JP2014100665A - Oxidant processing method and oxidant processing unit - Google Patents

Oxidant processing method and oxidant processing unit Download PDF

Info

Publication number
JP2014100665A
JP2014100665A JP2012254531A JP2012254531A JP2014100665A JP 2014100665 A JP2014100665 A JP 2014100665A JP 2012254531 A JP2012254531 A JP 2012254531A JP 2012254531 A JP2012254531 A JP 2012254531A JP 2014100665 A JP2014100665 A JP 2014100665A
Authority
JP
Japan
Prior art keywords
oxidizing agent
activated carbon
oxidant
reducing agent
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012254531A
Other languages
Japanese (ja)
Other versions
JP5995678B2 (en
Inventor
Takashi Nomoto
岳志 野本
Hiroaki Meguro
裕章 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2012254531A priority Critical patent/JP5995678B2/en
Publication of JP2014100665A publication Critical patent/JP2014100665A/en
Application granted granted Critical
Publication of JP5995678B2 publication Critical patent/JP5995678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an oxidant processing method and an oxidant processing unit in which an oxidant can be performed by reduction treatment while a state of catalytic activity of active carbon is grasped.SOLUTION: An oxidant processing unit 1 includes: an active carbon reaction tank 18 in which water including an oxidant and active carbon are contacted, and the oxidant is performed by reduction treatment; and a gas sensor 30 that detects a generation rate of at least one of carbon monoxide and carbon dioxide generated by contact of the active carbon and the oxidant, and is used.

Description

本発明は、酸化剤を活性炭により還元処理する酸化剤処理方法及び酸化剤処理装置の技術に関する。   The present invention relates to a technique for an oxidizing agent processing method and an oxidizing agent processing apparatus for reducing an oxidizing agent with activated carbon.

排煙脱硫排水においては、脱硫装置での運転状況、特にボイラー負荷の変化に伴い、過硫酸塩等の酸化剤が生成しやすいことが知られている。また、電子産業分野をはじめとした各種の産業においては、その製造過程で過硫酸塩等の酸化剤を使用するため、排水中に過硫酸塩等の酸化剤が残存する場合がある。さらに地下水浄化においては、過硫酸塩等の酸化剤を用いた揮発性有機化合物の浄化も実用化されており、この場合には揮発性有機化合物の分解反応に関与しなかった過硫酸塩が地下水中に残存する場合がある。   In flue gas desulfurization effluent, it is known that an oxidizing agent such as persulfate is likely to be generated in accordance with changes in operating conditions in the desulfurization apparatus, particularly boiler load. In various industries including the electronics industry, an oxidizing agent such as persulfate is used in the manufacturing process, and thus an oxidizing agent such as persulfate may remain in the waste water. Furthermore, in the purification of groundwater, purification of volatile organic compounds using an oxidizing agent such as persulfate has been put into practical use. In this case, the persulfate that was not involved in the decomposition reaction of the volatile organic compound is groundwater. May remain inside.

排水処理の場合には、処理過程後段の生物処理槽にて過硫酸塩等の酸化剤による生物阻害が生じるため、生物反応槽の前段において、過硫酸塩等の酸化剤を適切に処理する必要がある。また、地下水浄化の場合には、過硫酸塩等の酸化剤が残存した地下水をそのまま河川などに放流すると、環境に与える影響が少なくないため同様に適切に処理する必要がある。   In the case of wastewater treatment, bioinhibition by oxidants such as persulfate occurs in the biological treatment tank at the later stage of the treatment process, so it is necessary to appropriately treat oxidants such as persulfate at the front stage of the biological reaction tank. There is. In the case of groundwater purification, if groundwater in which an oxidizing agent such as persulfate remains is discharged as it is into a river or the like as it is, there is not much influence on the environment, and it is necessary to treat it appropriately as well.

このような状況において、本出願人は、先に、排水や地下水中に含まれる酸化剤を活性炭により処理する方法及び装置に関し、還元剤を添加することで、活性炭の劣化を抑制する処理方法及び装置を提案した(例えば、特許文献1参照)。   In such a situation, the present applicant previously relates to a method and an apparatus for treating an oxidizing agent contained in waste water or groundwater with activated carbon, and a processing method for suppressing deterioration of activated carbon by adding a reducing agent and An apparatus has been proposed (see, for example, Patent Document 1).

特開2005−118626号公報JP 2005-118626 A

ところで、酸化剤を含有する水中の酸化剤の濃度を直接的にかつ連続的に検出することは困難であるため、酸化剤を含有する水の負荷変動が生じ、酸化剤の濃度が想定よりも高くなった場合には、活性炭の触媒活性が低下して、水中の過硫酸塩等の酸化剤が十分に還元処理されずに、所定量以上の酸化剤が活性炭反応槽から排出される場合がある。すなわち、酸化剤がリークする場合がある。   By the way, since it is difficult to directly and continuously detect the concentration of the oxidizing agent in the water containing the oxidizing agent, the load fluctuation of the water containing the oxidizing agent occurs, and the concentration of the oxidizing agent is higher than expected. If it becomes higher, the catalytic activity of the activated carbon decreases, and the oxidizing agent such as persulfate in water is not sufficiently reduced, and a predetermined amount or more of the oxidizing agent may be discharged from the activated carbon reaction tank. is there. That is, the oxidant may leak.

したがって、活性炭の触媒活性の状態を把握することは重要であるが、前述した通り、酸化剤の濃度を直接的にかつ連続的に検出することは非常に困難であるため、酸化剤の濃度を検出して、活性炭の触媒活性の状態を把握することも困難である。   Therefore, it is important to grasp the state of catalytic activity of activated carbon. However, as described above, it is very difficult to detect the oxidant concentration directly and continuously. It is also difficult to detect and grasp the state of catalytic activity of activated carbon.

そこで、本発明の目的は、活性炭の触媒活性の状態を把握しながら、酸化剤を還元処理することができる酸化剤処理方法及び酸化剤処理装置を提供することである。   Then, the objective of this invention is providing the oxidizing agent processing method and oxidizing agent processing apparatus which can carry out the reduction process of an oxidizing agent, grasping | ascertaining the catalytic activity state of activated carbon.

本発明者らは、酸化剤の濃度が増加することにより、又は還元剤を添加する系では、酸化剤の濃度増加に伴う還元剤の濃度比率が低下することにより、活性炭が分解され、一酸化炭素や二酸化炭素のガス発生量の増加にともない、活性炭の触媒活性が低下することをつきとめ、本発明に至った。   The present inventors have decomposed activated carbon by increasing the concentration of the oxidizing agent or by reducing the concentration ratio of the reducing agent accompanying the increase in the concentration of the oxidizing agent in the system in which the reducing agent is added. The inventors have found that the catalytic activity of activated carbon decreases as the amount of carbon or carbon dioxide gas generated increases, and have reached the present invention.

本実施形態は、酸化剤を含有する水と活性炭とを接触させ、前記酸化剤を還元処理する還元処理工程を含む酸化剤処理方法であって、前記還元処理工程において、前記活性炭と前記酸化剤との接触によって発生する一酸化炭素及び二酸化炭素のうち少なくともいずれか一方の発生量を検出する方法である。   The present embodiment is an oxidant treatment method including a reduction treatment step in which water containing an oxidant and activated carbon are brought into contact to reduce the oxidant, wherein the activated carbon and the oxidant in the reduction treatment step This is a method for detecting the generation amount of at least one of carbon monoxide and carbon dioxide generated by contact with the carbon dioxide.

また、前記酸化剤処理方法において、前記還元処理工程は、前記酸化剤を含有する水に還元剤を添加する還元剤添加工程を備え、前記還元剤添加工程では、前記検出した一酸化炭素及び前記二酸化炭素の発生量に基づいて、前記還元剤の添加量又は濃度を制御することが好ましい。   Further, in the oxidizing agent treatment method, the reduction treatment step includes a reducing agent addition step of adding a reducing agent to water containing the oxidizing agent, and the reducing agent addition step includes the detected carbon monoxide and the detected It is preferable to control the addition amount or concentration of the reducing agent based on the amount of carbon dioxide generated.

また、前記酸化剤処理方法において、前記還元処理工程では、前記検出した一酸化炭素及び前記二酸化炭素の発生量に基づいて、前記活性炭に供給する前記酸化剤を含有する水の供給量又は前記酸化剤を含有する水中の前記酸化剤の濃度を制御することが好ましい。   In the oxidant treatment method, in the reduction treatment step, the supply amount of water containing the oxidant supplied to the activated carbon or the oxidation based on the detected amounts of carbon monoxide and carbon dioxide detected. It is preferable to control the concentration of the oxidizing agent in the water containing the agent.

また、前記酸化剤処理方法において、前記酸化剤は、特に制限はないが、過硫酸塩、次亜塩素酸塩であることが好ましい。なお、前記酸化剤が過酸化水素のように還元処理工程時に酸素などのガスを発生するようなものであると、一酸化炭素及び二酸化炭素の発生量を正確に測定できない場合がある。   In the oxidizing agent treatment method, the oxidizing agent is not particularly limited, but is preferably persulfate or hypochlorite. If the oxidizing agent generates a gas such as oxygen during the reduction process, such as hydrogen peroxide, the amount of carbon monoxide and carbon dioxide generated may not be measured accurately.

また、本実施形態の酸化剤処理装置は、酸化剤を含有する水と活性炭とを接触させ、前記酸化剤を還元処理する活性炭反応槽と、前記活性炭と前記酸化剤との接触によって発生する一酸化炭素及び二酸化炭素のうち少なくともいずれか一方の発生量を検出する検出手段と、を備える装置である。   Further, the oxidant treatment apparatus of the present embodiment is produced by bringing the water containing the oxidant into contact with the activated carbon, the activated carbon reaction tank for reducing the oxidant, and the contact between the activated carbon and the oxidant. Detecting means for detecting the amount of generation of at least one of carbon oxide and carbon dioxide.

また、前記酸化剤処理装置において、前記酸化剤を含有する水に還元剤を添加する還元剤添加手段と、前記検出した一酸化炭素及び前記二酸化炭素の発生量に基づいて、前記還元剤添加手段により添加される前記還元剤の添加量又は濃度を制御する制御手段と、を備えることが好ましい。   Further, in the oxidizer treatment apparatus, a reducing agent adding means for adding a reducing agent to the water containing the oxidizing agent, and the reducing agent adding means based on the detected generation amounts of carbon monoxide and carbon dioxide. And a control means for controlling the addition amount or the concentration of the reducing agent added by the step (1).

また、前記酸化剤処理装置において、前記活性炭反応槽に、酸化剤を含有する水を供給する供給手段と、前記検出した一酸化炭素及び前記二酸化炭素の発生量に基づいて、前記供給手段により前記活性炭反応槽に供給される前記酸化剤を含有する水の供給量、又は前記酸化剤を含有する水中の濃度を制御する制御部と、を備えることが好ましい。   Further, in the oxidant treatment apparatus, the supply means for supplying water containing an oxidant to the activated carbon reaction tank, and the supply means based on the detected generation amounts of carbon monoxide and carbon dioxide. It is preferable to include a control unit that controls a supply amount of water containing the oxidizing agent supplied to the activated carbon reaction tank or a concentration of water containing the oxidizing agent.

また、前記酸化剤処理装置において、前記酸化剤は、特に制限はないが、過硫酸塩、次亜塩素酸塩であることが好ましい。なお、前記酸化剤が過酸化水素のように還元処理工程時に酸素などのガスを発生するようなものであると、一酸化炭素及び二酸化炭素の発生量を正確に測定できない場合がある。   Moreover, in the said oxidizing agent processing apparatus, although the said oxidizing agent does not have a restriction | limiting in particular, It is preferable that they are a persulfate and a hypochlorite. If the oxidizing agent generates a gas such as oxygen during the reduction process, such as hydrogen peroxide, the amount of carbon monoxide and carbon dioxide generated may not be measured accurately.

また、前記酸化剤処理装置において、前記活性炭反応槽は、前記酸化剤を含有する水を上向流で通水する上向流式活性炭反応槽であることが好ましい。   Moreover, the said oxidizing agent processing apparatus WHEREIN: It is preferable that the said activated carbon reaction tank is an upward flow type activated carbon reaction tank which lets the water containing the said oxidizing agent flow in an upward flow.

本発明によれば、活性炭の触媒活性の状態を把握しながら、酸化剤を還元処理することができる酸化剤処理方法及び酸化剤処理装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the oxidizing agent processing method and oxidizing agent processing apparatus which can carry out the reduction process of an oxidizing agent, grasping | ascertaining the catalytic activity state of activated carbon.

本実施形態に係る酸化剤処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the oxidizing agent processing apparatus which concerns on this embodiment. 本実施形態に係る酸化剤処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the oxidizing agent processing apparatus which concerns on this embodiment. 本実施形態に係る酸化剤処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the oxidizing agent processing apparatus which concerns on this embodiment. 本実施形態に係る酸化剤処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the oxidizing agent processing apparatus which concerns on this embodiment. 実施例5−1〜7の二酸化炭素及び一酸化炭素の発生量と処理水中に残留した過硫酸塩濃度の結果を示す図である。It is a figure which shows the result of the generation amount of the carbon dioxide and carbon monoxide of Examples 5-1-7, and the persulfate density | concentration which remained in the treated water. 実施例6における過硫酸塩濃度と一酸化炭素及び二酸化炭素発生量との関係を示す図である。It is a figure which shows the relationship between the persulfate density | concentration in Example 6, and the amount of carbon monoxide and carbon dioxide generation. 実施例7における次亜塩素酸塩濃度と一酸化炭素及び二酸化炭素発生量との関係を示す図である。It is a figure which shows the relationship between the hypochlorite density | concentration in Example 7, and the amount of carbon monoxide and carbon dioxide generation.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る酸化剤処理装置の構成の一例を示す模式図である。図1に示す酸化剤処理装置1は、原水流入ライン10と、酸化剤を含有する水を供給する供給手段としての原水貯留槽12、原水供給ライン14及び原水供給ポンプ16と、活性炭反応槽18と、処理水ライン20と、処理水貯留槽22と、還元剤添加手段としての還元剤貯留槽24、還元剤添加ポンプ26及び還元剤添加ライン28と、検出手段としてのガスセンサ30、制御手段としての制御部32、を備える。   FIG. 1 is a schematic diagram showing an example of the configuration of the oxidant processing apparatus according to the present embodiment. An oxidant treatment apparatus 1 shown in FIG. 1 includes a raw water inflow line 10, a raw water storage tank 12 as a supply means for supplying water containing an oxidant, a raw water supply line 14, a raw water supply pump 16, and an activated carbon reaction tank 18. A treated water line 20, a treated water storage tank 22, a reducing agent storage tank 24 as a reducing agent addition means, a reducing agent addition pump 26 and a reducing agent addition line 28, a gas sensor 30 as a detection means, and a control means. The control unit 32 is provided.

図1に示すように、本実施形態では、原水流入ライン10の一端は、原水貯留槽12に接続されている。原水供給ライン14の一端は原水貯留槽12に接続され、他端は、原水供給ポンプ16を介して活性炭反応槽18の底部に接続されている。処理水ライン20の一端は活性炭反応槽18の上部側面に接続され、他端は、処理水貯留槽22に接続されている。還元剤添加ライン28の一端は還元剤貯留槽24に接続され、他端は還元剤添加ポンプ26を介して原水供給ライン14に接続されている。   As shown in FIG. 1, in this embodiment, one end of the raw water inflow line 10 is connected to the raw water storage tank 12. One end of the raw water supply line 14 is connected to the raw water storage tank 12, and the other end is connected to the bottom of the activated carbon reaction tank 18 via the raw water supply pump 16. One end of the treated water line 20 is connected to the upper side surface of the activated carbon reaction tank 18, and the other end is connected to the treated water storage tank 22. One end of the reducing agent addition line 28 is connected to the reducing agent storage tank 24, and the other end is connected to the raw water supply line 14 via the reducing agent addition pump 26.

ガスセンサ30は、一酸化炭素、二酸化炭素のうち少なくともいずれか一方の発生量を検出するものであり、活性炭反応槽18内に設置されている。ガスセンサ30は、制御部32と電気的に接続されており、ガスセンサ30により検出された検出データが制御部32に出力されるようになっている。一酸化炭素用のガスセンサとしては、例えばTGS5042(フィガロ技研社製)等、二酸化炭素用のガスセンサとしては、例えばTGS4160(フィガロ技研社製)等が挙げられる。   The gas sensor 30 detects the generation amount of at least one of carbon monoxide and carbon dioxide, and is installed in the activated carbon reaction tank 18. The gas sensor 30 is electrically connected to the control unit 32, and detection data detected by the gas sensor 30 is output to the control unit 32. Examples of the gas sensor for carbon monoxide include TGS5042 (manufactured by Figaro Giken), and examples of the gas sensor for carbon dioxide include TGS4160 (manufactured by Figaro Giken).

本実施形態の制御部32は、還元剤添加ポンプ26と電気的に接続されており、ガスセンサ30により検出された検出データに応じて、還元剤添加ポンプ26の出力を制御し、還元剤の添加量を制御する機能を有する装置である。   The control unit 32 of the present embodiment is electrically connected to the reducing agent addition pump 26, controls the output of the reducing agent addition pump 26 according to the detection data detected by the gas sensor 30, and adds the reducing agent. It is a device having a function of controlling the amount.

本実施形態では、還元剤貯留槽24、還元剤添加ポンプ26及び還元剤添加ライン28を還元剤添加手段として例示したが、還元剤を活性炭反応槽18に供給する構成であれば、これに制限されるものではない。また、本実施形態では、原水貯留槽12、原水供給ライン14及び原水供給ポンプ16を供給手段として例示したが、酸化剤を含有する水を活性炭反応槽18に供給する構成であれば、これに制限されるものではない。   In the present embodiment, the reducing agent storage tank 24, the reducing agent addition pump 26, and the reducing agent addition line 28 are exemplified as the reducing agent addition means. However, the present invention is not limited thereto as long as the reducing agent is supplied to the activated carbon reaction tank 18. Is not to be done. Moreover, in this embodiment, although the raw | natural water storage tank 12, the raw | natural water supply line 14, and the raw | natural water supply pump 16 were illustrated as a supply means, if it is the structure which supplies the water containing an oxidizing agent to the activated carbon reaction tank 18, to this It is not limited.

本実施形態に係る酸化剤処理装置1の動作について説明する。以下、酸化剤を含有する水を単に原水と呼ぶ場合がある。   Operation | movement of the oxidizing agent processing apparatus 1 which concerns on this embodiment is demonstrated. Hereinafter, water containing an oxidizing agent may be simply referred to as raw water.

原水流入ライン10から原水貯留槽12に溜められた酸化剤を含有する水は、原水供給ポンプ16により、原水供給ライン14から活性炭反応槽18に供給される。活性炭反応槽18内では、酸化剤を含有する水が、活性炭反応槽18内の活性炭と接触し、酸化剤が還元処理される。酸化剤が還元処理された水は、処理水として、処理水ライン20を通り、処理水貯留槽22に溜められる。   Water containing the oxidant stored in the raw water storage tank 12 from the raw water inflow line 10 is supplied from the raw water supply line 14 to the activated carbon reaction tank 18 by the raw water supply pump 16. In the activated carbon reaction tank 18, the water containing the oxidizing agent comes into contact with the activated carbon in the activated carbon reaction tank 18, and the oxidizing agent is reduced. Water subjected to the reduction treatment of the oxidant passes through the treated water line 20 as treated water and is stored in the treated water storage tank 22.

ここで、酸化剤を含有する水の負荷変動により、酸化剤の濃度が上昇した場合、例えば、活性炭により処理できる濃度以上に酸化剤の濃度が上昇した場合、活性炭が酸化剤により分解され、一酸化炭素や二酸化炭素のガス発生量の増加にともない、活性炭の触媒活性が急激に低下する。このような状態になると、活性炭により酸化剤が十分に処理されずに、所定量以上の酸化剤が活性炭反応槽18から排出される。   Here, when the concentration of the oxidant increases due to fluctuations in the load of water containing the oxidant, for example, when the concentration of the oxidant increases beyond the concentration that can be treated with activated carbon, the activated carbon is decomposed by the oxidant and As the gas generation amount of carbon oxide and carbon dioxide increases, the catalytic activity of the activated carbon rapidly decreases. In such a state, the activated carbon is not sufficiently treated with the activated carbon, and a predetermined amount or more of the oxidizing agent is discharged from the activated carbon reaction tank 18.

本実施形態では、ガスセンサ30により、活性炭反応槽18内の一酸化炭素や二酸化炭素の発生量をリアルタイムで検出している。そのため、ガスセンサ30の検出値が上昇すれば、活性炭反応槽18内の一酸化炭素や二酸化炭素の発生量が増加していることを把握することができ、ひいては活性炭の触媒活性が低下していることを把握することができる。したがって、作業者等が目視等により、ガスセンサ30の検出値を確認したり、検出値データの履歴をグラフや表等にして確認したりすることにより、活性炭の触媒活性がどのような状態であるかをリアルタイムで把握することが可能となる。   In this embodiment, the gas sensor 30 detects the amount of carbon monoxide and carbon dioxide generated in the activated carbon reaction tank 18 in real time. Therefore, if the detection value of the gas sensor 30 rises, it can be grasped that the amount of carbon monoxide and carbon dioxide generated in the activated carbon reaction tank 18 is increased, and the catalytic activity of the activated carbon is lowered. I can understand that. Therefore, the state of the catalytic activity of the activated carbon is confirmed by the operator or the like confirming the detection value of the gas sensor 30 by visual observation or confirming the history of the detection value data in a graph or a table. Can be grasped in real time.

以下に、ガスセンサ30により検出した一酸化炭素や二酸化炭素の発生量に応じて、還元剤の添加量を制御する酸化剤処理装置1の動作について説明する。   Below, the operation | movement of the oxidizing agent processing apparatus 1 which controls the addition amount of a reducing agent according to the generation amount of the carbon monoxide and carbon dioxide detected with the gas sensor 30 is demonstrated.

以下では、制御部32に、予め設定した上限閾値を記憶させておき、ガスセンサ30の検出値が上限閾値を越えた場合には、還元剤添加ポンプ26に、所定の出力値まで上昇するように指令を出すように設定されている。また、制御部32に、予め設定した下限閾値を記憶させておき、ガスセンサ30の検出値が下限閾値を下回った場合には、還元剤添加ポンプ26に、所定の出力値まで低下するように指令を出すように設定することが望ましい。   Hereinafter, a preset upper limit threshold value is stored in the control unit 32, and when the detection value of the gas sensor 30 exceeds the upper limit threshold value, the reducing agent addition pump 26 is increased to a predetermined output value. It is set to issue a command. In addition, the control unit 32 stores a preset lower limit threshold value, and instructs the reducing agent addition pump 26 to decrease to a predetermined output value when the detection value of the gas sensor 30 falls below the lower limit threshold value. It is desirable to set so that

まず、原水流入ライン10から原水貯留槽12に溜められた酸化剤を含有する水は、原水供給ポンプ16により、原水供給ライン14から活性炭反応槽18に供給される。また、還元剤貯留槽24内の還元剤が、還元剤添加ポンプ26により、還元剤添加ライン28から活性炭反応槽18に供給される。活性炭反応槽18内で、酸化剤と還元剤とが共存した状態で活性炭と接触させることで、活性炭が触媒となって、酸化剤の還元反応を促進させることができる。例えば、酸化剤を過硫酸塩、還元剤を過酸化水素とすると、活性炭の存在化で過硫酸塩と過酸化水素が共存することで、過硫酸塩は、以下の式(1),(2)で表される還元反応が進行する。
2Na+2HO → 2NaSO+2HSO+O (1)
Na+H → NaSO+HSO+O (2)
First, the water containing the oxidizing agent stored in the raw water storage tank 12 from the raw water inflow line 10 is supplied from the raw water supply line 14 to the activated carbon reaction tank 18 by the raw water supply pump 16. Further, the reducing agent in the reducing agent storage tank 24 is supplied from the reducing agent addition line 28 to the activated carbon reaction tank 18 by the reducing agent addition pump 26. In the activated carbon reaction tank 18, when activated carbon is brought into contact with the activated carbon in a state where the oxidizing agent and the reducing agent coexist, the activated carbon can be used as a catalyst to promote the reducing reaction of the oxidizing agent. For example, if the oxidizing agent is persulfate and the reducing agent is hydrogen peroxide, the persulfate and hydrogen peroxide coexist in the presence of activated carbon, and the persulfate can be expressed by the following formulas (1) and (2 ) Proceeds.
2Na 2 S 2 O 8 + 2H 2 O → 2Na 2 SO 4 + 2H 2 SO 4 + O 2 (1)
Na 2 S 2 O 8 + H 2 O 2 → Na 2 SO 4 + H 2 SO 4 + O 2 (2)

活性炭の存在化で過硫酸塩と過酸化水素が共存させることで、過硫酸塩を迅速に分解させることができるため、活性炭の劣化を抑制することができる。   Since the persulfate and hydrogen peroxide are allowed to coexist in the presence of activated carbon, the persulfate can be rapidly decomposed, so that deterioration of the activated carbon can be suppressed.

なお、活性炭反応槽18では、過酸化水素も活性炭により、還元分解される。還元反応は以下の式(3)で表される。
2H → 2HO+O (3)
In the activated carbon reaction tank 18, hydrogen peroxide is also reduced and decomposed by activated carbon. The reduction reaction is represented by the following formula (3).
2H 2 O 2 → 2H 2 O + O 2 (3)

ここで、前述したように、原水の負荷変動により、活性炭反応槽18内に流入する酸化剤(過硫酸塩)の濃度が所定濃度以上まで上昇する場合には、酸化剤が活性炭を分解して、一酸化炭素や二酸化炭素のガスが多量に発生する。このような場合、本実施形態では、ガスセンサ30により、活性炭反応槽18内の一酸化炭素や二酸化炭素の発生量をリアルタイムで検出(検出値を制御部32に出力)しているため、検出値が制御部32に記憶させた上限閾値を超えた場合には、制御部32により、還元剤添加ポンプ26の出力を上昇させ、還元剤の添加量を増加させる。還元剤の添加量が増加することにより、酸化剤の分解も促進されるため、活性炭の触媒活性の低下が抑えられ、例えば上記(1),(2)で表される還元反応を安定に進行させることが可能となり、活性炭反応槽18から所定量以上の酸化剤が排出されることを抑制することが可能となる。また、原水の負荷変動により、活性炭反応槽18内に流入する酸化剤(過硫酸塩)の濃度が所定濃度以下にまで低下する場合、必要以上の還元剤が活性炭反応槽18に添加される状況が続くため、処理コストが高くなる場合がある。このような場合でも、本実施形態では、ガスセンサ30により、活性炭反応槽18内の一酸化炭素や二酸化炭素の発生量をリアルタイムで検出(検出値を制御部32に出力)しているため、検出値が制御部32に記憶させた下限閾値を下回った場合には、制御部32により、還元剤添加ポンプ26の出力を下げ、還元剤の添加量を減少させる。その結果、必要以上の還元剤が活性炭反応槽18に添加されることを抑えることができるため、処理コストの増加を抑制することができる。   Here, as described above, when the concentration of the oxidizing agent (persulfate) flowing into the activated carbon reaction tank 18 rises to a predetermined concentration or more due to fluctuations in the raw water load, the oxidizing agent decomposes the activated carbon. A large amount of carbon monoxide and carbon dioxide gas is generated. In such a case, in this embodiment, the gas sensor 30 detects the generation amount of carbon monoxide and carbon dioxide in the activated carbon reaction tank 18 in real time (outputs the detection value to the control unit 32). When the upper limit threshold value stored in the control unit 32 is exceeded, the control unit 32 increases the output of the reducing agent addition pump 26 to increase the amount of reducing agent added. By increasing the amount of the reducing agent added, the decomposition of the oxidizing agent is also promoted, so that the reduction in the catalytic activity of the activated carbon is suppressed, and for example, the reduction reaction represented by the above (1) and (2) proceeds stably. Therefore, it is possible to suppress discharge of a predetermined amount or more of the oxidizing agent from the activated carbon reaction tank 18. In addition, when the concentration of the oxidizing agent (persulfate) flowing into the activated carbon reaction tank 18 is lowered to a predetermined concentration or less due to fluctuations in the raw water load, a situation where excessive reducing agent is added to the activated carbon reaction tank 18. Because of this, the processing cost may increase. Even in such a case, in the present embodiment, the gas sensor 30 detects the generation amount of carbon monoxide and carbon dioxide in the activated carbon reaction tank 18 in real time (outputs the detection value to the control unit 32). When the value falls below the lower threshold stored in the control unit 32, the control unit 32 reduces the output of the reducing agent addition pump 26 and decreases the amount of reducing agent added. As a result, it is possible to suppress an unnecessary reducing agent from being added to the activated carbon reaction tank 18, and thus it is possible to suppress an increase in processing cost.

還元剤の添加量を制御する他の方法としては、ガスセンサ30の検出値と還元剤の添加量との関係を表すマップ又はテーブル等を制御部32に記憶させておき、実際に検出したガスセンサ30の検出値をマップ等に当てはめて還元剤の添加量を求め、求めた還元剤の添加量となるように還元剤添加ポンプ26の出力を制御してもよい。また、還元剤添加ライン28に電磁弁等を設置し、ガスセンサ30の検出値に応じて、該電磁弁の開閉度を制御部32により制御して、還元剤の添加量を調節してもよい。   As another method for controlling the addition amount of the reducing agent, a map or table indicating the relationship between the detected value of the gas sensor 30 and the addition amount of the reducing agent is stored in the control unit 32, and the gas sensor 30 actually detected is stored. The detected value may be applied to a map or the like to determine the addition amount of the reducing agent, and the output of the reducing agent addition pump 26 may be controlled so that the calculated addition amount of the reducing agent is obtained. Further, an electromagnetic valve or the like may be installed in the reducing agent addition line 28, and the amount of reducing agent added may be adjusted by controlling the degree of opening and closing of the electromagnetic valve by the control unit 32 in accordance with the detection value of the gas sensor 30. .

図2は、本実施形態に係る酸化剤処理装置の構成の他の一例を示す模式図である。図2に示す酸化剤処理装置2では、還元剤添加手段として、還元剤貯留槽34、還元剤添加ポンプ26、還元剤添加ライン28、還元剤希釈水添加ライン36、電磁弁38を備えるものである。本実施形態では、還元剤貯留槽34に貯留される還元剤は、濃厚水である。還元剤希釈水添加ライン36の一端は、還元剤添加ライン28に接続され、他端は処理水ライン20に接続されている。還元剤希釈水添加ライン36と処理水ライン20の接続点には電磁弁38が設けられており、制御部32と電気的に接続されている。   FIG. 2 is a schematic diagram illustrating another example of the configuration of the oxidizer treatment apparatus according to the present embodiment. 2 includes a reducing agent storage tank 34, a reducing agent addition pump 26, a reducing agent addition line 28, a reducing agent dilution water addition line 36, and a solenoid valve 38 as reducing agent addition means. is there. In the present embodiment, the reducing agent stored in the reducing agent storage tank 34 is concentrated water. One end of the reducing agent dilution water addition line 36 is connected to the reducing agent addition line 28, and the other end is connected to the treated water line 20. A solenoid valve 38 is provided at a connection point between the reducing agent dilution water addition line 36 and the treated water line 20, and is electrically connected to the control unit 32.

本実施形態では、例えば、通常では、還元剤添加ポンプ26により還元剤貯留槽34から還元剤濃厚水を還元剤添加ライン28に送液すると共に、処理水ライン20を通る処理水を還元剤希釈水添加ライン36から還元剤添加ライン28に送液して、還元剤濃厚水を希釈して、活性炭反応槽18に供給する。そして、ガスセンサ30の検出値が制御部32に記憶させた上限閾値を超えた場合には、制御部32により、電磁弁38の開度が調節され、還元剤希釈水添加ライン36を流れる処理水の流量を制限する。これにより、還元剤濃厚水の希釈効果が少なくなるため、活性炭反応槽18内に添加される還元剤の濃度が増加する。還元剤の濃度が増加することにより、酸化剤の分解も促進されるため、活性炭の触媒活性の低下が抑えられ、例えば上記(1),(2)で表される還元反応を安定に進行させることが可能となる。なお、ガスセンサ30の検出値が制御部32に記憶させた下限閾値を下回った場合には、制御部32により、電磁弁38の開度が調節され、還元剤希釈水添加ライン36を流れる処理水の流量を増加させる。これにより、還元剤濃厚水の希釈効果が多くなるため、活性炭反応槽18に流入する還元剤の濃度を低下させることができる。   In the present embodiment, for example, normally, the reducing agent addition pump 26 sends the reducing agent concentrated water from the reducing agent storage tank 34 to the reducing agent addition line 28, and the treated water passing through the treated water line 20 is diluted with the reducing agent. The solution is fed from the water addition line 36 to the reducing agent addition line 28 to dilute the reducing agent concentrated water, and is supplied to the activated carbon reaction tank 18. When the detected value of the gas sensor 30 exceeds the upper limit threshold stored in the control unit 32, the opening of the electromagnetic valve 38 is adjusted by the control unit 32, and the treated water flowing through the reducing agent dilution water addition line 36 is adjusted. Limit the flow rate. Thereby, since the diluting effect of reducing agent concentrated water decreases, the concentration of the reducing agent added to the activated carbon reaction tank 18 increases. By increasing the concentration of the reducing agent, the decomposition of the oxidizing agent is also promoted, so that a reduction in the catalytic activity of the activated carbon is suppressed, and for example, the reduction reaction represented by the above (1) and (2) is stably advanced. It becomes possible. When the detected value of the gas sensor 30 falls below the lower limit threshold value stored in the control unit 32, the control unit 32 adjusts the opening of the electromagnetic valve 38, and the treated water flowing through the reducing agent dilution water addition line 36. Increase the flow rate. Thereby, since the dilution effect of reducing agent concentrated water increases, the density | concentration of the reducing agent which flows in into the activated carbon reaction tank 18 can be reduced.

図3は、本実施形態に係る酸化剤処理装置の構成の他の一例を示す模式図である。図3に示す酸化剤処理装置3において図1に示す酸化剤処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図3に示す酸化剤処理装置3では、制御部32が原水供給ポンプ16と電気的に接続されている。   FIG. 3 is a schematic diagram illustrating another example of the configuration of the oxidizer treatment apparatus according to the present embodiment. In the oxidant processing apparatus 3 shown in FIG. 3, the same components as those in the oxidant processing apparatus 1 shown in FIG. In the oxidizer treatment apparatus 3 shown in FIG. 3, the control unit 32 is electrically connected to the raw water supply pump 16.

図3に示す酸化剤処理装置3では、原水の負荷変動等により、活性炭反応槽18内に流入する酸化剤(過硫酸塩)の濃度が所定濃度以上まで上昇し、ガスセンサ30の検出値が制御部32に記憶させた上限閾値を超えた場合には、制御部32により、原水供給ポンプ16の出力を低下させ、活性炭反応槽18に流入する原水(酸化剤を含有する水)の供給量を減少させる。これにより、活性炭反応槽18内に過剰の酸化剤が流入することを抑制することができため、活性炭の触媒活性の低下が抑えられ、例えば上記(1),(2)で表される還元反応を安定に進行させることが可能となる。その結果、活性炭反応槽18から所定量以上の酸化剤が排出されることを抑制することができる。また、原水の負荷変動により、活性炭反応槽18内に流入する酸化剤(過硫酸塩)の濃度が所定濃度以下に低下し、ガスセンサ30の検出値が制御部32に記憶させた下限閾値を下回った場合には、制御部32により、原水供給ポンプ16の出力を上げて、活性炭反応槽18に流入する原水の供給量を増加させる。これにより、酸化剤の濃度が低濃度のまま供給量を増加させ負荷をあげることで、酸化剤の処理効率を上げることができる。   In the oxidant treatment apparatus 3 shown in FIG. 3, the concentration of the oxidant (persulfate) flowing into the activated carbon reaction tank 18 rises to a predetermined concentration or more due to fluctuations in the raw water load, and the detection value of the gas sensor 30 is controlled. When the upper limit threshold stored in the unit 32 is exceeded, the control unit 32 reduces the output of the raw water supply pump 16 to reduce the supply amount of the raw water (water containing the oxidizing agent) flowing into the activated carbon reaction tank 18. Decrease. Thereby, since it can suppress that an excess oxidizing agent flows in into the activated carbon reaction tank 18, the fall of the catalytic activity of activated carbon is suppressed, for example, the reduction reaction represented by said (1), (2) Can be stably advanced. As a result, it is possible to suppress discharge of a predetermined amount or more of the oxidizing agent from the activated carbon reaction tank 18. Further, due to the fluctuation of the raw water load, the concentration of the oxidant (persulfate) flowing into the activated carbon reaction tank 18 decreases to a predetermined concentration or less, and the detection value of the gas sensor 30 falls below the lower limit threshold value stored in the control unit 32. In this case, the control unit 32 increases the output of the raw water supply pump 16 to increase the supply amount of the raw water flowing into the activated carbon reaction tank 18. Thereby, the treatment efficiency of the oxidant can be increased by increasing the supply amount and increasing the load while the oxidant concentration is low.

図4は、本実施形態に係る酸化剤処理装置の構成の他の一例を示す模式図である。図4に示す酸化剤処理装置4において図1に示す酸化剤処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図4に示す酸化剤処理装置4では、供給手段として、原水貯留槽12、原水供給ライン14及び原水供給ポンプ16に加え、更に原水希釈ライン40、希釈水ポンプ42を備えるものである。原水希釈ライン40の一端は原水供給ライン14に接続され、他端は、希釈水ポンプ42を介して例えば処理水貯留槽22に接続されている。   FIG. 4 is a schematic diagram illustrating another example of the configuration of the oxidizer treatment apparatus according to the present embodiment. In the oxidizer treatment apparatus 4 shown in FIG. 4, the same components as those in the oxidizer treatment apparatus 1 shown in FIG. In addition to the raw | natural water storage tank 12, the raw | natural water supply line 14, and the raw | natural water supply pump 16, the oxidizing agent processing apparatus 4 shown in FIG. 4 is further provided with the raw | natural water dilution line 40 and the dilution water pump 42. One end of the raw water dilution line 40 is connected to the raw water supply line 14, and the other end is connected to, for example, the treated water storage tank 22 via a dilution water pump 42.

図4に示す酸化剤処理装置4では、原水の負荷変動等により、活性炭反応槽18内に流入する酸化剤(過硫酸塩)の濃度が所定濃度以上まで上昇し、ガスセンサ30の検出値が制御部32に記憶させた上限閾値を超えた場合には、制御部32により、希釈水ポンプ42を稼働(又は出力を増加)させ、処理水貯留槽22から原水希釈ライン40を通して、希釈水(処理水)を原水供給ライン14に流して、原水を希釈し、活性炭反応槽18内に流入する酸化剤の濃度を減少させる。これにより、活性炭反応槽18内に過剰の酸化剤が流入することを抑制することができため、活性炭の触媒活性の低下が抑えられ、例えば上記(1),(2)で表される還元反応を安定に進行させることが可能となる。その結果、活性炭反応槽18から所定量以上の酸化剤が排出されることを抑制することができる。また、原水の負荷変動により、活性炭反応槽18内に流入する酸化剤(過硫酸塩)の濃度が所定濃度以下に低下し、ガスセンサ30の検出値が制御部32に記憶させた下限閾値を下回った場合には、制御部32により、原水供給ポンプ16の出力を上げて、活性炭反応槽18に流入する原水の供給量を増加させる。これにより、酸化剤の濃度が低濃度のうちに、酸化剤の処理効率を上げることができる。   In the oxidant treatment device 4 shown in FIG. 4, the concentration of the oxidant (persulfate) flowing into the activated carbon reaction tank 18 rises to a predetermined concentration or more due to fluctuations in the raw water load, and the detection value of the gas sensor 30 is controlled. When the upper limit threshold stored in the unit 32 is exceeded, the control unit 32 operates the dilution water pump 42 (or increases the output), and passes the dilution water (treatment) from the treated water storage tank 22 through the raw water dilution line 40. Water) is passed through the raw water supply line 14 to dilute the raw water and reduce the concentration of the oxidant flowing into the activated carbon reaction tank 18. Thereby, since it can suppress that an excess oxidizing agent flows in into the activated carbon reaction tank 18, the fall of the catalytic activity of activated carbon is suppressed, for example, the reduction reaction represented by said (1), (2) Can be stably advanced. As a result, it is possible to suppress discharge of a predetermined amount or more of the oxidizing agent from the activated carbon reaction tank 18. Further, due to the fluctuation of the raw water load, the concentration of the oxidant (persulfate) flowing into the activated carbon reaction tank 18 decreases to a predetermined concentration or less, and the detection value of the gas sensor 30 falls below the lower limit threshold value stored in the control unit 32. In this case, the control unit 32 increases the output of the raw water supply pump 16 to increase the supply amount of the raw water flowing into the activated carbon reaction tank 18. Thereby, the treatment efficiency of the oxidizing agent can be increased while the concentration of the oxidizing agent is low.

以下に、過硫酸塩還元処理におけるその他の条件等について説明する。   Hereinafter, other conditions in the persulfate reduction treatment will be described.

本実施形態の処理対象である酸化剤としては、過硫酸塩、次亜塩素酸等が挙げられる。特に、酸化剤の中で過硫酸塩は活性炭を分解する能力が高いため、過硫酸塩による活性炭の触媒活性の低下を抑制するには、本実施形態の酸化剤処理装置を用いることが有用である。過硫酸塩を含有する水としては、例えば半導体産業におけるCMP工程から排出される排水等が挙げられる。CMP工程とは、研磨材の入った薬品(=chemical)と砥石で(=mechanical)磨く(=polishing)ので、その頭文字をとって通常CMPと呼ばれているものである。   Examples of the oxidizing agent to be treated in this embodiment include persulfate and hypochlorous acid. In particular, since persulfate has a high ability to decompose activated carbon among oxidizers, it is useful to use the oxidizer treatment apparatus of this embodiment in order to suppress a decrease in the catalytic activity of activated carbon due to persulfate. is there. Examples of water containing persulfate include waste water discharged from a CMP process in the semiconductor industry. The CMP process is usually called CMP because it is a chemical (= chemical) containing an abrasive and polishing with a grindstone (= mechanical).

本実施形態で用いられる還元剤は、処理対象である酸化剤を還元分解するものであれば、特に制限されるものではないが、処理対象である酸化剤として過硫酸塩を用いた場合には、分解後の生成物が水と酸素であるという安全性、過硫酸塩との反応効率の点で、過酸化水素を用いることが好ましい。過酸化水素は、市販のものを用いてもよいが、例えば半導体洗浄工程から排出された排水等を利用することが好ましい。過酸化水素は、上記(3)で表されるように、活性炭により還元されるので、過酸化水素を含有する排水を利用すれば、過硫酸塩を含有する排水の処理と共に、過酸化水素を含有する排水の処理も可能となる。   The reducing agent used in the present embodiment is not particularly limited as long as it reduces and decomposes the oxidizing agent to be treated, but when a persulfate is used as the oxidizing agent to be treated. Hydrogen peroxide is preferably used from the viewpoint of safety that the products after decomposition are water and oxygen and reaction efficiency with persulfate. Commercially available hydrogen peroxide may be used, but it is preferable to use, for example, waste water discharged from the semiconductor cleaning process. As represented by (3) above, hydrogen peroxide is reduced by activated carbon, so if wastewater containing hydrogen peroxide is used, hydrogen peroxide is treated together with the treatment of wastewater containing persulfate. The waste water contained can be treated.

本実施形態の活性炭反応槽18は、回分式反応槽などの完全混合型反応槽の他、活性炭を充填した活性炭塔(固定床式あるいは流動床式)などが使用できる。活性炭としては、石炭系、椰子殻系、木炭系などのいずれの種類のものでも使用することができる。活性炭の形状としては、粉体状、粒状、球状、ペレット状、繊維状などを使用できるが、活性炭反応槽18として完全混合型反応槽を用いる場合には反応速度の速い粉体状活性炭を、活性炭塔(固定床式あるいは流動床式)を用いる場合には分離性等を重視して粒状、ペレット状または繊維状活性炭を使用することが望ましい。   As the activated carbon reaction tank 18 of the present embodiment, an activated carbon tower (fixed bed type or fluidized bed type) filled with activated carbon can be used in addition to a complete mixing type reaction tank such as a batch type reaction tank. Any type of activated carbon such as coal, coconut shell, and charcoal can be used. As the shape of the activated carbon, powder, granule, sphere, pellet, fiber and the like can be used, but when using a complete mixing type reaction tank as the activated carbon reaction tank 18, powder activated carbon having a high reaction rate is used. When using an activated carbon tower (fixed bed type or fluidized bed type), it is desirable to use granular, pelletized or fibrous activated carbon with emphasis on separability and the like.

活性炭反応槽18内の水の最適なpHは、著しい酸性領域またはアルカリ性領域でなければ特に限定されない。極端な酸性領域またはアルカリ領域による処理では、活性炭の劣化を早める。   The optimum pH of the water in the activated carbon reaction tank 18 is not particularly limited as long as it is not a remarkable acidic region or alkaline region. Treatment with an extremely acidic region or alkaline region accelerates the deterioration of the activated carbon.

また、本実施形態の活性炭反応槽18は、酸化剤を含有する水を上向流で通水させる上向流式反応槽を採用することが好ましい。これは、前述したように、過硫酸塩によって活性炭が分解され、一酸化炭素や二酸化炭素のガスが発生した場合でも、活性炭反応槽18に酸化剤を含有する水を上向流で通水をすることで、例えば、上記ガスの装置内への溜まり込みを抑制することができるからである。   Moreover, it is preferable to employ | adopt the upward flow type reaction tank which allows the activated carbon reaction tank 18 of this embodiment to flow the water containing an oxidizing agent by an upward flow. As described above, even when activated carbon is decomposed by persulfate and carbon monoxide or carbon dioxide gas is generated, water containing an oxidizing agent is passed through the activated carbon reaction tank 18 in an upward flow. This is because, for example, accumulation of the gas in the apparatus can be suppressed.

水中の酸化剤の濃度は、実排水の状況の点等から、10〜100000mg/Lの範囲が好ましく、50〜50000mg/L以下の範囲が好ましい。また、還元剤の濃度は、酸化剤との反応効率の点等から、2〜20000mg/Lの範囲が好ましく、10〜10000mg/Lの範囲がより好ましく、水中の酸化剤に対する還元剤の添加比率は、0.2以上とすることが好ましい。水中の酸化剤に対する還元剤の添加比率が0.2未満となると、酸化剤により活性炭が分解され、著しく一酸化炭素や二酸化炭素が発生し、活性炭の触媒活性を低下させる場合がある。   The concentration of the oxidizing agent in water is preferably in the range of 10 to 100000 mg / L, more preferably in the range of 50 to 50000 mg / L, from the viewpoint of the actual wastewater situation. Further, the concentration of the reducing agent is preferably in the range of 2 to 20000 mg / L, more preferably in the range of 10 to 10000 mg / L, from the viewpoint of reaction efficiency with the oxidizing agent, and the addition ratio of the reducing agent to the oxidizing agent in water. Is preferably 0.2 or more. When the addition ratio of the reducing agent to the oxidizing agent in water is less than 0.2, activated carbon is decomposed by the oxidizing agent, carbon monoxide and carbon dioxide are remarkably generated, and the catalytic activity of the activated carbon may be reduced.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example.

(実施例1)
透明塩ビ製カラム(内径40mm、高さ800mm)に触媒としてヤシ殻系活性炭を充填高さ400mmとなるように充填した活性炭カラムを作成し、酸化剤を含有する水を上向流にて通水して処理する装置を作成した。そして、この活性炭カラムに過硫酸ナトリウムを2000mg/Lとなるように純水にて調整した酸化剤を含有する水と、還元剤として過酸化水素400mg/L(過硫酸ナトリウムに対する過酸化水素の濃度添加比率0.2)を空塔速度5/hrで通水した。このときの、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量と処理水中に残留した過硫酸塩濃度を測定した。
Example 1
An activated carbon column was prepared by filling a transparent PVC column (inner diameter 40 mm, height 800 mm) with coconut shell activated carbon as a catalyst to a height of 400 mm, and water containing an oxidizing agent was passed in an upward flow. And created a device for processing. The activated carbon column contains water containing an oxidizing agent prepared by adding pure sodium persulfate to 2000 mg / L with pure water, and hydrogen peroxide as a reducing agent at 400 mg / L (the concentration of hydrogen peroxide relative to sodium persulfate). The addition ratio 0.2) was passed at a superficial velocity of 5 / hr. The amount of carbon dioxide and carbon monoxide generated at the upper part of the activated carbon column and the concentration of persulfate remaining in the treated water were measured.

(実施例2)
過硫酸ナトリウム3000mg/Lに対して過酸化水素を600mg/L(過硫酸ナトリウムに対する過酸化水素の濃度添加比率0.2)としたこと以外は、実施例1と同条件のカラム通水試験を実施し、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量と処理水中に残留した過硫酸塩濃度を測定した。
(Example 2)
A column water flow test under the same conditions as in Example 1 was conducted except that hydrogen peroxide was changed to 600 mg / L (sodium persulfate concentration addition ratio 0.2) with respect to sodium persulfate 3000 mg / L. The amount of carbon dioxide and carbon monoxide generated in the upper part of the activated carbon column and the concentration of persulfate remaining in the treated water were measured.

(実施例3)
過硫酸ナトリウム20000mg/Lに対して過酸化水素を4000mg/L(過硫酸ナトリウムに対する過酸化水素の濃度添加比率0.2)としたこと以外は、実施例1と同条件のカラム通水試験を実施し、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量と処理水中に残留した過硫酸塩濃度を測定した。
(Example 3)
A column water flow test under the same conditions as in Example 1 was conducted except that hydrogen peroxide was 4000 mg / L with respect to 20000 mg / L of sodium persulfate (concentration ratio of hydrogen peroxide to sodium persulfate was 0.2). The amount of carbon dioxide and carbon monoxide generated in the upper part of the activated carbon column and the concentration of persulfate remaining in the treated water were measured.

(実施例4)
過硫酸ナトリウムを20000mg/Lとなるように純水にて調整した酸化剤を含有する水と、還元剤として過酸化水素400mg/L(過硫酸ナトリウムに対する過酸化水素の濃度添加比率0.02)を空塔速度5/hrで通水した。このときの、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量と処理水中に残留した過硫酸塩濃度を測定した。
Example 4
Water containing an oxidizing agent prepared by adding pure sodium persulfate to 20000 mg / L and hydrogen peroxide 400 mg / L as a reducing agent (concentration ratio of hydrogen peroxide to sodium persulfate 0.02) Was passed through at a superficial velocity of 5 / hr. The amount of carbon dioxide and carbon monoxide generated at the upper part of the activated carbon column and the concentration of persulfate remaining in the treated water were measured.

表1に実施例1〜4の二酸化炭素及び一酸化炭素の発生量と処理水中に残留した過硫酸塩濃度の結果をまとめた。   Table 1 summarizes the results of the amounts of carbon dioxide and carbon monoxide generated in Examples 1 to 4 and the concentration of persulfate remaining in the treated water.

Figure 2014100665
Figure 2014100665

表1からわかるように、過硫酸塩に対する過酸化水素の添加比率が0.2の実施例1〜3では、処理水中の残留過硫酸ナトリウムは40mg/L未満となり、良好に過硫酸ナトリウムを処理することができた。そして、この時の、活性炭カラム上部の二酸化炭素及び一酸化炭素のガス発生量はある一定以下であった。したがって、活性炭の触媒活性は低下していなかったと言える。一方で、実施例4の場合のように、過硫酸塩に対する過酸化水素の添加比率が0.02の実施例4では、活性炭により処理される過硫酸塩が過剰となり、処理水中の残留過硫酸ナトリウムが実施例1〜3より高くなった。そして、この時の活性炭カラム上部の二酸化炭素及び一酸化炭素のガス発生量は多くなっており、活性炭の触媒活性が低下していたことがわかった。   As can be seen from Table 1, in Examples 1 to 3 where the addition ratio of hydrogen peroxide to persulfate was 0.2, the residual sodium persulfate in the treated water was less than 40 mg / L, and the sodium persulfate was treated well. We were able to. At this time, the amounts of carbon dioxide and carbon monoxide generated in the upper part of the activated carbon column were below a certain level. Therefore, it can be said that the catalytic activity of the activated carbon was not lowered. On the other hand, in Example 4 where the addition ratio of hydrogen peroxide to persulfate is 0.02, as in Example 4, the persulfate treated with activated carbon becomes excessive, and residual persulfate in the treated water. Sodium was higher than in Examples 1-3. And the gas generation amount of the carbon dioxide and carbon monoxide of the upper part of the activated carbon column at this time increased, and it turned out that the catalytic activity of activated carbon fell.

(実施例5−1)
過硫酸ナトリウム2000mg/Lに対して添加薬剤として過酸化水素を400mg/L(過硫酸ナトリウムに対する過酸化水素の濃度添加比率0.2)として空塔速度5/hrで1時間通水した。このときの、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量と処理水中に残留した過硫酸塩濃度を測定した。
(Example 5-1)
Hydrogen peroxide as an additive was added to sodium persulfate 2000 mg / L at 400 mg / L (concentration ratio of hydrogen peroxide to sodium persulfate 0.2), and water was passed for 1 hour at a superficial velocity of 5 / hr. The amount of carbon dioxide and carbon monoxide generated at the upper part of the activated carbon column and the concentration of persulfate remaining in the treated water were measured.

(実施例5−2)
実施例5−1の試験後(1時間通水後)、過硫酸ナトリウム濃度を2000mg/L(過硫酸ナトリウムに対する過酸化水素の濃度添加比率0.2)とする処理を1時間行った。このときの、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量と処理水中に残留した過硫酸塩濃度を測定した。
(Example 5-2)
After the test of Example 5-1 (after passing water for 1 hour), a treatment with a sodium persulfate concentration of 2000 mg / L (hydrogen peroxide concentration addition ratio to sodium persulfate 0.2) was performed for 1 hour. The amount of carbon dioxide and carbon monoxide generated at the upper part of the activated carbon column and the concentration of persulfate remaining in the treated water were measured.

(実施例5−3)
実施例5−2の試験後、過硫酸ナトリウム濃度を20000mg/L(過硫酸ナトリウムに対する過酸化水素の濃度添加比率0.02)とする処理を1時間行った。このときの、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量と処理水中に残留した過硫酸塩濃度を測定した。
(Example 5-3)
After the test of Example 5-2, a treatment with a sodium persulfate concentration of 20000 mg / L (a concentration addition ratio of hydrogen peroxide to sodium persulfate of 0.02) was performed for 1 hour. The amount of carbon dioxide and carbon monoxide generated at the upper part of the activated carbon column and the concentration of persulfate remaining in the treated water were measured.

(実施例5−4)
また、実施例5−3の試験後、過硫酸ナトリウム濃度を2000mg/L(過硫酸ナトリウムに対する過酸化水素の濃度添加比率0.2)とする処理を1時間行った。このときの、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量と処理水中に残留した過硫酸塩濃度を測定した。
(Example 5-4)
Moreover, after the test of Example 5-3, the process which makes a sodium persulfate density | concentration 2000 mg / L (concentration addition ratio of the hydrogen peroxide with respect to sodium persulfate 0.2) was performed for 1 hour. The amount of carbon dioxide and carbon monoxide generated at the upper part of the activated carbon column and the concentration of persulfate remaining in the treated water were measured.

(実施例5−5)
実施例5−4の試験後、過硫酸ナトリウム濃度を2000mg/L(過硫酸ナトリウムに対する過酸化水素の濃度添加比率0.2)とする処理を1時間行った。このときの、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量と処理水中に残留した過硫酸塩濃度を測定した。
(Example 5-5)
After the test of Example 5-4, a treatment with a sodium persulfate concentration of 2000 mg / L (hydrogen peroxide concentration addition ratio to sodium persulfate 0.2) was performed for 1 hour. The amount of carbon dioxide and carbon monoxide generated at the upper part of the activated carbon column and the concentration of persulfate remaining in the treated water were measured.

(実施例5−6)
実施例5−5の試験後、過硫酸ナトリウム濃度を2000mg/L(過硫酸ナトリウムに対する過酸化水素の濃度添加比率0.2)とする処理を1時間行った。このときの、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量と処理水中に残留した過硫酸塩濃度を測定した。
(Example 5-6)
After the test of Example 5-5, treatment with a sodium persulfate concentration of 2000 mg / L (hydrogen peroxide concentration addition ratio to sodium persulfate 0.2) was performed for 1 hour. The amount of carbon dioxide and carbon monoxide generated at the upper part of the activated carbon column and the concentration of persulfate remaining in the treated water were measured.

(実施例5−7)
実施例5−6の試験後、過硫酸ナトリウム濃度を2000mg/L(過硫酸ナトリウムに対する過酸化水素の濃度添加比率0.2)とする処理を1時間行った。このときの、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量と処理水中に残留した過硫酸塩濃度を測定した。
(Example 5-7)
After the test of Example 5-6, a treatment with a sodium persulfate concentration of 2000 mg / L (hydrogen peroxide concentration addition ratio to sodium persulfate 0.2) was performed for 1 hour. The amount of carbon dioxide and carbon monoxide generated at the upper part of the activated carbon column and the concentration of persulfate remaining in the treated water were measured.

表2及び図5に実施例5−1〜7の二酸化炭素及び一酸化炭素の発生量と処理水中に残留した過硫酸塩濃度の結果をまとめた。   Table 2 and FIG. 5 summarize the results of the amounts of carbon dioxide and carbon monoxide generated in Examples 5-1 to 7 and the concentration of persulfate remaining in the treated water.

Figure 2014100665
Figure 2014100665

表2及び図5の実施例5−1〜7の結果から分かるように、過硫酸塩の濃度が上昇すると、活性炭カラム上部の二酸化炭素及び一酸化炭素の発生量も上昇した。したがって、例えば、一酸化炭素又は二酸化炭素の発生量の閾値を1100ppmと設定し、過酸化水素の添加量を制御すれば、残留過硫酸塩濃度の増加(実施例5−3の結果)を抑制し、効率的に過硫酸塩を還元分解することが可能となる。   As can be seen from the results of Table 2 and Examples 5-1 to 7 in FIG. 5, when the concentration of persulfate increased, the amount of carbon dioxide and carbon monoxide generated at the top of the activated carbon column also increased. Therefore, for example, if the threshold for the amount of carbon monoxide or carbon dioxide generated is set to 1100 ppm and the amount of hydrogen peroxide added is controlled, the increase in the residual persulfate concentration (result of Example 5-3) is suppressed. In addition, it becomes possible to efficiently reduce and decompose persulfate.

(実施例6)
透明塩ビ製カラム(内径40mm、高さ800mm)に触媒としてヤシ殻系活性炭を充填高さ400mmとなるように充填した活性炭カラムを作成し、酸化剤を含有する水を上向流にて通水して処理する装置を作成した。そして、この活性炭カラムに過硫酸ナトリウムを100、200、500、1000mg/Lとなるように純水にて調整した酸化剤を含有する水を空塔速度5/hrで通水した。このときの、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量を測定し、表3及び図6にまとめた。
(Example 6)
An activated carbon column was prepared by filling a transparent PVC column (inner diameter 40 mm, height 800 mm) with coconut shell activated carbon as a catalyst to a height of 400 mm, and water containing an oxidizing agent was passed in an upward flow. And created a device for processing. And the water containing the oxidizing agent which adjusted the sodium persulfate with the pure water so that it might be set to 100, 200, 500, 1000 mg / L to this activated carbon column was water-flowed at the superficial velocity of 5 / hr. The amount of carbon dioxide and carbon monoxide generated at the upper part of the activated carbon column at this time was measured and summarized in Table 3 and FIG.

Figure 2014100665
Figure 2014100665

図6は、実施例6における過硫酸塩濃度と一酸化炭素及び二酸化炭素発生量との関係を示す図である。図6及び表3から分かるように、過硫酸塩濃度の上昇と共に、一酸化炭素及び二酸化炭素発生量が上昇することがわかった。そして、過硫酸塩濃度が500mg/Lを越えると、一酸化炭素及び二酸化炭素の発生量が急激に上昇しており、活性炭の触媒活性が低下していると予想される。したがって、還元剤を添加しない系で、過硫酸塩を処理する場合、一酸化炭素及び二酸化炭素の発生量が急激に上昇したことを検出した際には、過硫酸塩濃度を500mg/L以下に希釈することが望ましい。   FIG. 6 is a graph showing the relationship between the persulfate concentration and the amounts of carbon monoxide and carbon dioxide generated in Example 6. As can be seen from FIG. 6 and Table 3, it was found that the amount of carbon monoxide and carbon dioxide generated increased as the persulfate concentration increased. And when the persulfate concentration exceeds 500 mg / L, the generation amounts of carbon monoxide and carbon dioxide are rapidly increased, and the catalytic activity of the activated carbon is expected to decrease. Therefore, when persulfate is treated in a system to which no reducing agent is added, the persulfate concentration is reduced to 500 mg / L or less when it is detected that the generation amount of carbon monoxide and carbon dioxide has rapidly increased. It is desirable to dilute.

(実施例7)
過硫酸ナトリウムに代えて次亜塩素酸ナトリウムを10、20、50、100、200mg/Lとなるように純水にて調整したこと以外は実施例6と同様の条件で試験した。このときの、活性炭カラム上部の二酸化炭素及び一酸化炭素発生量を測定し、表4及び図7にまとめた。
(Example 7)
It tested on the conditions similar to Example 6 except having replaced with sodium persulfate and adjusting sodium hypochlorite with the pure water so that it might become 10, 20, 50, 100, and 200 mg / L. At this time, carbon dioxide and carbon monoxide generation amounts at the top of the activated carbon column were measured, and are summarized in Table 4 and FIG.

Figure 2014100665
Figure 2014100665

図7は、実施例7における次亜塩素酸塩濃度と一酸化炭素及び二酸化炭素発生量との関係を示す図である。図7及び表4から分かるように、次亜塩素酸塩濃度が100mg/Lを越えると、一酸化炭素及び二酸化炭素の発生量が急激に上昇しており、活性炭の触媒活性低が低下していると予想される。したがって、還元剤を添加しない系で、次亜塩素酸塩を処理する場合、一酸化炭素及び二酸化炭素の発生量が急激に上昇したことを検出した際には、次亜塩素酸塩濃度を100mg/L以下に希釈することが望ましい。   FIG. 7 is a graph showing the relationship between hypochlorite concentration and the amount of carbon monoxide and carbon dioxide generated in Example 7. As can be seen from FIG. 7 and Table 4, when the hypochlorite concentration exceeds 100 mg / L, the generation amount of carbon monoxide and carbon dioxide increases rapidly, and the catalytic activity of activated carbon decreases. It is expected that Therefore, when hypochlorite is treated in a system in which no reducing agent is added, when it is detected that the amount of carbon monoxide and carbon dioxide generated suddenly increases, the hypochlorite concentration is 100 mg. It is desirable to dilute below / L.

1〜4 酸化剤処理装置、10 原水流入ライン、12 原水貯留槽、14 原水供給ライン、16 原水供給ポンプ、18 活性炭反応槽、20 処理水ライン、22 処理水貯留槽、24 還元剤貯留槽、26 還元剤添加ポンプ、28 還元剤添加ライン、30 ガスセンサ、32 制御部、34 還元剤貯留槽、36 還元剤希釈水添加ライン、38 電磁弁、40 原水希釈ライン、42 希釈水ポンプ。
1-4 Oxidizing agent treatment apparatus, 10 raw water inflow line, 12 raw water storage tank, 14 raw water supply line, 16 raw water supply pump, 18 activated water reaction tank, 20 treated water line, 22 treated water storage tank, 24 reducing agent storage tank, 26 reducing agent addition pump, 28 reducing agent addition line, 30 gas sensor, 32 control unit, 34 reducing agent storage tank, 36 reducing agent dilution water addition line, 38 solenoid valve, 40 raw water dilution line, 42 dilution water pump.

Claims (9)

酸化剤を含有する水と活性炭とを接触させ、前記酸化剤を還元処理する還元処理工程を含む酸化剤処理方法であって、
前記還元処理工程において、前記活性炭と前記酸化剤との接触によって発生する一酸化炭素及び二酸化炭素のうち少なくともいずれか一方の発生量を検出することを特徴とする酸化剤処理方法。
An oxidizing agent treatment method comprising a reduction treatment step of bringing water containing an oxidizing agent into contact with activated carbon and reducing the oxidizing agent,
In the reduction treatment step, an oxidant treatment method characterized by detecting an amount of at least one of carbon monoxide and carbon dioxide generated by contact between the activated carbon and the oxidant.
前記還元処理工程は、前記酸化剤を含有する水に還元剤を添加する還元剤添加工程を備え、前記還元剤添加工程では、前記検出した一酸化炭素及び前記二酸化炭素の発生量に基づいて、前記還元剤の添加量又は濃度を制御することを特徴とする請求項1記載の酸化剤処理方法。   The reduction treatment step includes a reducing agent addition step of adding a reducing agent to water containing the oxidizing agent. In the reducing agent addition step, based on the detected amounts of carbon monoxide and carbon dioxide detected, 2. The oxidizing agent treatment method according to claim 1, wherein the amount or concentration of the reducing agent is controlled. 前記還元処理工程では、前記検出した一酸化炭素及び前記二酸化炭素の発生量に基づいて、前記活性炭に供給する前記酸化剤を含有する水の供給量又は前記酸化剤を含有する水中の前記酸化剤の濃度を制御することを特徴とする請求項1または2記載の酸化剤処理方法。   In the reduction treatment step, based on the detected amounts of carbon monoxide and carbon dioxide, the supply amount of water containing the oxidizing agent supplied to the activated carbon or the oxidizing agent in water containing the oxidizing agent 3. The oxidizing agent treatment method according to claim 1, wherein the concentration of the oxidizing agent is controlled. 前記酸化剤は、過硫酸塩、次亜塩素酸塩であることを特徴とする請求項1〜3のいずれか1項に記載の酸化剤処理方法。   The said oxidizing agent is a persulfate and a hypochlorite, The oxidizing agent processing method of any one of Claims 1-3 characterized by the above-mentioned. 酸化剤を含有する水と活性炭とを接触させ、前記酸化剤を還元処理する活性炭反応槽と、
前記活性炭と前記酸化剤との接触によって発生する一酸化炭素及び二酸化炭素のうち少なくともいずれか一方の発生量を検出する検出手段と、を備えることを特徴とする酸化剤処理装置。
An activated carbon reaction tank for bringing water containing an oxidizing agent into contact with activated carbon and reducing the oxidizing agent;
An oxidant processing apparatus comprising: a detecting unit that detects a generation amount of at least one of carbon monoxide and carbon dioxide generated by contact between the activated carbon and the oxidant.
前記酸化剤を含有する水に還元剤を添加する還元剤添加手段と、
前記検出した一酸化炭素及び前記二酸化炭素の発生量に基づいて、前記還元剤添加手段により添加される前記還元剤の添加量又は濃度を制御する制御手段と、を備えることを特徴とする請求項5記載の酸化剤処理装置。
Reducing agent addition means for adding a reducing agent to water containing the oxidizing agent;
Control means for controlling the amount or concentration of the reducing agent added by the reducing agent addition means based on the detected amounts of carbon monoxide and carbon dioxide detected. 5. The oxidizer treatment apparatus according to 5.
前記活性炭反応槽に、酸化剤を含有する水を供給する供給手段と、
前記検出した一酸化炭素及び前記二酸化炭素の発生量に基づいて、前記供給手段により前記活性炭反応槽に供給される前記酸化剤を含有する水の供給量、又は前記酸化剤を含有する水中の濃度を制御する制御部と、を備えることを特徴とする請求項5または6記載の酸化剤処理装置。
Supply means for supplying water containing an oxidizing agent to the activated carbon reaction tank;
Based on the detected amounts of carbon monoxide and carbon dioxide, the supply amount of water containing the oxidant supplied to the activated carbon reaction tank by the supply means, or the concentration in water containing the oxidant The oxidant processing apparatus according to claim 5, further comprising a control unit that controls the oxidant.
前記酸化剤は、過硫酸塩、次亜塩素酸塩であることを特徴とする請求項5〜7のいずれか1項に記載の酸化剤処理装置。   The said oxidizing agent is a persulfate and a hypochlorite, The oxidizing agent processing apparatus of any one of Claims 5-7 characterized by the above-mentioned. 前記活性炭反応槽は、前記酸化剤を含有する水を上向流で通水する上向流式活性炭反応槽であることを特徴とする請求項5〜8のいずれか1項に記載の酸化剤処理装置。   The oxidant according to any one of claims 5 to 8, wherein the activated carbon reaction tank is an upward flow type activated carbon reaction tank through which water containing the oxidant flows in an upward flow. Processing equipment.
JP2012254531A 2012-11-20 2012-11-20 Oxidant treatment method and oxidant treatment apparatus Active JP5995678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012254531A JP5995678B2 (en) 2012-11-20 2012-11-20 Oxidant treatment method and oxidant treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254531A JP5995678B2 (en) 2012-11-20 2012-11-20 Oxidant treatment method and oxidant treatment apparatus

Publications (2)

Publication Number Publication Date
JP2014100665A true JP2014100665A (en) 2014-06-05
JP5995678B2 JP5995678B2 (en) 2016-09-21

Family

ID=51023701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254531A Active JP5995678B2 (en) 2012-11-20 2012-11-20 Oxidant treatment method and oxidant treatment apparatus

Country Status (1)

Country Link
JP (1) JP5995678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105110448A (en) * 2015-10-09 2015-12-02 中国科学院南海海洋研究所 Method for removing heavy metal and organic matter composite pollutants in water body by means of zero-valent iron and persulfate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108128839B (en) * 2018-01-03 2020-12-01 中国农业大学 Water treatment method for strengthening and catalyzing persulfate by carbon-based auxiliary agent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005118626A (en) * 2003-10-14 2005-05-12 Japan Organo Co Ltd Method and apparatus for treating oxidizing agent
JP2005224771A (en) * 2004-02-16 2005-08-25 Mitsubishi Heavy Ind Ltd Wastewater treatment apparatus
WO2007114341A1 (en) * 2006-03-31 2007-10-11 Osaka Gas Co., Ltd. Method of wastewater treatment
JP2008000653A (en) * 2006-06-21 2008-01-10 Japan Organo Co Ltd Wastewater treatment method and arrangement
JP2014034010A (en) * 2012-08-09 2014-02-24 Uerushii:Kk Cleaning apparatus and cleaning method of subterranean water
JP2014083483A (en) * 2012-10-22 2014-05-12 Japan Organo Co Ltd Persulfate processing apparatus, persulfate processing method, redox potential measuring device, and redox potential measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005118626A (en) * 2003-10-14 2005-05-12 Japan Organo Co Ltd Method and apparatus for treating oxidizing agent
JP2005224771A (en) * 2004-02-16 2005-08-25 Mitsubishi Heavy Ind Ltd Wastewater treatment apparatus
WO2007114341A1 (en) * 2006-03-31 2007-10-11 Osaka Gas Co., Ltd. Method of wastewater treatment
JP2008000653A (en) * 2006-06-21 2008-01-10 Japan Organo Co Ltd Wastewater treatment method and arrangement
JP2014034010A (en) * 2012-08-09 2014-02-24 Uerushii:Kk Cleaning apparatus and cleaning method of subterranean water
JP2014083483A (en) * 2012-10-22 2014-05-12 Japan Organo Co Ltd Persulfate processing apparatus, persulfate processing method, redox potential measuring device, and redox potential measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105110448A (en) * 2015-10-09 2015-12-02 中国科学院南海海洋研究所 Method for removing heavy metal and organic matter composite pollutants in water body by means of zero-valent iron and persulfate
CN105110448B (en) * 2015-10-09 2017-11-07 中国科学院南海海洋研究所 A kind of method that utilization Zero-valent Iron persulfate removes the organic compound contaminated water body of removing heavy metals simultaneously

Also Published As

Publication number Publication date
JP5995678B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
TWI430833B (en) Treatment of waste gas
US11242265B2 (en) Process for decontamination of hazardous sulfur compounds in oilfield produced waters
JP2007007612A (en) Exhaust gas treatment device and exhaust gas treatment method
JP5995678B2 (en) Oxidant treatment method and oxidant treatment apparatus
JP5980652B2 (en) Persulfate treatment apparatus, persulfate treatment method, oxidation-reduction potential measurement apparatus, and oxidation-reduction potential measurement method
JP4722776B2 (en) Wastewater treatment method and apparatus
JP4455860B2 (en) Method and apparatus for treating oxidant
JP2013188655A (en) Organic matter decomposition system using ozone
JP2016104488A (en) Method for treating ammonia-containing waste water
JP5591446B2 (en) Exhaust gas treatment method
JP5913087B2 (en) Wastewater treatment system
JP6670047B2 (en) Ultrapure water production equipment
JP4790243B2 (en) Method for treating wastewater containing sulfur compounds
JP5160107B2 (en) Flue gas treatment method
JP2006000827A (en) Wastewater treatment method
JP6168184B1 (en) Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus
JP2019166459A (en) Water treatment device and water treatment method
WO2020256151A1 (en) Method for producing purified gas and apparatus for producing purified gas
JP2010099542A (en) Method for decomposing away ammonia nitrogen and apparatus for the same
JP2017196585A (en) Cyanogen chloride volatilization suppression method
JP2017131819A (en) Water treatment method, water treatment apparatus, and water treatment system
WO2020041007A1 (en) Catalytic oxidation system and process for selective cyanide removal
JP6379777B2 (en) Method for treating hydrogen peroxide-containing water
CN113134293A (en) Pollutant treatment system
JP2005034806A (en) Method and apparatus for treating soil and ground water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160823

R150 Certificate of patent or registration of utility model

Ref document number: 5995678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250