JP2014097518A - High area-reduction ratio rolling method - Google Patents

High area-reduction ratio rolling method Download PDF

Info

Publication number
JP2014097518A
JP2014097518A JP2012249858A JP2012249858A JP2014097518A JP 2014097518 A JP2014097518 A JP 2014097518A JP 2012249858 A JP2012249858 A JP 2012249858A JP 2012249858 A JP2012249858 A JP 2012249858A JP 2014097518 A JP2014097518 A JP 2014097518A
Authority
JP
Japan
Prior art keywords
rolling
ratio
roll
steel material
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012249858A
Other languages
Japanese (ja)
Other versions
JP6084817B2 (en
Inventor
Eiko Yamada
榮子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012249858A priority Critical patent/JP6084817B2/en
Publication of JP2014097518A publication Critical patent/JP2014097518A/en
Application granted granted Critical
Publication of JP6084817B2 publication Critical patent/JP6084817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify the whole rolling equipment by realizing the low aspect ratio/high area-reduction ratio rolling, in hot rolling of a bar-wire.SOLUTION: When imparting back tension to a pre-rolling steel material, the steel material 2 is heated so as to become the highest temperature just before biting-in, and the back tension corresponding to yielding force of a biting-in part is imparted to the steel material by specifying two conditions of the roll 1' diameter ratio and the roll peripheral velocity ratio, and drawing is induced before biting in the steel material. Widening disappears by pre-reduction in the draft-width both directions, and an increase in the aspect ratio by draft is restrained, and the high area-reduction ratio of the draft ratio or more is provided. Stable over-tension rolling becomes possible without rupture and a reduction cut by the high temperature setting of the biting-in part and front tension after rolling, and the low widening/high area-reduction ratio is provided.

Description

本発明は熱間圧延によって製造される鋼線材、棒鋼、条鋼等長尺物の圧延方法に関するものである。   The present invention relates to a method for rolling a long product such as a steel wire rod, steel bar, or bar steel manufactured by hot rolling.

上記対象鋼材は鋼片を材料として熱間圧延を繰り返して所定寸法に仕上げられる。減面率は通常1パス当たり10〜30%であるから多数の圧延機が必要となって設備費が高く、又エネルギーロス、ロール摩耗、付帯設備維持等操業コストも大きい。   The target steel material is finished to a predetermined dimension by repeated hot rolling using a steel piece as a material. Since the area reduction rate is usually 10 to 30% per pass, a large number of rolling mills are required, resulting in high equipment costs, and high operating costs such as energy loss, roll wear, and maintenance of incidental equipment.

減面率が上記範囲である第1の理由は、高減面を得るため大圧下すると断面アスペクト比(=幅/厚さ)が過大になる。幅方向に圧下される次のパスではタオレ、挫屈、ネジレ等が起こり易く所望形状になりにくい。
第2の理由は、圧下率が大きくなるほど拡幅が加速的に大きくなり、圧下に対する減面率の増加は急速に低下する。
第3の理由は、一旦アスペクト比が過大になると、過大になった周長の故に以後の圧延で余剰表皮の不均一集積が不可避となり、シワ傷が発生し易くなること、孔型圧延に不可避の脱炭層の局所集積が増幅するからである。
上述のごとく単なる大圧下は充分な減面率が得られないだけでなく、アスペクト比が過大になって表面品質の低下を誘発する。
The first reason that the area reduction ratio is in the above range is that the cross-sectional aspect ratio (= width / thickness) becomes excessive when the pressure is reduced to obtain a high area reduction. In the next pass that is squeezed in the width direction, taole, buckling, twisting, etc. are likely to occur, and the desired shape is not easily obtained.
The second reason is that as the rolling reduction increases, the widening increases at an accelerated rate, and the increase in the area reduction rate with respect to the rolling down decreases rapidly.
The third reason is that once the aspect ratio becomes excessive, the excess circumference becomes inevitable due to the excessive perimeter, so that uneven skin accumulation is unavoidable in subsequent rolling, and wrinkle damage is likely to occur. This is because local accumulation of the decarburized layer is amplified.
As described above, mere large pressure not only does not provide a sufficient area reduction ratio, but also causes an excessive aspect ratio to induce a reduction in surface quality.

以下高減面率圧延方法の先行事例を検討する。
非特許文献1にPCRM法(Planetary Cross Rolling Mill, 遊星傾斜圧延機)が説明されている。該方法によると円柱状材料に対して円錐傾斜3方ロールの自転・公転による絞り圧延により約6倍の延伸(減面率約84%)が可能となる。しかし圧延機の構造からくる速度上の制約から粗圧延(秒速約0.1m)に対しては効果的に適用できても走行速度が加速的に大きくなってくる中間圧延以後(秒速1〜100m)には適用できないという問題がある。
In the following, the preceding examples of the high area reduction rolling method will be examined.
Non-Patent Document 1 describes a PCRM method (Planetary Cross Rolling Mill, planetary inclined rolling mill). According to this method, the cylindrical material can be stretched by about 6 times (reduction rate of about 84%) by drawing and rolling by rotating and revolving a conical inclined three-way roll. However, due to the speed limitation due to the structure of the rolling mill, it can be applied effectively to rough rolling (approximately 0.1 m / s) after intermediate rolling (speed of 1 to 100 m / s) where the running speed increases at an accelerated rate. ) Is not applicable.

特許文献1に開示された方法によると、薄板の可逆冷間圧延において材料に材料の降伏応力の約85%の前方・後方張力を作用させることにより減面率を55%に向上させることができる。従来方法では形状制御の問題から高々約40%であった。引張応力下での圧下によって従来の作用限界を拡張した意義はあるが効果は従来の延長上数10%である。   According to the method disclosed in Patent Document 1, the area reduction rate can be improved to 55% by applying a forward / backward tension of about 85% of the yield stress of the material to the material in reversible cold rolling of a thin plate. . In the conventional method, it is at most about 40% due to the problem of shape control. Although there is a significance that the conventional action limit is expanded by the reduction under the tensile stress, the effect is several tens of percent on the conventional extension.

非特許文献2には、拡幅による減面ロスを小さくして圧延効率を向上させる理論及び具体策が提起されている。それによるとY/√3(Y;材料の降伏応力)の張力下にある材料を圧下すると拡幅は発生せず圧下率≒減面率となる。その結果アスペクト比の増加が抑制されることは理解できる。張力が上記値を超えると効果も一層増加すると期待されるが具体的にどのような変形挙動になるのかについては実験も無ければ言及もなされていない。またそのような圧延が容易になし得るかどうかも疑問である。   Non-Patent Document 2 proposes a theory and specific measures for reducing the reduction in area due to widening and improving rolling efficiency. According to this, when a material under tension of Y / √3 (Y: yield stress of material) is rolled down, no widening occurs and the rolling reduction ratio is reduced. As a result, it can be understood that the increase in the aspect ratio is suppressed. Although the effect is expected to increase further when the tension exceeds the above value, there is no experiment or mention about the specific deformation behavior. It is also questionable whether such rolling can be done easily.

特許文献2には上記理論を発展させ熱間圧延において減面率を飛躍的に増大させる圧延方法が開示されている。それによると一定速度で圧延機に供給される被加工材に対して後方張力をロール噛込み部の降伏力の強さまで大きくすることにより噛み込み直前において被加工材に延伸を誘発させ、減面率を大幅に増大させ、且つ圧下に伴う拡幅を消去又は縮幅に変えて断面アスペクト比の増加を抑制することができる。後方張力を従来の弾性限内を越えて塑性域まで強化するので過張力圧延という新しい述語を使っている。   Patent Document 2 discloses a rolling method that develops the above theory and dramatically increases the area reduction rate in hot rolling. According to this, by increasing the rear tension to the strength of the yielding force of the roll biting part with respect to the workpiece material supplied to the rolling mill at a constant speed, the workpiece is stretched immediately before biting, and the surface is reduced. It is possible to significantly increase the rate and change the widening accompanying the reduction to erasure or contraction to suppress an increase in the cross-sectional aspect ratio. A new predicate called over-tensile rolling is used to strengthen the backward tension beyond the conventional elastic limit to the plastic range.

圧下比(=圧延後厚さ/圧延前厚さ)、ロール径比(=ロール直径/圧延前厚さ)、速度比(圧延後速度/圧延前速度)の3条件の適切な組合せにより、1パスで従来の圧延の数パス相当分の減面が可能と理論的に解明され、又断片的実験だが実証もなされている。   By an appropriate combination of three conditions: rolling ratio (= thickness after rolling / thickness before rolling), roll diameter ratio (= roll diameter / thickness before rolling), and speed ratio (speed after rolling / speed before rolling), 1 It has been theoretically elucidated that it is possible to reduce the number of passes equivalent to several passes of conventional rolling, and it has also been demonstrated as a fragmentary experiment.

前記理論に従う圧延機を製作し実証試験を行ったところ、低拡幅・高減面率の圧延がなされ理論には大きな間違いが無いことが証明された。しかししばしば絞り切れが発生し、当該高減面率圧延の実用には決定的な障害であると判明した。   When a rolling mill according to the theory was manufactured and subjected to a verification test, it was proved that there was no major mistake in the theory because the rolling was performed with a low widening and a high area reduction rate. However, drawing out often occurred, which proved to be a critical obstacle to the practical application of the high area reduction rolling.

日本鉄鋼協会編、鉄鋼便覧第4版、3−2巻、3編、10・4・1−4 特殊圧延機Edited by Japan Iron and Steel Institute, Steel Handbook 4th Edition, Volume 3-2, Volume 3, 10 ・ 4 ・ 1-4 Special rolling mill 齋藤・宇都宮ら:塑性と加工40-465 (1999-10),p.966~p.970:”延伸制御圧延機の開発と平線圧延への適用”Saito, Utsunomiya et al .: Plasticity and processing 40-465 (1999-10), p.966-p.970: “Development of stretch-controlled rolling mill and application to flat wire rolling”

特開2000-197907JP2000-197907 特許第4284396Patent No. 4284396

棒・線状材料を高減面率で加工することにより圧延パス数を大幅削減して圧延設備全体を簡素化することは当業者にとって意義ある課題である。その場合、1)単なる大圧下では圧延効率が低下して減面率が頭打ちになる上、アスペクト比が過大になって以後の成形即ち、寸法・形状不良、シワ傷・局所脱炭欠陥の発生等の問題が生ずる、2)既述の傾斜圧延方式は粗圧延に対しては有効であるが中間圧延以後の圧延速度の大きい領域では使用できない、3)張力付加によって拡幅を抑制することにより結果的に減面率を向上させる方法では効果が限られていると言う問題があった。   It is a significant problem for those skilled in the art to greatly reduce the number of rolling passes and to simplify the entire rolling equipment by processing rods and linear materials with a high reduction in area. In that case, 1) Rolling efficiency decreases and the surface reduction rate reaches its peak at a mere high pressure, and the aspect ratio becomes excessive, and the subsequent forming, that is, generation of dimensional / shape defects, wrinkles, and local decarburization defects occurs. 2) The above-described inclined rolling method is effective for rough rolling, but cannot be used in a region where the rolling speed is high after intermediate rolling. 3) The result of suppressing widening by applying tension. In particular, there is a problem that the effect is limited in the method of improving the area reduction rate.

以上のような問題に対して、圧延速度が大きい場合でも飛躍的な高減面率が得られ、しかもアスペクト比が抑制されて以後の圧延に困難をもたらさない圧延方法として過張力圧延方法(特許文献2)が提起されたが、実証実験では過大な張力故に絞り切れが頻発すると言う問題が判明した。本願発明は該過張力圧延において絞り切れの発生防止を解決すべき課題とする。   In order to solve the above-mentioned problems, an over-tensile rolling method (patented as a rolling method that can achieve a remarkably high reduction in area even when the rolling speed is high and that does not cause difficulty in subsequent rolling because the aspect ratio is suppressed. Document 2) has been proposed, but in the demonstration experiment, it was found that there was a frequent occurrence of throttling due to excessive tension. This invention makes it the subject which should solve generation | occurrence | production prevention of drawing out in this over tension rolling.

実証実験における絞り切れの発生原因は単純ではなく種々の条件が絡んでいることが少しずつ明らかになり、理論の修正ないし補強の必要が無く、試行錯誤を経て作業的要因の適正化によって解決することができ以下の発明をなした。
第1発明は、棒・線・条状の鋼材を圧延方向に張力を作用させつつ熱間で圧延するに際して、一定速度を維持しつつ圧延機に供給される鋼材に対して圧延機自体の引き込み力によりロールバイト入口における該鋼材の降伏力に等しい後方張力を発生させ、該入口において該鋼材に延伸を誘発させて減面率を増大させるとともに圧延による拡幅を消去して断面アスペクト比の増加を抑制することを特徴とする低アスペクト比・高減面率圧延方法において、圧延機上流側においては前記鋼材の温度分布が前記ロールバイト入口部で最高温度となるよう加熱を附加し、且つ金属組織をオーステナイトとし、下流側には前方張力を作用させることを特徴とする圧延方法である。
The cause of the full-throttle in the demonstration experiment is gradually revealed that various conditions are involved, and there is no need to modify or reinforce the theory, and it is solved through optimization of work factors through trial and error The following inventions were made.
In the first aspect of the invention, when rolling a rod, wire, or strip steel material hot while applying tension in the rolling direction, the rolling mill itself is drawn into the steel material supplied to the rolling mill while maintaining a constant speed. The force generates a rear tension equal to the yield force of the steel material at the roll bite entrance, induces the steel material to stretch at the entrance to increase the area reduction rate, and eliminates the widening due to rolling to increase the cross-sectional aspect ratio. In the low aspect ratio and high area reduction rolling method characterized by suppressing, heating is added so that the temperature distribution of the steel material reaches the maximum temperature at the roll bite inlet on the upstream side of the rolling mill, and the metal structure Is austenite, and a forward tension is applied to the downstream side.

第2発明は、ロール径比γを(1)式に従って設定することを特徴とする第1発明に記載の圧延方法である。
μ2γ>2/(1−h)+2+(1-h)/2 −−−−(1)
ただし、
h ; 全圧下比(=材料の圧延後厚さG/圧延前厚さHo)
μ; ロールと鋼材間の摩擦係数
γ; ロール径比(=ロール直径2R/圧延前厚さHo)
The second invention is the rolling method according to the first invention, wherein the roll diameter ratio γ is set according to the equation (1).
μ 2 γ> 2 / (1−h) +2+ (1-h) / 2 −−−− (1)
However,
h: Total reduction ratio (= Thickness G after rolling of material / Thickness Ho before rolling)
μ: Coefficient of friction between roll and steel γ: Roll diameter ratio (= roll diameter 2R / thickness Ho before rolling)

第3発明は、長方形断面の鋼材に対してロール周速Viを(2)式に従う範囲で調節することにより、比アスペクト比αを(3)式に従い、減面比rを(4)式に従う範囲で調節することを特徴とする第2発明に記載の圧延方法である。
1/h<Vi/Vo≦1/(he×h) −−−−−(2)
1/h>α≧he/h −−−−−(3)
he×h≦r<h −−−−−(4)
ただし、
he=〔−B−√(B2−4AC)〕/2A −−−−−(5)
A=9, B=−6h−2F/k, C=h(h+2F/k)
he; 延伸圧下比(=噛み込み直前厚さHe/圧延前厚さHo)
F ; 摩擦指数(=μ2γ)
Vo; 供給鋼材の圧延前速度
Vi; 圧延後速度
α; 比アスペクト比(=圧延後断面アスペクト比/圧延前アスペクト比)
r ; 減面比(=圧延後断面積/圧延前断面積=1−減面率)
3rd invention adjusts roll peripheral speed Vi in the range according to (2) Formula with respect to the steel material of a rectangular cross section, according to (3) Formula, and the surface reduction ratio r according to (4) Formula. The rolling method according to the second aspect of the invention is characterized in that the range is adjusted.
1 / h <Vi / Vo ≦ 1 / (he × h) ----- (2)
1 / h> α ≧ he / h ----- (3)
he × h ≦ r <h −−−−− (4)
However,
he = [− B−√ (B 2 −4AC)] / 2A −−−−− (5)
A = 9, B = -6h-2F / k, C = h (h + 2F / k)
he; Drawing reduction ratio (= thickness He just before biting / thickness Ho before rolling)
F: Friction index (= μ 2 γ)
Vo: Speed of the supplied steel before rolling
Vi; speed after rolling α; specific aspect ratio (= section aspect ratio after rolling / aspect ratio before rolling)
r; Area reduction ratio (= cross-sectional area after rolling / cross-sectional area before rolling = 1-area reduction ratio)

第4発明は、加熱方法が鋼材に直接通電する方法であって一方の電極が圧延機のロールであることを特徴とする第1発明又は第2発明又は第3発明に記載の圧延方法である。   A fourth invention is a rolling method according to the first invention, the second invention or the third invention, wherein the heating method is a method of directly energizing a steel material, and one of the electrodes is a roll of a rolling mill. .

上記の発明において加熱と引抜き条件の特定により、第1の効果、『一定速度で供給される棒・線・条状の鋼材に対して、ロールによる引き込み力により材料に作用する張力を材料の降伏力と等しくしているので、ロールバイトまでに材料に延伸が誘発する。その結果、圧下率を従来より大きく設定しても圧延による拡幅が消滅ないし縮幅に転じ、アスペクト比の過大な増加が抑制されて以後の圧延の問題を解消し、且つ圧下率以上の減面率が容易に得られるようになる。さらに定量化の第1条件として、延伸に必要な大きさの圧下力を発生させるロール径比が(1)式によって規定され、第2条件として該圧下力を延伸に必要な引き込み力に転換させるロール周速/材料速度の比を(2)式又は(3)式によって規定しているので、低アスペクト比、高減面率が得られるだけではなく、それらを広範に調節することが可能となる。1パスで従来の6パス相当分の加工も可能になり、圧延工場における圧延機必要台数を大幅削減することができる。』が補強される。   In the above invention, by specifying the heating and drawing conditions, the first effect is: “For a bar, wire, or strip-shaped steel material supplied at a constant speed, the tension acting on the material by the pulling force by the roll is reduced. Since it is equal to the force, stretching is induced in the material by the roll bite. As a result, even if the rolling reduction ratio is set higher than the conventional one, the widening due to rolling disappears or turns into a narrowing width, the excessive increase in the aspect ratio is suppressed, and the subsequent rolling problem is solved, and the surface area is reduced more than the rolling reduction ratio. The rate can be easily obtained. Further, as a first condition for quantification, a roll diameter ratio that generates a reduction force of a size necessary for stretching is defined by the equation (1), and as a second condition, the reduction force is converted into a drawing force required for stretching. Since the ratio of the roll peripheral speed / material speed is defined by the formula (2) or (3), not only a low aspect ratio and a high area reduction ratio can be obtained, but they can be adjusted extensively. Become. The processing corresponding to the conventional six passes can be performed in one pass, and the number of rolling mills required in the rolling mill can be greatly reduced. ] Is reinforced.

第2の効果、『圧延機の構造はロール径が相対的に大きいだけの一般の2重圧延機が主体であり特別の機構や設計を要せず、第1の効果と合わせて圧延設備全体を低廉、簡素化する。』が補強される。   Second effect, “The structure of the rolling mill is mainly a general double rolling mill with a relatively large roll diameter, and no special mechanism or design is required. The entire rolling equipment is combined with the first effect. Is cheap and simple. ] Is reinforced.

第3の効果、『断面減少に際して単純延伸の割合が大きく、且つアスペクト比が小さく維持されるので従来圧延に見られる圧下に伴う側面表皮の異常集積、局所集積は起こりにくくなる。即ち局部脱炭欠陥や、シワ傷発生の問題が解消される。パス数の大幅削減はパスに付随する各種表面傷の低減にも効果がある。』が補強される。
第4の効果、『拡幅が発生しないこと、ロール接触による動力ロスや鋼材冷却等が少ないこと等により加工エネルギー効率が向上する。』が補強される。
The third effect is that “the ratio of simple stretching is large when the cross-section is reduced and the aspect ratio is kept small, so that abnormal accumulation and local accumulation of the side skin due to the reduction seen in conventional rolling are less likely to occur. That is, the problem of local decarburization defects and wrinkle scratches is eliminated. A significant reduction in the number of passes is also effective in reducing various surface flaws associated with the passes. ] Is reinforced.
The fourth effect, “processing energy efficiency is improved due to the fact that no widening occurs, power loss due to roll contact, cooling of steel materials, etc. is small. ] Is reinforced.

本発明の鋼材の低アスペクト比・高減面率圧延方法の説明図である。It is explanatory drawing of the low aspect-ratio and high area reduction rolling method of the steel materials of this invention. 圧延状況における寸法記号を示す。Dimensional symbols in the rolling situation are shown. 本発明の加熱装置を付加する事例1を示す。The example 1 which adds the heating apparatus of this invention is shown. 本発明の加熱装置を付加する事例2を示す。The example 2 which adds the heating apparatus of this invention is shown. 速度比と減面比の理論と実際の関係を示す。The theory and actual relationship between speed ratio and area reduction ratio are shown.

以下実施の形態を図面を参照しつつ説明する。
図1は本発明を実施する低アスペクト比・高減面率圧延装置の概略説明図である。該装置は主に平ロール1’を持つ圧延機1と該圧延機1に鋼材2を一定速度で供給する鋼材供給手段3(例:ピンチロール、圧延機)と該鋼材2を該圧延機1の上流側で加熱する直接通電加熱装置電源4と該鋼材1を回路の一部とする回路5と該圧延機1の前方に配置され圧延後の鋼材に前方張力を与える鋼材引出手段6(例:ピンチロール)とから成る。
Hereinafter, embodiments will be described with reference to the drawings.
FIG. 1 is a schematic explanatory diagram of a low aspect ratio / high area reduction rolling apparatus for carrying out the present invention. The apparatus mainly includes a rolling mill 1 having a flat roll 1 ′, a steel material supplying means 3 (eg, a pinch roll, a rolling mill) for supplying a steel material 2 to the rolling mill 1 at a constant speed, and the steel material 2 to the rolling mill 1. A direct current heating apparatus power source 4 for heating on the upstream side of the steel, a circuit 5 having the steel material 1 as a part of the circuit, and a steel material extracting means 6 (for example, which is disposed in front of the rolling mill 1 and applies a forward tension to the steel material after rolling. : Pinch roll).

まず角断面の鋼材2を一定速度で平ロール1’を持つ圧延機1に供給し、該ロール1’に噛み込むと同時に鋼材供給手段3と平ロール1’の間の鋼材2に直接通電して加熱し、その結果下流に向かって傾斜的に昇温し、平ロール1’との接触点において最高温度となる。該点で約900℃以上とする。
次いで該ロール1’の周速Viを鋼材供給速度の2倍以上の所定値に向け徐々に増加させ、同時にロール間隙Gを所定圧下比となるよう縮小してゆく。該鋼材2は平ロール1’に噛み込まれるが周速が供給速度を大きく上回るので鋼材2には後方張力が発生する。
First, a steel material 2 having a square cross section is supplied to a rolling mill 1 having a flat roll 1 'at a constant speed, and the steel material 2 between the steel material supply means 3 and the flat roll 1' is energized at the same time as it is engaged with the roll 1 '. As a result, the temperature is gradually increased toward the downstream and reaches the maximum temperature at the point of contact with the flat roll 1 ′. At this point, the temperature is about 900 ° C. or higher.
Next, the peripheral speed Vi of the roll 1 ′ is gradually increased toward a predetermined value that is twice or more the steel material supply speed, and at the same time, the roll gap G is reduced to a predetermined reduction ratio. Although the steel material 2 is caught in the flat roll 1 ′, the circumferential speed greatly exceeds the supply speed, so that a rear tension is generated in the steel material 2.

本願発明ではロール径比γが大きく設定されているので圧下力が大きく、従って引込み力P(=摩擦係数×圧下力)が大きく、滑らずに張力を増加させる。一方鋼材は噛み込み部では断面積が僅かだが本体よりも小さいこと、且つ高温であってより軟化していることから張力が噛み込み部降伏力に達した段階(過張力の発生)で該部で延伸が発生する。
図2は角断面の鋼材がロールにより圧下されている状況と寸法記号を示す。圧下方向、幅方向にもほぼ同比率で延伸する。延伸の結果、順次ロールバイトが縮小し、引き込み力が低下し、延伸量が減少し、ある均衡点で安定する。従って以後は縮小された角断面の鋼材(厚さHe)が平ロール1’により圧下される。
過張力圧延が安定する力学的条件として、ロール径比、圧下比、速度比の適正な組合せが必要であり先行例において該条件が解明された。
In the present invention, since the roll diameter ratio γ is set large, the rolling force is large, and therefore the pulling force P (= friction coefficient × rolling force) is large, and the tension is increased without slipping. On the other hand, the steel has a small cross-sectional area at the bite, but is smaller than the main body, and since it is softer at high temperatures, this part is in the stage where the tension reaches the bite yield force (generation of over tension). Stretching occurs.
FIG. 2 shows a situation in which a steel material having a square cross section is being squeezed by a roll and dimension symbols. The film is stretched at substantially the same ratio in the rolling direction and the width direction. As a result of stretching, the roll bite is successively reduced, the pulling force is reduced, the amount of stretching is reduced, and it is stabilized at a certain equilibrium point. Accordingly, the steel material (thickness He) having a reduced square cross section is thereafter reduced by the flat roll 1 ′.
As a mechanical condition for stabilizing over-tensile rolling, an appropriate combination of a roll diameter ratio, a reduction ratio, and a speed ratio is necessary, and the conditions have been elucidated in the preceding examples.

他方過張力圧延の安定の作業上の第1条件は噛み込み部がその上流側よりも高温になっていて降伏力が引張区間で最少になっていることである。
第2条件は、圧延後の鋼材がロール引き込み力を僅かでも阻害しないことである。そのため圧延機から押し出されてきた鋼材2は鋼材引出手段6であるピンチロールにより常時前方に引張を加えなければならない。
On the other hand, the first condition on the stable operation of over-tensile rolling is that the biting portion is at a higher temperature than the upstream side and the yield force is minimized in the tensile section.
The second condition is that the rolled steel material does not hinder the roll pull-in force even slightly. Therefore, the steel material 2 extruded from the rolling mill must be always pulled forward by a pinch roll as the steel material drawing means 6.

加熱方法として、既述の直接通電が適切である。場合により図3に示すように高周波誘導加熱コイル7を付設しても良い。
通電加熱方法として、図4に示すように鋼材供給手段3と平ロール1’の間に通電ロール8を設けて両側に通電し、両端をアースする方法がより望ましい。
As the heating method, the above-described direct energization is appropriate. In some cases, a high-frequency induction heating coil 7 may be provided as shown in FIG.
As an energization heating method, as shown in FIG. 4, a method of providing an energizing roll 8 between the steel material supply means 3 and the flat roll 1 ′, energizing both sides, and grounding both ends is more desirable.

過張力圧延において全圧下は噛み込み部の延伸と噛み込み後の正味圧延に分配される。前者の減面比r は延伸圧下比heの自乗になり、後者のそれは後方張力により拡幅が抑制されるので圧延効率が改善され、合算すると減面率は格段に向上する。減面比(=圧延後断面積/圧延前断面積)は速度比(=圧延速度/供給速度)の逆数になる。
一方断面形状については、延伸による縮幅と正味圧延分の小さな拡幅を合算すると全体幅は圧延前と同等以下になるのでアスペクト比の圧延による増加は著しく抑制される。
以上から例えばロール径比50,圧下比(=圧延後厚さ/圧延前厚さ)0.5、速度比(圧延速度/供給速度)2.5で減面率0.6(通常の4パス比分)と言う大きな値が得られ、アスペクト比は1.8で収まる。
In over tension rolling, the total reduction is distributed to the stretching of the biting portion and the net rolling after biting. The former area reduction ratio r is the square of the drawing reduction ratio he, and the latter area is reduced in width by the rear tension, so that rolling efficiency is improved, and when combined, the area reduction ratio is remarkably improved. The reduction ratio (= cross-sectional area after rolling / cross-sectional area before rolling) is the reciprocal of the speed ratio (= rolling speed / feeding speed).
On the other hand, as for the cross-sectional shape, the total width becomes equal to or less than that before rolling when the reduced width due to stretching and the small widening corresponding to the net rolling are added together, the increase in aspect ratio due to rolling is remarkably suppressed.
From the above, for example, the roll diameter ratio is 50, the reduction ratio (= thickness after rolling / thickness before rolling) is 0.5, the speed ratio (rolling speed / feeding speed) is 2.5, and the area reduction ratio is 0.6 (normal four passes). Ratio) is obtained, and the aspect ratio falls within 1.8.

以上、本発明の実施の態様について定性的に説明した。以下本発明の理論的根拠と諸要因の定量的関係を明らかにする。
今正方形断面の材料について、材料の供給速度とロール周速との比、その他要因が適切な状態にあるとすると、材料に延伸が発生し、材料に生ずる張力とロールによる後退力の和は最大引抜力μ×Pと均衡し、以下の式が成立する。
降伏力+ロール後退力=ロール引抜力
Y×He×He+ΔH×P=μ×P=μ×Y×L×He −−−−−(6)
L=√(ΔH×R) −−−−−(7)
ΔH=He−G −−−−−(8)
Y ;降伏応力、 He;延伸後の鋼材厚さ、 P ;圧下力、
L ;ロール・鋼材接触長、 ΔH;正味圧下量、
記号の説明は段落[0015]、段落[0016]と図2にも示される。
The embodiment of the present invention has been qualitatively described above. Hereinafter, the theoretical basis of the present invention and the quantitative relationship between various factors will be clarified.
Assuming that the ratio of the material supply speed to the roll peripheral speed and other factors are in an appropriate state for a material with a square cross section, the material is stretched, and the sum of the tension generated in the material and the retraction force by the roll is the maximum. Equilibrium with the pulling force μ × P, and the following equation is established.
Yield force + roll retraction force = roll pulling force
Y × He × He + ΔH × P = μ × P = μ × Y × L × He (6)
L = √ (ΔH × R) ----- (7)
ΔH = He-G ----- (8)
Y: Yield stress, He: Steel thickness after drawing, P: Rolling force,
L: Roll / steel contact length, ΔH: Net reduction amount,
The explanation of the symbols is also shown in paragraph [0015], paragraph [0016] and FIG.

上記式を整理すると二次方程式が得られる。
A'He2+B'He+C'=0 −−−−−(9)
ここでγ=2R/Ho、μ2γ=Fとし、両辺をHo2で割って無次元化し、解を求める。
Ahe2+Bhe+C=0 −−−−(10)
he=〔−B−√(B2−4AC)〕/2A −−−−−(5)
A=9, B=−6h−2F, C=h(h+2F)
即ち、全圧下比h と摩擦指数F から延伸圧下比heが算出される。
Rearranging the above equation gives a quadratic equation.
A′He 2 + B′He + C ′ = 0 −−−−− (9)
Here, γ = 2R / Ho, μ 2 γ = F, and both sides are divided by Ho 2 to make it dimensionless to obtain a solution.
Ahe 2 + Bhe + C = 0 −−−− (10)
he = [− B−√ (B 2 −4AC)] / 2A −−−−− (5)
A = 9, B = -6h-2F, C = h (h + 2F)
That is, the drawing reduction ratio he is calculated from the total reduction ratio h and the friction index F.

延伸発生は次式の成立を意味し、(5)式に代入すると(1)式が誘導される。
he<1.0
F=μ2γ>2/(1−h)+2+(1-h)/2 −−−−(1)
即ち過張力圧延の第1の必要条件は(1)式になる。
γの値は通常、粗圧延から仕上げ圧延まで約3〜20であるが、上限近傍は構造上の都合からそうなっており、特別の理由は無い。式より過張力圧延では少なくとも40以上が必要で従来水準を大きく超えるロール径が必要と解る。以上が第2発明に記されたロール径比γの特定の根拠である。
The occurrence of stretching means that the following formula is established, and when substituting into the formula (5), the formula (1) is derived.
he <1.0
F = μ 2 γ> 2 / (1−h) +2+ (1-h) / 2 −−−− (1)
That is, the first necessary condition for over-tensile rolling is expressed by equation (1).
The value of γ is usually about 3 to 20 from rough rolling to finish rolling, but the vicinity of the upper limit is so for structural reasons and there is no special reason. From the equation, it can be understood that at least 40 or more is required for over-tensile rolling, and a roll diameter that greatly exceeds the conventional level is required. The above is the specific basis for the roll diameter ratio γ described in the second invention.

過張力圧延の第2条件となる速度比の特定について説明する。
正常な圧延が維持されている状態では物量一定則から次式が成立する。
Vi×Si=Vo×So −−−(11)
Vo;鋼材入側速度、 Vi;鋼材出側速度、 Si;鋼材出側断面積、 So;鋼材入側断面積
断面積比Si/Soは、長方形断面の場合以下の式で表される。
Si/So=He2×Hr/He/Ho2=he2×hr
一方、定義より
he×hr=He/Ho×G/He=G/Ho=h
故に、 Si/So=he×h −−−−(12)
以上から速度比Vi/Voは以下となる。速度比がこれを超えると引抜力が負け均衡が崩れて滑り圧延に落ちる。
Vi/Vo=1/(he×h) −−−−(13)
The specification of the speed ratio that is the second condition for over-tensile rolling will be described.
In the state where normal rolling is maintained, the following formula is established from the constant quantity rule.
Vi x Si = Vo x So ---- (11)
Vo: Steel material entry side speed, Vi: Steel material delivery side speed, Si: Steel material delivery side cross-sectional area, So: Steel material entry side cross-sectional area The cross-sectional area ratio Si / So is expressed by the following formula in the case of a rectangular cross section.
Si / So = He 2 × Hr / He / Ho 2 = he 2 × hr
On the other hand, from the definition
he × hr = He / Ho × G / He = G / Ho = h
Therefore, Si / So = he × h ---- (12)
From the above, the speed ratio Vi / Vo is as follows. If the speed ratio exceeds this, the pulling force is lost and the balance is lost, resulting in slip rolling.
Vi / Vo = 1 / (he × h) ---- (13)

以上の説明は最大延伸が得られる場合である。速度比が逆に微少量減少する場合は、降伏力より引抜力の増加が相対的に勝り延伸は維持され、比アスペクト比αの微小増加、減面比rの微小増加となる。この作用は延伸圧下比he が1.0になるまで続く。従ってロールバイトまでに延伸が発生するという過張力圧延の現象は速度比に対してある範囲で起こり得るものであり、且つ速度比次第で変形量が変化することが理解される。過張力圧延が発現する下限速度は(17)式の右辺においてhe=1.0 とすれば求めら以下となる。
Vi/Vo>1/h −−−−(14)
以上をまとめて過張力圧延が発現する速度比範囲は以下となる。
1/h<Vi/Vo≦1/(he×h) −−−−−(2)
上記式が過張力圧延の第2条件であり、第3発明における速度比Vi/Voの特定の根拠である。
The above explanation is a case where maximum stretching is obtained. On the contrary, when the speed ratio is decreased by a small amount, the increase in the pulling force is relatively superior to the yield force, and the stretching is maintained, and the specific aspect ratio α is slightly increased and the surface reduction ratio r is slightly increased. This action continues until the draw reduction ratio he is 1.0. Therefore, it is understood that the phenomenon of over-tension rolling in which stretching occurs up to the roll bite can occur within a certain range with respect to the speed ratio, and the amount of deformation changes depending on the speed ratio. The lower limit speed at which over-tensile rolling appears is as follows if he = 1.0 on the right side of the equation (17).
Vi / Vo> 1 / h ---- (14)
Summarizing the above, the speed ratio range in which over-tensile rolling appears is as follows.
1 / h <Vi / Vo ≦ 1 / (he × h) ----- (2)
The above formula is the second condition for over-tensile rolling, and is the specific basis for the speed ratio Vi / Vo in the third invention.

上記の上限、下限における比アスペクト比α(=圧延後断面アスペクト比/圧延前アスペクト比)について説明する。拡幅を近似的に無視すると、
α≒He/G=he/h
(2)式の速度比に対応してαは次式に示される範囲で変化する。
1/h>α≧he/h −−−−−(3)
The specific aspect ratio α at the above upper limit and lower limit (= cross-sectional aspect ratio after rolling / aspect ratio before rolling) will be described. Ignoring widening approximately,
α ≒ He / G = he / h
Corresponding to the speed ratio in the equation (2), α changes within the range represented by the following equation.
1 / h> α ≧ he / h ----- (3)

速度比の上限、下限における減面比r を求める。(12)式におけるSi/So は実は減面比r を表している。従って次式が容易に得られる。
h>r≧he×h −−−−−(4)
以上から全圧下比h を与えると、延伸圧下比he、圧延圧下比hr、減面比r、比アスペクト比α、速度比Vi/Voが算出される。
Find the area reduction ratio r at the upper and lower limits of the speed ratio. In the equation (12), Si / So actually represents the reduction ratio r. Therefore, the following equation can be easily obtained.
h> r ≧ he × h −−−−− (4)
From the above, when the total reduction ratio h is given, the drawing reduction ratio he, the rolling reduction ratio hr, the area reduction ratio r, the specific aspect ratio α, and the speed ratio Vi / Vo are calculated.

実施例1: 図3に示すような実証用過張力圧延装置により実験を行った。供試材は線径5.5mmの炭酸ガスアーク溶接用線材である。ロール径は250mmである。線材供給速度を25mm/sとし、圧延速度はその2倍に設定、圧延機のローギャップは軽圧下とし、高周波誘導加熱装置により約800℃に加熱した。その結果滑り状態で軽度の引張圧延が維持された。ギャップを徐々に縮小していくと突然滑りが無くなり圧延速度が急増し、しばらくすると破断した。破断前の断面積は半減しており一時的だが過張力圧延が確認された。両線速を約半減して加熱温度を約950℃に上げると圧延継続時間が増加し、高温加熱が必要と解った。フェライト域引張り加工では延性が不足と解釈される。しかし圧延は長く続かず絞り切れが発生した。単なる熱間圧延では噛み込み部が優先的に延伸する異は不安定と解った。   Example 1 An experiment was conducted using a demonstration overtensile rolling apparatus as shown in FIG. The specimen is a carbon dioxide arc welding wire having a wire diameter of 5.5 mm. The roll diameter is 250 mm. The wire supply speed was 25 mm / s, the rolling speed was set to twice that, the low gap of the rolling mill was lightly reduced, and heated to about 800 ° C. with a high-frequency induction heating device. As a result, mild tensile rolling was maintained in a sliding state. When the gap was gradually reduced, the slip suddenly disappeared, and the rolling speed increased rapidly. The cross-sectional area before rupture was halved, and temporary but over-tensile rolling was confirmed. It was understood that when both the wire speeds were reduced by half and the heating temperature was raised to about 950 ° C., the rolling continuation time increased, and high temperature heating was necessary. It is interpreted that the ductility of the ferrite region is insufficient. However, rolling did not continue for a long time, and drawing out occurred. In simple hot rolling, it was found that the difference in which the biting portion preferentially extends was unstable.

実施例2: 誘導加熱装置の能力不足を補うため直接通電装置を附加した。電極の一方を圧延機ロールとした。その結果下流ほど高温になり噛み込み部が最高温度約1000℃になった。噛み込み部の延伸が安定し、所定の速度で数10mの過張力圧延が可能となっって噛み込み部の軟化が有効と判明した。しかししばしば絞り切れが発生した。供給速度と圧延速度の記録から速度の微小変動後に発生しており、一定速度の供給が必要と解った。   Example 2: A direct energizer was added to compensate for the lack of capacity of the induction heating device. One of the electrodes was a rolling mill roll. As a result, the temperature became higher in the downstream, and the biting portion reached a maximum temperature of about 1000 ° C. It became clear that stretching of the biting portion was stable, and overtensile rolling of several tens of meters was possible at a predetermined speed, and softening of the biting portion was effective. However, there was often a throttling. It was found from the record of the feeding speed and rolling speed that it occurred after a slight fluctuation in speed, and it was necessary to supply at a constant speed.

実施例5: 供給速度と圧延速度の比を一定とするよう連動機構を附加して速度比変動を無くしたところ過張力圧延は安定した。
新たに圧延機出側において線材の走行に少しの抵抗が作用すると、一瞬の滑りの後絞りが発生、破断した。また滑りが認められるとキンク(はみ出し)が発生し、圧延不能となった。常に引張り出すように案内すると絞り切れが無くなった。常時引張を作用させることが必要と解った。
図5に示すように適当な圧下量で速度比を2.5倍とすると理論通り減面率60%が達成された。3.0倍の場合は新たに滑りが発生し理論の67%に対して55%に止まった。しかし滑り圧延は安定していた。設定した圧下比が条件式(2)の限界に近いところにあった。
Example 5: When an interlocking mechanism was added to keep the ratio between the supply speed and the rolling speed constant to eliminate the speed ratio fluctuation, the over-tensile rolling became stable.
When a little resistance acted on the running of the wire on the exit side of the rolling mill, drawing was generated after a momentary slip and broke. When slipping was observed, kinks (extrusion) occurred and rolling was impossible. When the guide was always pulled out, the diaphragm was not cut. It was found that it was necessary to apply tension constantly.
As shown in FIG. 5, when the speed ratio was 2.5 times with an appropriate reduction amount, a surface reduction rate of 60% was achieved as theoretically. In the case of 3.0 times, a new slip occurred, which was 55% compared with 67% of theory. However, sliding rolling was stable. The set reduction ratio was close to the limit of conditional expression (2).

1:圧延機 1’:平ロール 2:鋼材 3:鋼材供給手段 4:通電加熱電源 5:通電加熱回路 6:鋼材引出手段 7:高周波誘導加熱コイル 8:通電ロール DESCRIPTION OF SYMBOLS 1: Rolling machine 1 ': Flat roll 2: Steel material 3: Steel material supply means 4: Electrical heating power supply 5: Electrical heating circuit 6: Steel material extraction means 7: High frequency induction heating coil 8: Current roll

Claims (4)

棒・線・条状の鋼材を圧延方向に張力を作用させつつ熱間で圧延するに際して、一定速度を維持しつつ圧延機に供給される鋼材に対して延機自体の引き込み力によりロールバイト入口における該鋼材の降伏力に等しい後方張力を発生させ、該入口において該鋼材に延伸を誘発させて減面率を増大させるとともに圧延による拡幅を消去して断面アスペクト比の増加を抑制することを特徴とする低アスペクト比・高減面率圧延方法において、圧延機上流側においては前記鋼材の温度分布が前記ロールバイト入口部で最高温度となるよう加熱を附加し、且つ金属組織をオーステナイトとし、下流側には前方張力を作用させることを特徴とする圧延方法。   When rolling rods, wires, and strip-shaped steel materials hot while applying tension in the rolling direction, the roll bite entrance is brought about by the pulling force of the stretcher itself against the steel materials supplied to the rolling mill while maintaining a constant speed. A backward tension equal to the yield force of the steel material is generated at the inlet, the steel material is stretched at the entrance to increase the area reduction rate, and the expansion due to rolling is eliminated to suppress an increase in cross-sectional aspect ratio. In the rolling method with a low aspect ratio and high area reduction ratio, in the upstream side of the rolling mill, heating is added so that the temperature distribution of the steel material becomes the highest temperature at the roll bite inlet, and the metal structure is austenite, and the downstream A rolling method characterized by applying a forward tension to the side. ロール径比γを(1)式に従って設定することを特徴とする請求項1に記載の圧延方法。
μ2γ>2/(1−h)+2+(1-h)/2 −−−−(1)
ただし、
h ; 全圧下比(=材料の圧延後厚さG/圧延前厚さHo)
μ; ロールと鋼材間の摩擦係数
γ; ロール径比(=ロール直径2R/圧延前厚さHo)
The rolling method according to claim 1, wherein the roll diameter ratio γ is set according to the equation (1).
μ 2 γ> 2 / (1−h) +2+ (1-h) / 2 −−−− (1)
However,
h: Total reduction ratio (= Thickness G after rolling of material / Thickness Ho before rolling)
μ: Coefficient of friction between roll and steel γ: Roll diameter ratio (= roll diameter 2R / thickness Ho before rolling)
長方形断面の鋼材に対してロール周速Viを(2)式に従う範囲で調節することにより、比アスペクト比αを(3)式に従い、減面比rを(4)式に従う範囲で調節することを特徴とする請求項2に記載の圧延方法。
1/h<Vi/Vo≦1/(he×h) −−−−−(2)
1/h>α≧he/h −−−−−(3)
he×h≦r<h −−−−−(4)
ただし、
he=〔−B−√(B2−4AC)〕/2A −−−−−(5)
A=9, B=−6h−2F/k, C=h(h+2F/k)
he; 延伸圧下比(=噛み込み直前厚さHe/圧延前厚さHo)
F ; 摩擦指数(=μ2γ)
Vo; 供給鋼材の圧延前速度
Vi; 圧延後速度
α; 比アスペクト比(=圧延後断面アスペクト比/圧延前アスペクト比)
r ; 減面比(=圧延後断面積/圧延前断面積=1−減面率)
By adjusting the roll peripheral speed Vi within the range according to the formula (2) for the steel having the rectangular cross section, the specific aspect ratio α is adjusted according to the formula (3), and the surface reduction ratio r is adjusted within the range according to the formula (4). The rolling method according to claim 2, wherein:
1 / h <Vi / Vo ≦ 1 / (he × h) ----- (2)
1 / h> α ≧ he / h ----- (3)
he × h ≦ r <h −−−−− (4)
However,
he = [− B−√ (B 2 −4AC)] / 2A −−−−− (5)
A = 9, B = -6h-2F / k, C = h (h + 2F / k)
he; Drawing reduction ratio (= thickness He just before biting / thickness Ho before rolling)
F: Friction index (= μ 2 γ)
Vo: Speed of the supplied steel before rolling
Vi; speed after rolling α; specific aspect ratio (= section aspect ratio after rolling / aspect ratio before rolling)
r; Area reduction ratio (= cross-sectional area after rolling / cross-sectional area before rolling = 1-area reduction ratio)
加熱方法が鋼材に直接通電する方法であって一方の電極が圧延機のロールであることを特徴とする請求項1又は請求項2又は請求項3に記載の圧延方法。   The rolling method according to claim 1, wherein the heating method is a method of directly energizing a steel material, and one of the electrodes is a roll of a rolling mill.
JP2012249858A 2012-11-14 2012-11-14 High area reduction rolling method Expired - Fee Related JP6084817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012249858A JP6084817B2 (en) 2012-11-14 2012-11-14 High area reduction rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012249858A JP6084817B2 (en) 2012-11-14 2012-11-14 High area reduction rolling method

Publications (2)

Publication Number Publication Date
JP2014097518A true JP2014097518A (en) 2014-05-29
JP6084817B2 JP6084817B2 (en) 2017-02-22

Family

ID=50939992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012249858A Expired - Fee Related JP6084817B2 (en) 2012-11-14 2012-11-14 High area reduction rolling method

Country Status (1)

Country Link
JP (1) JP6084817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101735640B1 (en) * 2015-05-28 2017-05-17 한국생산기술연구원 operating method and device for multi-stage combustion of petroleum cokes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169465A (en) * 1974-12-12 1976-06-16 Nippon Steel Corp Koenshinnotoreru tokushuatsuensochi
JPS5668523A (en) * 1979-11-12 1981-06-09 Kawasaki Steel Corp Pointed part forming method of blank material for drawing
JPH10128402A (en) * 1996-10-31 1998-05-19 Sumitomo Metal Ind Ltd Manufacture of steel wire and manufacturing device therefor
JP2007002950A (en) * 2005-06-24 2007-01-11 National Institute For Materials Science High-strength tapping screw and manufacturing method therefor
JP4284396B2 (en) * 2003-09-26 2009-06-24 山田 勝彦 High area reduction rolling method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169465A (en) * 1974-12-12 1976-06-16 Nippon Steel Corp Koenshinnotoreru tokushuatsuensochi
JPS5668523A (en) * 1979-11-12 1981-06-09 Kawasaki Steel Corp Pointed part forming method of blank material for drawing
JPH10128402A (en) * 1996-10-31 1998-05-19 Sumitomo Metal Ind Ltd Manufacture of steel wire and manufacturing device therefor
JP4284396B2 (en) * 2003-09-26 2009-06-24 山田 勝彦 High area reduction rolling method
JP2007002950A (en) * 2005-06-24 2007-01-11 National Institute For Materials Science High-strength tapping screw and manufacturing method therefor

Also Published As

Publication number Publication date
JP6084817B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6429059B1 (en) Cold rolling mill and cold rolling method
JP4874369B2 (en) Continuous machining heat treatment line for medium to high carbon steel wire
JP6084817B2 (en) High area reduction rolling method
JP6432614B2 (en) Cold rolling method and manufacturing method of metal tube
CN103230943B (en) Improve the method for Warping Phenomenon in Plate Rolling Process
JP2001137907A (en) Hot-rolling method and steckel hot-rolling mill
WO2004092424A1 (en) Heat treating method for steel wire
JP4284396B2 (en) High area reduction rolling method
JP6295932B2 (en) Metal strip shape control method and shape control apparatus
WO2016072285A1 (en) Steel sheet manufacturing method and steel sheet manufacturing device
CN113913681B (en) High-strength low-wire-breakage-rate cord steel, rolling method and application thereof
JP2018047483A (en) Shape control method of metal strip and shape control device
JP2005296973A (en) Method and apparatus for manufacturing hot-rolled steel plate
JP4038541B2 (en) Heat treatment method for steel wire
JP4054328B2 (en) Hot rolled long coil manufacturing method
CN203569155U (en) Device for thermally stretching band steel in continuous annealing furnace
JP5903826B2 (en) Hot slab sizing rolling method
JP3695242B2 (en) Hot rolling equipment and rolling method
JPH11151526A (en) Roll preforming method of tube
CN111254265B (en) Method and device for improving internal stress distribution of strip steel
JP4065251B2 (en) Hot finish rolling method that prevents drawing wrinkles
JP2890198B2 (en) Method for producing long member made of steel or steel alloy having low deformability
US1469721A (en) Method of handling hot metal strip and apparatus therefor
JP2004001031A (en) Method for cold-rolling metal plate
JP3872538B2 (en) Method for producing hot-rolled steel sheet with good surface properties and pickling properties

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

R150 Certificate of patent or registration of utility model

Ref document number: 6084817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees