JP2012126974A - High strength steel artifact superior in notch fatigue strength, and manufacturing method therefor - Google Patents

High strength steel artifact superior in notch fatigue strength, and manufacturing method therefor Download PDF

Info

Publication number
JP2012126974A
JP2012126974A JP2010280858A JP2010280858A JP2012126974A JP 2012126974 A JP2012126974 A JP 2012126974A JP 2010280858 A JP2010280858 A JP 2010280858A JP 2010280858 A JP2010280858 A JP 2010280858A JP 2012126974 A JP2012126974 A JP 2012126974A
Authority
JP
Japan
Prior art keywords
steel
strength
less
fatigue strength
notch fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010280858A
Other languages
Japanese (ja)
Other versions
JP5711955B2 (en
Inventor
Koichi Sugimoto
公一 杉本
Junya Kobayashi
純也 小林
Daiki Ina
大輝 伊奈
Teruhisa Takahashi
輝久 高橋
Goro Arai
五朗 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Usui Kokusai Sangyo Kaisha Ltd
Nomura Unison Co Ltd
Original Assignee
Shinshu University NUC
Usui Kokusai Sangyo Kaisha Ltd
Nomura Unison Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Usui Kokusai Sangyo Kaisha Ltd, Nomura Unison Co Ltd filed Critical Shinshu University NUC
Priority to JP2010280858A priority Critical patent/JP5711955B2/en
Publication of JP2012126974A publication Critical patent/JP2012126974A/en
Application granted granted Critical
Publication of JP5711955B2 publication Critical patent/JP5711955B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel artifact consisting of ultrahigh-strength low-alloy TRIP steel (TBF steel) with high notch fatigue strength, manufactured by controlling a component addition amount of chemical composition and heat treatment condition without depending on a forging temperature, a forging processing rate and the like.SOLUTION: The high strength steel artifact superior in notch fatigue strength includes 0.15 to 0.25% C, ≤2.5% Si (not including 0%), 0.5 to 2% Mn, 0.5 to 1.5% Cr, ≤0.5% Mo, ≤0.1% Nb, and remainder being Fe and unescapable impurities, and has a carbon equivalent (Ceq) of 0.65% or larger and less than 0.75%, which is determined by following formula. Moreover, in the metal structure of the high strength steel artifact, a mother phase includes not less than 65% of a Russ-like bainitic ferrite by volume rate to all the structure, and 5% or less in total of polygonal ferrite and granular bainitic ferrite by volume rate to all the structure, and a second phase includes 5 to 20% of remained austenite by volume rate to all the structure and 10% or less of martensite by volume rate to all the structure. The carbon equivalent is determined by the formula: Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14.

Description

本発明は、切欠き疲労強度に優れた高強度鋼製加工品及びその製造方法に係り、より詳しくは、金属組織が主にラス状ベイニティックフェライト、残留オーステナイト、並びにマルテンサイトからなり、高い降伏強度と引張り強度を有する高焼入性の超高強度低合金TRIP鋼(TBF鋼)からなる切欠き疲労強度に優れた高強度鋼製加工品、高強度鍛造品、高圧燃料配管及びそれらの製造方法に関する。   The present invention relates to a high-strength steel processed product excellent in notch fatigue strength and a method for producing the same. More specifically, the metal structure is mainly composed of lath-shaped bainitic ferrite, retained austenite, and martensite, and is high. High-strength processed products, high-strength forged products, high-pressure fuel pipes, and their high-strength products with excellent notch fatigue strength made of ultra-high strength low-alloy TRIP steel (TBF steel) with high yield strength and tensile strength It relates to a manufacturing method.

なお、本発明の「高強度鍛造品」としては、例えば、ニアネットシェイプ鍛造品等が代表的に挙げられ、一次鍛造品のみならず、一次鍛造品を更に鍛造(冷間、温間鍛造等)して得られる二次鍛造品、三次鍛造品等の精密鍛造品、更に当該鍛造品を複雑な形状に加工して得られる最終製品、ディーゼルエンジンに搭載される蓄圧式燃料噴射システム用コモンレール、燃料噴射管等も全て包含される。   The “high-strength forged product” of the present invention typically includes, for example, a near net shape forged product, and further forges a primary forged product as well as a primary forged product (cold, warm forged, etc.) ) Precision forged products such as secondary forged products and tertiary forged products obtained by further processing, final products obtained by processing the forged products into complex shapes, common rails for accumulator fuel injection systems mounted on diesel engines, All fuel injection pipes and the like are also included.

自動車、電機、機械等の産業用技術分野における鍛造品は一般に、加熱温度が異なる種々の鍛造(加工)を行った後、焼入れ・焼戻し等の調質処理(熱処理)をして製造されており、例えば自動車を例に挙げると、クランクシャフト、コンロッド、トランスミッションギア、ディーゼルエンジンに搭載される蓄圧式燃料噴射システム用コモンレール等には、熱間鍛造品(加圧温度1100〜1300℃)や温間鍛造品(加圧温度600〜800℃)が、ピニオンギア、歯車、ステアリングシャフト、バルブリフター等には、冷間鍛造品(常温で加圧)がそれぞれ汎用されている。   Forged products in industrial technical fields such as automobiles, electrical machinery, and machines are generally manufactured by performing various forgings (processing) at different heating temperatures and then tempering treatments (heat treatments) such as quenching and tempering. For example, when an automobile is taken as an example, a hot forged product (pressurizing temperature 1100 to 1300 ° C.) or warm is used for a common shaft for a pressure accumulation fuel injection system mounted on a crankshaft, a connecting rod, a transmission gear, a diesel engine, etc. Forged products (pressurizing temperature 600 to 800 ° C.) are widely used for pinion gears, gears, steering shafts, valve lifters and the like, and cold forged products (pressurized at room temperature) are widely used.

近年、自動車の車体の軽量化と衝突安全性を確保するため、残留オーステナイトの変態誘起塑性を伴う成形可能な超高強度低合金TRIP鋼(TBF鋼)の適用が検討されている。
例えば、特許文献1には、概ねフェライトとオーステナイトの2相域温度にて焼鈍と鍛造の両方を行った後、所定温度でオーステンパ処理するという独自の熱処理を採用することによって、引張強度が600MPa級以上の高強度域において、伸び及び強度−絞り特性のバランスに優れた高強度鍛造品の製造方法に関する技術が、又、特許文献2には、焼戻しベイナイト又はマルテンサイトを作り分けた後、概ねフェライトとオーステナイトの2相域温度で焼鈍と鍛造の両方を行い、その後、所定温度でオーステンパ処理する方法を採用することにより、伸び、及び、強度−絞り特性のバランスに優れた高強度鍛造品を製造し得る技術が、更に、特許文献3には、2相域の温度範囲に加熱した後、該2相域で鍛造加工を行い、その後、規定のオーステンパ処理を施すことで、鍛造加工時の温度を低下できると共に、優れた伸びフランジ性と加工性を備えた高強度鍛造品を製造し得る技術が、開示されている。
In recent years, in order to ensure weight reduction and collision safety of automobile bodies, application of formable ultra-high strength low alloy TRIP steel (TBF steel) with transformation-induced plasticity of retained austenite has been studied.
For example, in Patent Document 1, the tensile strength is 600 MPa class by adopting a unique heat treatment in which both annealing and forging are performed at a two-phase region temperature of ferrite and austenite and then austempering is performed at a predetermined temperature. In the above-described high strength region, a technique related to a method for producing a high-strength forged product excellent in the balance between elongation and strength-drawing characteristics is disclosed in Patent Document 2, and after making tempered bainite or martensite separately, ferrite is generally used. A high-strength forged product with an excellent balance between elongation and strength-drawing characteristics is produced by adopting a method in which both annealing and forging are performed at a two-phase temperature of austenite and austenite, and then austempering is performed at a predetermined temperature. Further, in Patent Document 3, after heating to the temperature range of the two-phase region, forging is performed in the two-phase region, Sutenpa processing by the applied, it is possible to reduce the temperature at the time of forging, are able to produce with a workability and excellent stretch flangeability high strength forgings techniques are disclosed.

しかしながら、これらの方法で得られる鍛造品を製造する場合、以下に記載する問題が発生する可能性がある。
鍛造品は、その加工率に応じて発熱するため、鍛造時の部品温度が部位によって変化する場合がある。例えば、高温(Ac3点付近)で鍛造を行った場合には、加工率が高いと発熱量も大きくなり、オーステナイト同士の合体・成長が発生するため、熱処理後に粗大な残留オーステナイトが生成し、衝撃特性を劣化させることが考えられる(高温鍛造時の問題点)。一方、低温側(Ac1点付近)で鍛造を行った場合には、加工率が低いと十分な発熱量が確保できないので、不安定な残留オーステナイトが大量に生成し、熱処理後、破壊の起点となる硬質なマルテンサイトが生成して衝撃特性を劣化させることが考えられる(低温鍛造時の問題点)。従って、鍛造品の温度や加工率が異なると、部分的に粗大な残留オーステナイトや不安定なオーステナイトが発生し易く、鍛造品全体として安定かつ優れた耐衝撃特性を得ることが難しい。
However, when manufacturing a forged product obtained by these methods, the problems described below may occur.
Since the forged product generates heat according to its processing rate, the part temperature during forging may vary depending on the part. For example, when forging is performed at a high temperature (near Ac3 point), if the processing rate is high, the calorific value increases, and coalescence and growth of austenite occur. Therefore, coarse residual austenite is generated after heat treatment, It is conceivable to deteriorate the characteristics (problems at high temperature forging). On the other hand, when forging is performed on the low temperature side (near Ac1 point), since a sufficient calorific value cannot be secured if the processing rate is low, a large amount of unstable retained austenite is generated. It is conceivable that hard martensite is generated and the impact characteristics are deteriorated (problems at low temperature forging). Therefore, if the temperature and the processing rate of the forged product are different, partially coarse retained austenite and unstable austenite are likely to be generated, and it is difficult to obtain stable and excellent impact resistance characteristics as a whole forged product.

一方、特許文献4には、熱延鋼材作製時にNb、Ti、Vの内の一種類あるいは2種類以上の添加、及び適量のAl添加を行い、概ねフェライトとオーステナイトの2相域温度で焼鈍と鍛造の両方を行った後、所定温度でオーステンパ処理するという熱処理を採用することにより、鍛造温度、及び鍛造加工率に依らず伸び、及び強度−絞り特性のバランスに優れ、引張強度も600MPa以上の、耐衝撃特性に優れた鋼製高強度加工品、高圧燃料配管(特に、高強度かつ耐衝撃特性に優れた、ディーゼルエンジン用燃料噴射管及びディーゼルエンジン用コモンレール等)を製造し得る技術が開示されている。
この特許文献4に開示されている発明は、前記特許文献1〜3に開示されている技術では得られない格別の効果を奏する点で優れ、その超高強度低合金TRIP鋼(TBF鋼)は自動車の車体の軽量化と衝突安全性の確保により大きく寄与し得ることが期待される。しかしながら、この超高強度低合金TRIP鋼(TBF鋼)は、微粒状ベイナイトフェライトとポリゴナルフェライトが、マトリックスの中で、ベイナイトフェライトのラス構造と共に共存することから、更なる高い降伏強度と引張強度を達成するための完全なTBF鋼を得るためには、高い焼入れ性が必要である。
又、特許文献5に開示されている超高強度低合金TRIP鋼(TBF鋼)は優れた冷間鍛造性に加え、高い疲労強度を有するため、ディーゼルエンジンに搭載される蓄圧式燃料噴射システム用コモンレール、燃料噴射管等の各種自動車部品への適用が期待できる。しかし、これを可能にするには、TBF鋼の焼入れ性を高めることに加え、切欠き疲労強度を改善することが必要である。しかしながら、この高焼入れ性、高切欠き疲労強度を有するTBF鋼は未開発の状況にある。
On the other hand, in Patent Document 4, one or more of Nb, Ti, and V are added at the time of hot-rolled steel material production, and an appropriate amount of Al is added, and annealing is generally performed at a two-phase region temperature of ferrite and austenite. By adopting a heat treatment of austempering at a predetermined temperature after performing both forging, it is excellent in the balance of elongation and strength-drawing characteristics regardless of the forging temperature and the forging rate, and the tensile strength is 600 MPa or more. Disclosed is a technology capable of manufacturing high-strength steel products with excellent impact resistance and high-pressure fuel piping (particularly fuel injection pipes for diesel engines and common rails for diesel engines with high strength and excellent impact resistance). Has been.
The invention disclosed in Patent Document 4 is excellent in that it has a special effect that cannot be obtained by the techniques disclosed in Patent Documents 1 to 3, and its ultra-high strength low alloy TRIP steel (TBF steel) is It is expected to contribute greatly by reducing the weight of automobile bodies and ensuring collision safety. However, this ultra-high strength low alloy TRIP steel (TBF steel) has a higher yield strength and tensile strength because fine bainite ferrite and polygonal ferrite coexist in the matrix together with the lath structure of bainite ferrite. In order to obtain a complete TBF steel for achieving the above, high hardenability is required.
In addition, the ultra-high strength low alloy TRIP steel (TBF steel) disclosed in Patent Document 5 has high fatigue strength in addition to excellent cold forgeability, so it is used for an accumulator fuel injection system mounted on a diesel engine. Application to various automobile parts such as common rails and fuel injection pipes can be expected. However, in order to make this possible, in addition to improving the hardenability of TBF steel, it is necessary to improve notch fatigue strength. However, the TBF steel having this high hardenability and high notch fatigue strength is in an undeveloped situation.

特開2004−292876号公報Japanese Patent Laid-Open No. 2004-292876 特開2005−120397号公報JP 2005-120397 A 特開2004−285430号公報JP 2004-285430 A 特開2007−231353号公報JP 2007-231353 A 特開2010−106353号公報JP 2010-106353 A

本発明は、上記現状に鑑みてなされたもので、鍛造温度や鍛造加工率等に依らず、化学組成の成分添加量及び熱処理条件を制御することによって、高切欠き疲労強度を有する超高強度低合金TRIP鋼(TBF鋼)からなる高強度鋼製加工品及びその製造方法を提供することを目的とするものである。   The present invention has been made in view of the above-described situation, and by controlling the component addition amount of chemical composition and heat treatment conditions regardless of the forging temperature, the forging rate, etc., ultra-high strength having high notch fatigue strength An object of the present invention is to provide a high-strength steel processed product made of low-alloy TRIP steel (TBF steel) and a method for manufacturing the same.

本発明者らは、鍛造温度や鍛造加工率等に依らず、化学組成の成分添加量及び熱処理条件を制御することによって高切欠き疲労強度を有する超高強度低合金TRIP鋼(TBF鋼)製の高強度鋼製加工品の実現と、これらの製造方法を確立すべく、ラス状ベイニティックフェライト、残留オーステナイト、並びにマルテンサイトのマトリックス構造をもつ超高強度低合金TRIP鋼(TBF鋼)を試作し、その切欠き疲労特性を調査した。
その結果、C−Si−Mn系TBF鋼において、Cr、Mo、Nb及びBを適量含み、かつ、炭素当量(Ceq)を適正値に設定することにより、母相組織が主にラス状ベイニティックフェライトからなり、かつ少量のポリゴナルフェライト及びグラニュラーベイニティックフェライトを含み、第2相組織が微細な残留オーステナイト、マルテンサイトからなる微細構造の金属組織を有する、切欠き疲労強度の優れた超高強度低合金TRIP鋼(TBF鋼)が得られることを見出した。
The present inventors made ultra-high strength low alloy TRIP steel (TBF steel) having high notch fatigue strength by controlling the component addition amount of chemical composition and heat treatment conditions regardless of forging temperature, forging rate, etc. In order to establish a high-strength steel processed product and to establish these manufacturing methods, ultra-high-strength low-alloy TRIP steel (TBF steel) having a matrix structure of lath bainitic ferrite, retained austenite, and martensite We made a prototype and investigated its notch fatigue characteristics.
As a result, in the C—Si—Mn-based TBF steel, the matrix structure is mainly composed of lath-shaped baini by containing appropriate amounts of Cr, Mo, Nb and B and setting the carbon equivalent (Ceq) to an appropriate value. Superb notch fatigue strength, consisting of tick ferrite and containing a small amount of polygonal ferrite and granular bainitic ferrite, and the second phase structure has fine microstructure of retained austenite and martensite. It has been found that high strength low alloy TRIP steel (TBF steel) can be obtained.

すなわち、本発明に係る切欠き疲労強度に優れた高強度鋼製加工品は、C:0.15〜0.25%、Si:2.5%以下(0%を含まない)、Mn:0.5〜2%、Cr:0.5〜1.5%、Mo:0.5%以下、Nb:0.1%以下を含有し、かつ、下記式1により規定される炭素当量(Ceq)が0.65%以上0.75%未満で、残部Fe及び不可避的不純物からなり、さらに金属組織は、母相組織がラス状ベイニティックフェライトを全組織に対して体積率で65%以上と、ポリゴナルフェライト及びグラニュラーベイニティックフェライトを合計で全組織に対して体積率で5%以下含有し、第2相組織が残留オーステナイトを全組織に対して体積率で5〜20%と、マルテンサイトを全組織に対して体積率で10%以下含有することを特徴とするものである。   That is, the processed product made of high-strength steel excellent in notch fatigue strength according to the present invention is C: 0.15-0.25%, Si: 2.5% or less (excluding 0%), Mn: 0 0.5-2%, Cr: 0.5-1.5%, Mo: 0.5% or less, Nb: 0.1% or less, and a carbon equivalent (Ceq) defined by the following formula 1 Is 0.65% or more and less than 0.75%, and consists of the balance Fe and unavoidable impurities, and the metal structure is composed of lath bainitic ferrite with a volume ratio of 65% or more with respect to the entire structure. In addition, the total amount of polygonal ferrite and granular bainitic ferrite is 5% or less by volume with respect to the entire structure, and the second phase structure contains residual austenite with a volume ratio of 5 to 20% with respect to the entire structure. Contain 10% or less of the site by volume ratio of the entire tissue The one in which the features.

[式1]
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
[Formula 1]
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14

前記切欠き疲労強度に優れた高強度鋼製加工品は、更に他の元素として、B:0.0025%以下を含んでいてもよい。   The high-strength steel processed product excellent in notch fatigue strength may further contain B: 0.0025% or less as another element.

又、前記高強度鋼製加工品としては、ニアネットシェイプ鍛造品等の一次鍛造品のみならず、一次鍛造品を更に鍛造(冷間、温間鍛造等)して得られる二次鍛造品、三次鍛造品等の精密鍛造品、更に当該鍛造品を複雑な形状に加工して得られる最終製品の他、ディーゼルエンジンに搭載される蓄圧式燃料噴射システム用コモンレール、燃料噴射管等の高圧燃料配管が挙げられる。   The high-strength steel processed product is not only a primary forged product such as a near net shape forged product, but also a secondary forged product obtained by further forging (cold, warm forging, etc.) the primary forged product, In addition to precision forged products such as tertiary forged products, and final products obtained by processing the forged products into complex shapes, high-pressure fuel pipes such as common rails for accumulator fuel injection systems and fuel injection pipes mounted on diesel engines Is mentioned.

本発明に係る切欠き疲労強度に優れた高強度鋼製加工品を製造する方法は、前記成分組成を満たす鋼素材を使用し、該鋼素材をAc3点以上の温度域で所定時間保持し、該温度域で鍛造加工を施した後、所定の平均冷却速度で300〜450℃(好ましくは325〜425℃)まで冷却し、該温度域で100〜2000秒保持する工程を含むことを特徴とするものである。   The method for producing a high-strength steel processed product excellent in notch fatigue strength according to the present invention uses a steel material that satisfies the above-mentioned composition, and holds the steel material for a predetermined time in a temperature range of Ac3 or higher, And after forging in the temperature range, cooling to 300 to 450 ° C. (preferably 325 to 425 ° C.) at a predetermined average cooling rate, and holding for 100 to 2000 seconds in the temperature range, To do.

又、本発明は、前記高圧燃料配管を製造する方法として、前記成分組成を満たす鋼素材を使用し、該鋼素材をAc3点以上の温度域で所定時間保持し、該温度域で鍛造加工を施した後、所定の平均冷却速度で300〜450℃(好ましくは325〜425℃)まで冷却し、該温度域で100〜2000秒保持する工程を経た後、常温まで冷却し、その後、ガンドリル加工法による管軸方向の穿孔加工、管軸方向に圧延する伸管加工、切断加工、端末加工、及び、機械加工を行うことを特徴とするものである。   In addition, the present invention uses a steel material satisfying the above component composition as a method for producing the high-pressure fuel pipe, holds the steel material in a temperature range of Ac3 point or higher for a predetermined time, and performs forging in the temperature range. After being applied, it is cooled to 300 to 450 ° C. (preferably 325 to 425 ° C.) at a predetermined average cooling rate, passed through a step of holding for 100 to 2000 seconds in the temperature range, then cooled to room temperature, and then gun drilled It is characterized by performing drilling in the tube axis direction by the method, tube drawing processing for rolling in the tube axis direction, cutting processing, terminal processing, and machining.

なお、本発明においては、前記Ac3点以上の温度域での保持時間を1秒以上、前記平均冷却速度を1℃/s以上とすることを好ましい熱処理条件とするものである。   In the present invention, the preferable heat treatment condition is that the holding time in the temperature range of the Ac3 point or higher is 1 second or longer and the average cooling rate is 1 ° C./s or higher.

本発明は、焼入れ性及び切欠き疲労強度の向上のためにCr、Mo、Nb及びBを適量含有し、炭素当量(Ceq)を適正値に設定した鋼素材を用い、所定の熱処理を採用することにより、母相組織が主にラス状ベイニティックフェライトからなり、かつ少量のポリゴナルフェライト及びグラニュラーベイニティックフェライトを含み、第2相組織が微細な残留オーステナイト、マルテンサイトからなる微細構造の金属組織を有する、切欠き疲労強度の優れた超高強度低合金TRIP鋼(TBF鋼)が得られ、これにより加熱温度や、加工率(鍛造加工率や圧延加工率等)等によらず、焼入れ性に優れた高切欠き疲労強度を有する高強度鋼製加工品を提供できる。   The present invention employs a predetermined heat treatment using a steel material containing an appropriate amount of Cr, Mo, Nb, and B and having a carbon equivalent (Ceq) set to an appropriate value in order to improve hardenability and notch fatigue strength. Thus, the parent phase structure is mainly composed of lath-shaped bainitic ferrite, and contains a small amount of polygonal ferrite and granular bainitic ferrite, and the second phase structure has a fine structure composed of fine retained austenite and martensite. An ultra-high strength low alloy TRIP steel (TBF steel) having a metal structure and excellent notch fatigue strength can be obtained, and regardless of heating temperature, processing rate (forging rate, rolling rate, etc.), etc. A high-strength steel processed product having high notch fatigue strength with excellent hardenability can be provided.

本発明の実施例1における、下記式2により規定される焼入れ性(Πf)の関数としての、引張強度(TS)、切欠き引張強度(TS)における変化を示す図である。In the first embodiment of the present invention and showing, as a function of the hardenability defined by the following equation 2 (? F i), tensile strength (TS), a change in the notch tensile strength (TS N). 同じく実施例1における焼入れ性(Πf)の関数としての、切欠き強度比(NSR=TS/TS)における変化を示す図である。FIG. 6 is a graph showing a change in notch strength ratio (NSR = TS N / TS) as a function of hardenability (Πf i ) in Example 1; 同じく実施例1における焼入れ性(Πf)の関数としての、平滑試験片及び切欠きを有する試験片の疲労限における変化を示す図である。FIG. 6 is a graph showing the change in the fatigue limit of a smooth test piece and a test piece having a notch as a function of hardenability (Πf i ) in Example 1; 同じく実施例1における焼入れ性(Πf)の関数と疲労限の切欠き感受性qの関係を示す図である。FIG. 6 is also a diagram showing the relationship between the hardenability (Πf i ) function and the notch sensitivity q of the fatigue limit in Example 1. 同じく実施例1における炭素当量(Ceq)の関数としての、疲労強度(FL)及び切欠き疲労強度(FL)における変化を示す図である。As a function of carbon equivalent (Ceq) also in the first embodiment, is a graph showing changes in the fatigue strength (FL) and notched fatigue strength (FL N). 同じく実施例1における鋼種No.5の供試鋼の金属組織(顕微鏡写真)を示す図で、(a)はラス状ヘイニティックフェライトのマトリックス構造体(緑の相)と残留オーステナイト(赤の相)、(b)はマルテンサイト(黄緑の相)と残留オーテナイト(黒い相)をそれぞれ示す。Similarly, the steel type No. 1 in Example 1 was used. 5 is a diagram showing a metallographic structure (micrograph) of the test steel of No. 5, wherein (a) is a matrix structure (green phase) and residual austenite (red phase) of lath-like haenitic ferrite, and (b) is martensite. (Yellow-green phase) and retained austenite (black phase) are shown.

[式2]
Πf=(1+0.64Si)×(1+4.10Mn)×(1+2.83P)×(1−0.62S)×(1+2.33Cr)×(1+0.52Ni)×(1+3.14Mo)×(1+0.27Cu)×(1+1.5(0.9−C))
ただし、最後の項はB含有鋼のみ有効である。
[Formula 2]
Πf i = (1 + 0.64Si) × (1 + 4.10Mn) × (1 + 2.83P) × (1−0.62S) × (1 + 2.33Cr) × (1 + 0.52Ni) × (1 + 3.14Mo) × (1 + 0. 27Cu) × (1 + 1.5 (0.9-C))
However, the last term is effective only for B-containing steel.

本発明において、前記式1により規定される炭素当量(Ceq)の値を、0.65%以上0.75%未満に限定したのは、0.65%未満では結晶粒の微細化を十分にはかることができず、他方、0.75%以上では、焼入れ性が過大となって、降伏応力と引張強さが過度に高くなるためである。   In the present invention, the value of the carbon equivalent (Ceq) defined by the above formula 1 is limited to 0.65% or more and less than 0.75%. On the other hand, at 0.75% or more, the hardenability becomes excessive, and the yield stress and the tensile strength become excessively high.

又、本発明において、特に切欠き疲労強度を改善するためにCr、Mo、Nbの含有量を前記の値に規定したのは、以下に記載する理由による。
即ち、Crは鋼の強化元素として有用であると共に、残留オーステナイト(γR)の安定化や所定量の確保に有効な元素であるのみならず、鋼の焼入れ性の向上にも有効な元素であるが、焼入れ性の向上効果を十分に発揮させるためにはCrを0.5〜1.5%含有させる必要がある。その理由は、Crの含有量が0.5%未満では、鋼の焼入れ性を十分に向上できず、他方、1.5%を超えると焼入れ性は高くなるが、残留オーステナイトの炭素濃度が不安定となるためである。
Moは、鋼の焼入れ性の向上に有効な元素であるが、その効果を十分に発揮させるためには0.5%以下含有させる必要がある。Nbは、鋼の微小構造を保ち耐衝撃性を高める作用があるが、その効果を十分に発揮させるためには0.1%以下含有させる必要がある。
In the present invention, the contents of Cr, Mo, and Nb are specified to the above values in order to improve the notch fatigue strength, for the reason described below.
That is, Cr is useful as a steel strengthening element and is an element effective not only for stabilizing retained austenite (γR) and securing a predetermined amount, but also for improving the hardenability of steel. However, in order to sufficiently exhibit the effect of improving hardenability, it is necessary to contain 0.5 to 1.5% of Cr. The reason is that if the Cr content is less than 0.5%, the hardenability of the steel cannot be improved sufficiently. On the other hand, if it exceeds 1.5%, the hardenability increases, but the carbon concentration of the retained austenite is low. This is because it becomes stable.
Mo is an element effective for improving the hardenability of steel, but it is necessary to contain 0.5% or less in order to fully exhibit the effect. Nb has the effect of maintaining the microstructure of the steel and improving the impact resistance, but it is necessary to contain it in an amount of 0.1% or less in order to fully exhibit the effect.

本発明において、前記切欠き疲労強度を改善するためには、その他の成分を下記の通り制御する必要がある。   In the present invention, in order to improve the notch fatigue strength, it is necessary to control other components as follows.

・C:0.15〜0.25%
Cは高強度を確保し、かつ、残留オーステナイトを確保するために必須の元素である。より詳しくは、オーステナイト中のCを確保し、室温でも安定した残留オーステナイトを残存させて、延性及び耐衝撃特性を高めるのに有効であるが、0.15%未満ではその効果が十分に得られず、他方、添加量を増すと残留オーステナイト量が増加して高い延性及び耐衝撃特性が得られる。しかし、0.25%を超えると、その効果が飽和するのみならず、中心偏析等による欠陥等が発生し、耐衝撃特性を劣化するため、上限を0.25%に限定した。
-C: 0.15-0.25%
C is an essential element for securing high strength and securing retained austenite. More specifically, it is effective to secure C in austenite and leave stable retained austenite even at room temperature to improve ductility and impact resistance, but if it is less than 0.15%, the effect is sufficiently obtained. On the other hand, when the addition amount is increased, the amount of retained austenite is increased and high ductility and impact resistance characteristics are obtained. However, if it exceeds 0.25%, not only the effect is saturated, but also defects due to center segregation and the like occur and impact resistance is deteriorated, so the upper limit was limited to 0.25%.

・Si:2.5%以下(0%を含まない)
Siは酸化物生成元素であるので、過剰に含まれると耐衝撃特性を劣化させるため添加量を2.5%以下とした。
・ Si: 2.5% or less (excluding 0%)
Since Si is an oxide-generating element, if it is excessively contained, the impact resistance is deteriorated, so the addition amount is set to 2.5% or less.

・Mn:0.5〜2%
Mnは、オーステナイトを安定化し、規定量の残留オーステナイトを得るために必要な元素である。この様な作用を有効に発揮させるためには、0.5%以上(好ましくは0.7%以上、より好ましくは1%以上)添加することが必要である。しかし、過剰に添加すると、鋳片割れが生じるなどの悪影響が出るので、2%以下とした。
Mn: 0.5-2%
Mn is an element necessary for stabilizing austenite and obtaining a specified amount of retained austenite. In order to effectively exhibit such an action, it is necessary to add 0.5% or more (preferably 0.7% or more, more preferably 1% or more). However, if excessively added, adverse effects such as slab cracking occur, so the content was made 2% or less.

・B:0.0025%以下
Bは、Cr、Mo等と同様に鋼の焼入れ性の向上に有効な元素であるが、残留オーステナイトの炭素濃度を低くしない効果がある。又、切欠き疲労強度を低下させずに焼入れ性を高め、コストを低く抑えるためには、0.0025%以下が好ましい。なお、Bは他の添加成分と異なり、結晶粒内に入らず粒界に析出するため、B添加のものは他の成分の添加のものより圧延等の加工性に優れている。
-B: 0.0025% or less B is an element effective for improving the hardenability of steel like Cr, Mo and the like, but has an effect of not reducing the carbon concentration of retained austenite. Further, 0.0025% or less is preferable in order to increase the hardenability without reducing the notch fatigue strength and to keep the cost low. Unlike other additive components, B does not enter the crystal grains and precipitates at the grain boundaries. Therefore, the additive with B is more excellent in workability such as rolling than the additive with the other components.

又、本発明において、金属組織を前記のように規定したのは、以下に記載する理由による。   In the present invention, the metal structure is defined as described above for the reasons described below.

・母相組織:ラス状ベイニティックフェライトが全組織に対して体積率で65%以上、ポリゴナルフェライト及びグラニュラーベイニティックフェライトを合計で全組織に対して体積率で5%以下
焼入れ性に優れた高強度鋼製加工品の切欠き疲労強度、耐衝撃特性及び耐内圧疲労特性を向上させるためには、ラス状ベイニティックフェライトの全組織に対する体積率を65%以上とする必要がある。なお、ポリゴナルフェライト及びグラニュラーベイニティックフェライトの全組織に対する体積率を合計で5%以下としたのは、5%を超えると靭性が低下するためである。
-Matrix structure: Lath-like bainitic ferrite is 65% or more in volume ratio with respect to the entire structure, and polygonal ferrite and granular bainitic ferrite in total are 5% or less in volume ratio with respect to the entire structure. In order to improve notch fatigue strength, impact resistance and internal pressure fatigue resistance of excellent high-strength steel products, the volume ratio of the lath bainitic ferrite to the entire structure must be 65% or more. . The total volume ratio of polygonal ferrite and granular bainitic ferrite was set to 5% or less because the toughness is reduced when it exceeds 5%.

・第2相組織:残留オーステナイトが全組織に対して体積率で5〜20%、マルテンサイトが全組織に対して体積率で10%以下
本発明の加工品は、母相組織が主にラス状ベイニティックフェライトからなり、かつ少量のポリゴナルフェライト及びグラニュラーベイニティックフェライトを含み、第2相組織が微細な残留オーステナイト、マルテンサイトからなる。このうち、残留オーステナイトは、全伸びの向上に有効であり、又、塑性誘起マルテンサイト変態による亀裂抵抗となることで耐衝撃特性の向上にも有効であるが、該残留オーステナイトの全組織に対する体積率が5%未満では、前記効果を十分に発揮できず、他方、20%を超えると残留オーステナイト中のC濃度が低くなり、不安定な残留オーステナイトとなるので、前記効果を十分に発揮することができないため、全組織に対する体積率を5〜20%とした。又、マルテンサイトは、母相との界面において破壊の起点となるため、全組織に対する体積率を10%以下とした。
Second phase structure: residual austenite is 5 to 20% in volume ratio with respect to the entire structure, martensite is 10% or less in volume ratio with respect to the entire structure. And a small amount of polygonal ferrite and granular bainitic ferrite, and the second phase structure is composed of fine retained austenite and martensite. Of these, retained austenite is effective in improving the total elongation, and also effective in improving the impact resistance by becoming crack resistance due to plastic-induced martensitic transformation. If the rate is less than 5%, the above effect cannot be sufficiently exhibited. On the other hand, if it exceeds 20%, the C concentration in the retained austenite becomes low and becomes unstable retained austenite. Therefore, the volume ratio with respect to the whole structure was set to 5 to 20%. In addition, since martensite becomes a starting point of fracture at the interface with the parent phase, the volume ratio with respect to the entire structure is set to 10% or less.

次に、本発明の高強度鋼製加工品の製造方法は、上記成分組成を満たす鋼材を使用し、該鋼材をAc3点以上の温度域で所定時間、好ましくは1秒以上保持し、該温度域で塑性加工を施した後、所定の平均冷却速度、好ましくは1℃/s以上の平均冷却速度で300〜450℃(325〜425℃)まで冷却し、該温度域で100〜2000秒(好ましくは1000秒)保持する工程を含むことを特徴とするものであるが、該熱処理条件を規定したのは以下に示す理由による。   Next, the method for producing a processed product made of high-strength steel according to the present invention uses a steel material that satisfies the above component composition, and holds the steel material in a temperature range of Ac3 point or higher for a predetermined time, preferably 1 second or more. After performing plastic working in the region, it is cooled to 300 to 450 ° C. (325 to 425 ° C.) at a predetermined average cooling rate, preferably an average cooling rate of 1 ° C./s or more, and 100 to 2000 seconds ( (Preferably 1000 seconds) is included. The reason why the heat treatment conditions are specified is as follows.

まず、鋼材をAc3点以上の温度域で1秒以上保持するのは、加熱温度を概ね2相域〜オーステナイト単相域温度とすることにより微細なラス状ベイニティックフェライト(母相組織)及び第2相組織を得ることができるからである。なお、加熱温度がAc3点未満では、微細なラス状ベイニティックフェライト及び第2相組織が満足に析出しないためである。又、上記温度域での保持時間としては、加熱手段に例えば高周波加熱を採用した場合には瞬時にAc3点以上の温度域に保持できるので、好ましくは1秒以上である。なお、その上限は特に限定されないが、生産性を考慮すると約30分程度である。   First, holding a steel material at a temperature range of Ac3 or higher for 1 second or more is achieved by setting the heating temperature to a temperature ranging from about two phases to an austenite single phase and fine lath bainitic ferrite (matrix structure) and This is because a second phase structure can be obtained. This is because if the heating temperature is less than the Ac3 point, fine lath bainitic ferrite and the second phase structure are not satisfactorily precipitated. The holding time in the above temperature range is preferably 1 second or longer because, for example, when high-frequency heating is employed as the heating means, the temperature can be held instantaneously in the temperature range of the Ac3 point or higher. The upper limit is not particularly limited, but is about 30 minutes considering productivity.

上記塑性加工としては、鍛造加工、押出加工、穿孔加工、又はロール成形による伸管加工が挙げられるが、これらの加工における条件は、特に限定されず、通常行われている方法で行えばよい。   Examples of the plastic working include forging, extruding, drilling, or pipe-drawing by roll forming. Conditions in these processes are not particularly limited, and may be performed by a commonly performed method.

本発明は、上記製造条件を採用して、ディーゼルエンジン用燃料噴射管又はディーゼルエンジン用コモンレールを製造する方法も規定する。
ディーゼルエンジン用燃料噴射管を製造する方法としては、前記成分組成を満たす鋼素材を使用し、1200℃以上の温度に加熱保持する工程、熱間押出加工を施す工程を経た後、該鋼素材をAc3点以上の温度域で所定時間、好ましくは1秒以上保持し、該温度域で温間押出加工を施した後、所定の平均冷却速度、好ましくは1℃/s以上の平均冷却速度で300〜450℃、(好ましくは325〜425℃)まで冷却し、該温度域で100〜2000秒(好ましくは500〜1500秒)保持する工程を経た後、常温まで冷却し、その後、ガンドリル加工法による管軸方向の穿孔加工、管軸方向に圧延する伸管加工、切断加工、端末加工、及び、曲げ加工を行う方法を採用することができる。
The present invention also defines a method for manufacturing a fuel injection pipe for a diesel engine or a common rail for a diesel engine by adopting the above manufacturing conditions.
As a method of manufacturing a fuel injection pipe for a diesel engine, a steel material satisfying the above component composition is used, and after passing through a step of heating and holding at a temperature of 1200 ° C. or higher, a step of performing a hot extrusion process, After holding at a temperature range of Ac3 or higher for a predetermined time, preferably 1 second or longer, and performing warm extrusion in the temperature range, 300 ° C at a predetermined average cooling rate, preferably an average cooling rate of 1 ° C / s or higher. After cooling to ~ 450 ° C (preferably 325 to 425 ° C) and holding in this temperature range for 100 to 2000 seconds (preferably 500 to 1500 seconds), it is cooled to room temperature, and then by a gun drilling method. It is possible to employ a method of performing drilling in the tube axis direction, tube drawing processing for rolling in the tube axis direction, cutting processing, terminal processing, and bending processing.

又、ディーゼルエンジン用コモンレールを製造する方法としては、規定の成分組成を満たす鋼素材を使用し、該鋼素材をAc3点以上の温度域で所定時間、好ましくは1秒以上保持し、該温度域で鍛造加工を施した後、所定の平均冷却速度、好ましくは1℃/s以上の平均冷却速度で300〜450℃、(好ましくは325〜425℃)まで冷却し、該温度域で100〜2000秒(好ましくは500〜1500秒)保持する工程を経た後、常温まで冷却し、その後、ガンドリル加工法による管軸方向の穿孔加工、切断加工及び機械加工を行う方法を採用することができる。   In addition, as a method for manufacturing a common rail for a diesel engine, a steel material satisfying a specified composition is used, and the steel material is held at a temperature range of Ac3 point or higher for a predetermined time, preferably 1 second or more. And then forging at a predetermined average cooling rate, preferably 300 to 450 ° C. (preferably 325 to 425 ° C.) at an average cooling rate of 1 ° C./s or more, and 100 to 2000 in this temperature range. After passing through the process of hold | maintaining for 2 seconds (preferably 500-1500 second), it cools to normal temperature, Then, the method of performing the drilling process of the pipe axis direction by a gun drilling method, a cutting process, and machining can be employ | adopted.

なお、前記ディーゼルエンジン用燃料噴射管又はディーゼルエンジン用コモンレールを製造する方法において、熱間加工を施した後、Ac3点以上の温度域まで冷却する場合があるが、その冷却方法は特に限定されない。又、100〜2000秒保持する工程を経た後、常温までの冷却は、速やかに行うことが望ましい。さらに、熱間加工後、常温まで冷却する際の冷却方法は特に限定されない。   In addition, in the method of manufacturing the diesel engine fuel injection pipe or the diesel engine common rail, after performing hot working, it may be cooled to a temperature range of Ac3 or higher, but the cooling method is not particularly limited. Further, it is desirable that the cooling to room temperature is performed promptly after the step of holding for 100 to 2000 seconds. Furthermore, the cooling method for cooling to room temperature after hot working is not particularly limited.

上記製造方法に用いる鋼素材としては、ビレットや熱延丸棒等が挙げられるが、これらは常法通りに目的成分を満足する鋼を溶製し、スラブとした後、熱間のまま加工するか、又は一旦室温まで冷却したものを再度加熱した後に熱間加工を行って得られたものを用いればよい。   Examples of steel materials used in the above production method include billets and hot rolled round bars, etc., but these are melted into steel that satisfies the target components in the usual manner, and then processed as hot slabs. Or what was obtained by performing hot processing after heating once again what was cooled to room temperature should just be used.

以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は下記実施例によって制限を受けるものではなく、趣旨を逸脱しない範囲で変更・実施することは、全て本発明の技術的範囲に含まれる。   Hereinafter, based on an Example, this invention is demonstrated more concretely. However, the present invention is not limited by the following examples, and all modifications and implementations within the scope not departing from the spirit are included in the technical scope of the present invention.

供試鋼には、表1に示す成分組成からなる鋼種No.1〜6からなるビレット(表中の単位は質量%であり、残部Fe及び不可避的不純物)をそれぞれ1250℃域まで再加熱後、熱間圧延を行い、酸洗後、機械加工して作製した、直径13mmの6種類の丸棒鋼を用いた。鋼種No.1は基本鋼(ベース鋼)であり、鋼種No.2、3は従来鋼、鋼種No.4〜6は本発明鋼である。
次に、これらの熱延丸棒鋼から、引張試験用(平行部直径3mm)と疲労試験用(平行部直径3mm)の平滑材と切欠き材(応力集中Kt=1.7)を加工し、母相をラス状ベイニティックフェライトとした後、γ域焼鈍(900℃で1200秒保持)後、400℃で500秒のオーステンパ処理を施した。
本実施例における鋼種No.1〜6からなるTBF鋼の切欠き引張特性と切欠き疲労強度特性を下記要領で調査した結果を表2と、図1〜図5にそれぞれ示す。さらに、本実施例の鋼種No.4〜6のうち、代表例として鋼種No.5(本発明鋼)の試験片の金属組織(顕微鏡写真)を図6に、組織の体積率を表3にそれぞれ示す。図6(a)の緑と赤の相はそれぞれラス状ベイニティックフェライトのマトリックス構造体と残留オーステナイトを示し、図6(b)の黄緑の相はマルテンサイト、黒い相は残留オーステナイトを示す。
For the test steel, steel type Nos. Having the composition shown in Table 1 were used. 1 to 6 billets (units in the table are% by mass, remaining Fe and inevitable impurities) were each reheated to 1250 ° C., hot-rolled, pickled, and machined. Six types of round steel bars having a diameter of 13 mm were used. Steel type no. 1 is a basic steel (base steel). 2 and 3 are conventional steels and steel types No. 4 to 6 are steels of the present invention.
Next, from these hot-rolled round steel bars, smooth materials and notches (stress concentration Kt = 1.7) for tensile test (parallel portion diameter 3 mm) and fatigue test (parallel portion diameter 3 mm) are processed, After the matrix phase was made into lath-shaped bainitic ferrite, γ region annealing (held at 900 ° C. for 1200 seconds) was followed by austempering treatment at 400 ° C. for 500 seconds.
Steel type No. in this example. The results of investigating notch tensile properties and notch fatigue strength properties of TBF steels 1 to 6 in the following manner are shown in Table 2 and FIGS. Furthermore, the steel type No. of this example. 4-6, steel type No. is a representative example. FIG. 6 shows the metal structure (micrograph) of the test piece of No. 5 (steel of the present invention), and Table 3 shows the volume ratio of the structure. The green and red phases in FIG. 6 (a) show the matrix structure of lath bainitic ferrite and retained austenite, respectively, the yellowish green phase in FIG. 6 (b) shows martensite, and the black phase shows retained austenite. .

・切欠き引張特性:
引張試験は、前記引張試験片を用い、試験機にはハードタイプ万能試験機(株式会社島津製作所製 島津オートグラフ AG−10TD)を使用し、初期降伏挙動(0.2%耐力)を詳細に調査するため試験片平行部にひずみゲージ(ゲージ長さ10mm、共和電業株式会社製)を貼付した。試験温度は25℃、クロスヘッド速度は1mm/minとした。その結果を表2と図1、図2に示す。図1、図2は焼入れ性(Πf)の関数としての、引張強度(TS)、切欠き引張強度(TS)、切欠き強度比(NSR=TS/TS)における変化を示す。
・切欠き疲労強度特性:
疲労試験は、前記疲労試験片を用い、試験機には多軸式荷重疲労試験機(東京衝機製造所株式会社製 PMF−10)を使用し、試験温度25℃、応力比R=0.1、周波数80Hzとした。その結果を図3、図4、図5に示す。図3、図4は、焼入れ性(Πf)の関数としての、平滑試験片及び切欠き試験片と切欠き感受性因子の疲労限度における変化を示す。図5は炭素当量(Ceq)の関数としての疲労強度(FL)及び切欠き疲労強度(FL)における変化を示す。
・金属組織の観察:
各試験片の微細組織は、試験片をナイタール、及びレペラ腐食による光学顕微鏡(倍率400倍もしくは1000倍)、及び走査型電子顕微鏡(SEM:倍率1000倍もしくは4000倍)観察、飽和磁化法(熱処理, Voll.136, (1996), P.322)による残留オーステナイト量測定、X線によるオーステナイト中のC濃度測定、透過型電子顕微鏡(TEM:倍率10000倍)、ステップ間隔100nmによるFE/SEM−EBSPによる組織解析を実施し、組織を同定した。このようにして得られた各試験片について調べた組織の体積率を表3に示す。
・ Notched tensile properties:
The tensile test uses the above-mentioned tensile test piece, and uses a hard type universal tester (Shimadzu Autograph AG-10TD, manufactured by Shimadzu Corporation) as the tester, and details the initial yield behavior (0.2% yield strength). In order to investigate, a strain gauge (gauge length 10 mm, manufactured by Kyowa Denki Co., Ltd.) was attached to the parallel part of the test piece. The test temperature was 25 ° C. and the crosshead speed was 1 mm / min. The results are shown in Table 2 and FIGS. 1 and 2 show the changes in tensile strength (TS), notch tensile strength (TS N ), and notch strength ratio (NSR = TS N / TS) as a function of hardenability (Πf i ).
・ Notch fatigue strength characteristics:
For the fatigue test, the fatigue test piece was used, and a multi-axis load fatigue tester (PMF-10 manufactured by Tokyo Shiki Seisakusho Co., Ltd.) was used as the tester. The test temperature was 25 ° C. and the stress ratio R = 0.1. The frequency was 80 Hz. The results are shown in FIG. 3, FIG. 4, and FIG. 3 and 4 show the change in fatigue limit of smooth and notched specimens and notch susceptibility factors as a function of hardenability (Πf i ). FIG. 5 shows the change in fatigue strength (FL) and notch fatigue strength (FL N ) as a function of carbon equivalent (Ceq).
-Observation of metal structure:
The microstructure of each test piece was observed with a light microscope (400 times or 1000 times magnification) and a scanning electron microscope (SEM: 1000 times or 4000 times), saturation magnetization method (heat treatment). , Vol. 136, (1996), P.322), measurement of residual austenite amount, measurement of C concentration in austenite by X-ray, transmission electron microscope (TEM: magnification: 10,000 times), FE / SEM-EBSP with step interval of 100 nm. The tissue analysis by was performed and the tissue was identified. Table 3 shows the volume ratio of the tissues examined for each of the test pieces thus obtained.

これらの結果より、以下のように考察することができる。
(1).各TBF鋼のビッカース硬さと引張特性を示す表2より明らかのように、鋼種No.1〜6のうち、鋼種No.4〜6の本発明のTBF鋼はいずれもビッカース硬さが、HV338〜385であり、焼き入れ性の増加に伴い増加することがわかる。又、各鋼の切欠き引張特性を示す図1、図2より明らかのように、引張強度、切欠き引張強度及び切欠き強度比も、ビッカース硬さと同様に、焼入れ性に伴い増加し、鋼種No.4〜6の本発明鋼は引張強度、切欠き引張強度と切欠き強度比がすべて高い値を示している。
又、鋼種No.4〜6の本発明のTBF鋼において、平滑試験片及び切欠きを有する試験片の疲労限(FL)は、焼入れ性の増加に伴い、又はCr及び/又はMoの含有量の増加に伴い増加したが、切欠き材の疲労限(FL)の焼入れ性依存は、平滑試験片の疲労限(FL)のそれよりも大きかった(図3)。又、結果として生じる切欠き感受性qは、焼入れ性の増加に伴い低下することが判明した(図4)。なお、切欠き感受性qは下記式3により求めた値である。その際、応力集中係数については1.7を使用した。
From these results, it can be considered as follows.
(1). As apparent from Table 2 showing the Vickers hardness and tensile properties of each TBF steel, the steel type No. 1-6, steel grade No. It can be seen that the 4-6 TBF steels of the present invention all have a Vickers hardness of HV338-385 and increase with increasing hardenability. In addition, as is clear from FIG. 1 and FIG. 2 showing the notch tensile properties of each steel, the tensile strength, notch tensile strength, and notch strength ratio increase with hardenability as well as Vickers hardness. No. The present invention steels 4 to 6 have high tensile strength, notch tensile strength and notch strength ratio.
Steel type No. In the TBF steel of the present invention of 4 to 6, the fatigue limit (FL) of the test piece having a smooth test piece and a notch increases as the hardenability increases or the Cr and / or Mo content increases. However, the hardenability dependence of the fatigue limit (FL N ) of the notched material was greater than that of the smooth specimen (FIG. 3). It was also found that the resulting notch sensitivity q decreases with increasing hardenability (FIG. 4). The notch sensitivity q is a value obtained by the following formula 3. At that time, a stress concentration factor of 1.7 was used.

[式3]
q=(Kf−1)/(Kt−1)
Kt:応力集中係数
Kf:疲労切欠き係数(=FL/FL)
[Formula 3]
q = (Kf-1) / (Kt-1)
Kt: Stress concentration coefficient Kf: Fatigue notch coefficient (= FL N / FL)

又、鋼種No.1〜6のTBF鋼において、平滑試験片の疲労限(FL)については差は見られなかったが、切欠きを有する試験片の疲労限(FL)は、炭素当量(Ceq)が0.65以上になると増加する傾向を示している。 Steel type No. In the TBF steels 1 to 6, no difference was observed in the fatigue limit (FL) of the smooth specimen, but the fatigue limit (FL N ) of the notched specimen has a carbon equivalent (Ceq) of 0. When it is 65 or more, it shows a tendency to increase.

(2).鋼種No.4〜6に示す本発明鋼(TBF鋼)は、例えば鋼種No.5の金属組織(顕微鏡写真)を図6に示すように、母相組織が主にラス状ベイニティックフェライトとからなり、かつ少量のポリゴナルフェライト及びグラニュラーベイニティックフェライトを有し、第2相組織が微細な残留オーステナイトとマルテンサイトからなり、初析フェライトの生成が抑制され、かつ結晶粒が微細化された。又、焼入れ性(Πf)の高い鋼種No.4〜6の本発明鋼(TBF鋼)では、Ms温度(マルテンサイト開始温度)以上のオーステンパ処理において島状マルテンサイト組織が形成されたことにより硬度(Hv)が増加した。 (2). Steel type no. The steels of the present invention (TBF steel) shown in FIGS. As shown in FIG. 6, the matrix structure is mainly composed of lath-shaped bainitic ferrite, and has a small amount of polygonal ferrite and granular bainitic ferrite. The phase structure was composed of fine retained austenite and martensite, the formation of proeutectoid ferrite was suppressed, and the crystal grains were refined. Steel type No. with high hardenability (Πf i ). In the steels 4 to 6 of the present invention (TBF steel), the hardness (Hv) increased due to the formation of an island-like martensite structure in the austempering treatment at an Ms temperature (martensite start temperature) or higher.

表1の鋼種No.4に示す成分を有する本発明鋼製のビレットを1200℃の温度に加熱保持して熱間押出加工を施した後、940℃まで冷却し、当該温度に1秒間以上保持して所定の温間押出し加工を施して丸棒とし、該丸棒を4℃/sの冷却速度で325℃まで冷却し、該温度域に1800秒保持した後、所定の冷却速度で常温まで冷却し、しかる後ガンドリル加工にて管軸方向に穿孔して燃料噴射管用素管とし、該素管に所定の伸管加工を施して製品寸法が外径8.0mm、内径3.0mm、肉厚2.5mmの燃料噴射管用鋼管を得、これを所望長さに切断加工し、次いでナット等のねじ部品を挿入した後に接続頭部をプレス成形する端末加工を施し、更に曲げ加工を施してディーゼルエンジン用燃料噴射管を得た。   Steel type No. in Table 1 The steel billet having the composition shown in No. 4 is heated and held at a temperature of 1200 ° C. and subjected to hot extrusion, and then cooled to 940 ° C. A round bar is formed by extruding, the round bar is cooled to 325 ° C. at a cooling rate of 4 ° C./s, held in the temperature range for 1800 seconds, then cooled to room temperature at a predetermined cooling rate, and then a gun drill. Drilled in the direction of the tube axis by machining to form a fuel injection tube element tube, and the element tube is subjected to a predetermined tube expansion process to produce a fuel with an outer diameter of 8.0 mm, an inner diameter of 3.0 mm, and a wall thickness of 2.5 mm A steel pipe for an injection pipe is obtained, cut into a desired length, a threaded part such as a nut is inserted, a terminal process is performed to press-mold the connection head, and a bending process is further applied to a fuel injection pipe for a diesel engine. Got.

表1の鋼種No.5に示す成分を有する本発明鋼製のビレットを950℃の温度に1秒間以上保持し、該温度域で鍛造加工を施し、続いて1℃/sの冷却速度で300℃まで冷却し、該温度で2000秒間保持してオーステンパ処理を施し、次いで冷間でガンドリル加工法により管軸方向に穿孔し、その後冷間で機械加工を施して外径30mm、内径8mm、肉厚12mmとし、ディーゼルエンジン用コモンレールを得た。   Steel type No. in Table 1 The billet made of the present invention having the components shown in 5 is held at a temperature of 950 ° C. for 1 second or more, forged in the temperature range, and subsequently cooled to 300 ° C. at a cooling rate of 1 ° C./s, Austempering treatment is performed by holding at temperature for 2000 seconds, then drilled in the direction of the tube axis by a gun drilling method in the cold, and then machined cold to obtain an outer diameter of 30 mm, an inner diameter of 8 mm, and a wall thickness of 12 mm. For the common rail.

上記実施例2のディーゼルエンジン用燃料噴射管、実施例3のディーゼルエンジン用コモンレールは、いずれも高強度であり、さらに高切欠き疲労強度を得ることができ、部品の小型軽量化がはかられることが確認された。   The fuel injection pipe for the diesel engine of the second embodiment and the common rail for the diesel engine of the third embodiment are both high in strength, can obtain high notch fatigue strength, and can be reduced in size and weight. It was confirmed.

本発明は、焼入れ性及び切欠き疲労強度の向上のためにCr、Mo、Nb及びBを適量含有し、炭素当量(Ceq)を適正値に設定した鋼素材を用い、所定の熱処理を採用することにより、母相組織が主にラス状ベイニティックフェライトからなり、かつ少量のポリゴナルフェライト及びグラニュラーベイニティックフェライトを含み、第2相組織が微細な残留オーステナイト、マルテンサイトからなる微細構造の金属組織を有する、切欠き疲労強度の優れた超高強度低合金TRIP鋼(TBF鋼)が得られ、これにより加熱温度や、加工率(鍛造加工率や圧延加工率等)等によらず、焼入れ性に優れた高切欠き疲労強度を有する高強度鋼製加工品を提供できるので、ディーゼルエンジン用燃料噴射管やコモンレール等の各種自動車部品への適用がより一層期待できる。   The present invention employs a predetermined heat treatment using a steel material containing an appropriate amount of Cr, Mo, Nb, and B and having a carbon equivalent (Ceq) set to an appropriate value in order to improve hardenability and notch fatigue strength. Thus, the parent phase structure is mainly composed of lath-shaped bainitic ferrite, and contains a small amount of polygonal ferrite and granular bainitic ferrite, and the second phase structure has a fine structure composed of fine retained austenite and martensite. An ultra-high strength low alloy TRIP steel (TBF steel) having a metal structure and excellent notch fatigue strength can be obtained, and regardless of heating temperature, processing rate (forging rate, rolling rate, etc.), etc. Since it can provide high strength steel products with high notch fatigue strength with excellent hardenability, it can be applied to various automotive parts such as fuel injection pipes for diesel engines and common rails. Use can be more expected.

Claims (8)

C:0.15〜0.25%、Si:2.5%以下(0%を含まない)、Mn:0.5〜2%、Cr:0.5〜1.5%、Mo:0.5%以下、Nb:0.1%以下を含有し、かつ、下記式により規定される炭素当量(Ceq)が0.65%以上0.75%未満で、残部Fe及び不可避的不純物からなり、さらに金属組織は、母相組織がラス状ベイニティックフェライトを全組織に対して体積率で65%以上と、ポリゴナルフェライト及びグラニュラーベイニティックフェライトを合計で全組織に対して体積率で5%以下含有し、第2相組織が残留オーステナイトを全組織に対して体積率で5〜20%と、マルテンサイトを全組織に対して体積率で10%以下含有する、切欠き疲労強度に優れた高強度鋼製加工品。

Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
C: 0.15-0.25%, Si: 2.5% or less (not including 0%), Mn: 0.5-2%, Cr: 0.5-1.5%, Mo: 0.00. 5% or less, Nb: 0.1% or less, and the carbon equivalent (Ceq) defined by the following formula is 0.65% or more and less than 0.75%, and consists of the balance Fe and inevitable impurities, Further, the metal structure has a lath-like bainitic ferrite with a volume ratio of 65% or more with respect to the whole structure, and a total of polygonal ferrite and granular bainitic ferrite with a volume ratio of 5 with respect to the whole structure. 2% or less, the second phase structure contains residual austenite in a volume ratio of 5 to 20% with respect to the entire structure, and martensite with a volume ratio of 10% or less with respect to the entire structure. High strength steel processed product.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
更に、B:0.0025%以下を含有する請求項1に記載の切欠き疲労強度に優れた高強度鋼製加工品。   Furthermore, B: The processed product made from high strength steel excellent in the notch fatigue strength of Claim 1 containing 0.0025% or less. 前記加工品が鍛造品である請求項1に記載の切欠き疲労強度に優れた高強度鋼製加工品。   The processed product made of high-strength steel excellent in notch fatigue strength according to claim 1, wherein the processed product is a forged product. 前記加工品が高圧燃料配管である請求項1又は2に記載の切欠き疲労強度に優れた高強度鋼製加工品。   The processed product made of high-strength steel excellent in notch fatigue strength according to claim 1 or 2, wherein the processed product is a high-pressure fuel pipe. 前記高圧燃料配管がディーゼルエンジン用燃料噴射管、又は、ディーゼルエンジン用コモンレールである切欠き疲労強度に優れた請求項4に記載の高強度鋼製加工品。   The processed product made of high-strength steel according to claim 4, wherein the high-pressure fuel pipe is a fuel injection pipe for a diesel engine or a common rail for a diesel engine and has excellent notch fatigue strength. 請求項1〜5のいずれかに記載の高強度鋼製加工品を製造する方法であって、請求項1に記載の成分組成を満たす鋼素材を使用し、該鋼素材をAc3点以上の温度域で所定時間保持し、該温度域で鍛造加工を施した後、所定の平均冷却速度で300〜450℃(好ましくは325〜425℃)まで冷却し、該温度域で100〜2000秒保持する工程を含むことを特徴とする切欠き疲労強度に優れた高強度鋼製加工品の製造方法。   It is a method of manufacturing the high-strength steel processed product according to any one of claims 1 to 5, wherein a steel material satisfying the composition of claim 1 is used, and the steel material is at a temperature of Ac3 point or higher. After maintaining for a predetermined time in the region and forging in the temperature range, it is cooled to 300 to 450 ° C. (preferably 325 to 425 ° C.) at a predetermined average cooling rate, and is maintained in the temperature range for 100 to 2000 seconds. The manufacturing method of the high strength steel processed goods excellent in the notch fatigue strength characterized by including a process. 請求項6に記載の高圧燃料配管を製造する方法であって、請求項1に記載の成分組成を満たす鋼素材を使用し、該鋼素材をAc3点以上の温度域で所定時間保持し、該温度域で鍛造加工を施した後、所定の平均冷却速度で300〜450℃(好ましくは325〜425℃)まで冷却し、該温度域で100〜2000秒保持する工程を経た後、常温まで冷却し、その後、ガンドリル加工法による管軸方向の穿孔加工、管軸方向に圧延する伸管加工、切断加工、端末加工、及び、機械加工を行うことを特徴とする切欠き疲労強度に優れた高強度鋼製加工品の製造方法。   A method for producing a high-pressure fuel pipe according to claim 6, wherein a steel material satisfying the component composition according to claim 1 is used, and the steel material is held in a temperature range of Ac3 point or higher for a predetermined time, After forging in the temperature range, it is cooled to 300 to 450 ° C. (preferably 325 to 425 ° C.) at a predetermined average cooling rate, and after being kept in the temperature range for 100 to 2000 seconds, it is cooled to room temperature. After that, it is excellent in notch fatigue strength characterized by performing drilling in the tube axis direction by gun drilling method, tube drawing process rolling in the tube axis direction, cutting processing, terminal processing, and machining. A method for manufacturing high-strength steel products. 前記Ac3点以上の温度域での保持時間を1秒以上、前記平均冷却速度を1℃/s以上とすることを特徴とする請求項6又は7に記載の切欠き疲労強度に優れた高強度鋼製加工品の製造方法。   The high strength with excellent notch fatigue strength according to claim 6 or 7, wherein the holding time in the temperature range of the Ac3 point or higher is 1 second or longer, and the average cooling rate is 1 ° C / s or higher. Manufacturing method for steel products.
JP2010280858A 2010-12-16 2010-12-16 Processed high-strength steel product with excellent notch fatigue strength and manufacturing method thereof Expired - Fee Related JP5711955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280858A JP5711955B2 (en) 2010-12-16 2010-12-16 Processed high-strength steel product with excellent notch fatigue strength and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280858A JP5711955B2 (en) 2010-12-16 2010-12-16 Processed high-strength steel product with excellent notch fatigue strength and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012126974A true JP2012126974A (en) 2012-07-05
JP5711955B2 JP5711955B2 (en) 2015-05-07

Family

ID=46644332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280858A Expired - Fee Related JP5711955B2 (en) 2010-12-16 2010-12-16 Processed high-strength steel product with excellent notch fatigue strength and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5711955B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359917A (en) * 2018-04-04 2018-08-03 长春工业大学 A kind of bullet train hole-bored axle from end to end steel and preparation method thereof
WO2018215923A1 (en) * 2017-05-22 2018-11-29 Arcelormittal Method for producing a steel part and corresponding steel part
CN108907061A (en) * 2018-06-01 2018-11-30 南京楚卿电子科技有限公司 A kind of manufacturing method for setting head four-way valve
US10145347B2 (en) 2015-01-22 2018-12-04 Usui Co., Ltd. Fuel rail
US11015231B2 (en) 2015-01-22 2021-05-25 Usui Co., Ltd. Method of manufacturing fuel rail for gasoline direct injection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331443A (en) * 1989-06-29 1991-02-12 Aichi Steel Works Ltd Tough and hard non-heattreated steel for hot forging
JPH1150186A (en) * 1997-06-06 1999-02-23 Kawasaki Steel Corp Hot-rolled steel plate with high strength and high workability, excellent in impact resistance and reduced in yield ratio
JP2007197819A (en) * 2005-12-28 2007-08-09 Kobe Steel Ltd Ultrahigh-strength thin steel sheet
JP2010106353A (en) * 2008-10-31 2010-05-13 Usui Kokusai Sangyo Kaisha Ltd Worked article made of high strength steel having excellent hardenability, method for producing the same, and methods for producing fuel injection pipe and common rail for diesel engine having high strength and excellent impact resistance and inner pressure fatigue resistance
JP2010280962A (en) * 2009-06-05 2010-12-16 Usui Kokusai Sangyo Kaisha Ltd Workpiece made of superhigh strength steel and method for producing the same
JP2011084813A (en) * 2009-09-15 2011-04-28 Usui Kokusai Sangyo Kaisha Ltd Workpiece made of high strength steel having excellent notch fatigue strength, and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331443A (en) * 1989-06-29 1991-02-12 Aichi Steel Works Ltd Tough and hard non-heattreated steel for hot forging
JPH1150186A (en) * 1997-06-06 1999-02-23 Kawasaki Steel Corp Hot-rolled steel plate with high strength and high workability, excellent in impact resistance and reduced in yield ratio
JP2007197819A (en) * 2005-12-28 2007-08-09 Kobe Steel Ltd Ultrahigh-strength thin steel sheet
JP2010106353A (en) * 2008-10-31 2010-05-13 Usui Kokusai Sangyo Kaisha Ltd Worked article made of high strength steel having excellent hardenability, method for producing the same, and methods for producing fuel injection pipe and common rail for diesel engine having high strength and excellent impact resistance and inner pressure fatigue resistance
JP2010280962A (en) * 2009-06-05 2010-12-16 Usui Kokusai Sangyo Kaisha Ltd Workpiece made of superhigh strength steel and method for producing the same
JP2011084813A (en) * 2009-09-15 2011-04-28 Usui Kokusai Sangyo Kaisha Ltd Workpiece made of high strength steel having excellent notch fatigue strength, and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145347B2 (en) 2015-01-22 2018-12-04 Usui Co., Ltd. Fuel rail
US11015231B2 (en) 2015-01-22 2021-05-25 Usui Co., Ltd. Method of manufacturing fuel rail for gasoline direct injection
WO2018215923A1 (en) * 2017-05-22 2018-11-29 Arcelormittal Method for producing a steel part and corresponding steel part
WO2018215813A1 (en) * 2017-05-22 2018-11-29 Arcelormittal Method for producing a steel part and corresponding steel part
CN110662849A (en) * 2017-05-22 2020-01-07 安赛乐米塔尔公司 Method for producing a steel component and corresponding steel component
CN110662849B (en) * 2017-05-22 2021-06-15 安赛乐米塔尔公司 Method for producing a steel component and corresponding steel component
CN108359917A (en) * 2018-04-04 2018-08-03 长春工业大学 A kind of bullet train hole-bored axle from end to end steel and preparation method thereof
CN108359917B (en) * 2018-04-04 2019-09-10 长春工业大学 A kind of bullet train hole-bored axle from end to end steel and preparation method thereof
CN108907061A (en) * 2018-06-01 2018-11-30 南京楚卿电子科技有限公司 A kind of manufacturing method for setting head four-way valve
CN108907061B (en) * 2018-06-01 2020-12-08 南京楚卿电子科技有限公司 Manufacturing method of tree-head four-way valve

Also Published As

Publication number Publication date
JP5711955B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5483859B2 (en) Processed product of high-strength steel excellent in hardenability and manufacturing method thereof, and manufacturing method of fuel injection pipe and common rail for diesel engine excellent in high strength, impact resistance and internal pressure fatigue resistance
JP5910168B2 (en) TRIP type duplex martensitic steel, method for producing the same, and ultra high strength steel processed product using the TRIP type duplex martensitic steel
JP4974331B2 (en) Steel high-strength processed product excellent in impact resistance and strength-ductility balance and manufacturing method thereof, and fuel injection pipe for diesel engine and common rail manufacturing method excellent in high strength, impact resistance and internal pressure fatigue characteristics
CA2979511C (en) A method of producing a tube of a duplex stainless steel
JP5353256B2 (en) Hollow member and manufacturing method thereof
JP5880788B2 (en) High strength oil well steel and oil well pipe
EP3631021B1 (en) Method for producing a steel part and corresponding steel part
JP5489540B2 (en) Processed product made of ultra-high strength steel and its manufacturing method
US20210010117A1 (en) Forged part of bainitic steel and a method of manufacturing thereof
JP5711955B2 (en) Processed high-strength steel product with excellent notch fatigue strength and manufacturing method thereof
JP7422854B2 (en) Steel parts manufacturing method and steel parts
JP5778903B2 (en) Manufacturing method for high strength steel processed products with excellent notch fatigue strength
EP3168319B1 (en) Microalloyed steel for heat-forming high-resistance and high-yield-strength parts
JP4773106B2 (en) Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts
US20150040636A1 (en) Wire rod and steel wire for springs having high corrosion resistance, method of manufacturing steel wire for springs, and method of manufacturing springs
JP2005120397A (en) High strength forged parts with excellent drawability
JP6006620B2 (en) Steel wire and method for manufacturing steel wire
US20190017155A1 (en) Impact resistant high strength steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5711955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees