed type constant velocity universal joint). In addition, the ratio r2 (= D OUTER / PCD SERR ) is made smaller (compared to the 6-ball fixed type constant velocity universal joint) compared to the comparative product of the same nominal type (6-ball fixed type constant velocity universal joint). The general value of r2 is r2 ≧ 3.2.) While ensuring the strength, load capacity, and durability equivalent to or better than those of the comparative products, the outer diameter (D OUTER ) is further reduced in size. be able to. In addition, it has been confirmed as a result of experiments that the heat generation is lower than that of a comparative product (fixed constant velocity universal joint with six balls).

中空状連結軸5は、内側継手部材2の嵌合部2cに連結される歯型5cを有する軸端部5a、及び、この軸端部5aに連続した中間部5bとを備えている。この実施形態において、連結軸5は、外径dmのパイプ素材の両端部を絞り成形し、さらに、この絞り成形した軸端部5aの軸端側外周に歯型(スプライン又はセレーション)5cを転造加工等により成形したものである。軸端部5aの外径はds、中間部5bの外径はパイプ素材と同じdmである(ds<dm)。また、軸端部5aの歯型5cのピッチ円径(PCDSERR)は、内側継手部材2の嵌合部2cの歯型のピッチ円径(PCDSERR)と同じである。 The hollow connecting shaft 5 includes a shaft end portion 5a having a tooth mold 5c connected to the fitting portion 2c of the inner joint member 2, and an intermediate portion 5b continuous to the shaft end portion 5a. In this embodiment, the connecting shaft 5 is formed by drawing both ends of a pipe material having an outer diameter dm, and further, a tooth mold (spline or serration) 5c is rolled around the outer periphery of the drawn shaft end 5a. Molded by manufacturing or the like. The outer diameter of the shaft end portion 5a is ds, and the outer diameter of the intermediate portion 5b is the same dm as the pipe material (ds <dm). The pitch circle diameter (PCD SERR ) of the tooth mold 5 c of the shaft end 5 a is the same as the pitch circle diameter (PCD SERR ) of the tooth mold of the fitting part 2 c of the inner joint member 2.

連結軸5の材質としては、STKM15A、STKM16Aなどの機械構造用炭素鋼、若しくは、それらをベースに加工性、焼入性等の改善のために合金元素を添加した合金鋼、又は、SCr、SCM、SNCMなどの浸炭鋼を用いることができる。連結軸5の材質として上記機械構造用炭素鋼若しくは合金鋼を採用した場合、熱処理として主に高周波焼入(一部浸炭、浸炭窒化素)を採用することができる。また、連結軸5の材質として上記浸炭鋼を採用した場合、熱処理として主に浸炭焼入を採用することができる。   The material of the connecting shaft 5 is carbon steel for mechanical structures such as STKM15A and STKM16A, alloy steel to which an alloy element is added for improving workability and hardenability based on them, or SCr, SCM Carburized steel such as SNCM can be used. When the carbon steel for mechanical structure or alloy steel is used as the material of the connecting shaft 5, induction hardening (partially carburized, carbonitrided carbon) can be mainly used as the heat treatment. Moreover, when the said carburized steel is employ | adopted as a material of the connection shaft 5, carburizing hardening can be mainly employ | adopted as heat processing.

また、連結軸5の絞り成形方法としては、スウェージング加工、特にロータリースウェージング加工を採用することができる。ロータリースウェージング加工は、機内の主軸に組み込まれた一対または複数対のダイスとバッカーとが回転運動を行うと共に、外周ローラとバッカー上の突起により一定ストロークの上下運動を行って、挿入されるパイプ素材に打撃を加えてその一部分を絞り加工するものである。本加工方法は、加工が比較的早く、加工面が滑らかで美しく、また、他の加工方法に比べて絞り率δ(%)[={(dm−ds)/dm}×100]を大きくすることができるという特長がある。ただ、絞り率δが60%を越えると材料コストや熱処理コストが高くなるので、製造コストを抑えるためには絞り率δは60%を越えないようにするのが好ましい。   Moreover, as a drawing method of the connecting shaft 5, swaging, particularly rotary swaging can be employed. Rotary swaging is a pipe that is inserted by rotating a pair or dies built into the main shaft of the machine and a backer in a rotary motion and moving up and down by a fixed stroke with the outer rollers and protrusions on the backer. The material is blown and a part of the material is drawn. In this processing method, processing is relatively fast, the processing surface is smooth and beautiful, and the drawing ratio δ (%) [= {(dm−ds) / dm} × 100] is increased as compared with other processing methods. There is a feature that can be. However, since the material cost and heat treatment cost increase when the drawing ratio δ exceeds 60%, it is preferable that the drawing ratio δ does not exceed 60% in order to reduce the manufacturing cost.

上述したように、この実施形態の等速自在継手は、同じ呼び形式の比較品(6個ボールの固定型等速自在継手)と同等以上の強度、負荷容量および耐久性を確保しつつ比r2(=DOUTER/PCDSERR)を小さくして、外径寸法(DOUTER)のより一層のコンパクト化を図ることができる。例えば、嵌合部2cのピッチ円径(PCDSERR)を比較品と等しくした場合、外径(DOUTER)を呼び番号で2サイズダウン(約8%程度)することが可能である。逆に、外径(DOUTER)を比較品と等しくした場合、嵌合部2cのピッチ円径(PCDSERR)を5サイズ以上アップすることが可能である。 As described above, the constant velocity universal joint of this embodiment has a ratio r2 while ensuring strength, load capacity and durability equal to or higher than those of a comparative product of the same nominal type (6-ball fixed type constant velocity universal joint). (= D OUTER / PCD SERR ) can be reduced to further reduce the outer diameter (D OUTER ). For example, when the pitch circle diameter (PCD SERR ) of the fitting portion 2c is made equal to that of the comparative product, the outer diameter (D OUTER ) can be reduced by two sizes (about 8%) by the identification number. On the contrary, when the outer diameter (D OUTER ) is made equal to that of the comparative product, the pitch circle diameter (PCD SERR ) of the fitting portion 2c can be increased by 5 sizes or more.

比較品(6個ボールの固定型等速自在継手)の#71サイズを例にとると、外径(DOUTER)は65.3mm、ピッチ円径(PCDSERR)は19.05mmである。ここで、連結軸として、全長350mm、均一外径の中実軸を仮定すると、その曲げ一次固有振動数は約310Hzになる。また、中空軸をパイプ素材から絞り成形する時の加工限界を絞り率δで60%とした場合、パイプ素材の外径dmは約47.5mmが限界である。ここで、連結軸として、全長350mm、外径47.5mm、肉厚2mm、均一外径の中空軸を仮定すると、その曲げ一次固有振動数は約1056Hzになる。 Taking the # 71 size of the comparative product (6-ball fixed type constant velocity universal joint) as an example, the outer diameter (D OUTER ) is 65.3 mm, and the pitch circle diameter (PCD SERR ) is 19.05 mm. Here, assuming a solid shaft with a total length of 350 mm and a uniform outer diameter as the connecting shaft, the bending primary natural frequency is about 310 Hz. When the processing limit when drawing the hollow shaft from the pipe material is 60% in terms of the drawing ratio δ, the outer diameter dm of the pipe material is about 47.5 mm. Here, assuming a hollow shaft having a total length of 350 mm, an outer diameter of 47.5 mm, a thickness of 2 mm, and a uniform outer diameter as the connecting shaft, the bending primary natural frequency is about 1056 Hz.

一方、この実施形態の等速自在継手において、外径(DOUTER)を比較品と同じ65.3mmにした場合、嵌合部2cのピッチ円径(PCDSERR)を26.3mmまでアップすることが可能である。したがって、中空軸をパイプ素材から絞り成形する時の加工限界を絞り率δで60%とした場合、パイプ素材の外径dmを約65.7mmにすることができる。ここで、連結軸として、全長350mm、外径65.7mm、肉厚2mm、均一外径の中空軸を仮定すると、その曲げ一次固有振動数は約1478Hzになる。このように、この実施形態の等速自在継手に中空状の連結軸5を組み合せた場合、曲げ一次固有振動数を比較品よりも高くすることが可能である。そのため、振動数選択(チューニング)の幅が広がり、最適チューニングを行うことが容易になる。連結軸の剛性(捩り剛性)については、外径19.05mmの中実軸の捩り剛性を100とした場合、外径47.5mm、肉厚2mmの中空軸のそれは1438であるのに対し、外径65.7mm、肉厚2mmの中空軸のそれは3943である。したがって、この実施形態の等速自在継手に中空状の連結軸5を組み合せた場合、比較品に比べて高剛性の連結軸5を得ることができる。 On the other hand, in the constant velocity universal joint of this embodiment, when the outer diameter (D OUTER ) is set to 65.3 mm, which is the same as the comparative product, the pitch circle diameter (PCD SERR ) of the fitting portion 2c is increased to 26.3 mm. Is possible. Therefore, if the processing limit when drawing the hollow shaft from the pipe material is 60% in terms of the drawing ratio δ, the outer diameter dm of the pipe material can be about 65.7 mm. Here, assuming a hollow shaft having a total length of 350 mm, an outer diameter of 65.7 mm, a wall thickness of 2 mm, and a uniform outer diameter as the connecting shaft, the bending primary natural frequency is about 1478 Hz. Thus, when the hollow connecting shaft 5 is combined with the constant velocity universal joint of this embodiment, the bending primary natural frequency can be made higher than that of the comparative product. Therefore, the range of frequency selection (tuning) is widened, and it becomes easy to perform optimum tuning. Regarding the rigidity of the connecting shaft (torsional rigidity), when the torsional rigidity of the solid shaft with an outer diameter of 19.05 mm is 100, that of the hollow shaft with an outer diameter of 47.5 mm and a wall thickness of 2 mm is 1438, The hollow shaft having an outer diameter of 65.7 mm and a wall thickness of 2 mm is 3943. Therefore, when the hollow connecting shaft 5 is combined with the constant velocity universal joint of this embodiment, it is possible to obtain the connecting shaft 5 having higher rigidity than the comparative product.

パイプ素材の外径dm(=中間部5bの外径dm)は、比r3(=dm/DOUTER)が0.29≦r3≦1.0となるような範囲内で選択可能であり、比r2(=DOUTER/PCDSERR)を2.5≦r2≦3.5の範囲内で設定した場合、比r2及び比r3の関係より、中間部5bの外径(dm)と軸端部5aの歯型5cのピッチ円径(PCDSERR)との比r4(=dm/PCDSERR)は0.725≦r4≦3.5となり、dm≧dsより、 1≦r4≦3.5となる。また、パイプ素材の絞り率δ(%)を0%≦δ(%)≦60%にすることができる。そのため、軸端部5bをロータリースウェージング加工等により絞り成形する際の加工コストを低く抑えることができる。尚、δ=0%は、連結軸5を絞り成形していない場合、つまり連結軸5が均一外径(ds=dm)の場合であるが、ピッチ円径(PCDSERR)のアップにより、連結軸5の外径(ds=dm)をアップすることができるので、振動数の最適チューニングが可能であり、必要とする軸剛性が得られる場合は、連結軸5を均一外径(ds=dm)の中空軸としても良い。 The outer diameter dm of the pipe material (= the outer diameter dm of the intermediate portion 5b) can be selected within a range where the ratio r3 (= dm / D OUTER ) is 0.29 ≦ r3 ≦ 1.0. When r2 (= D OUTER / PCD SERR ) is set within the range of 2.5 ≦ r2 ≦ 3.5, the outer diameter (dm) of the intermediate portion 5b and the shaft end portion 5a are determined from the relationship between the ratio r2 and the ratio r3. The ratio r4 (= dm / PCD SERR ) to the pitch circle diameter (PCD SERR ) of the tooth mold 5c is 0.725 ≦ r4 ≦ 3.5. From dm ≧ ds, 1 ≦ r4 ≦ 3.5. Further, the drawing ratio δ (%) of the pipe material can be set to 0% ≦ δ (%) ≦ 60%. Therefore, the processing cost when the shaft end portion 5b is drawn by rotary swaging or the like can be kept low. Note that δ = 0% is when the connecting shaft 5 is not drawn, that is, when the connecting shaft 5 has a uniform outer diameter (ds = dm), but when the pitch circle diameter (PCD SERR ) is increased, the connecting shaft 5 is connected. Since the outer diameter (ds = dm) of the shaft 5 can be increased, the optimum tuning of the vibration frequency is possible, and when the required shaft rigidity is obtained, the connecting shaft 5 has a uniform outer diameter (ds = dm). ) Hollow shaft.

図3及び図4に示す第2の実施形態は、本発明を摺動型等速自在継手としてのダブルオフセット型等速自在継手に適用したものである。この実施形態の等速自在継手は、円筒状の内径面1a’に8本の直線状の案内溝1b’を軸方向に形成した外側継手部材1’と、球面状の外径面2a’に8本の直線状の案内溝2b’を軸方向に形成し、内径面に歯型(セレーション又はスプライン)を有する嵌合部2c’を形成した内側継手部材2’と、外側継手部材1’の案内溝1b’とこれに対応する内側継手部材2’の案内溝2b’とが協働して形成される8本のボールトラックにそれぞれ配された8個のトルク伝達ボール3’と、トルク伝達ボール3’を保持する保持器4’と、内側継手部材2’の嵌合部2c’に連結された中空状の連結軸5’とで構成される。   In the second embodiment shown in FIGS. 3 and 4, the present invention is applied to a double offset type constant velocity universal joint as a sliding type constant velocity universal joint. The constant velocity universal joint of this embodiment includes an outer joint member 1 ′ having eight linear guide grooves 1b ′ formed in the axial direction on a cylindrical inner surface 1a ′, and a spherical outer surface 2a ′. An inner joint member 2 ′ having eight linear guide grooves 2b ′ formed in the axial direction and having a fitting portion 2c ′ having a tooth shape (serration or spline) on the inner diameter surface, and an outer joint member 1 ′. Eight torque transmission balls 3 ′ respectively disposed on eight ball tracks formed in cooperation with the guide groove 1b ′ and the corresponding guide groove 2b ′ of the inner joint member 2 ′, and torque transmission The cage 4 ′ is configured to hold the ball 3 ′ and the hollow coupling shaft 5 ′ coupled to the fitting portion 2c ′ of the inner joint member 2 ′.

この実施形態において、保持器4’の外径面4b’の球面中心と内径面4a’の球面中心とは、それぞれ、保持器4’のポケット中心に対して軸方向に等距離だけ反対側にオフセットされている。   In this embodiment, the spherical center of the outer diameter surface 4b ′ and the spherical center of the inner diameter surface 4a ′ of the cage 4 ′ are opposite to each other by an equal distance in the axial direction with respect to the pocket center of the cage 4 ′. It is offset.

トルク伝達ボール3’のピッチ円径(PCDBALL)と直径(DBALL)との比r1(=PCDBALL/DBALL)は、前述した第1の実施形態の等速自在継手と同様の理由から、2.9≦r1≦4.5の範囲、好ましくは、3.1≦r1≦4.5の範囲内の値とすることができる。ここで、トルク伝達ボールのピッチ円径(PCDBALL)は、作動角0°において、180度対向したボールトラック内に位置する2つのトルク伝達ボールの中心間距離に等しい。図4におけるPCRは、ピッチ円径(PCDBALL)の1/2の寸法である(PCDBALL=2×PCR)。 The ratio r1 (= PCD BALL / D BALL ) of the pitch circle diameter and (PCD BALL) to the diameter (D BALL) of the torque transmitting balls 3 ', for the same reason as the constant velocity universal joint of the first embodiment described above It is possible to set the value within the range of 2.9 ≦ r1 ≦ 4.5, preferably within the range of 3.1 ≦ r1 ≦ 4.5. Here, the pitch circle diameter (PCD BALL ) of the torque transmission balls is equal to the distance between the centers of the two torque transmission balls located in the ball tracks facing each other by 180 degrees at the operating angle of 0 °. The PCR in FIG. 4 has a size half the pitch circle diameter (PCD BALL ) (PCD BALL = 2 × PCR).

また、外側継手部材1’の外径(DOUTER)と内側継手部材2の嵌合部2c’の歯型(セレーション又はスプライン)のピッチ円径(PCDSERR)との比r2は、前述した第1の実施形態の等速自在継手と同様の理由から、2.5≦r2≦3.5、好ましくは、2.5≦r2<3.1の範囲内の値に設定することができる。 Further, the ratio r2 between the outer diameter (D OUTER ) of the outer joint member 1 ′ and the pitch circle diameter (PCD SERR ) of the tooth shape (serration or spline) of the fitting portion 2 c ′ of the inner joint member 2 is as described above. For the same reason as the constant velocity universal joint of the first embodiment, it is possible to set the value within the range of 2.5 ≦ r2 ≦ 3.5, preferably 2.5 ≦ r2 <3.1.

この実施形態の等速自在継手は、第1の実施形態の等速自在継手と同様に、トルク伝達ボール3’の個数が8個であり、比較品(6個ボールの摺動型等速自在継手)に比べ、継手の全負荷容量に占めるトルク伝達ボール1個当りの負荷割合が少ないので、同じ呼び形式の比較品(6個ボールの摺動型等速自在継手)に対して、トルク伝達ボール3’の直径(DBALL)を小さくし、外側継手部材1’の肉厚および内側継手部材2’の肉厚を比較品(6個ボールの摺動型等速自在継手)と同程度に確保することが可能である。また、同じ呼び形式の比較品(6個ボールの摺動型等速自在継手)に対して、比r2(=DOUTER/PCDSERR)を小さくして(6個ボールの摺動型等速自在継手におけるr2の一般的な値はr2≧3.1である。)、比較品と同等以上の強度、負荷容量および耐久性を確保しつつ、外径寸法(DOUTER)のより一層のコンパクト化を図ることができる。また、比較品(6個ボールの摺動型等速自在継手)に比べて低発熱であることが実験の結果確認されている。 Similar to the constant velocity universal joint of the first embodiment, the constant velocity universal joint of this embodiment has eight torque transmission balls 3 'and is a comparative product (six-ball sliding type constant velocity universal). Compared with the joint), the load ratio per torque transmission ball occupying the total load capacity of the joint is small, so torque transmission is possible for the comparative product of the same nominal type (six-ball sliding type constant velocity universal joint). The diameter of the ball 3 ′ (DBALL) is reduced, and the wall thickness of the outer joint member 1 ′ and the wall thickness of the inner joint member 2 ′ are secured to the same level as the comparative product (six-ball sliding type constant velocity universal joint). Is possible. In addition, the ratio r2 (= D OUTER / PCD SERR ) is reduced (six-ball sliding type constant velocity universal) compared to the comparative product of the same nominal type (six-ball sliding type constant velocity universal joint). The general value of r2 in the joint is r2 ≧ 3.1.) While ensuring the strength, load capacity and durability equivalent to or better than those of the comparative products, the outer diameter (D OUTER ) is further downsized . Can be achieved. In addition, it has been confirmed as a result of experiments that the heat generation is lower than that of a comparative product (sliding type constant velocity universal joint with six balls).

中空状連結軸5’は、内側継手部材2’の嵌合部2c’に連結される歯型5c’を有する軸端部5a’、及び、この軸端部5a’に連続した中間部5b’とからなる。この実施形態において、連結軸5’は、外径dmのパイプ素材の両端部を絞り成形し、さらに、この絞り成形した軸端部5a’の軸端側外周に歯型(スプライン又はセレーション)5c’を転造加工等により成形したものである。軸端部5a’の外径はds、中間部5b’の外径はパイプ素材と同じdmである(ds<dm)。   The hollow connecting shaft 5 ′ includes a shaft end portion 5a ′ having a tooth mold 5c ′ connected to the fitting portion 2c ′ of the inner joint member 2 ′, and an intermediate portion 5b ′ continuous with the shaft end portion 5a ′. It consists of. In this embodiment, the connecting shaft 5 ′ is formed by drawing both ends of a pipe material having an outer diameter dm, and further, a tooth mold (spline or serration) 5c is formed on the outer periphery of the shaft end of the drawn shaft end 5a ′. 'Is formed by rolling or the like. The outer diameter of the shaft end portion 5a 'is ds, and the outer diameter of the intermediate portion 5b' is the same dm as that of the pipe material (ds <dm).

連結軸5’の材質、絞り成形方法等は、第1の実施形態と同様にすることができる。また、中間部5b’の外径dm(パイプ素材の外径)は、比r3(=dm/DOUTER )が0.29≦r3≦1.0となるような範囲内で選択可能であり、比r2(=DOUTER/PCDSERR)を2.5≦r2≦3.5の範囲内で設定した場合、比r2及び比r3の関係より、中間部5b’の外径(dm)と軸端部5a’の歯型5c’のピッチ円径(PCDSERR)との比r4(=dm/PCDSERR)は1≦r4≦3.5となり、また、パイプ素材の絞り率δ(%)を0%≦δ(%)≦60%にすることができる。そのため、軸端部5b’をロータリースウェージング加工等する際の加工コストを低く抑えることができる。その他、第1の実施形態と同様であるので、重複する説明を省略する。 The material of the connecting shaft 5 ′, the drawing method, and the like can be the same as in the first embodiment. Further, the outer diameter dm (the outer diameter of the pipe material) of the intermediate portion 5b ′ can be selected within a range where the ratio r3 (= dm / D OUTER ) is 0.29 ≦ r3 ≦ 1.0, When the ratio r2 (= D OUTER / PCD SERR ) is set within the range of 2.5 ≦ r2 ≦ 3.5, the outer diameter (dm) of the intermediate portion 5b ′ and the shaft end are determined from the relationship between the ratio r2 and the ratio r3. The ratio r4 (= dm / PCD SERR ) to the pitch circle diameter (PCD SERR ) of the tooth mold 5c ′ of the portion 5a ′ is 1 ≦ r4 ≦ 3.5, and the drawing ratio δ (%) of the pipe material is 0. % ≦ δ (%) ≦ 60%. Therefore, it is possible to reduce the processing cost when the shaft end portion 5b ′ is subjected to rotary swaging processing or the like. Others are the same as those in the first embodiment, and a duplicate description is omitted.

以上説明した第1及び第2の実施形態の構成は、例えば図5に示すような自動車の動力伝達装置に適用することができる。   The configurations of the first and second embodiments described above can be applied to an automobile power transmission device as shown in FIG. 5, for example.

本発明の第1の実施形態を示す縦断面図(図2におけるY−Y断面)である。It is a longitudinal cross-sectional view (YY cross section in FIG. 2) which shows the 1st Embodiment of this invention. 本発明の第1の実施形態を示す縦断面図(図1におけるX−X断面)である。It is a longitudinal cross-sectional view (XX cross section in FIG. 1) which shows the 1st Embodiment of this invention. 本発明の第2の実施形態を示す縦断面図(図4におけるY−Y断面)である。It is a longitudinal cross-sectional view (YY cross section in FIG. 4) which shows the 2nd Embodiment of this invention. 本発明の第2の実施形態を示す縦断面図(図3におけるX−X断面)である。It is a longitudinal cross-sectional view (XX cross section in FIG. 3) which shows the 2nd Embodiment of this invention. 自動車の動力伝達装置を示す断面図である。It is sectional drawing which shows the power transmission device of a motor vehicle.

符号の説明Explanation of symbols

1、1’ 外側継手部材
1a、1a’ 内径面
1b、1b’ 案内溝
2、2’ 内側継手部材
2a、2a’ 外径面
2b、2b’ 案内溝
3、3’ トルク伝達ボール
4、4’ 保持器
5、5’ 中空状連結軸
5a、5a’ 軸端部
5b、5b’ 中間部

1, 1 'outer joint member 1a, 1a' inner diameter surface 1b, 1b 'guide groove 2, 2' inner joint member 2a, 2a 'outer diameter surface 2b, 2b' guide groove 3, 3 'torque transmission ball 4, 4' Cage 5, 5 'hollow connecting shaft 5a, 5a' shaft end 5b, 5b 'intermediate part

Claims (1)

内径面に軸方向に延びる8本の案内溝を形成した外側継手部材と、外径面に軸方向に延びる8本の案内溝を形成し、内径面に歯型を有する嵌合部を形成した内側継手部材と、外側継手部材の案内溝とこれに対応する内側継手部材の案内溝とが協働して形成される8本のボールトラックにそれぞれ配された8個のトルク伝達ボールと、内側継手部材の嵌合部に連結される歯型を有する軸端部、及び、該軸端部に連続した中間部を有する中空状連結軸とを備え、
前記外側継手部材の外径(D OUTER )と前記内側継手部材の嵌合部の歯型のピッチ円径(PCD SERR )との比r2(=D OUTER /PCD SERR )が2.5≦r2≦3.5であり、
前記連結軸の中間部の外径(dm)と前記内側継手部材の嵌合部の歯型のピッチ円径(PCDSERR)との比r4(=dm/PCDSERR)が1≦r4≦3.5であることを特徴とする等速自在継手
An outer joint member having eight guide grooves extending in the axial direction on the inner diameter surface and eight guide grooves extending in the axial direction on the outer diameter surface are formed, and a fitting portion having a tooth shape is formed on the inner diameter surface. An inner joint member, eight torque transmission balls respectively disposed on eight ball tracks formed by cooperation of a guide groove of the outer joint member and a corresponding guide groove of the inner joint member; axial end portion having a tooth die to be connected to the fitting portion of the coupling member, and a hollow connecting shaft having an intermediate portion which is continuous to the shaft end,
The ratio r2 (= D OUTER / PCD SERR ) between the outer diameter (D OUTER ) of the outer joint member and the pitch circle diameter (PCD SERR ) of the tooth mold of the fitting portion of the inner joint member is 2.5 ≦ r 2 ≦ 3.5,
The ratio r4 (= dm / PCD SERR ) between the outer diameter (dm) of the intermediate portion of the connecting shaft and the pitch circle diameter (PCD SERR ) of the tooth shape of the fitting portion of the inner joint member is 1 ≦ r4 ≦ 3. 5 is a constant velocity universal joint .
JP2004371380A 2004-12-22 2004-12-22 Constant velocity universal joint Expired - Lifetime JP4188310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371380A JP4188310B2 (en) 2004-12-22 2004-12-22 Constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371380A JP4188310B2 (en) 2004-12-22 2004-12-22 Constant velocity universal joint

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26215497A Division JP4080036B2 (en) 1997-09-26 1997-09-26 Fixed type constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2005133949A JP2005133949A (en) 2005-05-26
JP4188310B2 true JP4188310B2 (en) 2008-11-26

Family

ID=34651051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371380A Expired - Lifetime JP4188310B2 (en) 2004-12-22 2004-12-22 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP4188310B2 (en)

Also Published As

Publication number Publication date
JP2005133949A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
EP1707834B1 (en) Tripod type constant verocity universal joint
US6280338B1 (en) Plunging constant velocity universal joint for propeller shaft
US6332844B1 (en) Propeller shaft and constant velocity universal joint for a propeller shaft
JP2007270997A (en) Fixed type constant velocity universal joint
WO2006100893A1 (en) Cross groove constant velocity universal joint
US8608578B2 (en) Constant velocity joint of tripod type
JP4080036B2 (en) Fixed type constant velocity universal joint
JP4188312B2 (en) Constant velocity universal joint
JP4188311B2 (en) Constant velocity universal joint
JP4188310B2 (en) Constant velocity universal joint
JPH11278075A (en) Connecting structure of drive shaft
JP4896662B2 (en) Fixed constant velocity universal joint
KR20140024080A (en) Universal joint for vehicle and manufacturing method thereof
JP2005226781A (en) Constant velocity universal joint
JP4133415B2 (en) Fixed type constant velocity universal joint
JP4745186B2 (en) Fixed constant velocity universal joint
JP2003004062A (en) Stationary type constant velocity universal coupling
JP2001208037A (en) Intermediate shaft for drive shaft and method for manufacturing the same
JP2005133890A (en) Tripod type constant velocity universal joint
JP2005226779A (en) Constant velocity universal joint
JP2007016899A (en) Fixed-type constant-velocity universal joint
JP2006275101A (en) Tripod type constant velocity universal joint
JP5340548B2 (en) Fixed constant velocity universal joint
JP2001330051A (en) Constant velocity universal joint
JP4896673B2 (en) Fixed constant velocity universal joint and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term