JP2014098177A - Steel wire and method of manufacturing steel wire - Google Patents

Steel wire and method of manufacturing steel wire Download PDF

Info

Publication number
JP2014098177A
JP2014098177A JP2012249584A JP2012249584A JP2014098177A JP 2014098177 A JP2014098177 A JP 2014098177A JP 2012249584 A JP2012249584 A JP 2012249584A JP 2012249584 A JP2012249584 A JP 2012249584A JP 2014098177 A JP2014098177 A JP 2014098177A
Authority
JP
Japan
Prior art keywords
wire
steel wire
strength
welding
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012249584A
Other languages
Japanese (ja)
Other versions
JP6006620B2 (en
Inventor
Hiroshi Izumida
寛 泉田
Nobue Takamura
伸栄 高村
Osamu Momosawa
理 桃澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo SEI Steel Wire Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2012249584A priority Critical patent/JP6006620B2/en
Publication of JP2014098177A publication Critical patent/JP2014098177A/en
Application granted granted Critical
Publication of JP6006620B2 publication Critical patent/JP6006620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel wire capable of being welded satisfactorily and having high strength after a weldment, and to provide a method of manufacturing the steel wire capable of manufacturing such steel wire at good productivity.SOLUTION: A steel wire contains, by mass%, C of 0.10% to 0.30%, Si of 0.20% to 2.00%, Mn of 0.30% to 2.50%, Cr of 0.20% to 2.00%, Mo of 0.01% to 0.30%, and the balance Fe with inevitable impurities and has a bainite structure of 95 vol.% or more. As the content of C is low, no hardening structure is substantially generated during a weldment and the weldment is easy to be conducted. As carbide generating element is contained, it can be highly reinforced by precipitation strengthening. It has high strength because it is substantially constituted by the bainite structure, and the structure substantially does not change before and after the weldment and the high strength can be maintained after the weldment.

Description

本発明は、鋼線及びその製造方法に関するものである。特に、強度に優れる上に、溶接を良好に行える鋼線、及びこのような鋼線を生産性よく製造できる鋼線の製造方法に関するものである。   The present invention relates to a steel wire and a manufacturing method thereof. In particular, the present invention relates to a steel wire that is excellent in strength and can be welded well, and a method of manufacturing a steel wire that can manufacture such a steel wire with high productivity.

種々の分野で鋼線が利用されている。なかでも、鋼種SWP-A,SWP-Bなどに代表されるピアノ線や硬鋼線といった炭素の含有量が多い高炭素鋼線、焼き入れ焼き戻しを行ったオイルテンパー線などは、強度、靭性、耐疲労性に優れており、自動車や家庭用電気製品などの部品に利用されている。   Steel wires are used in various fields. Among them, high carbon steel wires with high carbon content such as piano wires and hard steel wires represented by steel grades SWP-A and SWP-B, and oil tempered wires that have been quenched and tempered have strength and toughness. It has excellent fatigue resistance and is used in parts such as automobiles and household electrical appliances.

鋼線同士を溶接したり、鋼線と別の部材とを溶接したりして利用することがある。この場合、溶接時の熱によって鋼線がなまされる上に、炭化物球状化が起こり、溶接部分近傍の強度が低下することがある。特許文献1は、熱間圧延材同士を溶接した後、焼き入れ焼き戻しを行うことで、溶接部分も高い引張強さを有する高強度鋼線を開示している。   It may be used by welding steel wires or welding a steel wire and another member. In this case, the steel wire is annealed by heat during welding, and carbide spheroidization occurs, and the strength in the vicinity of the welded portion may decrease. Patent Document 1 discloses a high-strength steel wire in which a welded portion also has high tensile strength by performing quenching and tempering after welding the hot-rolled materials.

特許第2957471号公報Japanese Patent No. 2954771

溶接を良好に行える上に、溶接後にも高い強度を維持し、生産性にも優れる鋼線の開発が望まれている。   There is a demand for the development of a steel wire that can be welded satisfactorily, maintains high strength after welding, and has excellent productivity.

上述の高炭素鋼線やオイルテンパー線などは、高強度であるものの、炭素の含有量が多いことで焼き入れ性が高く、溶接を行うと、溶接時の加熱冷却によって焼入組織(マルテンサイト相)が生成されて靭性が低下し、割れが生じ得る。いわゆる焼割れが発生して、使用に耐えない。仮に溶接できても、上記焼入組織の靭性を向上させるために焼なましなどの熱処理が必要であり、生産性の低下を招く。また、仮に溶接できても、上述のように溶接時の熱によって溶接部分近傍の強度が、溶接部分以外の箇所よりも低下し得る。   The above-mentioned high carbon steel wire and oil tempered wire are high in strength but have high hardenability due to the high carbon content.When welding is performed, the hardened structure (martensite) is heated and cooled during welding. Phase) is produced, toughness is reduced, and cracking may occur. So-called burning cracks occur and cannot be used. Even if it can be welded, a heat treatment such as annealing is necessary to improve the toughness of the quenched structure, resulting in a decrease in productivity. Moreover, even if it can weld, the intensity | strength of a welding part vicinity may fall rather than places other than a welding part with the heat at the time of welding as mentioned above.

炭素の含有量を低減すれば、上述の焼入組織の生成を抑制できる。しかし、鋼線自体の強度が低くなる。また、単に炭素を低減した鋼線を溶接した場合、溶接部分近傍の強度が更に低くなり、使用に耐えない。   If the carbon content is reduced, the formation of the above-described hardened structure can be suppressed. However, the strength of the steel wire itself is lowered. In addition, when a steel wire with reduced carbon is simply welded, the strength in the vicinity of the welded portion is further lowered and cannot be used.

炭素の含有量を低減した場合に強度を向上するために、例えば、Al,Ti,Vなどの添加元素を添加することが考えられる。しかし、添加元素の増加は、線材の加工性の低下を招く。そのため、太径の熱間圧延材では問題ないが、熱間圧延材に例えば伸線加工を施して細径の線材を製造しようとすると、断線が生じ易く、細径の線材の生産性に劣る、又は細径の線材が実質的に製造できない。また、添加元素の増加は、材料コストの増大を招く。   In order to improve the strength when the carbon content is reduced, for example, it is conceivable to add additive elements such as Al, Ti, and V. However, an increase in additive elements leads to a decrease in workability of the wire. For this reason, there is no problem with a hot rolled material with a large diameter, but when a hot wire is subjected to wire drawing, for example, to produce a thin wire, wire breakage is likely to occur and the productivity of the thin wire is inferior. Or a thin wire rod cannot be manufactured substantially. Further, an increase in additive elements causes an increase in material cost.

特許文献1に記載されるように溶接後に焼き入れ焼き戻しを行えば、溶接部分の強度を高められる。しかし、焼き入れ焼き戻しは、一般に、製造コストの増大を招き、ひいては生産性の低下を招く。   If quenching and tempering is performed after welding as described in Patent Document 1, the strength of the welded portion can be increased. However, quenching and tempering generally results in an increase in manufacturing cost and, in turn, a decrease in productivity.

そこで、本発明の目的の一つは、溶接を良好に行えて、溶接後にも強度に優れる鋼線を提供することにある。また、本発明の他の目的は、溶接を良好に行えて、溶接後にも強度に優れる鋼線を生産性よく製造することができる鋼線の製造方法を提供することにある。   Therefore, one of the objects of the present invention is to provide a steel wire that can be welded well and has excellent strength after welding. Another object of the present invention is to provide a method of manufacturing a steel wire that can be welded satisfactorily and can manufacture a steel wire that is excellent in strength even after welding with high productivity.

本発明者らは、溶接時の焼入れに起因する靭性の低下が実質的に生じず、かつ溶接後の強度の低下が少ない高強度な鋼線を製造することを検討した。その結果、炭素の含有量を少なくすると共に、特定の炭化物生成元素を特定の範囲で含有し、かつ母相をベイナイト組織とすることが好ましい、との知見を得た。また、この特定の組成及び特定の組織から構成される鋼線は、特定の組織を形成するための特定の熱処理を施すことで製造できる、との知見を得た。特に、上記特定の熱処理後に伸線加工を施すことで、更に高強度な鋼線を製造できる、との知見を得た。本発明は、上記知見に基づくものである。   The inventors of the present invention studied to produce a high-strength steel wire in which a decrease in toughness due to quenching during welding does not substantially occur and a decrease in strength after welding is small. As a result, the inventors have found that it is preferable to reduce the carbon content, to contain a specific carbide-forming element in a specific range, and to make the parent phase a bainite structure. Moreover, the knowledge that the steel wire comprised from this specific composition and a specific structure can be manufactured by performing the specific heat processing for forming a specific structure was acquired. In particular, it has been found that a steel wire with higher strength can be produced by performing wire drawing after the specific heat treatment. The present invention is based on the above findings.

本発明の鋼線は、質量%で、Cを0.10%以上0.30%以下、Siを0.20%以上2.00%以下、Mnを0.30%以上2.50%以下、Crを0.20%以上2.00%以下、Moを0.01%以上0.30%以下含有し、残部がFe及び不可避不純物から構成され、ベイナイト組織が95体積%以上である。   The steel wire of the present invention has a mass% of C of 0.10% to 0.30%, Si of 0.20% to 2.00%, Mn of 0.30% to 2.50%, Cr of 0.20% to 2.00%, and Mo of 0.01%. % And 0.30% or less, the balance is composed of Fe and inevitable impurities, and the bainite structure is 95% by volume or more.

本発明の鋼線は、C(炭素)の含有量が0.30質量%以下と少ないことで、溶接時の熱によって焼入組織(マルテンサイト相)が実質的に生じない。そのため、本発明の鋼線は、溶接時の熱による靭性の低下を抑制でき、溶接後にも良好に使用できる。即ち、本発明の鋼線は、溶接性に優れる。かつ、本発明の鋼線は、Si,Mnという固溶強化元素を含有すると共に、Crという炭化物生成元素を特定の範囲で含有することで、固溶強化と析出強化とによる高強度化を図ることができる。特に、Crを特定の範囲で含有することで、析出強化による高強度化の効果が大きい。更に、本発明の鋼線は、Moを特定の範囲で含有することで、炭化物の生成による強度の向上効果を安定して得ることができる。   Since the steel wire of the present invention has a low C (carbon) content of 0.30% by mass or less, a hardened structure (martensite phase) is not substantially generated by heat during welding. Therefore, the steel wire of the present invention can suppress a decrease in toughness due to heat during welding, and can be used well after welding. That is, the steel wire of the present invention is excellent in weldability. In addition, the steel wire of the present invention contains a solid solution strengthening element such as Si and Mn, and contains a carbide forming element called Cr in a specific range, thereby achieving high strength by solid solution strengthening and precipitation strengthening. be able to. In particular, by containing Cr in a specific range, the effect of increasing the strength by precipitation strengthening is great. Furthermore, the steel wire of this invention can acquire stably the improvement effect of the intensity | strength by the production | generation of a carbide | carbonized_material by containing Mo in the specific range.

加えて、本発明の鋼線は、実質的にベイナイト組織で構成されることで、パーライト組織で構成される鋼線と同程度の強度や疲労限を有する。また、実質的にベイナイト組織から構成される本発明の鋼線は、溶接時の加熱によって変態せず、ベイナイト組織を維持することができる(再結晶組織もベイナイト組織となっている)。このように本発明の鋼線は、溶接前も高強度である上に、溶接前後で組織が実質的に変化しないことで、溶接後も高強度である。   In addition, the steel wire of the present invention has substantially the same strength and fatigue limit as a steel wire composed of a pearlite structure by being composed substantially of a bainite structure. Further, the steel wire of the present invention substantially composed of a bainite structure can maintain the bainite structure without being transformed by heating during welding (the recrystallized structure is also a bainite structure). As described above, the steel wire of the present invention has high strength even before welding, and also has high strength after welding because the structure does not substantially change before and after welding.

本発明の鋼線は、多種の添加元素を多く含有してなくても強度に優れ、溶接後でも高い強度を維持できる。そのため、本発明の鋼線を用いることで、溶接部分及びその近傍も高強度である溶接部分を具える部材を構築できる。また、本発明の鋼線を用いることで、溶接後に強度を高めるための熱処理を別途施す必要もない。従って、本発明の鋼線は、溶接部分を具える任意の部材の素材に好適に利用できると期待される。   The steel wire of the present invention is excellent in strength even if it does not contain many various additive elements, and can maintain high strength even after welding. Therefore, by using the steel wire of the present invention, it is possible to construct a member having a welded portion and a welded portion having a high strength in the vicinity thereof. In addition, by using the steel wire of the present invention, it is not necessary to separately perform heat treatment for increasing the strength after welding. Therefore, it is expected that the steel wire of the present invention can be suitably used as a material for an arbitrary member having a welded portion.

また、本発明者らが調べた結果、上述の特定の組成とすることで、ベイナイト相の変態に要する時間がパーライト相に変態する場合に比較して非常に短かった。従って、本発明の鋼線は、強度や疲労限に優れていながらも、特定の組織を得るための製造時間(熱処理時間)が短くてよく、生産性にも優れる。   Further, as a result of investigations by the present inventors, it was found that the time required for transformation of the bainite phase was very short as compared with the case where transformation to the pearlite phase was achieved with the above-mentioned specific composition. Therefore, the steel wire of the present invention is excellent in strength and fatigue limit, but may have a short manufacturing time (heat treatment time) for obtaining a specific structure and is excellent in productivity.

本発明の鋼線として、特に伸線加工が施されたものを製造する場合、上述の特定の熱処理を行った後、伸線加工を行うとよい。具体的な製造方法として、例えば、以下の本発明の鋼線の製造方法が挙げられる。本発明の鋼線の製造方法は、以下の準備工程と、熱処理工程と、伸線工程とを具える。
準備工程 質量%で、Cを0.10%以上0.30%以下、Siを0.20%以上2.00%以下、Mnを0.30%以上2.50%以下、Crを0.20%以上2.00%以下、Moを0.01%以上0.30%以下含有し、残部がFe及び不可避不純物から構成された熱間圧延材を準備する工程。
熱処理工程 上記熱間圧延材に熱処理を施して、ベイナイト組織が95体積%以上である熱処理材を得る工程。
伸線工程 上記熱処理材に伸線加工を施し、伸線材を得る工程。
上記熱処理は、温度を850℃以上1100℃以下、保持時間を10秒以上10分以下としてオーステナイト化を行った後、恒温変態温度を400℃以上500℃以下、保持時間を10秒以上10分以下としてベイナイト組織を形成する。
When manufacturing the steel wire of the present invention that has been subjected to wire drawing in particular, wire drawing may be performed after performing the above-described specific heat treatment. As a concrete manufacturing method, the manufacturing method of the following steel wire of this invention is mentioned, for example. The method for manufacturing a steel wire of the present invention includes the following preparation process, heat treatment process, and wire drawing process.
Preparatory process In mass%, C is 0.10% to 0.30%, Si is 0.20% to 2.00%, Mn is 0.30% to 2.50%, Cr is 0.20% to 2.00%, Mo is 0.01% to 0.30%. The process of preparing the hot-rolled material which contains and the remainder is comprised from Fe and the inevitable impurity.
Heat treatment step A step of obtaining a heat treatment material having a bainite structure of 95% by volume or more by subjecting the hot-rolled material to a heat treatment.
Wire drawing step A step of drawing the heat treated material to obtain a wire drawing material.
The above heat treatment is performed with austenite at a temperature of 850 ° C. to 1100 ° C., a holding time of 10 seconds to 10 minutes, and then a constant temperature transformation temperature of 400 ° C. to 500 ° C., and a holding time of 10 seconds to 10 minutes. As a bainite structure is formed.

上記熱処理工程を行うことで、過度の添加元素を加えることなく、上述の特定の組成及び特定の組織を有し、溶接を良好に行えて、かつ溶接後の強度にも優れる本発明の鋼線を製造できる。また、この熱処理は、保持時間が比較的短く、製造時間が短い。従って、上記熱処理工程を具える製造方法は、本発明の鋼線を生産性よく製造することができる。特に、上記熱処理工程後に伸線工程を具える本発明の鋼線の製造方法を利用することで、溶接を良好に行える上に、強度により優れる本発明の鋼線を製造できる。この理由は、ベイナイト相に変態した後、伸線加工などの塑性加工を施した場合、加工硬化による強度の向上度合いが大きく、強度をより高められるためである。そして、伸線加工後もベイナイト相を維持する。従って、本発明の鋼線の製造方法は、溶接を良好に行える上に、強度がより高い細径の鋼線や異形の鋼線を生産性よく製造できる。   By performing the above heat treatment step, the steel wire of the present invention has the above-mentioned specific composition and specific structure, can perform welding well, and has excellent strength after welding without adding an excessive additive element. Can be manufactured. Further, this heat treatment has a relatively short holding time and a short manufacturing time. Therefore, the manufacturing method including the heat treatment step can manufacture the steel wire of the present invention with high productivity. In particular, by using the steel wire manufacturing method of the present invention including a wire drawing step after the heat treatment step, it is possible to manufacture the steel wire of the present invention which is excellent in strength and can be welded satisfactorily. The reason for this is that when plastic processing such as wire drawing is performed after transformation into the bainite phase, the degree of strength improvement by work hardening is large and the strength can be further increased. And the bainite phase is maintained even after wire drawing. Therefore, the method for producing a steel wire of the present invention can perform welding well and can produce a thin steel wire having a higher strength and a deformed steel wire with high productivity.

本発明の鋼線の一形態として、上記鋼線の短径に対する長径の比が1.5以上10以下の異形線である形態が挙げられる。   As one form of the steel wire of the present invention, a form in which the ratio of the long diameter to the short diameter of the steel wire is a deformed wire of 1.5 or more and 10 or less is mentioned.

本発明者らは、せん断方向に加工歪みを付与する加工を行った場合、加工硬化による強度向上効果がより大きい、との知見を得た。上記異形線は、上記せん断方向に加工歪みを付与する加工を行うことで形成される。従って、上記形態は、強度により優れる。   The present inventors have obtained the knowledge that the effect of improving the strength by work hardening is greater when processing that imparts processing strain in the shear direction is performed. The deformed line is formed by performing processing that imparts processing strain in the shear direction. Therefore, the above form is more excellent in strength.

本発明の鋼線の一形態として、上記鋼線の横断面積が30mm2以下である形態が挙げられる。 As one form of the steel wire of this invention, the form whose cross-sectional area of the said steel wire is 30 mm < 2 > or less is mentioned.

上記形態は、代表的には、線径が6.0mmφ以下の比較的細い鋼線である。このような細い鋼線は、例えば、伸線加工を施すことで得られ、伸線加工の加工硬化による強度向上効果が期待できる。このことから、上記形態は、加工硬化による強度向上効果によって強度により優れる。   The above form is typically a relatively thin steel wire having a wire diameter of 6.0 mmφ or less. Such a thin steel wire is obtained by, for example, drawing, and an effect of improving the strength by work hardening of the drawing can be expected. From this, the said form is excellent in intensity | strength by the strength improvement effect by work hardening.

本発明の鋼線の一形態として、上記鋼線同士を溶接したとき、溶接された線材の引張強さが1300MPa以上である形態が挙げられる。   As one form of the steel wire of this invention, when welding the said steel wires, the form whose tensile strength of the welded wire is 1300 MPa or more is mentioned.

上述のように本発明の鋼線は、溶接後にも強度に優れており、上記形態のように1300MPa以上といった高い強度を有することができる。従って、上記形態の鋼線を利用することで、溶接部分を有し、かつ引張強さが1300MPa以上の部材を構築することができる。   As described above, the steel wire of the present invention is excellent in strength even after welding, and can have a high strength of 1300 MPa or more as in the above embodiment. Therefore, a member having a welded portion and a tensile strength of 1300 MPa or more can be constructed by using the steel wire of the above form.

本発明の鋼線の製造方法の一形態として、上記伸線加工は、総伸線加工度を50%以上とし、上記伸線材のせん断方向に加工歪みを加える塑性加工を上記伸線材に施し、短径に対する長径の比が1.5以上15以下の異形線を得る工程を具える形態が挙げられる。   As one form of the manufacturing method of the steel wire of the present invention, the wire drawing is performed with a total wire drawing degree of 50% or more, and the wire drawing material is subjected to plastic working that applies processing strain in the shear direction of the wire drawing material, Examples include a step of obtaining a deformed wire having a ratio of the major axis to the minor axis of 1.5 to 15 inclusive.

上記形態は、総加工度が高い伸線加工を施すことで、加工硬化によって強度が高められた鋼線を製造できる。更に、上記形態は、伸線加工に加えてせん断方向に加工歪みを付加する塑性加工をも施していることで、加工硬化による強度向上効果を更に得られ、非常に高強度な鋼線(異形線)を製造できる。   The said form can manufacture the steel wire whose intensity | strength was raised by work hardening by performing a wire drawing process with a high total workability. In addition to the wire drawing, the above-mentioned form also provides plastic working that adds work strain in the shearing direction, so that the effect of improving the strength by work hardening can be further obtained. Wire).

本発明の鋼線は、溶接を良好に行えて、溶接後にも強度に優れる。本発明の鋼線の製造方法は、溶接を良好に行えて、溶接後にも強度に優れる鋼線を生産性よく製造できる。   The steel wire of the present invention can perform welding well and is excellent in strength even after welding. The method for producing a steel wire of the present invention can perform welding well, and can produce a steel wire excellent in strength even after welding with high productivity.

異形線の断面形状を説明する断面説明図であり、(A)は平角線、(B)は断面台形状の角線を示す。It is sectional explanatory drawing explaining the cross-sectional shape of a deformed line, (A) shows a flat wire, (B) shows the cross-sectional trapezoid square wire.

以下、本発明をより詳細に説明する。なお、以下の説明において「組成」の含有量は全て「質量%」である。   Hereinafter, the present invention will be described in more detail. In the following description, the contents of “composition” are all “mass%”.

[組成]
本発明の鋼線は、C,Si,Mn,Cr,Moを必須元素とし、残部がFe及び不可避不純物からなる鋼によって構成される。不可避不純物は、P(りん)、S(硫黄)などが挙げられる。
[composition]
The steel wire of the present invention is made of steel containing C, Si, Mn, Cr, and Mo as essential elements, and the balance being Fe and inevitable impurities. Inevitable impurities include P (phosphorus), S (sulfur), and the like.

(C:0.10%以上0.30%以下)
C(炭素)は、鋼の強化元素である。Cの含有量が0.10%以上であることで、強度の向上効果が得られる。Cが多いほど、強度が高められる。しかし、Cが多過ぎると、溶接時に焼入組織が形成されて、焼割れが発生し得る。そこで、本発明では、特に溶接時の不具合(焼割れなど)を防止するために、Cの含有量を0.30%以下とする。本発明の鋼線は、このように低炭素である点を特徴の一つとする。より好ましいCの含有量は0.10%以上0.20%以下である。
(C: 0.10% to 0.30%)
C (carbon) is a strengthening element of steel. When the C content is 0.10% or more, an effect of improving the strength can be obtained. The more C, the higher the strength. However, when C is too much, a hardened structure is formed at the time of welding, and quench cracks may occur. Therefore, in the present invention, the C content is set to 0.30% or less in order to prevent defects (burning cracks, etc.) particularly during welding. One feature of the steel wire of the present invention is that it is thus low carbon. A more preferable content of C is 0.10% or more and 0.20% or less.

(Cr:0.20%以上2.00%以下)
本発明では、炭化物生成元素として、Cr(クロム)を含有する。その他、Crは、組織の微細化に寄与する元素である。Crの含有量が0.20%以上であることで、析出強化の効果、組織の微細化が得られる。Crが多いほど、炭化物を析出し易くなり、強度が高められる。しかし、Crが多過ぎると、溶接時にマルテンサイト相が生成され、マルテンサイト相に起因する靭性の低下が生じ得る。溶接後の靭性の低下の抑制を考慮して、Crの含有量を2.00%以下とする。より好ましいCrの含有量は0.50%以上1.50%以下である。
(Cr: 0.20% to 2.00%)
In the present invention, Cr (chromium) is contained as a carbide generating element. In addition, Cr is an element that contributes to the refinement of the structure. When the Cr content is 0.20% or more, the effect of precipitation strengthening and the refinement of the structure can be obtained. The more Cr, the easier it is to precipitate carbide and the strength is increased. However, when there is too much Cr, a martensite phase is generated at the time of welding, and a reduction in toughness due to the martensite phase may occur. Considering suppression of toughness deterioration after welding, the Cr content is set to 2.00% or less. A more preferable Cr content is 0.50% or more and 1.50% or less.

(Si:0.20%以上2.00%以下)
Si(ケイ素)は、固溶強化や耐熱性の向上に寄与する元素である。また、Siは、溶解精錬時の脱酸剤に使用される。Siの含有量が0.20%以上であることで、固溶強化効果、耐熱性の向上効果、脱酸効果が得られる。Siが多いほど、これらの効果が高められるものの、多過ぎると靭性が低下する。靭性の低下の抑制を考慮して、Siの含有量を2.00%以下とする。より好ましいSiの含有量は1.00%以上2.00%以下である。
(Si: 0.20% to 2.00%)
Si (silicon) is an element contributing to solid solution strengthening and heat resistance improvement. Si is also used as a deoxidizer during melting and refining. When the Si content is 0.20% or more, a solid solution strengthening effect, a heat resistance improving effect, and a deoxidizing effect can be obtained. Although the effect is enhanced as the amount of Si increases, the toughness decreases as the amount of Si increases. Considering suppression of toughness reduction, the Si content is set to 2.00% or less. A more preferable Si content is 1.00% or more and 2.00% or less.

(Mn:0.30%以上2.50%以下)
Mn(マンガン)は、Siと同様に溶解精錬時に脱酸剤として利用される。また、Mnは、強度の向上効果もある。Mnの含有量が0.30%以上であることで、脱酸効果、強度向上の効果が得られる。Mnが多いほど、これらの効果が高められるものの、多過ぎると、溶接時にマルテンサイト相が生成され、マルテンサイト相に起因する靭性の低下が生じ得る。溶接後の靭性の低下の抑制を考慮して、Mnの含有量を2.50%以下とする。より好ましいMnの含有量は0.30%以上1.50%以下である。
(Mn: 0.30% to 2.50%)
Mn (manganese) is used as a deoxidizing agent during melting and refining in the same manner as Si. Mn also has the effect of improving strength. When the Mn content is 0.30% or more, a deoxidizing effect and an effect of improving the strength can be obtained. These effects are enhanced as the amount of Mn increases. However, when the amount is too large, a martensite phase is generated during welding, and a reduction in toughness due to the martensite phase may occur. Considering the suppression of the decrease in toughness after welding, the Mn content is set to 2.50% or less. A more preferable Mn content is 0.30% or more and 1.50% or less.

(Mo:0.01%以上0.30%以下)
本発明では、炭化物生成元素として、Moも含有することを特徴の一つとする。Moの含有量が0.01%以上であることで、炭化物の析出強化の効果を安定して得られ、Moが多いほど、この効果が得られる。また、Moを含有することで、耐熱性も向上することができる。しかし、Moが多過ぎると、工業的にベイナイト組織を得難くなり、生産性の低下を招く。工業的生産性を考慮して、Moの含有量を0.30%以下とする。より好ましいMoの含有量は0.03%以上0.10%以下である。
(Mo: 0.01% or more and 0.30% or less)
In the present invention, one of the characteristics is that Mo is also contained as a carbide forming element. When the Mo content is 0.01% or more, the effect of carbide precipitation strengthening can be stably obtained, and this effect can be obtained as the amount of Mo increases. Moreover, heat resistance can also be improved by containing Mo. However, if there is too much Mo, it will be difficult to obtain a bainite structure industrially, leading to a decrease in productivity. In consideration of industrial productivity, the Mo content is set to 0.30% or less. A more preferable Mo content is 0.03% or more and 0.10% or less.

[組織]
本発明の鋼線は、実質的にベイナイト組織から構成されることを特徴の一つとする。定量的には、ベイナイトを95体積%以上含有する組織から構成される。ベイナイトは、パーライトと同等の高い硬度を有することから、実質的にベイナイト組織から構成されることで、パーライト組織と同程度の強度や疲労限を有することができ、本発明の鋼線は、強度に優れる。また、ベイナイト組織を主体とすることで、パーライト組織を主体とする場合に比較して、変態時間が短くてよく、生産性に優れる。ベイナイトの含有量は、後述する熱処理条件によって調整することができ、例えば、97体積%以上、更に99体積%以上とすることができる。残部の組織は、残留オーステナイト、マルテンサイト、フェライト、セメンタイトなどが挙げられる。5体積%以下の範囲であれば、一般に脆い相であるマルテンサイトを含有することを許容する。
[Organization]
One feature of the steel wire of the present invention is that it is substantially composed of a bainite structure. Quantitatively, it is comprised from the structure | tissue containing 95 volume% or more of bainite. Since bainite has a high hardness equivalent to pearlite, it can have substantially the same strength and fatigue limit as the pearlite structure by being substantially composed of a bainite structure. Excellent. In addition, by using the bainite structure as a main component, the transformation time may be shorter and the productivity is excellent as compared with the case where the pearlite structure is a main component. The content of bainite can be adjusted by the heat treatment conditions described later, and can be, for example, 97% by volume or more, and further 99% by volume or more. Examples of the remaining structure include retained austenite, martensite, ferrite, and cementite. In the range of 5% by volume or less, it is allowed to contain martensite, which is generally a brittle phase.

[断面形状]
本発明の鋼線は、種々の形状を取り得る。代表的には、横断面形状が円形状の丸線が挙げられる。その他、種々の異形線とすることができる。例えば、図1(A)に示す鋼線10のように、横断面形状が長方形状の平角線、図1(B)に示す鋼線20のように横断面形状が台形状の角線が挙げられる。その他、横断面形状が、平角線の表裏に凸部を具える線材、断面形状が楕円状、レーストラック状などの線材が挙げられる。特に、線材の軸方向に直交する方向(せん断方向)に加工歪みが加えられる加工(代表的には異形加工)が施されて形成された異形線は、線引きダイスを用いた伸線加工が施されて形成された丸線よりも、加工硬化による強度の向上度合いが大きく、強度が更に高い傾向にある。つまり、本発明の鋼線が平角線などの異形線の場合、強度により優れる。
[Cross-sectional shape]
The steel wire of the present invention can take various shapes. A typical example is a round wire having a circular cross-sectional shape. In addition, various deformed lines can be used. For example, as a steel wire 10 shown in FIG. 1 (A), a rectangular wire whose cross-sectional shape is a rectangular shape, and a square wire whose cross-sectional shape is a trapezoidal shape like a steel wire 20 shown in FIG. It is done. In addition, the cross-sectional shape includes a wire rod having convex portions on the front and back of a flat wire, and a wire rod having a cross-sectional shape of an ellipse, a race track, or the like. In particular, deformed wires formed by processing (typically deformed processing) in which processing strain is applied in a direction perpendicular to the axial direction of the wire (shear direction) are typically subjected to wire drawing using a drawing die. Thus, the degree of improvement in strength by work hardening is larger than the round line formed, and the strength tends to be higher. That is, when the steel wire of the present invention is a deformed wire such as a flat wire, it is more excellent in strength.

[アスペクト比]
本発明の鋼線の横断面をとり、短径に対する長径の比「長径/短径」をアスペクト比(長径×短径比と示すことがある)と呼ぶとき、アスペクト比が1.5以上であると強度がより高い。この理由は、アスペクト比が大きい鋼線は、代表的には、上述のせん断方向の加工歪みが加えられる加工が施されて形成されるためである。アスペクト比が大きいほど、上記加工の加工度が大きくなり、強度に更に優れる鋼線となる。加工限界を考慮すると、アスペクト比は15以下が好ましい。なお、短径と長径とは、鋼線の横断面における直交する二つの長さとする。横断面が円形である丸線では、短径=長径=直径であり、アスペクト比は、長径/短径=1.0である。図1(A)に示す鋼線10(平角線)では、幅w10を長径、厚さt10を短径とする。図1(B)に示す鋼線20(台形状の角線)では、幅w20(台形の高さ)を長径、最小厚さt20(台形の短辺)を短径とする。
[aspect ratio]
Taking the cross section of the steel wire of the present invention, the ratio of the major axis to the minor axis `` major axis / minor axis '' is referred to as the aspect ratio (sometimes referred to as the major axis x minor axis ratio), the aspect ratio is 1.5 or more Higher strength. This is because a steel wire having a large aspect ratio is typically formed by being subjected to processing to which the processing strain in the shear direction described above is applied. The greater the aspect ratio, the greater the processing degree of the above processing, and the steel wire is further excellent in strength. Considering the processing limit, the aspect ratio is preferably 15 or less. The minor axis and the major axis are two lengths perpendicular to each other in the cross section of the steel wire. In a round wire having a circular cross section, the minor axis = major axis = diameter, and the aspect ratio is major axis / minor axis = 1.0. In the steel wire 10 (flat wire) shown in FIG. 1 (A), the width w 10 is the major axis and the thickness t 10 is the minor axis. In the steel wire 20 (trapezoidal square wire) shown in FIG. 1 (B), the width w 20 (trapezoidal height) is the major axis, and the minimum thickness t 20 (the trapezoidal shorter side) is the minor axis.

[断面積]
本発明の鋼線の断面積は、種々の大きさを取り得る。上述のように特定の熱処理を施した後、伸線加工や異形加工を施すことで、断面積をより小さくできる。所望の断面積となるように加工度(伸線加工度など)を調整するとよい。例えば、断面積が30mm2以下(丸線の場合、線径6mmφ以下)、更に断面積が7mm2以下(丸線の場合、線径3mmφ以下)、特に1mm2以下(丸線の場合、線径1.1mmφ以下)とすることができる。平角線の場合、幅が0.5mm以上20mm以下程度、厚さが0.3mm以上5mm以下程度、が挙げられる。断面積が小さいほど、伸線加工や異形加工の加工硬化による強度向上効果が得られ、強度に優れる傾向にある。
[Cross sectional area]
The cross-sectional area of the steel wire of the present invention can take various sizes. After performing the specific heat treatment as described above, the cross-sectional area can be further reduced by performing a wire drawing process or a deforming process. It is preferable to adjust the degree of processing (such as the degree of wire drawing) so as to obtain a desired cross-sectional area. For example, (in the case of round wire, the following diameter diameter: 6 mm) cross-sectional area 30 mm 2 or less, further (in the case of round wire, the following diameter 3 mm.phi) cross-sectional area 7 mm 2 or less, particularly in the case of 1 mm 2 or less (round wire, wire The diameter can be 1.1 mmφ or less. In the case of a flat wire, the width is about 0.5 mm to 20 mm and the thickness is about 0.3 mm to 5 mm. As the cross-sectional area is smaller, the strength improvement effect by work hardening of wire drawing or deforming is obtained, and the strength tends to be excellent.

[引張強さ]
本発明の鋼線は、強度に優れるため、引張強さが高く、例えば、1300MPa以上、更に1500MPa以上、1800MPa以上を満たすものが挙げられる。上述のように断面積が小さいほど、引張強さが高い傾向にある。また、本発明の鋼線は、溶接(代表的にはアーク溶接やスポット溶接)を行った場合でも、溶接部分の強度の低下度合いが小さいことから、溶接部分を具える部材を構築した場合でも高い強度を有する。例えば、本発明の鋼線同士を溶接したとき、溶接された線材(溶接部分を具える部材)の引張強さが1300MPa以上を満たすものが挙げられる。鋼線の断面積の大きさや形状などによっては、溶接された線材の引張強さが1500MPa以上、更に1800MPa以上を満たすものとすることができる。
[Tensile strength]
Since the steel wire of the present invention is excellent in strength, it has high tensile strength, and examples thereof include those satisfying 1300 MPa or more, further 1500 MPa or more, 1800 MPa or more. As described above, the smaller the cross-sectional area, the higher the tensile strength. Further, the steel wire of the present invention, even when welding (typically arc welding or spot welding), since the degree of decrease in strength of the welded portion is small, even when a member having a welded portion is constructed. High strength. For example, when the steel wires of the present invention are welded to each other, one in which the tensile strength of the welded wire rod (member having a welded portion) satisfies 1300 MPa or more can be mentioned. Depending on the size and shape of the cross-sectional area of the steel wire, the tensile strength of the welded wire can be 1500 MPa or more, and more preferably 1800 MPa or more.

[鋼線の製造方法]
本発明の鋼線は、例えば、一般的なピアノ線などの製造工程と同様な工程を具える製造方法によって製造できる。具体的には、原料の準備→溶解・鋳造→熱間圧延→熱処理(→適宜、伸線→適宜、異形線への加工)という工程を経て製造できる。本発明の鋼線は、特に、上記熱処理を特定の条件とし、この熱処理工程を具えることで、従来の製造工程を踏襲することができる。つまり、少なくとも特定の組成からなる素材を準備する工程と、この素材に特定の熱処理を施す工程とを行えばよい。
[Production method of steel wire]
The steel wire of this invention can be manufactured with the manufacturing method which provides the process similar to manufacturing processes, such as a general piano wire, for example. Specifically, it can be manufactured through the steps of raw material preparation → melting / casting → hot rolling → heat treatment (→ appropriate drawing, → appropriately processing into a deformed wire). Especially the steel wire of this invention can follow the conventional manufacturing process by making the said heat processing into specific conditions and providing this heat processing process. That is, a step of preparing a material having at least a specific composition and a step of performing a specific heat treatment on the material may be performed.

(素材の準備)
熱処理に供する素材は、代表的には、上述の工程を経て作製した熱間圧延材が挙げられる。具体的には、C,Si,Mn,Cr,Moを特定の範囲で含有する鋼を用意し、この原料鋼に、従来の製造条件や公知の製造条件に基づいて、溶解・鋳造を行った後、熱間圧延線材を作製する。熱間圧延線材の大きさは適宜選択することでき、直径5.5mmφ以上13mmφ以下程度が挙げられる。
(Preparation of material)
A material used for the heat treatment typically includes a hot-rolled material manufactured through the above-described steps. Specifically, a steel containing C, Si, Mn, Cr, and Mo in a specific range was prepared, and this raw steel was melted and cast based on conventional manufacturing conditions and known manufacturing conditions. Then, a hot rolled wire is produced. The size of the hot-rolled wire can be selected as appropriate and includes a diameter of 5.5 mmφ to 13 mmφ.

(熱処理)
得られた素材(代表的には熱間圧延線材)には、まず、金属組織の均質化処理を施す必要がある。この処理によって、塑性加工性を高められ、伸線加工を行い易くすることができる。特に、加工度が大きな伸線加工を施す場合(例えば、総伸線加工度が50%以上、更に75%以上である場合)でも、伸線加工を良好に行える。又は、熱処理後に形状を補正するための軽微な伸線加工を施す場合(例えば、総伸線加工度が5%以上25%以下程度)でも、寸法精度や形状精度に優れる線材を得易い。
(Heat treatment)
The obtained material (typically hot-rolled wire) must first be subjected to a homogenization treatment of the metal structure. By this treatment, the plastic workability can be improved and the wire drawing can be easily performed. In particular, even when a wire drawing with a high degree of work is performed (for example, when the total degree of wire drawing is 50% or more, and further 75% or more), the wire drawing can be performed satisfactorily. Alternatively, even when a slight wire drawing process for correcting the shape is performed after the heat treatment (for example, the total wire drawing degree is about 5% or more and about 25% or less), it is easy to obtain a wire with excellent dimensional accuracy and shape accuracy.

一般に、低炭素含有鋼(Cの含有量が0.10%〜0.40%程度)の金属組織の均質化とは、オーステナイト化の後、徐冷することにより、焼入組織(マルテンサイト)の発生を抑制し、フェライト(ベイナイト)とパーライトとの混相組織を得ることとされる。この混相組織を得る均質化処理には、通常、熱間圧延の直後、直接熱処理として、ステルモア(空冷)、ソルト浴冷却、沸騰水冷却などの方法が採られる。   In general, the homogenization of the metal structure of low-carbon steel (C content of about 0.10% to 0.40%) is to suppress the generation of hardened structure (martensite) by gradually cooling after austenization. Thus, a mixed phase structure of ferrite (bainite) and pearlite is obtained. For the homogenization treatment for obtaining this mixed phase structure, methods such as stealmore (air cooling), salt bath cooling, boiling water cooling, etc. are usually employed as direct heat treatment immediately after hot rolling.

そして、上述の直接熱処理や、この直接熱処理後に伸線加工を行った線材に、ベイナイト化を行うことで、主としてベイナイト組織から構成される線材(本発明の鋼線の一形態)が得られる。又は、直接熱処理時にベイナイト化を図ることでも、主としてベイナイト組織から構成される線材(本発明の鋼線の一形態)が得られる。この場合、オーステナイト化に連続してベイナイト化を行える。このように熱間圧延後、適宜な時期にオーステナイト化とベイナイト化とを施すこと(連続していなくてもよい)で主としてベイナイト組織から構成される線材が得られる。ここで、ベイナイト組織は、上述の混相組織と比較して加工性に劣る。そのため、例えば、熱間圧延線材に上記均質化処理を施した後、所定の大きさや形状の近くにまで加工(例えば、伸線加工)を施した後、最終熱処理としてベイナイト化を行い、その後に最終製品の大きさや形状までに加工(例えば、伸線加工)を施すことができる。この場合、鋼線の強度の調整や、大きさ、形状の調整を行い易い製造方法であると考えられる。   And the wire (mainly one form of the steel wire of this invention) mainly comprised from a bainite structure is obtained by performing bainite-izing to the above-mentioned direct heat treatment and the wire which performed wire drawing after this direct heat treatment. Alternatively, a wire rod mainly composed of a bainite structure (one form of the steel wire of the present invention) can also be obtained by directing bainite during heat treatment. In this case, bainite can be performed continuously to austenite. As described above, after hot rolling, by performing austenitization and bainite formation at an appropriate time (not necessarily continuous), a wire mainly composed of a bainite structure can be obtained. Here, a bainite structure is inferior to workability compared with the above-mentioned mixed phase structure. Therefore, for example, after performing the above homogenization treatment on the hot-rolled wire, after processing (for example, wire drawing) close to a predetermined size and shape, after the bainite as the final heat treatment, Processing (for example, wire drawing) can be performed up to the size and shape of the final product. In this case, it is considered that the manufacturing method is easy to adjust the strength, size, and shape of the steel wire.

オーステナイト化の条件は、温度を850℃以上1100℃以下、保持時間を10秒以上10分以下とし、ベイナイト化の条件は、恒温変態温度を400℃以上500℃以下、保持時間を10秒以上10分以下とする。つまり、上部ベイナイトの温度範囲での恒温変態とする。本発明で規定する鋼成分の範囲では、特に恒温変態温度が400℃以上500℃以下、好ましくは450℃以下の範囲において、保持時間を短くすることができ、生産性を高められる。この温度範囲を外れる場合は、保持時間を長めにする必要があり、生産性の低下を招く。オーステナイト化の温度は900℃以上950℃以下、ベイナイト化の恒温変態温度は420℃以上450℃以下、保持時間はいずれも10秒以上3分以下がより好ましい。   The conditions for austenitizing are a temperature of 850 ° C. to 1100 ° C., a holding time of 10 seconds to 10 minutes, and a bainite condition is a constant temperature transformation temperature of 400 ° C. to 500 ° C., and a holding time of 10 seconds to 10 seconds. Less than minutes. That is, the constant temperature transformation is performed in the temperature range of the upper bainite. In the range of the steel component specified in the present invention, the holding time can be shortened and the productivity can be improved, particularly in the range where the isothermal transformation temperature is 400 ° C. or higher and 500 ° C. or lower, preferably 450 ° C. or lower. When the temperature is out of this temperature range, it is necessary to lengthen the holding time, resulting in a decrease in productivity. The austenitizing temperature is more preferably 900 ° C. or higher and 950 ° C. or lower, the bainite forming constant temperature transformation temperature is 420 ° C. or higher and 450 ° C. or lower, and the holding time is preferably 10 seconds or longer and 3 minutes or shorter.

なお、上述の特定の組成からなる鋼は、後述する試験例に示すように、熱処理条件を調整することで、実質的にパーライト組織を形成することもできる。しかし、実質的にパーライト組織からなる鋼は、溶接時の熱影響に起因する強度の低下度合いが大きい。そこで、本発明の鋼線では、実質的にベイナイト組織とし、本発明の鋼線の製造方法では、実質的にベイナイト組織を形成するように熱処理条件を調整する。   In addition, the steel which consists of the above-mentioned specific composition can also form a pearlite structure | tissue substantially by adjusting heat processing conditions, as shown in the test example mentioned later. However, the steel having a substantially pearlite structure has a large degree of strength reduction due to the heat effect during welding. Therefore, the heat treatment conditions are adjusted so that the steel wire of the present invention has a substantially bainite structure, and the steel wire manufacturing method of the present invention substantially forms a bainite structure.

(伸線加工)
上記熱処理が施された熱処理材に適宜伸線加工(引き抜き加工)を施すことで、断面積がより小さい鋼線(本発明の鋼線の一形態)を製造できる。所望の断面積(又は線径)となるように、伸線加工度(伸線減面率)を選択することができる。上述のように特定の組成から構成されることで、上記熱処理後に伸線加工を施すと、加工硬化による強度向上効果が得られ、強度がより高い鋼線を製造できる。しかも、この加工硬化による強度向上効果は、一般的な高炭素鋼線(ピアノ線)と同等程度であり、伸線加工度が大きくなるにつれ、強度を急激に高められる。従って、強度の更なる向上を望む場合、総伸線加工度を50%以上、更に75%以上とすることが好ましい。伸線加工には、代表的には穴ダイス(線引きダイス)を用いる。
(Wire drawing)
A steel wire having a smaller cross-sectional area (one form of the steel wire of the present invention) can be manufactured by appropriately drawing (drawing) the heat-treated material subjected to the heat treatment. The drawing degree (drawing area reduction ratio) can be selected so that a desired cross-sectional area (or wire diameter) is obtained. By comprising a specific composition as described above, when wire drawing is performed after the heat treatment, an effect of improving strength by work hardening can be obtained, and a steel wire with higher strength can be manufactured. Moreover, the effect of improving the strength by work hardening is comparable to that of a general high carbon steel wire (piano wire), and the strength can be rapidly increased as the degree of wire drawing increases. Therefore, when further improvement in strength is desired, the total wire drawing degree is preferably 50% or more, and more preferably 75% or more. For wire drawing, a hole die (drawing die) is typically used.

(異形加工)
更に、伸線材に異形加工を施して、上述の適宜な異形線を製造できる。異形加工は、穴ダイスやローラダイスなど公知の塑性加工手段を利用できる。
(Deformation processing)
Furthermore, the above-mentioned appropriate deformed wire can be manufactured by applying a deforming process to the wire drawing material. For the profile processing, a known plastic processing means such as a hole die or a roller die can be used.

[試験例1]
種々の組成の鋼線を作製して、引張強さを測定した。また、得られた鋼線同士を溶接して、溶接後の引張強さを測定し、溶接前後の強度の低下度合いを調べた。
[Test Example 1]
Steel wires of various compositions were prepared and the tensile strength was measured. Moreover, the obtained steel wires were welded together, the tensile strength after welding was measured, and the degree of strength reduction before and after welding was investigated.

ここでは、表1に示す種々の組成(各元素の含有量は質量%、残部はFe、CeqはJIS G 0203(2009)に規定される炭素当量)の鋼を真空溶解炉で溶製して、熱間鍛造、熱間圧延を順に行って、熱間圧延材(線径7mmφの丸線)を作製した。得られた熱間圧延材に熱処理を施した。熱処理は、まずオーステナイト化を行い(加熱温度:900℃)、オーステナイト化の加熱温度からの冷却工程で、パテンティング(560℃×20秒)、又はベイナイト化(420℃×20秒)を行った。熱処理後、得られた熱処理材の断面をとり、この断面を研磨した後、研磨面に対してX線回折を行って組織を調べた。ここでは、各試料について、熱処理材(線材)の表面近傍の領域(表面から100μm以内の領域)、D/4の領域(Dは線径であり、D/4の領域は、線材の表面と線材の中心との中間地点の領域。後述する平角線や試験例2の線材(異形線)では、Dが長径の場合と、短径の場合との2つについて実施)、線材の中心領域、という複数の領域の組織をそれぞれ調べる。各領域の組織が観察できるように断面をとり、それぞれの断面について組織を調べた。そして、試料ごとにn≧3の断面視野について、全ての領域のベイナイトの体積割合が95体積%以上の場合、実質的にベイナイト組織から構成されていると評価し、表2に「B」と示す。同様に、パーライトの体積割合が95体積%以上の場合、実質的にパーライト組織から構成されていると評価して、表2に「P」と示す。ここでは、試料No.1-141を除き各組成の試料のいずれも、ベイナイト化の熱処理を施した場合、変態を完了して焼入組織が生じることは無かった。従って、各組成は、ベイナイト組織を良好に得られるといえる。一方、パーライト化の熱処理(パテンティング)を施した場合、変態が不十分のため、焼入組織が生じることが多かった。この理由は、これらの試料は、炭化物生成元素を多く含む(ここでは特にCrを0.2質量%以上、更に0.5質量%以上含む)ことから、変態の開始時間の遅延と変態時間の長時間化とが起こったためと考えられる。試料No.1-11,No.1-12と同じ組成の試料No.1-111,No.1-112に関してはパーライト変態を完了している。   Here, steels having various compositions shown in Table 1 (the content of each element is mass%, the balance is Fe, and Ceq is the carbon equivalent specified in JIS G 0203 (2009)) are melted in a vacuum melting furnace. Then, hot forging and hot rolling were sequentially performed to produce a hot rolled material (round wire with a wire diameter of 7 mmφ). The obtained hot rolled material was subjected to heat treatment. The heat treatment was first austenitized (heating temperature: 900 ° C.), and in the cooling process from the austenitizing heating temperature, patenting (560 ° C. × 20 seconds) or bainite (420 ° C. × 20 seconds) was performed. . After the heat treatment, a cross section of the obtained heat treated material was taken, and after polishing this cross section, the structure was examined by X-ray diffraction on the polished surface. Here, for each sample, a region near the surface of the heat treatment material (wire) (region within 100 μm from the surface), a region of D / 4 (D is the wire diameter, and the region of D / 4 is the surface of the wire. The area of the intermediate point with the center of the wire.For the flat wire and the wire of Test Example 2 (deformed wire) to be described later, the case where D is the major axis and the minor axis is performed)), the central area of the wire, Examine the organization of multiple areas. A cross section was taken so that the structure of each region could be observed, and the structure was examined for each cross section. And, for each cross-sectional field of n ≧ 3 for each sample, when the volume ratio of bainite in all regions is 95% by volume or more, it is evaluated that it is substantially composed of a bainite structure. Show. Similarly, when the volume ratio of pearlite is 95% by volume or more, it is evaluated that the pearlite is substantially composed of a pearlite structure, and “P” is shown in Table 2. Here, except for sample No. 1-141, in all samples of each composition, when the heat treatment for bainite was performed, the transformation was completed and a hardened structure was not generated. Therefore, it can be said that each composition can satisfactorily obtain a bainite structure. On the other hand, when a pearlite heat treatment (patenting) is performed, a transformation structure is insufficient and a hardened structure is often generated. The reason for this is that these samples contain a large amount of carbide-forming elements (here, especially Cr contains 0.2% by mass or more, and further 0.5% by mass or more), so that the transformation start time is delayed and the transformation time is prolonged. It is thought that this happened. The pearlite transformation has been completed for Samples No. 1-111 and No. 1-112 having the same composition as Samples No. 1-11 and No. 1-12.

Figure 2014098177
Figure 2014098177

得られた各熱処理材に伸線加工を施して、伸線材を作製した。伸線加工は、複数パスの加工を行い、総伸線加工度を50%とした。得られた伸線材(線径4.95mmφの丸線)の引張強さTS(50%)(MPa)を調べた。その結果を表2に示す。引張強さは、JIS Z 2241(1998)の金属材料引張試験方法に基づく引張試験を行って、室温(ここでは20℃程度)で測定した。   Each heat-treated material obtained was drawn to produce a drawn material. For wire drawing, multi-pass processing was performed and the total wire drawing degree was set to 50%. The tensile strength TS (50%) (MPa) of the obtained wire drawing material (round wire with a wire diameter of 4.95 mmφ) was examined. The results are shown in Table 2. The tensile strength was measured at room temperature (here, about 20 ° C.) by performing a tensile test based on the metal material tensile test method of JIS Z 2241 (1998).

Figure 2014098177
Figure 2014098177

表2に示すように、いずれの添加元素も含有量が多いほど、強度が高くなることが分かる。しかし、Moが非常に多い試料No.1-141は、上述の熱処理条件でベイナイト化の熱処理を施しても、ベイナイト組織を形成できなかった。このことから、Moの含有量は、0.50質量%未満、特に0.30質量%が好ましいといえる。   As shown in Table 2, it can be seen that the strength increases as the content of any additive element increases. However, Sample No. 1-141 with a very large amount of Mo could not form a bainite structure even when it was subjected to bainite heat treatment under the above heat treatment conditions. From this, it can be said that the Mo content is preferably less than 0.50 mass%, particularly preferably 0.30 mass%.

溶接後の組織を評価した。ここでは、実際に溶接を行うのではなく、溶接時の加熱を模擬した加熱試験を行い、加熱後の組織を調べた。具体的には、得られた伸線材に圧延加工を施して厚さ1mmの平角線とし、この平角線を1000℃程度に加熱した後、自然放冷した。そして、各平角線が室温程度になってから、表面を研磨した後、研磨面に対してX線回折を行い、マルテンサイト(α’)の生成量を調べた。マルテンサイトの生成量が多いほど、溶接時にマルテンサイトが生成され易く、焼割れが生じ易いといえる。マルテンサイトの生成量が1体積%以下の場合を○、1体積%超5体積%以下の場合を△、5体積%超の場合を×と評価し、表2に評価結果を示す。なお、圧延加工前の伸線材の組織観察、圧延後の平角線の組織観察を上述のように行ったところ、熱処理材の組織と実質的に同じであった(ベイナイト組織又はパーライト組織)。   The structure after welding was evaluated. Here, instead of actually performing welding, a heating test simulating heating during welding was performed to examine the structure after heating. Specifically, the obtained wire rod was rolled into a 1 mm thick rectangular wire, and the rectangular wire was heated to about 1000 ° C. and then allowed to cool naturally. Then, after each rectangular wire reached about room temperature, the surface was polished, and X-ray diffraction was performed on the polished surface to examine the amount of martensite (α ′) produced. It can be said that the greater the amount of martensite produced, the easier it is to produce martensite during welding and the more likely to cause cracking. The case where the amount of martensite produced is 1% by volume or less is evaluated as ◯, the case where it exceeds 1% by volume and 5% by volume is evaluated as Δ, and the case where it exceeds 5% by volume is evaluated as ×. Table 2 shows the evaluation results. When the structure observation of the wire drawing material before rolling and the structure observation of the flat wire after rolling were performed as described above, they were substantially the same as the structure of the heat-treated material (bainite structure or pearlite structure).

得られた各組成の伸線材の端面を突き合わせて溶接を行い、溶接部分を有する部材を作製し、得られた部材の引張強さ(溶接後TS、MPa)を調べた。引張強さは、上述の伸線材の場合と同様にして行った。また、溶接前後の引張強さの低下度合いを調べた。低下度合いは、{1-溶接後TS/TS(50%)}×100=TS低下率(%)を求めて評価した。これらの結果を表2に示す。なお、溶接時にマルテンサイトが多く生成された試料(表2において溶接時α’の評価が×である試料)については、この溶接を行わなかった。   The end surfaces of the obtained wire drawing materials having respective compositions were butted and welded to produce a member having a welded portion, and the tensile strength (TS, MPa after welding) of the obtained member was examined. The tensile strength was performed in the same manner as in the case of the wire drawing material described above. In addition, the degree of decrease in tensile strength before and after welding was examined. The degree of reduction was evaluated by obtaining {1-TS / TS after welding (50%)} × 100 = TS reduction rate (%). These results are shown in Table 2. Note that this welding was not performed for samples in which a large amount of martensite was generated during welding (samples in which evaluation of α ′ during welding in Table 2 is x).

表2に示すように、質量%でCを0.10%以上0.30%以下、Siを0.20%以上2.00%以下、Mnを0.30%以上2.50%以下、Crを0.20%以上2.00%以下、Moを0.01%以上0.30%以下含有し、実質的にベイナイト組織から構成される鋼線は、高強度である上に、溶接後の引張強さも高く、溶接前後における強度の低下が小さいことが分かる(溶接性の判定が○である)。具体的には、溶接後の引張強さが1300MPa以上、TS低下率が5.5%以下を満たす。なかには、溶接後の引張強さが1350MPa以上、1400MPa以上を満たす試料や、TS低下率が5%以下、4.5%以下、更に4%以下を満たす試料もある。この理由は、溶接時にマルテンサイトが実質的に生成されず、焼割れなどが実質的に生ず、溶接部分を有していても破断し難かったためと考えられる。   As shown in Table 2, C is 0.10% to 0.30% by mass, Si is 0.20% to 2.00%, Mn is 0.30% to 2.50%, Cr is 0.20% to 2.00%, and Mo is 0.01%. It can be seen that the steel wire containing 0.30% or less and substantially composed of a bainite structure has high strength, high tensile strength after welding, and small decrease in strength before and after welding (weldability) The judgment is ○). Specifically, the tensile strength after welding satisfies 1300 MPa or more and the TS reduction rate satisfies 5.5% or less. Some of the samples satisfy the tensile strength after welding of 1350 MPa or more and 1400 MPa or more, and the samples satisfy the TS decrease rate of 5% or less, 4.5% or less, and further 4% or less. The reason for this is considered that martensite is not substantially generated at the time of welding, and there is substantially no burning crack, and it is difficult to break even if it has a welded portion.

また、C,Si,Mn,Cr,Moを上述の特定の範囲で含有し、実質的にベイナイト組織から構成される鋼線は、伸線加工が施されることで、高強度であることが分かる。具体的には、TS(50%)が1400MPa以上、更に1500MPa以上、なかには1600MPa以上を満たす試料がある。このことから、C,Si,Mn,Cr,Moを上述の特定の範囲で含有する鋼に、特定の条件で熱処理を施した後、更に伸線加工といった塑性加工を施すことで、加工硬化による強度向上効果をより大きく得ることができるといえる。つまり、C,Si,Mn,Cr,Moを上述の特定の範囲で含有し、実質的にベイナイト組織から構成される鋼線は、特に伸線加工を経たもの(代表的には伸線材)とすると、溶接を良好に行える上に、強度により優れるといえる。   In addition, the steel wire that contains C, Si, Mn, Cr, Mo in the specific range described above and is substantially composed of a bainite structure may be high strength by being drawn. I understand. Specifically, there is a sample satisfying TS (50%) of 1400 MPa or more, further 1500 MPa or more, and in particular 1600 MPa or more. From this, steel containing C, Si, Mn, Cr, and Mo in the above specified range is subjected to heat treatment under specific conditions, and then subjected to plastic working such as wire drawing, resulting in work hardening. It can be said that the strength improvement effect can be obtained more greatly. In other words, steel wires that contain C, Si, Mn, Cr, Mo in the specific range described above and are substantially composed of a bainite structure are those that have undergone wire drawing processing (typically wire drawing materials). Then, it can be said that it can be welded well and is superior in strength.

なお、上述の溶接後の組織観察について、マルテンサイトの生成量が少なかった試料(評価が○の試料)は、実質的にベイナイト組織から構成されていた。このことから、溶接前後において組織が実質的に維持されている(ベイナイト組織のままである)といえる。このように溶接前後において組織が実質的に変化しないことから、ベイナイト組織自体の強度を維持でき、溶接後においても高い強度を維持していたと考えられる。   In the above-described observation of the structure after welding, the sample in which the amount of martensite produced (the sample with an evaluation of ○) was substantially composed of a bainite structure. From this, it can be said that the structure is substantially maintained before and after welding (the bainite structure is maintained). Thus, since the structure does not substantially change before and after welding, the strength of the bainite structure itself can be maintained, and it is considered that high strength was maintained even after welding.

更に、一般に塑性加工性に劣るベイナイト組織から構成されていても、上述のように特定の熱処理を行って組織の制御を行うことで、加工度(ここでは総伸線加工度)が50%以上といった加工を良好に行えることが分かる。なお、加工後の組織も、ベイナイト組織であることを確認している。   Furthermore, even if it is composed of a bainite structure that is generally inferior in plastic workability, the degree of workability (here, the total wire drawing work degree) is 50% or more by controlling the structure by performing a specific heat treatment as described above. It can be seen that such processing can be performed satisfactorily. In addition, it has confirmed that the structure | tissue after a process is also a bainite structure.

一方、添加元素が上述の特定の範囲外である場合(多過ぎる場合)、溶接時にマルテンサイトを形成し易いことが分かる。このことから、添加元素の増加は、強度の向上に効果があるものの、溶接を良好に行えないといえる(溶接性の判定が×である)。   On the other hand, when the additive element is outside the above specific range (too much), it can be seen that martensite is easily formed during welding. From this, it can be said that the increase of the additive element is effective in improving the strength, but the welding cannot be performed well (the weldability is judged as x).

以上説明したように、試験例1から、C,Si,Mn,Cr,Moを上述の特定の範囲で含有し、実質的にベイナイト組織から構成される鋼線は、溶接を良好に行える上に、溶接後の強度にも優れることが確認された。また、特定の熱処理を施してベイナイト化を行うことで、加工性にも優れる上に、加工硬化による強度向上効果が大きいことが確認された。なお、この加工硬化率は、ピアノ線B種と同等以上であることも確認している。   As described above, from Test Example 1, the steel wire containing C, Si, Mn, Cr, and Mo in the specific range described above and substantially composed of a bainite structure can be welded satisfactorily. It was confirmed that the strength after welding was also excellent. Moreover, it was confirmed that by performing a bainite process by performing a specific heat treatment, the workability is excellent and the strength improvement effect by work hardening is large. It has also been confirmed that this work hardening rate is equal to or higher than that of piano wire type B.

[試験例2]
アスペクト比(長径×短径比)が異なる異形線を作製し、試験例1と同様にして、TS(50%)(MPa)、溶接後TS(MPa)、TS低下率(%)を調べた。
[Test Example 2]
Produced deformed wires with different aspect ratios (major axis x minor axis ratio), and examined TS (50%) (MPa), TS (MPa) after welding, and TS reduction rate (%) in the same manner as in Test Example 1. .

ここでは、試料No.1-2と同様の組成(質量%、C:0.20%、Si:1.00%、Mn:0.30%、Cr:1.00%、Mo:0.03%、Ceq:0.4992)の鋼を用意し、試験例1と同様にして熱間圧延線材(線径7mmφの丸線)を作製し、試験例1と同様の条件で熱処理を施した(オーステナイト化→ベイナイト化:420℃×20秒)。この熱処理材に伸線加工を施し(総伸線加工度:50%、線径4.95mmφの丸線)、更に、圧延加工を施して平角線を作製した。平角線とするための圧延加工では、加工の前後で断面積が殆ど変っていないため、見掛け上の断面減少率の変化は無い。平角線の幅を長径、厚さを短径とするとき、短径に対する長径の比(長径/短径)をアスペクト比とし、アスペクト比が表3の値となるように圧延条件を調整した。アスペクト比が大きいほど、伸線材に対してせん断方向(伸線材の軸方向に直交する方向)の加工歪みが加わったことを意味する。   Here, steel with the same composition as sample No. 1-2 (mass%, C: 0.20%, Si: 1.00%, Mn: 0.30%, Cr: 1.00%, Mo: 0.03%, Ceq: 0.4992) is prepared. Then, in the same manner as in Test Example 1, a hot-rolled wire (round wire with a wire diameter of 7 mmφ) was produced, and heat treatment was performed under the same conditions as in Test Example 1 (austenite → bainite: 420 ° C. × 20 seconds). . The heat treated material was subjected to wire drawing (total wire drawing degree: 50%, round wire with a wire diameter of 4.95 mmφ), and further subjected to rolling to produce a rectangular wire. In the rolling process for forming a rectangular wire, the cross-sectional area is hardly changed before and after the process, and thus the apparent cross-sectional reduction rate does not change. When the width of the flat wire was taken as the major axis and the thickness as the minor axis, the ratio of the major axis to the minor axis (major axis / minor axis) was taken as the aspect ratio, and the rolling conditions were adjusted so that the aspect ratio was the value shown in Table 3. The larger the aspect ratio, the more the processing strain in the shear direction (the direction perpendicular to the axial direction of the wire drawing material) is applied to the wire drawing material.

作製した平角線の引張強さ(TS(50%)、MPa)を表3に示す。また、作製した平角線の端面を突き合わせて溶接して、溶接部分を有する部材を作製し、得られた部材の引張強さ(溶接後TS、MPa)を調べた。その結果も表3に示す。いずれの引張強さも、試験例1と同様にして求めた。更に、試験例1と同様にして求めたTS低下率(%)も表3に示す。   Table 3 shows the tensile strength (TS (50%), MPa) of the prepared rectangular wire. Further, the end faces of the produced rectangular wires were butted and welded to produce a member having a welded portion, and the tensile strength (TS, MPa after welding) of the obtained member was examined. The results are also shown in Table 3. Each tensile strength was determined in the same manner as in Test Example 1. Further, Table 3 also shows the TS reduction rate (%) obtained in the same manner as in Test Example 1.

Figure 2014098177
Figure 2014098177

表2の試料No.1-2と、表3の試料No.2-1とを比較することで、伸線加工に加えて、更に、せん断方向に加工歪みが加えられる加工(ここでは平角線を形成するための圧延加工)を施すことで、加工後の強度を更に高められることが分かる。また、溶接後の強度の低下も更に抑制できることが分かる。特に、アスペクト比を大きくすることで、加工後の強度を非常に高められることが分かる。ここでは、加工後の引張強さが1700MPa以上、更に1800MPa以上、更には2000MPa以上を満たす試料が得られた。また、表3に示すように加工後の引張強度が高い上に、溶接後の強度の低下も小さく、溶接後においても高い強度を維持していることが分かる。ここでは、溶接後TSが1650MPa以上、更に1750MPa以上、更には1900MPa以上を満たし、TS低下率が4.0%以下、更に3.0%以下を満たす試料が得られた。このことから、せん断方向に加工歪みが加えられる加工を行うことで、加工硬化による強度向上効果をより大きく得られるといえる。なお、圧延加工後の各試料について組織観察を試験例1と同様にして行ったところ、実質的にベイナイト組織から構成されていることを確認している。   By comparing sample No. 1-2 in Table 2 and sample No. 2-1 in Table 3, in addition to wire drawing, further processing strain is applied in the shear direction (here, rectangular wire) It can be seen that the strength after the processing can be further increased by performing the rolling process for forming the. Moreover, it turns out that the fall of the strength after welding can further be suppressed. In particular, it can be seen that the strength after processing can be greatly increased by increasing the aspect ratio. Here, a sample having a tensile strength after processing of 1700 MPa or more, further 1800 MPa or more, and further 2000 MPa or more was obtained. In addition, as shown in Table 3, it can be seen that the tensile strength after processing is high, the decrease in strength after welding is small, and high strength is maintained even after welding. Here, a sample was obtained in which TS after welding satisfied 1650 MPa or more, further 1750 MPa or more, further 1900 MPa or more, and TS decrease rate was 4.0% or less, and further 3.0% or less. From this fact, it can be said that the effect of improving the strength by work hardening can be obtained more greatly by performing the processing in which processing strain is applied in the shear direction. In addition, when the structure of each sample after rolling was observed in the same manner as in Test Example 1, it was confirmed that the sample was substantially composed of a bainite structure.

また、試験例2から、C,Si,Mn,Cr,Moを上述の特定の範囲で含有し、実質的にベイナイト組織から構成される鋼線は、アスペクト比が1.5以上、更に2以上といったアスペクト比が大きい異形線とすると、溶接を良好に行える上に、強度に更に優れることが確認された。   Further, from Test Example 2, the steel wire containing C, Si, Mn, Cr, and Mo in the above-described specific range and substantially composed of a bainite structure has an aspect ratio of 1.5 or more, and further 2 or more. It was confirmed that, when the deformed wire has a large ratio, the welding can be performed well and the strength is further improved.

なお、本発明は、上述した実施の形態の限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、線径、断面形状などを変更することができる。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, a wire diameter, a cross-sectional shape, etc. can be changed.

本発明の鋼線は、各種の部材、例えば、自動車部品(例えば、シートフレームなど)、家庭用電気製品の部品などに好適に利用することができる。また、本発明の鋼線は、溶接することで環状体を形成可能であるため、従来、打ち抜き加工で製造されていた各種の環状部材の素材に利用することで、材料歩留りの向上に寄与することができると期待される。本発明の鋼線の製造方法は、上記本発明の鋼線の製造に好適に利用することができる。   The steel wire of the present invention can be suitably used for various members, for example, automobile parts (for example, a seat frame, etc.), parts for household electric products, and the like. In addition, since the steel wire of the present invention can form an annular body by welding, it contributes to the improvement of the material yield by using it as a material for various annular members that have been conventionally manufactured by punching. Expected to be able to. The manufacturing method of the steel wire of this invention can be utilized suitably for manufacture of the steel wire of the said invention.

10,20 鋼線   10,20 steel wire

Claims (6)

質量%で、
Cを0.10%以上0.30%以下、
Siを0.20%以上2.00%以下、
Mnを0.30%以上2.50%以下、
Crを0.20%以上2.00%以下、
Moを0.01%以上0.30%以下含有し、残部がFe及び不可避不純物から構成され、
ベイナイト組織が95体積%以上である鋼線。
% By mass
C from 0.10% to 0.30%,
Si is 0.20% or more and 2.00% or less,
Mn 0.30% to 2.50%,
Cr is 0.20% or more and 2.00% or less,
Mo is contained 0.01% or more and 0.30% or less, the balance is composed of Fe and inevitable impurities,
Steel wire with a bainite structure of 95% by volume or more.
前記鋼線の短径に対する長径の比が1.5以上15以下の異形線である請求項1に記載の鋼線。   2. The steel wire according to claim 1, wherein the steel wire is a deformed wire having a ratio of a major axis to a minor axis of 1.5 to 15 inclusive. 前記鋼線の横断面積が30mm2以下である請求項1又は2に記載の鋼線。 The steel wire according to claim 1 or 2, wherein a cross-sectional area of the steel wire is 30 mm 2 or less. 前記鋼線同士を溶接したとき、溶接された線材の引張強さが1300MPa以上である請求項1〜3のいずれか1項に記載の鋼線。   The steel wire according to any one of claims 1 to 3, wherein when the steel wires are welded to each other, the tensile strength of the welded wires is 1300 MPa or more. 質量%で、Cを0.10%以上0.30%以下、Siを0.20%以上2.00%以下、Mnを0.30%以上2.50%以下、Crを0.20%以上2.00%以下、Moを0.01%以上0.30%以下含有し、残部がFe及び不可避不純物から構成された熱間圧延材を準備する準備工程と、
前記熱間圧延材に熱処理を施して、ベイナイト組織が95体積%以上である熱処理材を得る熱処理工程と、
前記熱処理材に伸線加工を施し、伸線材を得る伸線工程とを具え、
前記熱処理工程では、温度を850℃以上1100℃以下、保持時間を10秒以上10分以下としてオーステナイト化を行った後、恒温変態温度を400℃以上500℃以下、保持時間を10秒以上10分以下としてベイナイト組織を形成する鋼線の製造方法。
Containing 0.10% to 0.30% C, Si 0.20% to 2.00%, Mn 0.30% to 2.50%, Cr 0.20% to 2.00%, Mo 0.01% to 0.30% by mass% A preparatory step of preparing a hot rolled material in which the balance is composed of Fe and inevitable impurities;
A heat treatment step of performing a heat treatment on the hot-rolled material to obtain a heat-treated material having a bainite structure of 95% by volume or more;
A wire drawing step of drawing the heat treatment material to obtain a wire drawing material,
In the heat treatment step, after austenitizing with a temperature of 850 ° C. to 1100 ° C. and a holding time of 10 seconds to 10 minutes, the isothermal transformation temperature is 400 ° C. to 500 ° C., and the holding time is 10 seconds to 10 minutes. The manufacturing method of the steel wire which forms a bainite structure as follows.
前記伸線加工は、総伸線加工度を50%以上とし、
前記伸線材のせん断方向に加工歪みを加える塑性加工を前記伸線材に施し、短径に対する長径の比が1.5以上15以下の異形線を得る工程を具える請求項5に記載の鋼線の製造方法。
The wire drawing process has a total wire drawing degree of 50% or more,
6. The production of a steel wire according to claim 5, further comprising a step of subjecting the wire drawing material to plastic working that applies processing strain in a shear direction of the wire drawing material to obtain a deformed wire having a ratio of a major axis to a minor axis of 1.5 to 15. Method.
JP2012249584A 2012-11-13 2012-11-13 Steel wire and method for manufacturing steel wire Active JP6006620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012249584A JP6006620B2 (en) 2012-11-13 2012-11-13 Steel wire and method for manufacturing steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012249584A JP6006620B2 (en) 2012-11-13 2012-11-13 Steel wire and method for manufacturing steel wire

Publications (2)

Publication Number Publication Date
JP2014098177A true JP2014098177A (en) 2014-05-29
JP6006620B2 JP6006620B2 (en) 2016-10-12

Family

ID=50940418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012249584A Active JP6006620B2 (en) 2012-11-13 2012-11-13 Steel wire and method for manufacturing steel wire

Country Status (1)

Country Link
JP (1) JP6006620B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834964B (en) * 2017-02-17 2018-07-27 武汉科技大学 A kind of Low-carbon High Strength nanoscale containing Cr bainitic steel and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544591A (en) * 1979-07-09 1980-03-28 Nippon Steel Corp Production of high tensile hot rolled wire material and steel bar of superior weldability and workability
JPS57140852A (en) * 1981-02-24 1982-08-31 Nippon Steel Corp High carbon steel wire rod with superior cold workability
JPH09170018A (en) * 1995-12-16 1997-06-30 Daido Steel Co Ltd Production of washer with high strength and high toughness
JPH09279304A (en) * 1996-04-09 1997-10-28 Sumitomo Electric Ind Ltd High strength steel wire with weld zone and its production
JPH10280036A (en) * 1997-04-04 1998-10-20 Kobe Steel Ltd Wire rod for high strength bolt excellent in strength and ductility and its production
JP2002097547A (en) * 2000-09-20 2002-04-02 Nkk Bars & Shapes Co Ltd Wire rod for spring superior in weldability and workability, and steel wire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544591A (en) * 1979-07-09 1980-03-28 Nippon Steel Corp Production of high tensile hot rolled wire material and steel bar of superior weldability and workability
JPS57140852A (en) * 1981-02-24 1982-08-31 Nippon Steel Corp High carbon steel wire rod with superior cold workability
JPH09170018A (en) * 1995-12-16 1997-06-30 Daido Steel Co Ltd Production of washer with high strength and high toughness
JPH09279304A (en) * 1996-04-09 1997-10-28 Sumitomo Electric Ind Ltd High strength steel wire with weld zone and its production
JPH10280036A (en) * 1997-04-04 1998-10-20 Kobe Steel Ltd Wire rod for high strength bolt excellent in strength and ductility and its production
JP2002097547A (en) * 2000-09-20 2002-04-02 Nkk Bars & Shapes Co Ltd Wire rod for spring superior in weldability and workability, and steel wire

Also Published As

Publication number Publication date
JP6006620B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
JP5787492B2 (en) Steel pipe manufacturing method
RU2502820C1 (en) Plate steel characterised by low ratio between yield point and ultimate strength, high strength and high uniform relative elongation, and method for its manufacture
JP4435954B2 (en) Bar wire for cold forging and its manufacturing method
JP6875916B2 (en) High-strength steel plate and its manufacturing method
JP2013076155A (en) Trip-type two-phase martensitic steel and ultrahigh-strength-steel processed article obtained therefrom
JP2009197327A (en) Hollow member and method for production thereof
JPWO2013031640A1 (en) Non-tempered machine part wire, non-tempered machine part steel wire, non-tempered machine part and manufacturing method thereof
JP2021509438A (en) Hot-rolled steel sheets, steel pipes, members with excellent impact resistance and their manufacturing methods
JP5618916B2 (en) Machine structural steel for cold working, method for producing the same, and machine structural parts
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6065120B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2016003395A (en) Steel for surface treatment machine component having excellent properties, component of the steel and manufacturing method therefor
JPWO2015189978A1 (en) Steel for cold forging
WO2015004902A1 (en) High-carbon hot-rolled steel sheet and production method for same
JP2015014031A (en) Steel for bolt, bolt and production methods for the steel and bolt
JP2016033236A (en) High strength hot rolled steel sheet excellent in strength-uniform elongation balance and production method thereof
JP2020125538A (en) Steel for cold working machine structures, and method for producing same
JP2015017283A (en) High carbon hot-rolled steel sheet excellent in hardenability and workability, and method for manufacturing the same
WO2013161026A1 (en) Pearlite rail, flash butt welding method for pearlite rail, and method for manufacturing pearlite rail
JP2011246784A (en) Rolled non-heat treated steel bar having excellent strength and toughness and method for producing the same
JP5687945B2 (en) Induction hardening steel excellent in machinability and high temperature strength, and manufacturing method thereof
JP2017122270A (en) Steel for cold-worked component
JP2008095156A (en) Method for manufacturing hollow stabilizer with excellent delayed fracture resistance
JP2012126974A (en) High strength steel artifact superior in notch fatigue strength, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160909

R150 Certificate of patent or registration of utility model

Ref document number: 6006620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250