JP2014098594A - Led illumination device - Google Patents

Led illumination device Download PDF

Info

Publication number
JP2014098594A
JP2014098594A JP2012249660A JP2012249660A JP2014098594A JP 2014098594 A JP2014098594 A JP 2014098594A JP 2012249660 A JP2012249660 A JP 2012249660A JP 2012249660 A JP2012249660 A JP 2012249660A JP 2014098594 A JP2014098594 A JP 2014098594A
Authority
JP
Japan
Prior art keywords
plate
led
opening
light emitting
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012249660A
Other languages
Japanese (ja)
Other versions
JP6119204B2 (en
Inventor
Sumikazu Motooka
純和 本岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2012249660A priority Critical patent/JP6119204B2/en
Publication of JP2014098594A publication Critical patent/JP2014098594A/en
Application granted granted Critical
Publication of JP6119204B2 publication Critical patent/JP6119204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an LED illumination device used for photographing a defect for defect detection, which has no limit in a longer direction, has a simple structure, and further improves sensitivity in defect detection compared with the conventional art.SOLUTION: A plurality of LED light-emitting elements are aligned linearly along a longer direction of openings which are formed along a longer direction on one outer wall surface of the longer direction of a slender casing. Slender reflective flat plates are respectively arranged at both sides of the aligned LED light-emitting elements, so as to be along the longer direction of the openings, be orthogonal to the openings and reach the opening side from the aligned LED light-emitting element side. Emission light from the LED light-emitting elements is directly guided or reflected by the reflective flat plate arranged at both sides of the aligned LED light-emitting elements to the opening side. The emission light passing through the openings serves as illumination light for linearly illuminating the surface of a plate-like object.

Description

本発明は、LED照明装置に関し、特に、板状物の表面の欠陥検出のために前記板状物の表面撮影に用いられる照明用のLED照明装置の構造に関する。   The present invention relates to an LED lighting device, and more particularly to a structure of an LED lighting device for illumination used for photographing a surface of a plate-like object for detecting a defect on the surface of the plate-like object.

近年、低消費電力、長寿命、低ノイズ、高輝度等の理由により、LED照明装置が用いられるようになってきた。
このような中、板状物の表面の凹部欠陥(キズ欠陥)検出のための撮影においても、ライン状に照明する、図4に示すような、細長いLED照明装置110が用いられるようになってきた。
板状物120の表面の凹部欠陥の検出のための撮影は、通常、図4に示すように、板状物120を搬送しながら、LED照明装置110にて板状物120の表面をライン状に照射して、イメージセンサとして固体撮像素子を用いたカメラで撮影して、板状物120の表面の画像データを得るものであり、撮影により得られた画像データを用いてデータ処理を行い、欠陥検出をしている。
尚、図3(a)は、図4に示す細長いLED照明装置110を出射光側を上側にして示した外観の概略図で、図3(b)は、図3(a)に示すLED照明装置110の長手方向に直交する方向の断面図で、図3(c)は、図3(b)のB1−B2から矢印の方向に見た概略断面図である。
また、図3(b)の太い点線矢印は、出射光を示している。
図4に示すLED照明装置110は、図3(c)に示すように、LED発光素子112を、複数、長手方向に沿って直線状に配列し、配列されたLED発光素子112全体を覆うように、図3(b)に示す断面が円である円筒状のロッドレンズ115を配し、LED発光素子112の発光光を、ロッドレンズ115を介して、集光して拡散板116を通して出射するものである。
LED発光素子112は、プリント基板113上に配列されており、プリント基板113、LED発光素子112、ロッドレンズ115は、いずれも、ロッドレンズ115のLED発光素子112側とは反対側に開口111Sを設けたアルミ製の筺体111により囲まれ、筺体111の開口111Sは、拡散板116を配して、塞がれている。
ロッドレンズ115により、LED発光素子112から出射された光が筺体111の各面にて乱反射することを防止しており、また、拡散板116により、拡散光として出射している。
プリント基板113と筺体111の底面111bとの間に放熱グリス114を塗膜しており、LED発光素子112により加熱されるが、プリント基板113から放熱グリス114を経て、筺体111側に熱が伝わり、放熱される。
In recent years, LED lighting devices have come to be used for reasons such as low power consumption, long life, low noise, and high brightness.
Under such circumstances, an elongated LED illumination device 110 as shown in FIG. 4 that illuminates in a line shape has come to be used in photographing for detecting a concave defect (scratch defect) on the surface of a plate-like object. It was.
As for the imaging | photography for the detection of the recessed part defect of the surface of the plate-shaped object 120, as shown in FIG. 4, while conveying the plate-shaped object 120, the surface of the plate-shaped object 120 is line-shaped with the LED illumination device 110 normally. The image data of the surface of the plate-like object 120 is obtained by photographing with a camera using a solid-state imaging device as an image sensor, and performing data processing using the image data obtained by photographing, Defect detection.
3A is a schematic view of the appearance of the elongated LED illumination device 110 shown in FIG. 4 with the outgoing light side facing upward, and FIG. 3B is the LED illumination shown in FIG. FIG. 3C is a cross-sectional view in a direction orthogonal to the longitudinal direction of the device 110, and FIG. 3C is a schematic cross-sectional view as viewed in the direction of the arrow from B1-B2 in FIG.
Moreover, the thick dotted line arrow of FIG.3 (b) has shown the emitted light.
As shown in FIG. 3C, the LED illumination device 110 shown in FIG. 4 has a plurality of LED light emitting elements 112 arranged linearly along the longitudinal direction so as to cover the entire LED light emitting elements 112 arranged. 3B is provided with a cylindrical rod lens 115 having a circular cross section, and the light emitted from the LED light emitting element 112 is condensed through the rod lens 115 and emitted through the diffusion plate 116. Is.
The LED light emitting elements 112 are arranged on the printed circuit board 113, and the printed circuit board 113, the LED light emitting elements 112, and the rod lens 115 all have an opening 111S on the opposite side of the rod lens 115 from the LED light emitting element 112 side. Surrounded by the provided aluminum casing 111, the opening 111 </ b> S of the casing 111 is closed by a diffusion plate 116.
The rod lens 115 prevents the light emitted from the LED light emitting element 112 from being irregularly reflected on each surface of the housing 111, and the diffuser plate 116 emits the diffused light.
Heat dissipation grease 114 is coated between the printed circuit board 113 and the bottom surface 111b of the casing 111 and is heated by the LED light emitting element 112, but heat is transferred from the printed circuit board 113 to the casing 111 side through the heat dissipation grease 114. The heat is dissipated.

しかし、従来用いられていたLED照明装置110は、図3(b)に示すように、ロッドレンズ115を用いているため、長さに制限があり、また、ロッドレンズ自体が高価であり、これらが問題となっていた。
更に、従来用いられていたLED照明装置110は、図3(b)に示すように、拡散板116を介して光を出射しているが、図3(b)のB0から出射される光の強度分布は概略的には、拡散板116に直交する方向に光強度を最大として、該方向近くの方向に集中して光強度を大とする強度分布をもつものであるため、板状物の表面の凹部欠陥(キズ欠陥)検出のための撮影において、ライン状に照明する照明装置として用いた場合、図3(b)に示すB0を通り拡散板116に直交する方向の一方向側への出射光の強度は大きく、この方向およびこの方向に近い所定の方向の出射光が、主に照明光として働く。
図4では、この所定の方向の出射光を太い点線矢印で示している。
したがって、図4に示すように、LED照明装置110を用い、所定の一方向に凹部欠陥(キズ欠陥)検出の対象とする板状物120を搬送させながら、カメラ130にて板状物120の表面を撮影し、該撮影により得られた撮像画像データを、データ処理して、板状物120表面の凹部欠陥(キズ欠陥)を検出する、従来の欠陥検出方法においては、凹部欠陥(キズ欠陥)が、板状物120の搬送方向に沿った細長い凹部欠陥(キズ欠陥)である場合、撮影の際に、凹部欠陥(キズ欠陥)の側面側へ照射される照明光は少なく、板状物120の搬送方向にある凹部欠陥(キズ欠陥)の検出感度は低くなり、問題となっていた。
However, as shown in FIG. 3B, the conventionally used LED lighting device 110 uses a rod lens 115, so that the length is limited, and the rod lens itself is expensive. Was a problem.
Furthermore, as shown in FIG. 3B, the LED illumination device 110 that has been used conventionally emits light through the diffusion plate 116, but the light emitted from B0 in FIG. In general, the intensity distribution has an intensity distribution in which the light intensity is maximized in a direction orthogonal to the diffusion plate 116 and concentrated in a direction near the direction to increase the light intensity. When used as an illuminating device that illuminates in the form of a line in photographing for detecting a concave defect (scratch defect) on the surface, it passes through B0 shown in FIG. The intensity of the emitted light is large, and the emitted light in this direction and a predetermined direction close to this direction mainly works as illumination light.
In FIG. 4, the emitted light in the predetermined direction is indicated by a thick dotted arrow.
Therefore, as shown in FIG. 4, using the LED illumination device 110, the plate-like object 120 is detected by the camera 130 while the plate-like object 120 to be detected as a recess defect (scratch defect) is conveyed in a predetermined direction. In the conventional defect detection method of photographing a surface and processing the captured image data obtained by the photographing to detect a concave defect (scratch defect) on the surface of the plate-like object 120, a concave defect (scratch defect) ) Is an elongated recess defect (scratch defect) along the conveying direction of the plate-like object 120, the illumination light irradiated to the side surface side of the recess defect (scratch defect) is small during photographing, and the plate-like object The detection sensitivity of the recess defect (scratch defect) in the conveyance direction 120 is low, which is a problem.

特開2009−20474号公報JP 2009-20474 A

上記のように、近年、LED照明装置の使用は盛んとなり、板状物の表面の凹部欠陥の欠陥検出における撮影においても、図3に示すようなロッドレンズを用いて、ライン状に照明するLED照明装置が用いられるようになってきたが、長さ方向に制限があり、また、ロッドレンズ自体が高価で、長さ方向に制限がなく、簡単な構造のものが求められていた。
更に、所定の一方向に対象とする板状物を搬送させながら、前記ライン状に照明するLED照明装置にて照明して、イメージセンサとして固体撮像素子を用いた撮像装置(カメラとも言う)にて板状物の表面を撮影し、得られた撮像画像データを用いてデータ処理を行い、板状物表面の凹部欠陥を検出する欠陥検出においては、板状物の搬送方向にある凹部欠陥の検出感度は低くなり、これが問題となり、その対応が求められていた。
本発明は、これらに対応するもので、長さ方向に制限がなく、簡単な構造のLED照明装置を提供しようとするもので、更には、ライン状に照明するLED照明装置にて照明して、イメージセンサとして固体撮像素子を用いた撮像装置(カメラ)にて板状物の表面を撮影し、得られた撮像画像データを用いてデータ処理を行い、板状物表面の凹部欠陥を検出する欠陥検出において、従来のLED照明装置を用いた場合に比べて、板状物の搬送方向にある凹部欠陥の検出感度を上げることができるLED照明装置を提供しようとするものである。
As described above, in recent years, the use of LED illuminating devices has become popular, and LEDs that illuminate in a line shape using a rod lens as shown in FIG. 3 also in photographing for detecting defects of concave defects on the surface of a plate-like object. Although lighting devices have come to be used, there is a limitation in the length direction, the rod lens itself is expensive, there is no limitation in the length direction, and a simple structure is required.
Furthermore, while conveying the target plate-like object in a predetermined direction, the image is illuminated by the LED illumination device that illuminates in a line shape, and the imaging device (also referred to as a camera) using a solid-state imaging device as an image sensor. In the defect detection, the surface of the plate-like object is photographed, data processing is performed using the obtained captured image data, and the depression defect on the surface of the plate-like object is detected. The detection sensitivity is low, and this is a problem, and countermeasures have been demanded.
The present invention is intended to provide an LED lighting device having a simple structure with no limitation in the length direction. Further, the present invention illuminates with an LED lighting device that illuminates in a line shape. The surface of the plate-like object is photographed by an image pickup device (camera) using a solid-state image sensor as an image sensor, and data processing is performed using the obtained captured image data to detect a concave defect on the surface of the plate-like object. An object of the present invention is to provide an LED illumination device capable of increasing the detection sensitivity of a recess defect in a plate-shaped object conveyance direction as compared with a case where a conventional LED illumination device is used in defect detection.

本発明のLED照明装置は、固体撮像素子を用いた撮像装置に対して、所定の一方向に板状物を相対的に移動しながら、前記撮像装置にて、前記板状物の表面を撮影した後、撮影にて得られた撮像画像データを用いてデータ処理を行い、前記板状物の表面の凹部欠陥を検出する欠陥検出方法における、前記撮影の際に用いられる前記板状物の表面をライン状に照明するLED照明装置であって、細長の筺体で、且つ、その長手方向の一つの外壁面に長手方向に沿い開口を形成した筺体の内部において、前記開口がある外壁面と対向する側の筺体の外壁面に、放熱グリスを介して支持されたプリント基板の上、前記開口に対向する位置に、前記開口の長手方向に沿ってライン状にLED発光素子を複数配列したものであり、前記配列したLED発光素子の両側に、それぞれ、前記開口の長手方向に沿い、且つ、前記開口に直交して、前記配列したLED発光素子側から前記開口側に至る、反射性の平板を配しており、前記LED発光素子からの発光光を、直接、あるいは、前記配列したLED発光素子の両側の反射性の平板で反射させて、前記開口側に到達させ、前記開口を通過した発光光を、前記板状物の表面をライン状に照明する照明光とするものであることを特徴とするものである。
尚、ここで、開口に直交する方向とは、開口を形成する外壁面により規定される該外壁面に沿う開口領域に直交する方向を意味する。
また、ここで、相対的に移動とは、撮像装置とLED照明装置を位置固定して、板状物を移動させる、あるいは、板状物を位置固定して、撮像装置、LED照明装置を一体として移動させて、撮像装置とLED照明装置に対して板状物を相対的に移動させることを意味する。
そして、上記のLED照明装置であって、前記配列したLED発光素子の両側の反射性の平板は、アルミ板からなることを特徴とするものであり、前記アルミ板の表面に微小な凹凸を設けていることを特徴とするものである。
また、上記いずれかのLED照明装置であって、前記板状物がガラス基板であることを特徴とするものである。
The LED illumination device of the present invention photographs the surface of the plate-like object with the imaging device while relatively moving the plate-like object in a predetermined direction with respect to the imaging device using the solid-state imaging device. Then, data processing is performed using captured image data obtained by photographing, and the surface of the plate-like object used at the time of photographing in the defect detection method for detecting a concave defect on the surface of the plate-like object. LED lighting device that illuminates a light source in a line shape, and is opposed to the outer wall surface where the opening is located within the elongated housing and an opening formed along the longitudinal direction on one outer wall surface in the longitudinal direction. A plurality of LED light-emitting elements are arranged in a line along the longitudinal direction of the opening on a printed circuit board supported via heat-dissipating grease on the outer wall surface of the housing on the side to be mounted, at a position facing the opening. Yes, the arranged LEDs Reflective flat plates are arranged on both sides of the optical element, respectively, along the longitudinal direction of the opening and perpendicular to the opening, from the arrayed LED light emitting element side to the opening side, The emitted light from the LED light emitting element is reflected directly or by the reflective flat plates on both sides of the arranged LED light emitting elements to reach the opening side, and the emitted light passing through the opening is reflected in the plate shape. The illumination light illuminates the surface of the object in a line shape.
Here, the direction orthogonal to the opening means a direction orthogonal to the opening region along the outer wall surface defined by the outer wall surface forming the opening.
Here, relative movement means fixing the position of the imaging device and the LED lighting device to move the plate-like object, or fixing the position of the plate-like object to integrate the imaging device and the LED lighting device. This means that the plate-like object is moved relative to the imaging device and the LED lighting device.
And it is said LED illuminating device, Comprising: The reflective flat plate of the both sides of the said arrayed LED light emitting element consists of an aluminum plate, A micro unevenness | corrugation is provided in the surface of the said aluminum plate. It is characterized by that.
Moreover, it is one of said LED illuminating devices, Comprising: The said plate-shaped object is a glass substrate, It is characterized by the above-mentioned.

(作用)
本発明のLED照明装置は、このような構成にすることにより、長さ方向に制限がなく、簡単な構造のLED照明装置を提供しようとするもので、更には、ライン状に照明するLED照明装置にて照明して、イメージセンサとして固体撮像素子を用いた撮像装置にて板状物の表面を撮影し、得られた撮像画像データを用いてデータ処理を行い、板状物表面の凹部欠陥を検出する欠陥検出において、従来のLED照明装置を用いた場合に比べて、板状物の搬送方向にある凹部欠陥の検出感度を上げることができるLED照明装置の提供を可能としている。
具体的には、細長の筺体で、且つ、その長手方向の一つの外壁面に長手方向に沿い開口を形成した筺体の内部において、前記開口がある外壁面と対向する側の筺体の外壁面に、放熱グリスを介して支持されたプリント基板の上、前記開口に対向する位置に、前記開口の長手方向に沿ってライン状にLED発光素子を複数配列したものであり、前記配列したLED発光素子の両側に、それぞれ、前記開口の長手方向に沿い、且つ、前記開口に直交して、前記配列したLED発光素子側から前記開口側に至る、反射性の平板を配しており、前記LED発光素子からの発光光を、直接、あるいは、前記配列したLED発光素子の両側の反射性の平板で反射させて、前記開口側に到達させ、前記開口を通過した発光光を、前記板状物の表面をライン状に照明する照明光とするものであることにより、これを達成している。
通常、筺体は、長手方向に直交する方向の断面形状は、四角形状であるが、開口部を形成する外壁面と、該外壁面に対向した側に有機EL発光素子を配置するための外壁面を有していれば良く、場合によっては、断面が台形のような形状でも良い。
特に、配列したLED発光素子の両側に、それぞれ、開口の長手方向に沿い、且つ、前記開口に直交して、前記配列したLED発光素子側から前記開口側に至る、反射性の平板を配しており、前記LED発光素子からの発光光を、直接、あるいは、前記配列したLED発光素子の両側の反射性の平板で反射させて、前記開口側に到達させ、前記開口を通過した発光光を、前記板状物の表面をライン状に照明する照明光とするものであることにより、従来のロッドレンズを用いた照明装置のように、ロッドレンズの長さに制限されずに、簡単な構造とでき、且つ、種々の方向から検査対象の板状物表面を照射することができるものとしている。
搬送方向に沿った凹部欠陥に対しては、凹部欠陥の側面側から当たる光を、従来のロッドレンズを用いた照明装置に比べて、多くすることが可能となり、従来のロッドレンズを用いた照明装置による照明による欠陥検出では、データ処理によっても欠陥部の画像化が困難であった欠陥に対しても、鮮明に画像化することを可能としている。
配列したLED発光素子の両側の反射性の平板としては、照明装置への適用の適正を備えていれば特に限定されず、種々の表面反射性の金属板や、表面に反射性の金属層を配した板材が用いられるが、特にアルミ板は、反射性、加工性、耐性等の面から好ましい。
また、前記アルミ板の表面に微小な凹凸を設けた場合には、アルミ板表面の反射において散乱性を良くでき、従来のロッドレンズを用いた照明装置に比べて、一層、種々の方向から検査対象の板状物表面を照射することができるものとしている。
(Function)
The LED illumination device of the present invention is intended to provide an LED illumination device having a simple structure with no limitation in the length direction by adopting such a configuration, and further, LED illumination that illuminates in a line shape. The surface of the plate-like object is photographed with an imaging device that uses a solid-state imaging device as an image sensor, and data processing is performed using the obtained captured image data. It is possible to provide an LED illuminating device capable of increasing the detection sensitivity of a concave defect in the conveying direction of a plate-like object in the defect detection for detecting the defect as compared with the case where a conventional LED illuminating device is used.
Specifically, in the case of a long and slender casing and an opening formed along the longitudinal direction on one outer wall surface in the longitudinal direction, the outer wall surface of the casing facing the outer wall surface where the opening is located. A plurality of LED light emitting elements are arranged in a line along the longitudinal direction of the opening at a position facing the opening on a printed circuit board supported via heat radiation grease. Reflective flat plates extending from the arranged LED light emitting element side to the opening side along the longitudinal direction of the opening and perpendicular to the opening are arranged on both sides of the LED, respectively. The emitted light from the element is reflected directly or by the reflective flat plates on both sides of the LED light emitting elements arranged so as to reach the opening side, and the emitted light passing through the opening is reflected on the plate-like object. Line surface By it is an illumination light for illuminating, we have achieved this.
Usually, the casing has a quadrangular cross-sectional shape in the direction perpendicular to the longitudinal direction, but the outer wall surface for forming the opening and the outer wall surface for disposing the organic EL light emitting element on the side facing the outer wall surface The cross section may be a trapezoidal shape in some cases.
In particular, on both sides of the arrayed LED light emitting elements, a reflective flat plate extending from the arrayed LED light emitting element side to the opening side is disposed along the longitudinal direction of the opening and perpendicular to the opening. The emitted light from the LED light emitting element is reflected directly or by the reflective plates on both sides of the arranged LED light emitting elements to reach the opening side, and the emitted light that has passed through the opening By using illumination light that illuminates the surface of the plate-like object in a line shape, the structure is simple without being limited by the length of the rod lens as in a conventional illumination device using a rod lens. And the surface of the plate-like object to be inspected can be irradiated from various directions.
For concave defects along the transport direction, it is possible to increase the amount of light that hits from the side of the concave defect compared to conventional illumination devices using rod lenses, and illumination using conventional rod lenses In the defect detection by illumination by the apparatus, it is possible to clearly image even a defect for which it was difficult to image a defective part by data processing.
The reflective flat plates on both sides of the arrayed LED light emitting elements are not particularly limited as long as they are suitable for application to a lighting device, and various surface reflective metal plates and reflective metal layers on the surface are provided. Although the arranged board | plate material is used, especially an aluminum board is preferable from surfaces, such as reflectivity, workability, tolerance.
In addition, when the surface of the aluminum plate is provided with minute irregularities, it can improve the scattering property in the reflection of the surface of the aluminum plate, and it can be inspected from various directions as compared with the illumination device using the conventional rod lens. It is assumed that the surface of the target plate-like object can be irradiated.

尚、従来、板状物表面の凹部欠陥の検出は、ライン状に照明できる蛍光灯や図3、図4に示すロッドレンズを用いたLED照明装置110により、凹部欠陥を照らし、撮像装置で撮影し、得られた画像データを用いて、良品部との反射率の差を、欠陥検出のための画像情報として得た後、画像処理を行い凹部欠陥部を画像として抽出していたが、搬送方向にある凹部欠陥(図4の121)に対しては、ライン状に照射する蛍光灯や図3、図4に示すロッドレンズを用いたLED照明装置による撮影では、検出の感度が低く、画像として抽出することが難しかった。
本発明のライン状に照明できるLED照明装置は、搬送方向に沿った形状の凹部欠陥に対して、配列したLED発光素子の両側に反射性の平板を備えており、光源からの発光光は、前記配列したLED発光素子の両側に反射性の平板により反射されて開口を通過して、照明光となるため、従来のロッドレンズを用いた照明装置による照明に比べて、種々の方向から検査対象の板状物表面を照射することができるものとしている。
これ故、本発明のライン状に照明できるLED照明装置は、図3、図4に示す従来のロッドレンズを用いたLED照明装置の照明に比べて、側面側から当たる光の量を増やすことができ、結果、欠陥検出の感度を向上させることができるのである。
特に、配列したLED発光素子の両側の反射性の平板としてアルミ板を用いて、表面に凹凸をつけた形態の場合には、表面の反射において散乱性を上げることができ、図3、図4に示す従来のロッドレンズを用いたLED照明装置の照明に比べて、側面側から当たる光の量をより一層増やすことができ、結果、欠陥検出の感度を向上させることができる。 アルミ板に凹凸を付ける方法としては、砥粒を用いた研磨方法や電解研磨方法等が挙げられる。
Conventionally, detection of a concave defect on the surface of a plate-like object is performed by illuminating the concave defect with an LED illumination device 110 using a fluorescent lamp that can be illuminated in a line shape or a rod lens shown in FIGS. Then, using the obtained image data, the difference in reflectance from the non-defective part was obtained as image information for defect detection, and then image processing was performed to extract the recessed defect part as an image. For concave defects in the direction (121 in FIG. 4), the sensitivity of detection is low in photographing with an LED illumination device using a fluorescent lamp that irradiates in a line or a rod lens shown in FIGS. It was difficult to extract as.
The LED illuminating device that can illuminate in a line shape of the present invention is provided with reflective flat plates on both sides of the arranged LED light emitting elements with respect to the concave defect in the shape along the transport direction, and the emitted light from the light source is Since the reflected light is reflected on both sides of the arrayed LED light emitting elements and passes through the opening to become illumination light, the object to be inspected from various directions as compared with illumination by an illumination device using a conventional rod lens. It is assumed that the surface of the plate can be irradiated.
Therefore, the LED illuminating device capable of illuminating in a line shape according to the present invention can increase the amount of light hitting from the side as compared with the illumination of the LED illuminating device using the conventional rod lens shown in FIGS. As a result, the sensitivity of defect detection can be improved.
In particular, when an aluminum plate is used as the reflective flat plate on both sides of the arrayed LED light emitting elements and the surface is uneven, the scattering can be increased in the reflection of the surface. As compared with the illumination of the LED illumination device using the conventional rod lens shown in FIG. 2, the amount of light hit from the side surface side can be further increased, and as a result, the sensitivity of defect detection can be improved. Examples of the method for forming irregularities on the aluminum plate include a polishing method using abrasive grains and an electrolytic polishing method.

板状物がガラス基板である場合には、図3に示すロッドレンズを用いた従来のLED装置では、検出が難しかった、欠陥検出において板状物表面を撮影する際の、板状物の移動方向に沿った細長い凹部欠陥(キズ欠陥)も検出可能としており、このような欠陥検出には、特に、有効である。   When the plate-like object is a glass substrate, the conventional LED device using the rod lens shown in FIG. 3 is difficult to detect, and the plate-like object moves when photographing the surface of the plate-like object in defect detection. An elongated recess defect (scratch defect) along the direction can also be detected, which is particularly effective for such defect detection.

尚、欠陥検出において板状物表面を撮影する際の、板状物の移動方向に沿った細長い凹部欠陥(キズ欠陥)は、例えば、以下のようにして発生している。
表示装置に用いられるカラーフィルタをガラス基板に形成する製造では、図5(a)に示すように、ダイコート方式でガラス基板210の表面に着色樹脂層230を塗膜する工程があるが、ダイコータのヘッド220とガラス基板210との間に異物240を噛んだ状態で塗膜した場合に、ガラス基板の面を異物で引っ掻き、キズが入ることがある。
一方また、ガラス基板210の裏面に関しては、図5(b)に示すように、ガラス基板210を搬送するコロコンベアの一部のコロ263に異常が発生し、回転が渋い場合、搬送されているガラス基板210とコロ263とが擦れるため、搬送方向にキズが発生することがある。
このような、ガラス基板210を搬送する方向に入るキズの検査に、特に本発明のLED照明装置による照明は適している。
Note that, when the surface of the plate-like object is photographed in the defect detection, an elongated recess defect (scratch defect) along the direction of movement of the plate-like object occurs, for example, as follows.
In manufacturing a color filter used in a display device on a glass substrate, as shown in FIG. 5A, there is a step of coating a colored resin layer 230 on the surface of the glass substrate 210 by a die coating method. When a coating film is formed with the foreign matter 240 being bitten between the head 220 and the glass substrate 210, the surface of the glass substrate may be scratched by the foreign matter, and scratches may occur.
On the other hand, as shown in FIG. 5B, the rear surface of the glass substrate 210 is conveyed when an abnormality occurs in a part of the rollers 263 of the roller conveyor that conveys the glass substrate 210 and rotation is awkward. Since the glass substrate 210 and the roller 263 are rubbed, scratches may occur in the transport direction.
Illumination by the LED illumination device of the present invention is particularly suitable for inspection of scratches that enter the direction in which the glass substrate 210 is conveyed.

本発明は、このように、長さ方向に制限がなく、簡単な構造のLED照明装置の提供を可能とし、更には、ライン状に照明するLED照明装置にて照明して、イメージセンサとして固体撮像素子を用いた撮像装置(カメラ)にて板状物の表面を撮影し、得られた撮像画像データを用いてデータ処理を行い、板状物表面の凹部欠陥を検出する欠陥検出において、ロッドレンズを用いた従来のLED照明装置を用いた場合に比べて、板状物の搬送方向にある凹部欠陥の検出感度を上げることができる新たなLED照明装置の提供を可能とした。   As described above, the present invention makes it possible to provide an LED illumination device having a simple structure with no limitation in the length direction, and further, the LED illumination device that illuminates in a line shape is used as a solid image sensor. In defect detection, the surface of a plate-like object is photographed by an imaging device (camera) using an image pickup device, data processing is performed using the obtained captured image data, and a concave defect on the plate-like object surface is detected. Compared to the case where a conventional LED illumination device using a lens is used, it is possible to provide a new LED illumination device capable of increasing the detection sensitivity of the concave defect in the conveyance direction of the plate-like object.

図1(a)は、本発明のLED照明装置の1例の外観を示した斜視図で、図1(b)は、図1(a)に示すLED照明装置の長手方向に直交する断面を示した概略断面図で、図1(c)は、図1(a)に示すLED照明装置を用いた欠陥検出のための撮影方法の概略構成を示した図である。Fig.1 (a) is the perspective view which showed the external appearance of one example of the LED lighting apparatus of this invention, FIG.1 (b) shows the cross section orthogonal to the longitudinal direction of the LED lighting apparatus shown to Fig.1 (a). FIG. 1C is a diagram showing a schematic configuration of an imaging method for defect detection using the LED illumination device shown in FIG. 図2(a)は、図1(b)のA1−A2において矢印の方向に見た図で、図2(b)は、開口の長手方向に沿う方向において、LED発光素子から出射される発光光を示した概略図で、図2(c)は、図1(b)の断面におけるLED発光素子から出射される発光光を示した概略図である。FIG. 2A is a view seen in the direction of the arrow in A1-A2 of FIG. 1B, and FIG. 2B is a light emission emitted from the LED light emitting element in the direction along the longitudinal direction of the opening. FIG. 2C is a schematic diagram showing light, and FIG. 2C is a schematic diagram showing emitted light emitted from the LED light emitting element in the cross section of FIG. 図3(a)は、従来のLED照明装置の1例の外観を示した斜視図で、図3(b)は、図3(a)に示すLED照明装置の長手方向に直行する断面を示した概略断面図で、図3(c)は、図3(b)のB1ーB2断面から矢印方向に見た図である。FIG. 3A is a perspective view showing an appearance of an example of a conventional LED lighting device, and FIG. 3B shows a cross section orthogonal to the longitudinal direction of the LED lighting device shown in FIG. FIG. 3C is a diagram seen from the B1-B2 cross section of FIG. 3B in the direction of the arrow. 図3に示す従来LED照明装置を用いた欠陥検出のための撮影方法の概略構成を示した図である。It is the figure which showed schematic structure of the imaging | photography method for the defect detection using the conventional LED illuminating device shown in FIG. 図5(a)は、ガラス基板の一面にダイコータにより着色樹脂層の塗膜を行う際の凹部欠陥(キズ欠陥)の発生を説明するための図で、図5(b)は、ガラス基板をコロ搬送する際の凹部欠陥の発生を説明するための図である。FIG. 5 (a) is a diagram for explaining the occurrence of a concave defect (scratch defect) when a colored resin layer is coated on one surface of a glass substrate by a die coater, and FIG. It is a figure for demonstrating generation | occurrence | production of the recessed part defect at the time of roller conveyance.

先ず、本発明のLED照明装置の1例を図1に基づいて説明する。
本例のLED照明装置10は、図1(c)に示すように、固体撮像素子を用いた撮像装置30に対して、所定の一方向に板状物20を相対的に移動しながら、前記撮像装置30にて、板状物20の表面を撮影した後、撮影にて得られた撮像画像データを用いてデータ処理を行い、板状物20の表面の凹部欠陥(キズ欠陥)を検出する欠陥検出方法において、前記撮影の際に用いられる板状物20の表面をライン状に照明するLED照明装置である。
本例のLED照明装置は、図1(a)に示すように細長の筺体で、且つ、その長手方向の一つの外壁面11aに、長手方向に沿い開口11Sがある筺体11の開口11Sから照明光を照射するものである。
図1(b)に示すように、筺体11の内部に、開口11Sがある外壁面11aと対向する側の筺体の外壁面11bに、放熱グリス14を介して支持されたプリント基板13上に、ライン状にLED発光素子12を複数配列したものであって、前記配列したLED発光素子12の両側に、それぞれ、前記開口11Sの長手方向に沿い、且つ、前記開口11Sに直交して、前記配列したLED発光素子12側から前記開口11S側に至る、前記配列したLED発光素子12の列方向に細長い反射性の平板16を配している。
そして、前記LED発光素子12からの発光光12Lを、直接、あるいは、前記配列したLED発光素子12の両側の反射性の平板16で反射させて、前記開口11S側に到達させ、前記開口11Sを通過した発光光を、前記板状物20の表面をライン状に照明する照明光としている。
First, one example of the LED lighting device of the present invention will be described with reference to FIG.
As shown in FIG. 1C, the LED illumination device 10 of this example moves the plate-like object 20 in a predetermined direction relative to the imaging device 30 using a solid-state imaging element, while After imaging the surface of the plate-like object 20 with the imaging device 30, data processing is performed using the captured image data obtained by the imaging to detect a concave defect (scratch defect) on the surface of the plate-like object 20. In the defect detection method, the LED illumination device illuminates the surface of the plate-like object 20 used in the photographing in a line shape.
The LED lighting device of this example is an elongated casing as shown in FIG. 1 (a), and is illuminated from an opening 11S of the casing 11 having an opening 11S along the longitudinal direction on one outer wall surface 11a in the longitudinal direction. It irradiates light.
As shown in FIG. 1 (b), on the printed circuit board 13 supported on the outer wall surface 11b of the housing on the side facing the outer wall surface 11a with the opening 11S inside the housing 11, via the heat radiation grease 14, A plurality of LED light emitting elements 12 are arranged in a line shape, and the arrangement is arranged on both sides of the arranged LED light emitting elements 12 along the longitudinal direction of the opening 11S and perpendicular to the opening 11S. An elongated reflective flat plate 16 is arranged in the row direction of the arranged LED light emitting elements 12 from the LED light emitting element 12 side to the opening 11S side.
Then, the emitted light 12L from the LED light emitting element 12 is reflected directly or by the reflective flat plates 16 on both sides of the LED light emitting elements 12 arranged so as to reach the opening 11S side, and the opening 11S is formed. The emitted light that has passed is used as illumination light that illuminates the surface of the plate-like object 20 in a line.

本例のLED照明装置においては、LED発光素子12からの発光光は、直接、あるいは、前記配列したLED発光素子12の両側の反射性の平板16で反射されて、拡散板15まで進み、拡散板15を通過し、開口11Sを通過して、出射され、照明光となる。
LED発光素子から出射された発光光は、全て、拡散板15まで到達する。
そして、拡散板15を通過し、開口11Sを通過して、前記板状物20の表面をライン状に照明する照明光となる。
図2(b)に示すように、開口11Sの長手方向に沿う方向に、LED発光素子から出射された発光光は、出射された方向に進み拡散板15まで進み、拡散板15を通過し、開口11Sを通過して、出射され、照明光となる。
但し、開口11Sの長手方向の両端部において発光された発光光については、この限りではない。
また、図2(c)に示すように、LED照明装置の筐体の長手方向に直交する断面において、反射性の平板16の方向に進むLED発光素子から出射された発光光は、反射性の平板16の表面で反射されて、拡散板15に至った後、拡散板15を通過し、開口11Sを通過して、出射され、照明光となる。
尚、本例においては、筺体11の長手方向に直交する方向の断面形状は、四角形状である。
In the LED lighting device of this example, the emitted light from the LED light emitting element 12 is reflected directly or by the reflective flat plates 16 on both sides of the arranged LED light emitting elements 12, and proceeds to the diffusion plate 15 to diffuse. The light passes through the plate 15, passes through the opening 11 </ b> S, is emitted, and becomes illumination light.
All of the emitted light emitted from the LED light emitting elements reaches the diffusion plate 15.
Then, the light passes through the diffusion plate 15, passes through the opening 11 </ b> S, and becomes illumination light that illuminates the surface of the plate-like object 20 in a line shape.
As shown in FIG. 2B, the emitted light emitted from the LED light emitting element in the direction along the longitudinal direction of the opening 11S proceeds in the emitted direction to the diffusion plate 15, passes through the diffusion plate 15, The light is emitted through the opening 11S and becomes illumination light.
However, this does not apply to the emitted light emitted at both ends in the longitudinal direction of the opening 11S.
In addition, as shown in FIG. 2C, in the cross section orthogonal to the longitudinal direction of the housing of the LED lighting device, the emitted light emitted from the LED light emitting element traveling in the direction of the reflective flat plate 16 is reflected. After being reflected by the surface of the flat plate 16 and reaching the diffusion plate 15, it passes through the diffusion plate 15, passes through the opening 11S, and is emitted to become illumination light.
In this example, the cross-sectional shape in the direction orthogonal to the longitudinal direction of the housing 11 is a quadrangular shape.

本例では、図2(b)に示すように、LED発光素子12からの発光光12Lは、LED発光素子12の配列方向に沿う方向に分散されて出射されるが、該方向に分散された発光光12Lは、拡散板15まで到達して、更に拡散板15において各方向に分散され、拡散板15を通過した光は、開口11S側に到達する。
このようにして、LED発光素子12から、LED発光素子12の配列方向に沿う方向に分散されて出射された発光光12Lは、大半、有効に照明光として利用される。
これに対して、図3、図4に示す従来のロッドレンズを用いた照明装置の場合は、LED発光素子12から、LED発光素子12の配列方向に沿う方向に分散されて出射された発光光については、一部はロッドレンズにて全反射し、また、ロッドレンズ内に入射されても、一部、ロッドレンズから出射されずに前反射する。
したがって、本例の場合、図3、図4に示す従来のロッドレンズを用いた照明装置の場合に比べ、LED発光素子12の配列方向に沿う方向における照明光を多くでき、これより、図1(c)に示す搬送方向に沿う凹部欠陥(キズ欠陥)21(図4の凹部欠陥121に相当)を、図3、図4に示す従来のロッドレンズを用いた照明装置の場合に比べて、検出し易いものとしている。
また、図2(c)に示すように、LED発光素子12からの発光光12Lは、LED発光素子12の配列方向に沿う方向に直交する方向に分散されて出射されるが、該方向に分散された発光光12Lは、直接、あるいは、LED発光素子12の両側に配列された反射性の平板16に反射されて、拡散板15まで到達して、更に拡散板15において各方向に分散され、拡散板15を通過した光は、開口11S側に到達する。
このように、LED発光素子12の配列方向に沿う方向に、また、LED発光素子12の配列方向に直交する方向にも、効率的に出射されて、照明光となるため、図1(c)に示す搬送方向に沿う凹部欠陥21のみならず、搬送方向に直交する方向の凹部欠陥22の欠陥検出を可能としている。
これは、搬送方向に直交する方向における、欠陥検出に有効な斜めの光が、図3、図4に示す従来のロッドレンズを用いた照明装置の場合に比べて、多くなるためである。
In this example, as shown in FIG. 2B, the emitted light 12L from the LED light emitting elements 12 is dispersed and emitted in the direction along the arrangement direction of the LED light emitting elements 12, but is dispersed in that direction. The emitted light 12L reaches the diffusion plate 15, is further dispersed in each direction in the diffusion plate 15, and the light that has passed through the diffusion plate 15 reaches the opening 11S side.
In this way, most of the emitted light 12L dispersed and emitted from the LED light emitting element 12 in the direction along the arrangement direction of the LED light emitting elements 12 is effectively used as illumination light.
On the other hand, in the case of the illumination device using the conventional rod lens shown in FIGS. 3 and 4, the emitted light is emitted from the LED light emitting elements 12 while being dispersed in the direction along the arrangement direction of the LED light emitting elements 12. As for, part of the light is totally reflected by the rod lens, and even if it is incident on the rod lens, part of the light is pre-reflected without being emitted from the rod lens.
Therefore, in the case of this example, the illumination light in the direction along the arrangement direction of the LED light emitting elements 12 can be increased as compared with the case of the illumination device using the conventional rod lens shown in FIG. 3 and FIG. A recess defect (scratch defect) 21 (corresponding to the recess defect 121 in FIG. 4) along the conveyance direction shown in (c) is compared with the case of the illumination device using the conventional rod lens shown in FIGS. It is assumed that it is easy to detect.
In addition, as shown in FIG. 2C, the emitted light 12L from the LED light emitting element 12 is dispersed and emitted in a direction orthogonal to the direction along the arrangement direction of the LED light emitting elements 12, but dispersed in this direction. The emitted light 12L is reflected directly or by the reflective flat plate 16 arranged on both sides of the LED light emitting element 12, reaches the diffusion plate 15, and is further dispersed in each direction in the diffusion plate 15. The light that has passed through the diffusion plate 15 reaches the opening 11S side.
As described above, since the light is efficiently emitted in the direction along the arrangement direction of the LED light emitting elements 12 and also in the direction orthogonal to the arrangement direction of the LED light emitting elements 12, it becomes illumination light. In addition to the recess defect 21 along the transport direction shown in FIG. 2, the defect detection of the recess defect 22 in the direction orthogonal to the transport direction is possible.
This is because the oblique light effective for defect detection in the direction orthogonal to the transport direction is larger than that in the case of the illumination device using the conventional rod lens shown in FIGS.

そして、配列したLED発光素子の両側の反射性の平板としてアルミ板を用い、その表面に凹凸をつけた形態の場合には、表面の反射において散乱性を上げることができ、図3、図4に示す従来のロッドレンズを用いたLED照明装置の照明に比べて、側面側から当たる光の量をより一層増やすことができ、結果、欠陥検出の感度を向上させることを可能としている。   In the case where an aluminum plate is used as the reflective flat plate on both sides of the arranged LED light emitting elements and the surface thereof is uneven, the scattering can be increased in the reflection of the surface. As compared with the illumination of the LED illumination device using the conventional rod lens shown in FIG. 2, the amount of light hit from the side surface side can be further increased, and as a result, the sensitivity of defect detection can be improved.

各部の材質について、簡単に説明しておく。
<筺体11>
強固で、放熱性がよく、軽く、作製が容易なものであれば特に限定はされないが、通常は、アルミニウム材を用いる。
<LED発光素子12>
市販のP型半導体とN型半導体を接合した状態のLEDチップ構造のものをLED発光素子として配列しても良く、また、目的とする明るさを得ることができれば、有機のLED素子(有機EL素子とも言う)をLED発光素子として所定形状にして、配列しても良い。
尚、ここで用いられるLED発光素子としては、明るさを重視し、LEDチップ構造のものでは、従来からある砲弾型LED発光素子よりは、「パワーLED」と呼ばれる明るいタイプのLED発光素子を使用する。
そして、白色光を照明光とする場合には、R、G、Bの各色の発光色を混色して白色発光としても良い。
あるいは、青色の発光のLEDにより発光される青色の発光光と、該青色の発光が照射されることにより、それぞれ、赤色、緑色を発光する蛍光体(変換層とも言う)により、青色光、赤色光、緑色光を得て、併せて混色して、白色光としても良い。
<放熱グリス14>
プリント基板13の固定を十分にでき、放熱性が良く、更に、使いがってが良く、耐熱性があり、高温下でも安定した特性を発揮するものが好ましい。
例えば、シリコーングリース等があるが、これに限定されない。
通常、放熱グリスはシリコーンが主体で、性能を高めるために銀などの金属粒子を混入する。
<プリント基板13>
プリント基板13としては、配線性、回路機能、耐性等が優れたものが好ましいが、特に、限定はされない。
基材としては、ガラスエポキシ基板、ガラスポリイミド基板、フッ素基板、ガラスPPO基板、金属基板、セラミック基板等の中から1以上を、適宜用いれば良い。
尚、従来型の比較的暗いLED発光素子を用いた場合には、上記エポキシ基板等も使われるが、基本的には明るさを求めて「パワーLED」と呼ばれるLED発光素子を使用するため、熱が問題になり、放熱性能の高い金属基板(アルミ、銅などのメタル基板)が使われています。
<反射性の平板16>
反射性の平板16としては、表面が、反射性で、強固で、軽く、加工性が良く、更には、放熱性の良いものが好ましく、アルミニウム板が品質面、作製面で適している。
尚、アルミ板は、通常、圧延法や押し出し法にて作製されて、所望の長さ、幅のものを得ることができる。
また、アルミ板の場合、砥粒を用いた研磨方法や電解研磨方法にて表面に凹凸を形成して、反射の際の散乱性を良いものにできる。
The material of each part will be briefly described.
<Housing 11>
The material is not particularly limited as long as it is strong, has good heat dissipation, is light, and can be easily manufactured, but usually an aluminum material is used.
<LED light emitting element 12>
A commercially available LED chip structure in which a P-type semiconductor and an N-type semiconductor are joined may be arranged as an LED light-emitting element, and an organic LED element (organic EL) can be obtained if the desired brightness can be obtained. May be arranged in a predetermined shape as an LED light emitting element.
As the LED light-emitting element used here, brightness is emphasized, and in the LED chip structure, a bright type LED light-emitting element called “power LED” is used rather than a conventional bullet-type LED light-emitting element. To do.
When white light is used as illumination light, the light emission colors of R, G, and B may be mixed to produce white light emission.
Alternatively, blue light emitted from a blue light emitting LED and phosphors that emit red and green light (also referred to as conversion layers) when irradiated with the blue light emitted, respectively, blue light and red light are emitted. Light and green light may be obtained and mixed together to produce white light.
<Heat dissipation grease 14>
It is preferable that the printed board 13 can be fixed sufficiently, has good heat dissipation, is easy to use, has heat resistance, and exhibits stable characteristics even at high temperatures.
For example, there is silicone grease, but it is not limited to this.
Usually, the heat release grease is mainly silicone, and metal particles such as silver are mixed to improve performance.
<Printed circuit board 13>
The printed board 13 is preferably one having excellent wiring properties, circuit functions, resistance, etc., but is not particularly limited.
As the base material, one or more of a glass epoxy substrate, a glass polyimide substrate, a fluorine substrate, a glass PPO substrate, a metal substrate, a ceramic substrate, and the like may be used as appropriate.
In addition, when the conventional relatively dark LED light emitting element is used, the above epoxy substrate or the like is also used, but basically, since an LED light emitting element called “power LED” is used in order to obtain brightness, Heat becomes a problem, and metal substrates with high heat dissipation performance (metal substrates such as aluminum and copper) are used.
<Reflective flat plate 16>
As the reflective flat plate 16, a surface having a reflective, strong, light, good workability, and good heat dissipation property is preferable, and an aluminum plate is suitable in terms of quality and production.
In addition, an aluminum plate is normally produced by the rolling method and the extrusion method, and can obtain the thing of desired length and width.
Moreover, in the case of an aluminum plate, the surface can be made uneven by a polishing method using abrasive grains or an electrolytic polishing method to improve the scattering property at the time of reflection.

本発明は上記の形態に限定はされない。
図1に示すLED照明装置において、開口11Sに、拡散板を配していない形態も挙げられる。
また、図1に示すLED照明装置においては、筺体11は、長手方向に直交する方向の断面形状は、四角形状であるが、開口部を形成する外壁面と、該外壁面に対向した側に有機EL発光素子を配置するための外壁面を有していれば良く、場合によっては、断面が台形のような形状でも良い。
The present invention is not limited to the above form.
In the LED lighting device shown in FIG. 1, a form in which a diffusion plate is not arranged in the opening 11 </ b> S is also included.
Further, in the LED lighting device shown in FIG. 1, the casing 11 has a quadrangular cross-sectional shape in the direction orthogonal to the longitudinal direction, but on the outer wall surface forming the opening and the side facing the outer wall surface. It suffices to have an outer wall surface for arranging the organic EL light emitting element, and in some cases, the cross section may be a trapezoidal shape.

10 LED照明装置
10L 出射光
11 筺体
11S 開口
11a (開口側の)外壁面
11b 外壁面
11c、11d 外壁面
12 LED発光素子
12L 発光光
13 プリント基板
14 放熱グリス
15 拡散板
16 平板
20 板状物
21 凹部欠陥(キズ欠陥とも言う)
22 凹部欠陥(キズ欠陥とも言う)
30 撮像装置(カメラとも言う)
30S 撮影領域
110 LED照明装置
110L 照明光
111 筺体
111S 開口
111a (開口側の)外壁面
111b 外壁面
112 LED発光素子
113 プリント基板
114 放熱グリス
115 ロッドレンズ
116 拡散板
110 LED照明装置
120 板状物
121、122 凹部欠陥(キズ欠陥とも言う)
130 撮像装置(カメラとも言う)
130S 撮影領域
210 ガラス基板
220 ダイコータのヘッド
230 着色樹脂層
240 異物
250 ステージ(載置台とも言う)
261〜264 (コンベアの)コロ
DESCRIPTION OF SYMBOLS 10 LED illuminating device 10L Outgoing light 11 Housing 11S Opening 11a (opening side) outer wall surface 11b Outer wall surface 11c, 11d Outer wall surface 12 LED light emitting element 12L Emitted light 13 Printed board 14 Radiation grease 15 Diffusion plate 16 Flat plate 20 Plate-like object 21 Recess defect (also called scratch defect)
22 Recess defect (also called scratch defect)
30 Imaging device (also called camera)
30S imaging region 110 LED illumination device 110L illumination light 111 housing 111S opening 111a (on the opening side) outer wall surface 111b outer wall surface 112 LED light emitting element 113 printed circuit board 114 heat dissipation grease 115 rod lens 116 diffuser plate 110 LED illumination device 120 plate-like object 121 , 122 Recess defect (also called scratch defect)
130 Imaging device (also called camera)
130S imaging region 210 glass substrate 220 die coater head 230 colored resin layer 240 foreign matter 250 stage (also called mounting table)
261-264 Rollers (of conveyor)

Claims (4)

固体撮像素子を用いた撮像装置に対して、所定の一方向に板状物を相対的に移動しながら、前記撮像装置にて、前記板状物の表面を撮影した後、撮影にて得られた撮像画像データを用いてデータ処理を行い、前記板状物の表面の凹部欠陥を検出する欠陥検出方法における、前記撮影の際に用いられる前記板状物の表面をライン状に照明するLED照明装置であって、細長の筺体で、且つ、その長手方向の一つの外壁面に長手方向に沿い開口を形成した筺体の内部において、前記開口がある外壁面と対向する側の筺体の外壁面に、放熱グリスを介して支持されたプリント基板の上、前記開口に対向する位置に、前記開口の長手方向に沿ってライン状にLED発光素子を複数配列したものであり、前記配列したLED発光素子の両側に、それぞれ、前記開口の長手方向に沿い、且つ、前記開口に直交して、前記配列したLED発光素子側から前記開口側に至る、反射性の平板を配しており、前記LED発光素子からの発光光を、直接、あるいは、前記配列したLED発光素子の両側の反射性の平板で反射させて、前記開口側に到達させ、前記開口を通過した発光光を、前記板状物の表面をライン状に照明する照明光とするものであることを特徴とするLED照明装置。   Obtained by photographing after imaging the surface of the plate-like object with the imaging device while relatively moving the plate-like object in a predetermined direction with respect to the imaging device using the solid-state imaging element. LED illumination that illuminates the surface of the plate-like object used in the photographing in a line form in a defect detection method that performs data processing using the captured image data and detects a concave defect on the surface of the plate-like object A device having an elongated casing and having an opening formed along the longitudinal direction on one outer wall surface in the longitudinal direction, the outer wall surface of the casing facing the outer wall surface with the opening. A plurality of LED light emitting elements are arranged in a line along the longitudinal direction of the opening at a position facing the opening on a printed circuit board supported via heat radiation grease. On both sides, respectively A reflective flat plate is provided along the longitudinal direction of the opening and perpendicular to the opening, from the arranged LED light emitting element side to the opening side, and emits light emitted from the LED light emitting element. Directly or by reflecting on the reflective flat plates on both sides of the arrayed LED light emitting elements to reach the opening side, the surface of the plate-like object is illuminated in a line with the emitted light passing through the opening An LED illumination device characterized in that the illumination light is used. 請求項1記載のLED照明装置であって、前記配列したLED発光素子の両側の反射性の平板は、アルミ板からなることを特徴とするLED照明装置。   2. The LED lighting device according to claim 1, wherein the reflective flat plates on both sides of the arranged LED light emitting elements are made of an aluminum plate. 請求項2に記載のLED照明装置であって、前記アルミ板の表面に微小な凹凸を設けていることを特徴とするLED照明装置。   3. The LED lighting device according to claim 2, wherein minute unevenness is provided on the surface of the aluminum plate. 請求項1ないし3のいずれか1項に記載のLED照明装置であって、前記板状物がガラス基板であることを特徴とするLED照明装置。   4. The LED lighting device according to claim 1, wherein the plate-like object is a glass substrate. 5.
JP2012249660A 2012-11-13 2012-11-13 LED lighting device Active JP6119204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012249660A JP6119204B2 (en) 2012-11-13 2012-11-13 LED lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012249660A JP6119204B2 (en) 2012-11-13 2012-11-13 LED lighting device

Publications (2)

Publication Number Publication Date
JP2014098594A true JP2014098594A (en) 2014-05-29
JP6119204B2 JP6119204B2 (en) 2017-04-26

Family

ID=50940721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012249660A Active JP6119204B2 (en) 2012-11-13 2012-11-13 LED lighting device

Country Status (1)

Country Link
JP (1) JP6119204B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914360U (en) * 1982-07-19 1984-01-28 ロ−ム株式会社 light emitting device
JP2005283563A (en) * 2004-03-02 2005-10-13 Ccs Inc Light irradiation device
JP2010086884A (en) * 2008-10-02 2010-04-15 Kyoto Denkiki Kk Linear illumination device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914360U (en) * 1982-07-19 1984-01-28 ロ−ム株式会社 light emitting device
JP2005283563A (en) * 2004-03-02 2005-10-13 Ccs Inc Light irradiation device
JP2010086884A (en) * 2008-10-02 2010-04-15 Kyoto Denkiki Kk Linear illumination device

Also Published As

Publication number Publication date
JP6119204B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6042402B2 (en) Illumination module and visual inspection system using the same
TWI599743B (en) Light emitting device
JP4584313B2 (en) Coaxial light irradiation device
US20100103661A1 (en) Machine Vision Inspection System and Light Source Module thereof
US9546761B2 (en) LED lighting device which has stable structure and is easily assembled and disassembled
CN101290090B (en) Checking system light source stray illumination device
TW200813398A (en) Surface inspection device
CN101900579A (en) Lighting device of automatic optical detection system
JP2014190868A (en) Photoirradiation device
JP2006310549A (en) Lighting apparatus and imaging apparatus
JP6070057B2 (en) LED lighting device
JP6146793B2 (en) LIGHT EMITTING DEVICE LENS, LIGHT EMITTING DEVICE AND LIGHTING DEVICE
JP6119204B2 (en) LED lighting device
JP2011222239A (en) Lighting system and inspection device
US8852859B2 (en) Method and/or system for measuring concentration of detection target using transmission or reflection of light
JP2011106912A (en) Imaging illumination means and pattern inspection device
TW202231409A (en) Inspection device, resin molding device, cutting device, method for manufacturing resin molded article, and method for manufacturing cut article
JP4493482B2 (en) Light irradiation device
JP4869293B2 (en) LED surface illumination device
WO2012077274A1 (en) Illumination device
WO2012077269A1 (en) Illumination device
JP2010204109A (en) Lighting device for inspection
KR101099077B1 (en) Led lamp apparatus
JP2010203922A (en) Lighting device for inspection
JP5085599B2 (en) Component holding device, electronic component recognition device, and electronic component mounting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150