JP2014096605A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2014096605A
JP2014096605A JP2014009991A JP2014009991A JP2014096605A JP 2014096605 A JP2014096605 A JP 2014096605A JP 2014009991 A JP2014009991 A JP 2014009991A JP 2014009991 A JP2014009991 A JP 2014009991A JP 2014096605 A JP2014096605 A JP 2014096605A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
substrate
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014009991A
Other languages
Japanese (ja)
Other versions
JP5761391B2 (en
Inventor
Masahiko Sano
雅彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2014009991A priority Critical patent/JP5761391B2/en
Publication of JP2014096605A publication Critical patent/JP2014096605A/en
Application granted granted Critical
Publication of JP5761391B2 publication Critical patent/JP5761391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device which can achieve any one, preferably all, of enhancement of luminous efficiency, suppression of uneven luminance or uneven color, and high output light emission, even if a light-emitting element of large area is mounted.SOLUTION: A light-emitting device includes a light transmission member 20 having a surface becoming the light-emitting face 90 of the light-emitting device and a light-receiving face, a light-emitting element 10 including a translucent substrate having an emission face coupled with the light-receiving face, and a surface facing the emission face and provided with a semiconductor element structure, and a covering member 40 including a light reflective material 45, and covering the side face of the light-emitting element, while exposing the emission face, and extending from the side face to cover a part of the light transmission member. On the surface of the translucent substrate, the light-emitting element has a division part, and a plurality of light-emitting structures 12 provided in respective regions of the semiconductor element structure divided by the division part. The covering member covers the division part, and the light-emitting structures adjoining the division part, and has a light reflective part on the covering side surface.

Description

本発明は、発光装置に関し、より詳細には同一基板上に複数の素子構造、発光構造が設
けられた発光素子と、該発光素子を被覆する光反射性の被覆部材と、を備えた発光装置に
関する。
The present invention relates to a light-emitting device, and more specifically, a light-emitting device including a plurality of element structures, a light-emitting element provided with a light-emitting structure on the same substrate, and a light-reflective coating member that covers the light-emitting element. About.

近年、光源として発光ダイオード(Light Emitting Diode:LED)やレーザダイオー
ド(Laser Diode:LD)等の半導体発光素子を搭載した発光装置が、各種の照明や表示
装置に利用されている。特に、これら半導体発光素子は消費電力が低く長寿命であるため
、電球や蛍光灯に代替可能な照明の光源として注目を集めており、さらなる発光出力およ
び発光効率の向上が求められている。また、自動車のヘッドライト等の投光照明のように
、配光特性に優れ、高輝度で且つ信頼性の高い光源も求められている。
2. Description of the Related Art In recent years, light-emitting devices equipped with semiconductor light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) as light sources have been used for various lighting and display devices. In particular, these semiconductor light-emitting elements are attracting attention as light sources for illumination that can replace light bulbs and fluorescent lamps because of their low power consumption and long life, and further improvements in light emission output and light emission efficiency are required. There is also a need for a light source that has excellent light distribution characteristics, high brightness, and high reliability, such as floodlights such as automobile headlights.

例えば特許文献1には、発光波長に対して透明な基板上に形成された複数の発光ユニッ
トを有し、主たる光取り出し方向が基板側であり、基板と第1導電型半導体層の間に、複
数の発光ユニット間に共通して設けられたバッファ層を有し、発光ユニット同士は、バッ
ファ層の界面またはその一部までを除去して形成された発光ユニット間が分離溝により電
気的に分離されており、1つの発光ユニット内には、活性層構造、第2導電型半導体層お
よび第1導電型側電極を含む複数個の発光ポイントを有し、1つの発光ユニット内は第1
導電型半導体層で電気的に導通している集積型化合物半導体発光装置が提案されている。
For example, Patent Document 1 has a plurality of light emitting units formed on a substrate transparent to the emission wavelength, the main light extraction direction is the substrate side, and between the substrate and the first conductivity type semiconductor layer, The light emitting units have a buffer layer provided in common between a plurality of light emitting units, and the light emitting units are electrically separated by a separation groove between the light emitting units formed by removing the interface or part of the buffer layer. One light emitting unit has a plurality of light emitting points including an active layer structure, a second conductive type semiconductor layer, and a first conductive type side electrode.
There has been proposed an integrated compound semiconductor light-emitting device that is electrically conductive in a conductive semiconductor layer.

また例えば特許文献2に開示された発光装置は、光取出側に開口したケース内にLED
素子が載置されており、そのケース内に光反射粒子を含有するコーティング材が充填され
、LED素子における光取出面を除く外面領域が被覆されている。加えて、成形されたコ
ーティング材の外面上に、LED素子の光取出面を覆うシート状の蛍光体層が配設され、
LED素子からの一次光(青色光)と、波長変換された二次光(黄色光)とを放射するY
AG等の蛍光体を含む樹脂からなり、一次光と二次光との混色によって光出射面から白色
光を放出可能である。
Further, for example, the light emitting device disclosed in Patent Document 2 includes an LED in a case opened on the light extraction side.
The element is placed, the case is filled with a coating material containing light reflecting particles, and the outer surface area of the LED element excluding the light extraction surface is covered. In addition, a sheet-like phosphor layer covering the light extraction surface of the LED element is disposed on the outer surface of the molded coating material,
Y that emits primary light (blue light) and LED-converted secondary light (yellow light) from the LED element
It is made of a resin containing a phosphor such as AG, and can emit white light from the light exit surface by mixing the primary light and the secondary light.

特開2007−324579号公報JP 2007-324579 A 特開2007−019096号公報JP 2007-019096 A 特開2002−305328号公報JP 2002-305328 A WO2009/069671号公報WO2009 / 069671

高出力化のため発光面積を大きくした発光素子では、素子全域への電流拡散性が悪く、
発光面における発光強度分布にムラを生じ、素子内部で発光した光の取り出し効率が悪化
する問題がある。また、上記特許文献1に開示されるように、同一基板上に分離溝により
互いに分離された複数の素子構造を形成し、その問題を改善できるが、このような素子構
造の集積は、各素子構造間を電気的に接続する配線パターンやその上に設けられる接合部
材などで、光吸収による光損失を生じ光の取り出し効率が低下する虞がある。同様に、素
子構造にそれを覆う電極、金属反射膜などの反射構造を備えた発光素子では、素子構造の
反射側で反射構造による光吸収、損失を生じ、素子内部に反射された光は、素子内部によ
る光吸収、損失が発生するため、結局、光の取り出し効率が低下する虞がある。また、こ
のような同一基板上に互いに分離された複数の素子構造を有する発光素子上に、例えば上
記特許文献2に記載されているように、発光素子からの一次光を波長変換した二次光を発
光する蛍光体を含有する波長変換部材を接合する場合には、各素子構造の配光に起因し、
分離溝上の一次光の輝度が低下することで、発光面内で一次光と二次光の混色率が変化し
、輝度ムラや色ムラを生じる問題がある。
A light emitting device with a large light emitting area for high output has poor current diffusivity throughout the device,
There is a problem in that the light emission intensity distribution on the light emitting surface is uneven and the extraction efficiency of light emitted inside the device is deteriorated. Further, as disclosed in the above-mentioned Patent Document 1, a plurality of element structures separated from each other by separation grooves can be formed on the same substrate, and the problem can be improved. There is a risk that the light extraction efficiency may be reduced due to light loss due to light absorption in a wiring pattern for electrically connecting structures or a bonding member provided on the wiring pattern. Similarly, in a light-emitting element having a reflection structure such as an electrode covering the element structure and a metal reflection film, light is absorbed and lost by the reflection structure on the reflection side of the element structure, and the light reflected inside the element is Since light absorption and loss occur inside the device, the light extraction efficiency may eventually decrease. Further, on such a light emitting element having a plurality of element structures separated from each other on the same substrate, for example, secondary light obtained by wavelength-converting primary light from the light emitting element as described in Patent Document 2 above. When joining a wavelength conversion member containing a phosphor that emits light, it is caused by the light distribution of each element structure,
As the luminance of the primary light on the separation groove decreases, there is a problem that the color mixing ratio of the primary light and the secondary light changes within the light emitting surface, resulting in luminance unevenness and color unevenness.

そこで、本発明はかかる事情に鑑みてなされたものであり、大面積の発光素子を搭載し
ても、発光効率を高くすること、輝度ムラや色ムラの発生を抑制すること、高出力発光を
可能とすること、それらのいずれか、好ましくはそれら全てを実現可能な発光装置を提供
することを目的とする。
Therefore, the present invention has been made in view of such circumstances. Even when a light emitting element having a large area is mounted, the light emission efficiency is increased, the occurrence of uneven brightness and color unevenness, and high output light emission. It is an object of the present invention to provide a light-emitting device capable of realizing any one of them, preferably all of them.

本発明は、下記(1)〜(14)の手段により上記課題を解決することができる。
(1)発光装置の発光面となる表面と受光面とを有する光透過部材と、前記受光面に結合
された出射面と、該出射面に対向し、半導体素子構造が設けられた表面とを有する透光性
基板を備えた発光素子と、光反射性材料を含有し、前記発光面を露出して、前記発光素子
の側面と、該側面から延在して前記光透過部材の一部と、を被覆する被覆部材と、を備え
、前記発光素子は、前記透光性基板の表面上に、分離部と、前記半導体素子構造が該分離
部により互いに分離されて、該分離された半導体素子構造の各領域に設けられた複数の発
光構造部と、を有し、前記被覆部材は、前記分離部と、該分離部に隣接する前記発光構造
部とを被覆して、該被覆側表面に光反射部を有する発光装置。
(2)前記発光構造部が、前記分離部により、独立して発光可能なように互いに分離され
た半導体素子構造にそれぞれ設けられている上記(1)に記載の発光装置。
(3)前記発光構造部が、前記分離部により互いに分離され、前記半導体素子構造の一部
で互いに接続されて同時に発光可能である上記(1)に記載の発光装置。
(4)前記半導体素子構造が、分離部に、前記発光構造部からの発光が発光素子外部に出
射可能な素子構造表面を有する上記(1)〜(3)のいずれか1つに記載の発光装置。
(5)前記発光素子が、該側面に、前記発光構造部からの発光が発光素子外部に出射可能
な素子構造表面を有する上記(1)〜(4)のいずれか1つに記載の発光装置。
(6)前記分離部の底面に、前記透光性基板の表面が露出されている上記(1)〜(5)
のいずれか1つに記載の発光装置。
(7)前記被覆部材は、前記分離部において、前記透光性基板の表面を被覆して前記被覆
部材と前記透光性基板の表面との界面に前記光反射部が設けられる上記(6)に記載の発
光装置。
(8)前記透光性基板の表面は、凹凸構造を有し、該凹凸構造上に前記半導体素子構造、
前記分離部が配置されると共に、前記分離部の底面に露出された前記透光性基板の表面に
、前記被覆部材が設けられる上記(1)〜(7)のいずれか1つに記載の発光装置。
(9)前記被覆部材は、前記光透過部材の側面から、前記半導体素子構造及び透光性基板
の側面を連続して被覆する上記(1)〜(8)のいずれか1つに記載の発光装置。
(10)前記分離部が、前記発光構造部の発光を発光素子外部に出射可能な素子構造表面
、又は該素子構造表面と該発光を発光素子外部に出射可能な前記透光性基板の表面を有し
、前記被覆部材が、前記分離部内の空隙を介して、前記分離部と、前記半導体素子構造を
被覆している上記(1)〜(6)のいずれか1つに記載の発光装置。
(11)前記半導体素子構造が、前記発光構造部の発光を発光素子外部に出射可能な素子
構造表面を有し、前記被覆部材が、該素子構造表面において、空隙を介して被覆する領域
と、直接被覆する領域とを有する上記(1)〜(10)のいずれか1つに記載の発光装置

(12)前記光透過部材は、前記発光素子に励起される波長変換部材である上記(1)〜
(11)のいずれか1つに記載の発光装置。
(13)前記波長変換部材は、互いに対向する第1及び第2の主面を有する板状体である
上記(12)に記載の発光装置。
(14)前記半導体素子構造が、前記分離部を横断する配線を備え、該配線により前記複
数の発光構造部を接続して実装する実装基板を有し、前記被覆部材は、前記分離部を横断
する前記配線を被覆するとともに、前記分離部において光反射部を有する上記(1)〜(
13)のいずれか1つに記載の発光装置。
The present invention can solve the above problems by the following means (1) to (14).
(1) A light transmissive member having a light emitting surface and a light receiving surface of a light emitting device, an emission surface coupled to the light receiving surface, and a surface facing the emission surface and provided with a semiconductor element structure. A light-emitting element including a light-transmitting substrate, a light-reflective material, exposing the light-emitting surface, a side surface of the light-emitting element, and a part of the light-transmitting member extending from the side surface The light emitting element includes a separation part and the semiconductor element structure separated from each other by the separation part on the surface of the light-transmitting substrate. A plurality of light emitting structure portions provided in each region of the structure, and the covering member covers the separation portion and the light emitting structure portion adjacent to the separation portion, on the covering side surface A light emitting device having a light reflecting portion.
(2) The light emitting device according to (1), wherein the light emitting structure is provided in each of the semiconductor element structures separated from each other so that the light can be independently emitted by the separating unit.
(3) The light-emitting device according to (1), wherein the light-emitting structure portions are separated from each other by the separation portion, and are connected to each other in a part of the semiconductor element structure and can emit light simultaneously.
(4) The light emitting device according to any one of (1) to (3), wherein the semiconductor device structure has an element structure surface in which the light emitted from the light emitting structure portion can be emitted to the outside of the light emitting device. apparatus.
(5) The light emitting device according to any one of (1) to (4), wherein the light emitting element has, on the side surface, an element structure surface capable of emitting light from the light emitting structure portion to the outside of the light emitting element. .
(6) Said (1)-(5) in which the surface of the said translucent board | substrate is exposed to the bottom face of the said isolation | separation part.
The light emitting device according to any one of the above.
(7) In the above (6), the covering member covers the surface of the translucent substrate in the separating portion, and the light reflecting portion is provided at an interface between the covering member and the surface of the translucent substrate. The light emitting device according to 1.
(8) The surface of the translucent substrate has an uneven structure, and the semiconductor element structure on the uneven structure,
The light emitting device according to any one of (1) to (7), wherein the separating member is disposed, and the covering member is provided on a surface of the translucent substrate exposed on a bottom surface of the separating member. apparatus.
(9) The light emitting device according to any one of (1) to (8), wherein the covering member continuously covers the side surface of the semiconductor element structure and the light transmitting substrate from the side surface of the light transmitting member. apparatus.
(10) The separation unit includes an element structure surface capable of emitting light emitted from the light emitting structure part to the outside of the light emitting element, or the surface of the element structure and the surface of the translucent substrate capable of emitting the light emission to the outside of the light emitting element. The light emitting device according to any one of (1) to (6), wherein the covering member covers the separation portion and the semiconductor element structure through a gap in the separation portion.
(11) The semiconductor element structure has an element structure surface capable of emitting light emitted from the light emitting structure part to the outside of the light emitting element, and the covering member covers the element structure surface through a gap; The light emitting device according to any one of (1) to (10), wherein the light emitting device has a region to be directly covered.
(12) The light transmission member is a wavelength conversion member excited by the light emitting element (1) to (1) to
The light emitting device according to any one of (11).
(13) The light emitting device according to (12), wherein the wavelength conversion member is a plate-like body having first and second main surfaces facing each other.
(14) The semiconductor element structure includes a wiring board that includes a wiring that traverses the separation portion, and that is mounted by connecting the plurality of light emitting structure portions by the wiring, and the covering member crosses the separation portion. (1) to (1) covering the wiring to be performed and having a light reflecting portion in the separating portion
13) The light-emitting device as described in any one of 13).

本発明では、透光性基板表面上で、複数の発光構造部の間で、素子の内部に設けられた
分離部と、それを覆う光反射性の被覆部材が設けられることで、各発光構造部からの発光
が基板内で好適に拡散して、輝度ムラを抑えた発光となり、透光性部材、さらには波長変
換部材と好適な光結合が実現でき、その色ムラを押さえることができる。また、高い投入
電圧で駆動でき、照明、投光器の電源に適合した光源として、輝度ムラおよび色ムラの少
ない高出力発光が可能な発光装置を提供することができる。
In the present invention, each light emitting structure is provided by providing a separating portion provided inside the element and a light reflective covering member covering the light emitting structure portion between the plurality of light emitting structure portions on the surface of the light transmitting substrate. The light emitted from the portion is suitably diffused within the substrate to produce light with suppressed luminance unevenness, and suitable optical coupling with the translucent member and further the wavelength conversion member can be realized, and the color unevenness can be suppressed. In addition, a light-emitting device that can be driven at a high input voltage and can emit light with high output with less luminance unevenness and color unevenness can be provided as a light source suitable for a power source for lighting and a projector.

本発明の一実施の形態に係る発光装置の概略上面図(b)と、そのA−A断面における概略断面図(a)と、該発光装置に搭載されている発光素子の概略平面図(c)である。Schematic top view (b) of a light emitting device according to an embodiment of the present invention, a schematic cross sectional view (a) taken along the line AA, and a schematic plan view of a light emitting element mounted on the light emitting device (c) ). 本発明の一実施の形態に係る発光装置の発光素子周辺を部分的に拡大した概略断面図(a)と、該発光素子の概略平面図(b)である。They are the schematic sectional drawing (a) which expanded the light emitting element periphery of the light-emitting device which concerns on one embodiment of this invention partially, and the schematic plan view (b) of this light emitting element. 本発明の一実施の形態に係る発光装置に用いられる発光素子の発光構造部、分離部の平面形状を示す概略平面図である。It is a schematic plan view which shows the planar shape of the light emission structure part of the light emitting element used for the light-emitting device which concerns on one embodiment of this invention, and a isolation | separation part. 本発明の一実施の形態に係る発光装置に用いられる発光素子の部分概略断面図である。It is a partial schematic sectional drawing of the light emitting element used for the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置、その一部を説明する概略断面図である。1 is a schematic cross-sectional view illustrating a part of a light emitting device according to an embodiment of the present invention. 本発明の一実施の形態に係る発光装置を説明する概略断面図である。It is a schematic sectional drawing explaining the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置、その一部を説明する概略断面図(a)と、該発光装置に搭載されている発光素子の部分概略平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic sectional drawing (a) explaining the one part of the light-emitting device concerning one embodiment of this invention, and the partial schematic plan view of the light emitting element mounted in this light-emitting device. 本発明の一実施の形態に係る発光装置、その実装基板と実装状態を説明する概略上面図(b)と、そのA−A断面における発光装置の概略断面図(a)と、該発光装置に搭載されている発光素子の概略平面図(c)である。The light emitting device according to an embodiment of the present invention, a schematic top view (b) for explaining the mounting substrate and the mounting state, a schematic cross sectional view (a) of the light emitting device in the AA cross section, and the light emitting device It is a schematic plan view (c) of the mounted light emitting element. 本発明の比較例に係る発光装置を説明する概略断面図である。It is a schematic sectional drawing explaining the light-emitting device which concerns on the comparative example of this invention. 本発明の実施例と比較例に係る発光装置の発光色度分布を各々示す図(a),(b)である。It is figure (a), (b) which each shows the light emission chromaticity distribution of the light-emitting device which concerns on the Example and comparative example of this invention.

以下、発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明す
る発光装置は、本発明の技術思想を具体化するためのものであって、本発明を以下のもの
に特定しない。特に、以下に記載されている構成部品の寸法、材質、形状、その相対的配
置等は特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単
なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確に
するため誇張していることがある。さらに、本発明を構成する各要素は、複数の要素を同
一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材
の機能を複数の部材で分担して実現することもできる。また、以下に記載されている実施
の形態についても同様に、特に排除する記載が無い限りは各構成等を適宜組み合わせて適
用できる。
Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the light-emitting device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the components described below are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. Similarly, the embodiments described below can be applied by appropriately combining the components and the like unless otherwise specified.

<実施の形態1>
図1は、本発明の実施の形態1に係る発光装置の概略図であり、図1(a)は概略上面
図の図1(b)のA−Aにおける概略断面図であり、図1(c)は搭載されている発光素
子の概略平面図であって、また図2はその発光素子の発光構造部の周辺の概略断面図であ
る。図1,2に示す例の発光装置100は、主として、発光素子10と、該発光素子を実
装する実装基板50と、発光素子から出射された光を透過する光透過部材20と、発光素
子および光透過部材の一部を被覆する光反射性の被覆部材40と、から構成されている。
<Embodiment 1>
FIG. 1 is a schematic view of a light emitting device according to Embodiment 1 of the present invention, FIG. 1 (a) is a schematic cross-sectional view taken along line AA of FIG. 1 (b), and FIG. c) is a schematic plan view of the mounted light emitting element, and FIG. 2 is a schematic sectional view of the periphery of the light emitting structure of the light emitting element. 1 and 2 mainly includes a light emitting element 10, a mounting substrate 50 on which the light emitting element is mounted, a light transmitting member 20 that transmits light emitted from the light emitting element, a light emitting element, and And a light-reflective coating member 40 that covers a part of the light transmission member.

光透過部材20は、発光装置の発光面90となる表面21と、それに対向する受光面2
2とを有する。図示するように例えば板状体であって、発光素子10から出射された光を
受光面22で受光し、すなわち互いに結合されて、光が内部を透過して表面21より装置
外部に放出する。また発光素子10から出射された光を一次光として、該一次光に励起さ
れその波長変換光の二次光を放出可能な蛍光体を含有する波長変換部材とすることができ
る。この例では、一次光と二次光を発光面90から出射している。
The light transmitting member 20 includes a surface 21 to be a light emitting surface 90 of the light emitting device and a light receiving surface 2 facing the surface 21.
2. As shown in the figure, for example, a plate-like body, the light emitted from the light emitting element 10 is received by the light receiving surface 22, that is, combined with each other, and the light passes through the inside and is emitted from the surface 21 to the outside of the apparatus. Moreover, it can be set as the wavelength conversion member containing the fluorescent substance which makes the light radiate | emitted from the light emitting element 10 primary light, is excited by this primary light, and can discharge | release the secondary light of the wavelength conversion light. In this example, primary light and secondary light are emitted from the light emitting surface 90.

発光素子10は、光透過部材の受光面22に接合された出射面と、該出射面に対向し半
導体素子構造11が設けられた表面と、を有する透光性基板1を備えている。また、単一
の透光性基板1の表面上に、分離部13と、この分離部によって半導体素子構造11が互
いに分離された複数(図1中では4つ)の発光構造部12と、を有している。図示するよ
うに、ここでは素子構造11が、基板1上で互いに離間されて、絶縁された発光構造部と
なっている。発光素子10は、実装基板50の配線51,52上に設けられた突起電極(
バンプ)等の導電性接着材60によりフリップチップ実装されており、各発光構造部12
は実装基板50の配線52によって互いに電気的に接続され、また装置100は外部接続
用の端子となる配線51も備えている。
The light emitting element 10 includes a light-transmitting substrate 1 having an emission surface joined to a light receiving surface 22 of a light transmission member and a surface provided with the semiconductor element structure 11 so as to face the emission surface. Further, on the surface of the single translucent substrate 1, a separation portion 13 and a plurality (four in FIG. 1) of light emitting structure portions 12 in which the semiconductor element structures 11 are separated from each other by the separation portion, Have. As shown in the figure, here, the element structures 11 are separated from each other on the substrate 1 to be insulated light emitting structures. The light emitting element 10 includes protruding electrodes (on the wirings 51 and 52 of the mounting substrate 50).
Each light emitting structure 12 is flip-chip mounted with a conductive adhesive 60 such as a bump).
Are electrically connected to each other by the wiring 52 of the mounting substrate 50, and the apparatus 100 also includes a wiring 51 serving as a terminal for external connection.

被覆部材40は、光反射性材料45を含有した樹脂などの絶縁性材料により構成され、
実装基板50上に設けられた枠体55の内側に充填されて、発光素子10および光透過部
材20の周部、より詳細には光透過部材の表面21を露出して、発光素子10の側面と、
該側面から延在して光透過部材20の一部と、を被覆している。また被覆部材40は、分
離部13と、該分離部に隣接する発光構造部12と、を被覆して、その被覆側表面に光反
射部を有する。この例では、被覆部材は、透光性の母材中に透光性の粒子を含有した反射
性部材、より具体的には光を粒子で散乱させて反射する部材である。更に、発光素子10
がその発光構造部12の発光を素子外部に出射可能な素子構造表面を備えて、その表面が
分離部に設けられること、より具体的には分離部13の内壁を構成する側面2A、それに
加えて分離部に隣接する発光構造部12側面が出射可能な表面になっており、被覆部材4
0による光反射がなされ、同様に反射される。すなわち、素子10の出射面側に対向する
配線側、電極形成側において、素子の出射可能な表面を備え、素子表面を被覆する光反射
性の被覆部材が設けられることで、該出射可能な素子構造表面に対して、光反射機能を提
供して、各表面において、またそれを備えた分離部において、光反射部が形成される。
The covering member 40 is made of an insulating material such as a resin containing the light reflective material 45,
The inner side of the frame 55 provided on the mounting substrate 50 is filled to expose the peripheral portions of the light emitting element 10 and the light transmitting member 20, more specifically, the surface 21 of the light transmitting member, and the side surface of the light emitting element 10. When,
It extends from the side surface and covers a part of the light transmitting member 20. The covering member 40 covers the separating portion 13 and the light emitting structure portion 12 adjacent to the separating portion, and has a light reflecting portion on the covering-side surface. In this example, the covering member is a reflecting member containing translucent particles in a translucent base material, more specifically, a member that scatters and reflects light with particles. Furthermore, the light emitting element 10
Is provided with an element structure surface capable of emitting light emitted from the light emitting structure part 12 to the outside of the element, and the surface is provided in the separation part, more specifically, the side surface 2A constituting the inner wall of the separation part 13 and Thus, the side surface of the light emitting structure portion 12 adjacent to the separation portion is a surface that can emit light, and the covering member 4
The light is reflected by 0 and is similarly reflected. That is, on the wiring side and the electrode formation side facing the emission surface side of the element 10, the element 10 is provided with a light-reflective coating member that covers the element surface. The structure surface is provided with a light reflection function, and a light reflection portion is formed on each surface and in a separation portion provided with the surface.

実装基板50は、分離部13を横断して、隣接する発光構造部12を配線52で互いに
接続しており、光反射性の被覆部材40が該配線51,52と、配線側に対向する素子1
1、発光構造部12の表面、特にその光出射可能な素子構造表面とを被覆する。この配線
、その対向表面の素子構造側に設けられる被覆部材によって、配線側への発光及び、配線
・基板50による光吸収・透過を低減できる。他方、この例では分離部底面で露出される
基板1の表面は、素子構造11の発光が出射可能な表面であり、分離部の被覆部材により
反射させることができ、光の取り出し効率を高め、また分離部13上の輝度の低下を抑制
することができる。
The mounting substrate 50 crosses the separating portion 13 and connects the adjacent light emitting structure portions 12 to each other by the wiring 52, and the light-reflective covering member 40 is an element facing the wirings 51 and 52 on the wiring side. 1
1. Cover the surface of the light emitting structure 12, particularly the surface of the element structure capable of emitting light. Light emission to the wiring side and light absorption / transmission by the wiring / substrate 50 can be reduced by this wiring and the covering member provided on the element structure side of the opposing surface. On the other hand, in this example, the surface of the substrate 1 exposed at the bottom surface of the separation part is a surface from which the light emission of the element structure 11 can be emitted, and can be reflected by the covering member of the separation part, thereby increasing the light extraction efficiency, Moreover, the fall of the brightness | luminance on the isolation | separation part 13 can be suppressed.

したがって、半導体素子構造11が分離部13により複数に分離されても、透光性基板
1内において、分離部13に位置する領域を、戻り光の反射領域として機能させることが
でき、さらには隣接する各発光構造部12から放出される光を重ね合わせる光の重畳領域
として機能させることができる。これにより、単一の透光性基板1を各発光構造部12に
共通の導光領域、光拡散領域として透光性基板1内で光を十分に拡散させて光透過部材2
0に光結合させることができ、さらには光変換部材が結合されることでその基板1への戻
り光に対して、それに加えて発光素子の光に対しても同様に機能でき、輝度ムラや色ムラ
を低減することができる。
Therefore, even if the semiconductor element structure 11 is separated into a plurality of parts by the separation part 13, the region located in the separation part 13 in the translucent substrate 1 can function as a return light reflection area, and further adjacent to each other. It is possible to function as a light overlapping region where light emitted from each light emitting structure portion 12 is overlapped. Accordingly, the light transmissive member 2 is formed by sufficiently diffusing light in the light transmissive substrate 1 by using the single light transmissive substrate 1 as a light guide region and a light diffusion region common to the light emitting structures 12.
Can be optically coupled to 0, and furthermore, by combining the light conversion member, it can function in the same manner with respect to the return light to the substrate 1, in addition to the light of the light emitting element. Color unevenness can be reduced.

この例の分離部13は、各発光構造部12に流れる電流を制御する絶縁領域として機能
し、各発光構造部12は、該分離部13により独立して発光可能なように分離されて設け
られている。これにより、単一の発光構造部12の面積を小さくして電流拡散を促進し、
各発光構造部12において面内均一な発光強度分布を有する発光を得ることができ好まし
い。また個々の発光構造部12に分離され、さらには素子構造が離間されることで、分離
や離間されない場合に比して素子構造11内の光の伝搬による光吸収の問題を解消して、
素子構造11外部への光取り出し効率を高めることができ、上記被覆部材の反射機能によ
る相乗効果によりさらにそれを高めることができる。そして、このような各発光構造部1
2からの発光に対して、分離部13、更には素子構造の出射可能な表面における光反射機
能、並びに透光性基板1内部における拡散、重畳機能が適用されることで、光透過部材の
受光面22に対して略均一な輝度分布を有する光を結合することができる。また、このよ
うな互いに電気的に絶縁された各発光構造部12の機能高めて、更に互いを配線52によ
り直列接続することで、比較的高い投入電圧による駆動で、装置の高出力化に適したもの
とできる。
The separation part 13 in this example functions as an insulating region for controlling the current flowing through each light emitting structure part 12, and each light emitting structure part 12 is provided so as to be able to emit light independently by the separation part 13. ing. This reduces the area of the single light emitting structure 12 and promotes current diffusion,
Each light emitting structure 12 is preferable because it can emit light having a uniform light intensity distribution in the surface. In addition, the light emitting structure 12 is separated into individual element structures, and further, the element structure is separated, so that the problem of light absorption due to light propagation in the element structure 11 can be solved as compared with the case where the element structure 11 is not separated or separated.
The light extraction efficiency to the outside of the element structure 11 can be increased, and it can be further increased by the synergistic effect by the reflection function of the covering member. And each such light emitting structure 1
2 is applied to the light separating member 13 and the light reflecting function on the surface from which the element structure can be emitted, and the diffusion and superimposing functions inside the translucent substrate 1. Light having a substantially uniform luminance distribution can be coupled to the surface 22. In addition, by enhancing the functions of the light emitting structures 12 that are electrically insulated from each other and further connecting each other in series by a wiring 52, the device can be driven with a relatively high input voltage and suitable for high output of the device. You can do it.

特に、分離部13が透光性基板1の表面を露出させて設けられていることで、各発光構
造部12を物理的にも電気的にも互いに分離して独立な微小光源として、上記作用、効果
を好適に得ることができる。さらに、被覆部材40は該分離部13の底面を被覆して該底
面との界面に、更には被覆部材40と分離部底面の透光性基板1の表面との界面に、光反
射部が設けられることが好ましい。これにより、分離部13の底面および該分離部13に
隣接する発光構造部12の側面の光反射性を高め、発光構造部12から透光性基板1に効
率良く光を取り出し、また分離部13の基板1において好適に光を重畳させることができ
る。
In particular, since the separating portion 13 is provided so that the surface of the translucent substrate 1 is exposed, the light emitting structure portions 12 are separated from each other both physically and electrically, and can be used as independent micro light sources. The effect can be suitably obtained. Further, the covering member 40 covers the bottom surface of the separating portion 13 and provides a light reflecting portion at the interface with the bottom surface, and further at the interface between the covering member 40 and the surface of the translucent substrate 1 on the bottom surface of the separating portion. It is preferred that Thereby, the light reflectivity of the bottom surface of the separation part 13 and the side surface of the light emitting structure part 12 adjacent to the separation part 13 is enhanced, and light is efficiently extracted from the light emitting structure part 12 to the translucent substrate 1. Light can be suitably superimposed on the substrate 1.

なお、図2(a),(b)に示すように、透光性基板1の表面に凹凸構造1Aを有して
いること、更に素子構造、発光構造部と、分離部がその凹凸構造上に配置されることが好
ましい。透光性基板1の凹凸構造1Aにより、平坦面である場合に比して、各発光構造部
12から放出される光又はその戻り光を該凹凸構造1Aにより散乱させ該基板内で拡散さ
せることができ、より均一な光を光透過部材20に結合させることができる。分離部にお
ける凹凸構造は、上記被覆部材による散乱作用に重畳して散乱させることになり、上記分
離部の作用効果を高められ好ましく、特に分離部底面に基板1表面が露出していると更に
好ましい。このような凹凸構造1Aは、半導体素子構造11が設けられる表面の略全域に
亘って設けられることが好ましく、上述のように、分離部、発光構造部、素子構造のいず
れか一方、更にその一部に設けられる形態でもよい。また透光性基板1の出射面側に形成
してもよいが、光透過部材の受光面22より遠い半導体素子構造11が設けられる表面の
ほうが、より均一な光を光透過部材20に結合させられ、また受光面での結合効率を高め
られる。なお半導体素子構造11が設けられる表面に凹凸構造1Aを有する場合、半導体
素子構造11を構成する半導体結晶が結晶性良くエピタキシャル成長可能なように、規則
的パターンの凹凸構造1Aとすることが好ましく、各発光構造部12からの発光に対して
略均等に光拡散作用を奏することができる。これに限らず、不規則的なパターンでも良く
、各凹部、凸部の平面形状は図示するように円形状、多角形状などの島状であることが好
ましく、その他に、格子状、ストライプ状の他、それらの形状を組み合わせたもの、不規
則な形状で構成されても良く、断面形状は、図示するように傾斜した側面と結晶性のため
の平坦面を備えることが好ましく、その他の凹凸構造であっても良い。
2A and 2B, the surface of the light-transmitting substrate 1 has a concavo-convex structure 1A, and the element structure, the light emitting structure portion, and the separation portion are on the concavo-convex structure. It is preferable to arrange | position. Compared with the case of a flat surface, the uneven structure 1A of the translucent substrate 1 scatters the light emitted from each light emitting structure portion 12 or its return light by the uneven structure 1A and diffuses the light within the substrate. And more uniform light can be coupled to the light transmission member 20. The concavo-convex structure in the separation part is scattered by being superimposed on the scattering action by the covering member, and the action effect of the separation part is preferably enhanced, and more preferably, the surface of the substrate 1 is exposed on the bottom face of the separation part. . Such a concavo-convex structure 1A is preferably provided over substantially the entire surface of the surface on which the semiconductor element structure 11 is provided. As described above, any one of the separation part, the light emitting structure part, and the element structure is further provided. The form provided in a part may be sufficient. Alternatively, the light-transmitting substrate 1 may be formed on the light-exiting surface side, but the surface on which the semiconductor element structure 11 far from the light-receiving surface 22 of the light-transmitting member is provided can couple more uniform light to the light-transmitting member 20. In addition, the coupling efficiency at the light receiving surface can be increased. When the surface on which the semiconductor element structure 11 is provided has the concavo-convex structure 1A, the concavo-convex structure 1A having a regular pattern is preferably used so that the semiconductor crystal constituting the semiconductor element structure 11 can be epitaxially grown with good crystallinity The light diffusing action can be exerted substantially uniformly on the light emitted from the light emitting structure 12. Not limited to this, an irregular pattern may be used, and the planar shape of each concave portion and convex portion is preferably an island shape such as a circular shape or a polygonal shape as shown in the figure. In addition, a combination of these shapes or an irregular shape may be used, and the cross-sectional shape preferably includes an inclined side surface and a flat surface for crystallinity as shown in the figure, and other uneven structures. It may be.

また被覆部材40が、光透過部材20の側面から、半導体素子構造11及び透光性基板
1の側面、すなわち発光素子10の側面を連続して被覆することで、該発光装置100は
、光透過部材の表面21を主たる光取り出しの窓部とする好適な面発光型の発光装置が得
られる。これにより、各発光構造部12から出射されて光透過部材20内で拡散、重畳さ
れた一次光を集束させて光透過部材20に効率良く結合することができる。また光透過部
材20の側方に拡散、漏出する一次光、またその変換光である二次光を上記重畳作用によ
り、光を均一化、配色を均一化して、光取り出し方向へ反射させ、結合することができ、
装置正面方向の輝度を高めながら、色ムラが低減された配光を得ることができる。
Further, the covering member 40 continuously covers the side surfaces of the semiconductor element structure 11 and the translucent substrate 1, that is, the side surfaces of the light emitting element 10 from the side surfaces of the light transmitting member 20, so that the light emitting device 100 can transmit light. A suitable surface-emitting light-emitting device having the surface 21 of the member as a main light extraction window is obtained. Thereby, the primary light emitted from each light emitting structure 12 and diffused and superimposed in the light transmitting member 20 can be converged and efficiently coupled to the light transmitting member 20. Also, the primary light that diffuses and leaks to the side of the light transmitting member 20 and the secondary light that is the converted light are made uniform by the above superimposing action, the light is uniformed, the color is uniformed, and reflected in the light extraction direction to be combined. Can
While increasing the luminance in the front direction of the apparatus, it is possible to obtain a light distribution with reduced color unevenness.

(分離部)
分離部13は、例えば透光性基板1の表面の略全域に半導体素子構造11を形成した後
、その一部をエッチングやスクライブ等により除去することにより形成することができる
。また透光性基板1上に保護膜を形成して、それにより区画された領域に半導体素子構造
11を形成する方法でもよい。
(Separation part)
The separation part 13 can be formed, for example, by forming the semiconductor element structure 11 over substantially the entire surface of the translucent substrate 1 and then removing a part thereof by etching, scribing or the like. Alternatively, a method may be used in which a protective film is formed on the translucent substrate 1 and the semiconductor element structure 11 is formed in a region partitioned by the protective film.

なお分離部13は、半導体素子構造11を部分的に除去するものであるため、その形成
領域が小さいほど発光面積の縮小、ひいては光束の低下を抑制することができ、溝状に形
成することが好ましい(以降、本明細書において、「分離部」を「分離溝」と記載する場
合がある)。分離部の幅の上限値としては、100μm以下であることが好ましく、さら
に好ましくは20μm以下である。下限値は、特に限定されないが、フォトリソグラフィ
の分解能や配線、電極のピッチ等により制限され、例えば3μm以上である。
Since the separation portion 13 partially removes the semiconductor element structure 11, the smaller the formation region, the smaller the emission area and thus the lowering of the luminous flux can be suppressed, and the separation portion 13 can be formed in a groove shape. It is preferable (hereinafter, the “separation part” may be referred to as “separation groove” in the present specification). The upper limit of the width of the separation part is preferably 100 μm or less, and more preferably 20 μm or less. The lower limit is not particularly limited, but is limited by photolithography resolution, wiring, electrode pitch, and the like, and is, for example, 3 μm or more.

分離部13の断面形状、言い換えれば分離溝13の側面すなわち発光構造部12の側面
は、発光構造部12の実装面に対して略垂直であってもよいが、傾斜面とすることで次の
ような効果が得られる。図2(a)に示すように、発光構造部12が実装面から透光性基
板1に向かって広がる傾斜面(順テーパー面)とすれば、該傾斜面での反射により多くの
光を透光性基板1側に取り出すことができ、高光束の発光を得ることができる。基板1の
一部が分離部の側面を構成する場合などでも同様に、基板に対して垂直な面から、配線側
に傾斜した側面であること、具体的には、断面において配線側から基板側に向かって、溝
部内壁が順テーパとなるように傾斜させることが好ましい。また、素子構造11、発光構
造部12間の離間距離(分離溝の幅)が、実装側より底面側(基板表面側)が小さくなり
、分離部13の基板内において各発光構造部12から放出される光を重畳しやすく、また
傾斜面による反射、集光効果で発光構造部の光が好適に基板に結合され、また上記散乱作
用と結合して、基板内での好適な光の重畳を得られる。逆の傾斜面(逆テーパー面)とす
れば、底面における分離幅に比して、発光構造部12の各発光層を大きくでき、出力を高
められる。また、傾斜面での光の回折効果により発光構造部12から放出される光の配光
を広くすることができる。また分離溝13の側面つまり発光構造部12の側面を粗面、凹
凸面としてもよく、発光構造部12の側面で光を散乱させて配光を広くすることができる
。本発明における分離部の発光構造、素子構造の分離形態、並びに分離部における被覆部
材の被覆形態について、後の実施の形態において説明する。
The cross-sectional shape of the separation portion 13, in other words, the side surface of the separation groove 13, that is, the side surface of the light emitting structure portion 12 may be substantially perpendicular to the mounting surface of the light emitting structure portion 12. Such an effect is obtained. As shown in FIG. 2A, if the light emitting structure 12 has an inclined surface (forward tapered surface) that spreads from the mounting surface toward the translucent substrate 1, a large amount of light is transmitted by reflection on the inclined surface. It can be taken out to the optical substrate 1 side, and can emit light with a high luminous flux. Similarly, even when a part of the substrate 1 constitutes the side surface of the separation portion, the side surface is inclined from the surface perpendicular to the substrate to the wiring side, specifically, from the wiring side to the substrate side in the cross section. It is preferable to incline so that a groove part inner wall may become a forward taper. Further, the separation distance (the width of the separation groove) between the element structure 11 and the light emitting structure portion 12 is smaller on the bottom surface side (substrate surface side) than the mounting side, and is emitted from each light emitting structure portion 12 in the substrate of the separation portion 13. The light of the light emitting structure is preferably coupled to the substrate by reflection and condensing effect by the inclined surface, and combined with the scattering action, so that the suitable light is superimposed in the substrate. can get. If a reverse inclined surface (reverse tapered surface) is used, each light emitting layer of the light emitting structure 12 can be made larger than the separation width on the bottom surface, and the output can be increased. Moreover, the light distribution of the light emitted from the light emitting structure 12 can be widened by the diffraction effect of the light on the inclined surface. Further, the side surface of the separation groove 13, that is, the side surface of the light emitting structure portion 12 may be rough or uneven, and light can be scattered on the side surface of the light emitting structure portion 12 to widen the light distribution. The light emitting structure of the separation part, the separation form of the element structure, and the covering form of the covering member in the separation part in the present invention will be described in the following embodiments.

本発明における分離部13の平面形状、すなわちそれにより区画される発光構造部、素
子構造の形状は、種々の形態とでき、図1に示すように、一列状に配列された発光構造部
、素子構造とする他、所望の平面形状、パターンに形成することができる。図1(c)の
本実施の形態に示すようにストライプ状とすれば、最も簡素な分離部であって、分離部1
3の数、幅を比較的小さくできるので光束の低下を抑制することができる。また分離部1
3が直線的であるので、分離部の幅を小さくしても発光素子10の内部側まで被覆部材4
0を充填しやすい。また図3は、本発明の一実施形態に係る発光素子10の分離部13の
平面形状の他の例を示す概略上面図である。図3(a)に示すように格子状の分離部13
とすれば、列状の配置を複数列配置した形態となり、本実施の形態と同様に、矩形状の発
光構造部12Aが設けられる。この場合、その隣接する発光構造部12Aに挟まれる線状
の分離部13に加えて、その分離部が交差する交差部を有し、その十字状の交差部におい
て隣接する4つの発光構造部12Aが設けられる。また図3(b)〜(d)に示すように
、格子状の分離部に加えて斜めに傾斜した分離部をさらに形成することにより、三角形状
の発光構造部12B,12C,12Dが設けられている。このように、図1(c)に示す
形態と異なり、3つ以上の発光構造部が隣接する分離部の交差部を有しており、特に図3
(b)に示す例では、4本並びに8本の分離部が交差する交差部があり、分離部、それに
位置する素子構造、基板における上述した作用効果により、好適な輝度、色ムラの均一化
して、装置の発光面の大面積化が可能となる。他方、図示するように、三角形状、また辺
の数が5つ以上の多角形状などの形状とすることで、発光構造部の側面、分離部の内壁面
が、対向する分離部同士で、平行、垂直でなく、互いに傾斜した面となることで、上述し
た分離溝における反射機能、そこに位置する基板、素子構造の重畳機能をさらに高めるこ
とができる。ここでは、分離部が互いに平行な内壁面、それを挟んで互いに対向する側面
を備えた発光構造部を説明しているが、分離部の形状はそれに限らず、円形状、多角形状
、曲線形状、またはそれらを組み合わせた形状など種々の形状としてもよく、発光構造部
の形状も同様である。また、各発光構造部は、図1(b)に示すように直列接続する他、
並列接続、ブリッジ接続、それらの組み合わせなど、用途に応じて、また交流電源など逆
並列接続など、電力源に応じて、種々の回路構造を形成することができ、上述した交差部
があることで、組み合わせ構造、逆並列、ブリッジ構造、など複雑な回路において、隣接
する発光構造部を増やすことができ好ましい。
The planar shape of the separation portion 13 in the present invention, that is, the shape of the light emitting structure section and element structure partitioned thereby, can be various forms, and as shown in FIG. 1, the light emitting structure section and elements arranged in a line. In addition to the structure, it can be formed into a desired planar shape and pattern. As shown in the present embodiment in FIG. 1C, when the stripe shape is used, the separation unit 1 is the simplest separation unit.
Since the number and width of 3 can be made relatively small, a decrease in luminous flux can be suppressed. Separator 1
Since 3 is linear, the covering member 4 extends to the inner side of the light emitting element 10 even if the width of the separation portion is reduced.
Easy to fill 0. FIG. 3 is a schematic top view showing another example of the planar shape of the separation portion 13 of the light emitting device 10 according to an embodiment of the present invention. As shown in FIG.
Then, a plurality of rows of rows are arranged, and a rectangular light emitting structure 12A is provided as in the present embodiment. In this case, in addition to the linear separation part 13 sandwiched between the adjacent light emitting structure parts 12A, the separation part has an intersecting part, and the four light emitting structure parts 12A adjacent to each other at the cross-like intersecting part. Is provided. Further, as shown in FIGS. 3B to 3D, triangular light emitting structure portions 12B, 12C, and 12D are provided by further forming diagonally inclined separating portions in addition to the lattice-shaped separating portions. ing. Thus, unlike the form shown in FIG. 1 (c), three or more light emitting structure portions have the intersections of the adjacent separation portions, and particularly FIG.
In the example shown in (b), there are intersecting portions where four and eight separating portions intersect, and suitable luminance and color unevenness are made uniform by the above-described effects in the separating portion, the element structure located in the separating portion, and the substrate. Thus, the area of the light emitting surface of the device can be increased. On the other hand, as shown in the figure, by forming a triangular shape or a polygonal shape having five or more sides, the side surfaces of the light emitting structure portion and the inner wall surface of the separation portion are parallel to each other between the facing separation portions. In addition, since the surfaces are not perpendicular to each other but are inclined to each other, the above-described reflection function in the separation groove, the substrate located there, and the superposition function of the element structure can be further enhanced. Here, the light-emitting structure part provided with the inner wall surface parallel to each other and the side surfaces facing each other across the separation part is described here, but the shape of the separation part is not limited to this, but a circular shape, a polygonal shape, a curved shape Alternatively, various shapes such as a combination of them may be used, and the shape of the light emitting structure is the same. Each light emitting structure is connected in series as shown in FIG.
Various circuit structures can be formed according to the power source, such as parallel connection, bridge connection, combinations thereof, etc., and depending on the power source, such as reverse parallel connection such as AC power supply. In a complicated circuit such as a combination structure, an anti-parallel structure, a bridge structure, etc., it is preferable because adjacent light emitting structures can be increased.

次に、本発明の発光装置の各構成部材について、以下に詳述する。   Next, each component of the light emitting device of the present invention will be described in detail below.

(発光素子)
発光素子10は公知のもの、具体的には半導体発光素子を利用でき、1つの透光性基板
1上に互いに離間されて設けられた複数の発光構造部12を有するものを用いることがで
きる。特にGaN系化合物半導体であれば、蛍光物質を効率良く励起できる短波長の可視
光や紫外光が発光可能であるため好ましい。具体的な発光ピーク波長は240nm以上5
60nm以下、好ましくは380nm以上470nm以下である。なお、このほか、Zn
Se系、InGaAs系、AlInGaP系半導体の発光素子でもよい。
(Light emitting element)
As the light-emitting element 10, a known element, specifically, a semiconductor light-emitting element can be used, and a light-emitting element 10 having a plurality of light-emitting structure portions 12 provided on one translucent substrate 1 so as to be separated from each other can be used. In particular, a GaN-based compound semiconductor is preferable because it can emit short-wavelength visible light or ultraviolet light that can excite the fluorescent material efficiently. Specific emission peak wavelength is 240 nm or more 5
It is 60 nm or less, preferably 380 nm or more and 470 nm or less. In addition, Zn
Se-based, InGaAs-based, and AlInGaP-based semiconductor light emitting devices may also be used.

(発光素子構造)
半導体層による素子構造11、発光構造部12は、図4に例示するように少なくとも第
1導電型(n型)層2と第2導電型(p型)層4とにより構成され、更にその間に活性層
3を有する構造が好ましい。また、電極構造は、一方の主面側に第1導電型(負)、第2
導電型(正)の両電極6,7が設けられる同一面側電極構造が好ましいが、半導体層の各
主面に対向して電極が各々設けられる対向電極構造でも良い。発光素子10の実装形態も
、例えば上記同一面側電極構造では、電極形成面を実装面として、それに対向する基板1
側を主な出射面とするフリップチップ実装が、その出射面と光透過部材20との光学的な
接続上好ましい。この他、電極形成面側を主な出射面として、その上に光透過部材を結合
する実装、フェイスアップ実装、また配線構造を備えた光透過部材にフリップチップ実装
、上記対向電極構造で光透過部材と実装基板に接続すること、ができ、好ましくは発光素
子と光透過部材に配線、電極を備えない実施例の実装が良い。なお、半導体層11の成長
基板1は、発光素子構造を構成しない場合には除去してもよく、成長基板が除去された半
導体層に、支持基板、例えば導電性基板または別の透光性部材・基板を接着した構造とす
ることもできる。この支持基板に光透過部材20を用いることもでき、その他、ガラス、
樹脂などの光透過部材により半導体層が接着・被覆されて、支持された構造の素子でもよ
い。成長基板の除去は、例えば支持体、装置又はサブマウントに実装又は保持して、剥離
、研磨、若しくはLLO(Laser Lift Off)で実施できる。また、発光素子10は光反射
構造を有することができ、具体的には、半導体層11の互いに対向する2つの主面の内、
光取り出し側(出射面側)と対向する他方の主面を光反射側(図1における下側)とし、
この光反射側の半導体層内や電極などに光反射構造を設けることができる。光反射構造の
例として、半導体層内に多層膜反射層が設ける構造、あるいは半導体層の上にAg、Al
等の光反射性の高い金属膜や誘電体多層膜を有する電極、反射層を設けた構造がある。
(Light emitting element structure)
As illustrated in FIG. 4, the element structure 11 and the light emitting structure 12 by the semiconductor layer are constituted by at least a first conductivity type (n-type) layer 2 and a second conductivity type (p-type) layer 4, and further between them. A structure having the active layer 3 is preferable. The electrode structure has a first conductivity type (negative) and a second on one main surface side.
A coplanar electrode structure in which both conductive type (positive) electrodes 6 and 7 are provided is preferable, but a counter electrode structure in which electrodes are provided to face each main surface of the semiconductor layer may be used. The mounting form of the light emitting element 10 is also the substrate 1 facing the electrode forming surface as the mounting surface, for example, in the above-mentioned same-surface electrode structure.
Flip chip mounting with the side as the main exit surface is preferable for optical connection between the exit surface and the light transmitting member 20. In addition to this, the electrode forming surface side is the main emission surface, and the light transmission member is mounted on it, face-up mounting, flip chip mounting on the light transmission member with wiring structure, and light transmission with the above-mentioned counter electrode structure It is possible to connect the member and the mounting substrate, and it is preferable to mount the embodiment in which the light emitting element and the light transmitting member are not provided with wiring and electrodes. Note that the growth substrate 1 of the semiconductor layer 11 may be removed when the light emitting element structure is not formed, and a support substrate such as a conductive substrate or another translucent member is added to the semiconductor layer from which the growth substrate has been removed. -It is also possible to have a structure in which substrates are bonded. The light transmitting member 20 can also be used for this support substrate, glass,
An element having a structure in which a semiconductor layer is bonded and covered with a light transmitting member such as a resin and supported may be used. The removal of the growth substrate can be performed by peeling, polishing, or LLO (Laser Lift Off) by mounting or holding the growth substrate on a support, device, or submount, for example. In addition, the light emitting element 10 can have a light reflecting structure. Specifically, of the two main surfaces of the semiconductor layer 11 facing each other,
The other main surface facing the light extraction side (outgoing surface side) is the light reflecting side (lower side in FIG. 1),
A light reflecting structure can be provided in the semiconductor layer on the light reflecting side or in an electrode. As an example of the light reflecting structure, a structure in which a multilayer reflective layer is provided in the semiconductor layer, or Ag, Al on the semiconductor layer
There is a structure in which an electrode having a highly light-reflective metal film or the like, a dielectric multilayer film, and a reflective layer are provided.

(窒化物半導体発光素子)
発光素子10の一例として、図4の窒化物半導体の発光素子10では、成長基板1であ
るC面サファイア基板の上に、第1の窒化物半導体層2であるn型半導体層、活性層3で
ある発光層、第2の窒化物半導体層4であるp型半導体層が順にエピタキシャル成長され
ている。そして、n型層2の一部が露出されて第1の電極7であるn型パッド電極を形成
し、p型層4のほぼ全面にITO等の透光性導電層5、第2の電極6であるp型パッド電
極が形成されている。さらに、保護膜8をn型、p型パッド電極6,7の表面を露出し、
半導体層を被覆して設けられる。なお、n型パッド電極7は、p型同様に透光性導電層5
を介して形成してもよい。成長基板1は、C面サファイアの他、R面、及びA面、スピネ
ル(MgAl24)のような絶縁性基板、また炭化珪素(6H、4H、3C)、Si、Z
nS、ZnO、GaAs、GaNやAlN等の半導体の導電性基板がある。窒化物半導体
の例としては、一般式がInxAlyGa1-x-yN(0≦x、0≦y、x+y≦1)の他、
BやP、Asを混晶してもよい。また、n型、p型半導体層2,4は、単層、多層を特に
限定されず、活性層3は単一(SQW)又は多重量子井戸構造(MQW)が好ましい。青
色発光の素子構造11の例としては、サファイア基板上に、バッファ層などの窒化物半導
体の下地層、例えば低温成長薄膜GaNとGaN層、を介して、n型半導体層として、例
えばSiドープGaNのn型コンタクト層とGaN/InGaNのn型多層膜層が積層さ
れ、続いてInGaN/GaNのMQWの活性層、更にp型半導体層として、例えばMg
ドープのInGaN/AlGaNのp型多層膜層とMgドープGaNのp型コンタクト層
が積層された構造がある。
(Nitride semiconductor light emitting device)
As an example of the light emitting element 10, in the nitride semiconductor light emitting element 10 of FIG. 4, an n-type semiconductor layer that is the first nitride semiconductor layer 2 and the active layer 3 are formed on the C-plane sapphire substrate that is the growth substrate 1. The light emitting layer and the p-type semiconductor layer which is the second nitride semiconductor layer 4 are epitaxially grown in this order. Then, a part of the n-type layer 2 is exposed to form an n-type pad electrode, which is the first electrode 7, and a light-transmitting conductive layer 5 such as ITO is formed on almost the entire surface of the p-type layer 4. 6, a p-type pad electrode is formed. Further, the protective film 8 is n-type and the surfaces of the p-type pad electrodes 6 and 7 are exposed,
It is provided so as to cover the semiconductor layer. The n-type pad electrode 7 is formed of the light-transmitting conductive layer 5 as in the p-type.
You may form through. The growth substrate 1 is not only C-plane sapphire, but also R-plane and A-plane, an insulating substrate such as spinel (MgAl 2 O 4 ), silicon carbide (6H, 4H, 3C), Si, Z
There are semiconductor conductive substrates such as nS, ZnO, GaAs, GaN, and AlN. Examples of the nitride semiconductor, other general formula In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1),
B, P, or As may be mixed. The n-type and p-type semiconductor layers 2 and 4 are not particularly limited to a single layer or multiple layers, and the active layer 3 preferably has a single (SQW) or multiple quantum well structure (MQW). As an example of the blue light emitting element structure 11, an n-type semiconductor layer such as Si-doped GaN is formed on a sapphire substrate via a nitride semiconductor underlayer such as a buffer layer, for example, a low-temperature growth thin film GaN and a GaN layer. N-type contact layer and GaN / InGaN n-type multilayer film layer are stacked, followed by an InGaN / GaN MQW active layer and a p-type semiconductor layer such as Mg
There is a structure in which a p-type multilayer layer of doped InGaN / AlGaN and a p-type contact layer of Mg-doped GaN are stacked.

(光透過部材)
また図1の発光装置100は、発光素子10からの光を透過する光透過部材20を備え
る。光透過部材20は、通過する光の少なくとも一部を波長変換可能な波長変換材料を有
する光変換部材であることが好ましい。例えば実施例のように、光源からの一次光が、光
透過部材20中の波長変換材料としての蛍光体を励起することで、一次光と異なった波長
を持つ二次光が得られ、さらに一次光との混色により、所望の色相を有する出射光を実現
できる。
(Light transmission member)
The light emitting device 100 of FIG. 1 includes a light transmitting member 20 that transmits light from the light emitting element 10. The light transmission member 20 is preferably a light conversion member having a wavelength conversion material capable of converting the wavelength of at least part of the light passing therethrough. For example, as in the embodiment, the primary light from the light source excites the phosphor as the wavelength conversion material in the light transmitting member 20 to obtain secondary light having a wavelength different from that of the primary light. Outgoing light having a desired hue can be realized by color mixing with light.

実施の形態1の光透過部材20は、表面21(発光面90)からの平面視において、そ
の表面21及び受光面22が発光素子10の出射面より小さい形態であり、その側面が発
光素子10の側面(端面)よりも内側に位置している。発光素子10に対して発光領域を
絞ることで相対的に輝度が高められ、また混色の均一化が図れ、色ムラが低減される。な
お、発光素子の側面の光透過部材の側面に対する突出長さは、光透過部材の厚さに比して
、例えば0.25倍以上5倍以下であり、具体的には0.5倍以上2倍以下である。例と
して、実施例1の発光装置においては、発光素子10の終端が光透過部材20の終端から
約100μmの幅で突出している。このほか、後述の実施の形態2に示すように、光透過
部材の側面が、発光素子の側面よりも外方に突出している形態でもよく、この例のように
光透過部材の受光面22を発光素子10の出射面より大きくした形態であってもよい。発
光素子10の出射面より幅広な受光面22でもって導光部材を介して光学的に接続される
ため損失が少ない。この形態であれば、その突出長さは、発光素子の厚さに比して、例え
ば0.25倍以上5倍以下であり、具体的には0.5倍以上2倍以下である。また、光透
過部材20の側面が発光素子10の側面と略同一面上に位置する形態であれば、光透過部
材の外縁部において、発光素子10からの光量が不足して色ムラが発生しやすくなるのを
抑制できる。
The light transmitting member 20 of the first embodiment has a surface 21 and a light receiving surface 22 that are smaller than the light emitting surface of the light emitting element 10 in a plan view from the surface 21 (light emitting surface 90), and the side surfaces thereof are light emitting elements 10. It is located inside the side surface (end surface). By narrowing the light emitting region with respect to the light emitting element 10, the luminance is relatively increased, the color mixture is made uniform, and the color unevenness is reduced. The protruding length of the side surface of the light emitting element with respect to the side surface of the light transmitting member is, for example, 0.25 times or more and 5 times or less, specifically 0.5 times or more, as compared with the thickness of the light transmitting member. 2 times or less. As an example, in the light emitting device of Example 1, the end of the light emitting element 10 protrudes from the end of the light transmitting member 20 with a width of about 100 μm. In addition, as shown in the second embodiment to be described later, the side surface of the light transmission member may protrude outward from the side surface of the light emitting element, and the light receiving surface 22 of the light transmission member is formed as in this example. The form made larger than the output surface of the light emitting element 10 may be sufficient. Since the light receiving surface 22 wider than the light emitting surface of the light emitting element 10 is optically connected through the light guide member, there is little loss. If it is this form, the protrusion length is 0.25 times or more and 5 times or less, for example, compared with the thickness of a light emitting element, specifically 0.5 times or more and 2 times or less. Further, if the side surface of the light transmitting member 20 is located on the same plane as the side surface of the light emitting element 10, the amount of light from the light emitting element 10 is insufficient at the outer edge portion of the light transmitting member, resulting in color unevenness. It can suppress becoming easy.

ここで、光透過部材20の母材となる透光性材料としては、下記被覆部材40と同様な
材料を用いることができ、例えば樹脂、又はガラスなどの無機物を用いることができる。
変換機能を備えない場合も、蛍光体を除いて、又はそれに置換して、光変換の光透過部材
と同様の材料を用いることが好ましい。また、表面21、受光面22は、実施例のように
光透過部材が板状である場合には、両面とも略平坦な面であること、更には対向する両面
が互いに略平行であることが本発明の導光部材を介した光結合の効率が高まり、また接合
が容易となり好ましい。一方で、板状に限らず、全体又は一部に曲面を有する形態、凹凸
面などの面状の形態など、種々の形状若しくは形態、例えば集光、分散するための形状、
例えばレンズ状などのような光学的な形状とすることもできる。また、波長変換機能とし
て、発光素子の一次光とその変換光(二次光)の混色光を発光する他に、例えば発光素子
の紫外光による変換光、若しくは複数の変換光による混色光のように、一次光から変換さ
れた二次光を主に出射する発光装置とすることもできる。
Here, as a translucent material used as a base material of the light transmissive member 20, the material similar to the following coating member 40 can be used, for example, inorganic substances, such as resin or glass, can be used.
Even when the conversion function is not provided, it is preferable to use the same material as the light transmission member for light conversion, excluding or replacing the phosphor. Further, when the light transmitting member is plate-like as in the embodiment, both the front surface 21 and the light receiving surface 22 are substantially flat surfaces, and furthermore, both opposing surfaces are substantially parallel to each other. The efficiency of optical coupling through the light guide member of the present invention is increased, and joining is facilitated, which is preferable. On the other hand, it is not limited to a plate shape, various shapes or forms such as a form having a curved surface in whole or in part, a surface form such as an uneven surface, for example, a shape for condensing and dispersing,
For example, it may be an optical shape such as a lens shape. Further, as a wavelength conversion function, in addition to emitting primary light of the light emitting element and mixed light of the converted light (secondary light), for example, converted light by ultraviolet light of the light emitting element or mixed light by a plurality of converted lights In addition, a light-emitting device that mainly emits secondary light converted from primary light can be used.

波長変換機能を備えた光透過部材20は、具体的にガラス板、それに光変換部材を備え
たもの、あるいは光変換部材の蛍光体結晶若しくはその相を有する単結晶体、多結晶体、
アモルファス体、セラミック体、あるいは蛍光体結晶粒子による、それと適宜付加された
透光性材料との焼結体、凝集体、多孔質性材料、それらに透光性材料、例えば透光性樹脂
を混入、含浸したもの、あるいは蛍光体粒子を含有する透光性部材、例えば透光性樹脂の
成形体等から構成される。なお、光透過部材20は、樹脂等の有機材料よりも無機材料で
構成されることが耐熱性の観点からは好ましい。具体的には蛍光体を含有する透光性の無
機材料からなることが好ましく、特に蛍光体と無機物(結合材、バインダー)との焼結体
、あるいは蛍光体からなる焼結体や結晶とすることで信頼性が高まる。なお、実施例のY
AGの蛍光体を用いる場合、YAGの単結晶や高純度の焼結体のほか、アルミナ(Al2
3)を結合材とするYAG/アルミナの焼結体、ガラスを結合材とした焼結体が信頼性
の観点から好ましい。また、光透過部材20を板状とすることで、面状に構成される発光
素子10の出射面との結合効率が良く、光透過部材20の主面とが略平行になるよう容易
に位置合わせできる。加えて、光透過部材20の厚みを略一定とすることで、通過する光
の波長変換量を略均一として混色の割合を安定させ、発光面90の部位における色むらを
抑止できる。このため、1つの光透過部材20に複数の発光素子10を搭載する場合にお
いて、個々の発光素子10の配置に起因する発光面90内の輝度や色度の分布にむらが少
なく略均一で高輝度の発光を得ることができる。なお、波長変換機能を備えた光透過部材
20の厚みは、発光効率や色度調整において、10μm以上500μm以下であることが
好ましく、さらには50μm以上300μm以下であることがより好ましい。
The light transmissive member 20 having a wavelength conversion function is specifically a glass plate, a material provided with the light conversion member, or a phosphor crystal of the light conversion member or a single crystal having a phase thereof, a polycrystal,
Sintered body, aggregate, porous material, and translucent material, such as translucent resin, with amorphous body, ceramic body, or phosphor crystal particles and appropriately added translucent material , Impregnated materials, or translucent members containing phosphor particles, for example, molded products of translucent resin. In addition, it is preferable from a heat resistant viewpoint that the light transmissive member 20 is comprised with an inorganic material rather than organic materials, such as resin. Specifically, it is preferably made of a translucent inorganic material containing a phosphor, and in particular, a sintered body of a phosphor and an inorganic substance (binding material, binder), or a sintered body or crystal made of a phosphor. This increases reliability. In the example, Y
When using an AG phosphor, in addition to YAG single crystals and high-purity sintered bodies, alumina (Al 2
From the viewpoint of reliability, a sintered body of YAG / alumina having O 3 ) as a binder and a sintered body having glass as a binder are preferable. Further, by forming the light transmitting member 20 in a plate shape, the coupling efficiency with the emission surface of the light emitting element 10 configured in a planar shape is good, and the light transmitting member 20 can be easily positioned so as to be substantially parallel to the main surface of the light transmitting member 20. Can be combined. In addition, by making the thickness of the light transmissive member 20 substantially constant, the wavelength conversion amount of the light passing therethrough can be made substantially uniform, the ratio of color mixing can be stabilized, and color unevenness at the site of the light emitting surface 90 can be suppressed. Therefore, in the case where a plurality of light emitting elements 10 are mounted on one light transmitting member 20, there is little unevenness in luminance and chromaticity distribution in the light emitting surface 90 due to the arrangement of the individual light emitting elements 10, and it is substantially uniform and high. Luminous light emission can be obtained. Note that the thickness of the light transmitting member 20 having a wavelength conversion function is preferably 10 μm or more and 500 μm or less, and more preferably 50 μm or more and 300 μm or less, in terms of light emission efficiency and chromaticity adjustment.

波長変換部材は、青色発光素子と好適に組み合わせて白色発光とでき、波長変換部材に
用いられる代表的な蛍光体としては、ガーネット構造のセリウムで付括されたYAG系蛍
光体(イットリウム・アルミニウム・ガーネット)及びLAG系蛍光体(ルテチウム・ア
ルミニウム・ガーネット)が挙げられ、特に、高輝度且つ長時間の使用時においては(R
1-xSmx3(Al1-yGay512:Ce(0≦x<1、0≦y≦1、但し、Reは、
Y、Gd、La、Luからなる群より選択される少なくとも一種の元素である。)等が好
ましい。またYAG、LAG、BAM、BAM:Mn、(Zn、Cd)Zn:Cu、CC
A、SCA、SCESN、SESN、CESN、CASBN及びCaAlSiN3:Eu
からなる群から選択される少なくとも1種を含む蛍光体が使用できる。波長変換部材は、
光透過部材の他に、例えば光透過部材と発光素子との間、その結合部材中、発光素子と被
覆部材との間、にも設けることもできる。光透過部材、波長変換部材及び焼結体も同様に
発光装置中に配置できる。黄〜赤色発光を有する窒化物系蛍光体等を用いて赤味成分を増
し、平均演色評価数Raの高い照明や電球色LED等を実現することもできる。具体的に
は、発光素子の発光波長に合わせてCIEの色度図上の色度点の異なる蛍光体の量を調整
し含有させることでその蛍光体間と発光素子で結ばれる色度図上の任意の点を発光させる
ことができる。その他に、近紫外〜可視光を黄色〜赤色域に変換する窒化物蛍光体、酸窒
化物蛍光体、珪酸塩蛍光体を用いることができる。例えば、L2SiO4:Eu(Lはアル
カリ土類金属)、特に(SrxMae1-x2SiO4:Eu(MaeはCa、Baなどのア
ルカリ土類金属)などが挙げられる。窒化物系蛍光体、オキシナイトライド(酸窒化物)
蛍光体としては、Sr−Ca−Si−N:Eu、Ca−Si−N:Eu、Sr−Si−N
:Eu、Sr−Ca−Si−O−N:Eu、Ca−Si−O−N:Eu、Sr−Si−O
−N:Euなどがあり、アルカリ土類窒化ケイ素蛍光体としては、一般式LSi222
:Eu、一般式LxSiy(2/3x+4/3y):Eu若しくはLxSiyz(2/3x+4/3y-2/3z)
Eu(Lは、Sr、Ca、SrとCaのいずれか)で表される。
The wavelength conversion member can be suitably combined with a blue light emitting element to emit white light. As a typical phosphor used for the wavelength conversion member, a YAG phosphor (yttrium, aluminum, Garnet) and LAG-based phosphors (lutetium / aluminum / garnet), particularly in the case of high brightness and long time use (R
e 1-x Sm x ) 3 (Al 1-y Ga y ) 5 O 12 : Ce (0 ≦ x <1, 0 ≦ y ≦ 1, where Re is
It is at least one element selected from the group consisting of Y, Gd, La, and Lu. Etc.) are preferred. YAG, LAG, BAM, BAM: Mn, (Zn, Cd) Zn: Cu, CC
A, SCA, SCESN, SESN, CESN, CASBN and CaAlSiN 3 : Eu
A phosphor containing at least one selected from the group consisting of can be used. The wavelength conversion member is
In addition to the light transmitting member, for example, it can be provided between the light transmitting member and the light emitting element, in the coupling member, and between the light emitting element and the covering member. Similarly, the light transmitting member, the wavelength converting member, and the sintered body can be disposed in the light emitting device. It is also possible to increase the reddish component using a nitride-based phosphor having yellow to red light emission, and to realize illumination with high average color rendering index Ra, light bulb color LED, and the like. Specifically, by adjusting the amount of phosphors having different chromaticity points on the CIE chromaticity diagram according to the light emission wavelength of the light emitting device, the phosphors are connected with each other on the chromaticity diagram. Any point can be made to emit light. In addition, nitride phosphors, oxynitride phosphors, and silicate phosphors that convert near-ultraviolet to visible light into a yellow to red region can be used. For example, L 2 SiO 4 : Eu (L is an alkaline earth metal), particularly (Sr x Mae 1-x ) 2 SiO 4 : Eu (Mae is an alkaline earth metal such as Ca and Ba) and the like. Nitride phosphors, oxynitrides (oxynitrides)
Examples of the phosphor include Sr—Ca—Si—N: Eu, Ca—Si—N: Eu, and Sr—Si—N.
: Eu, Sr-Ca-Si-ON: Eu, Ca-Si-ON: Eu, Sr-Si-O
-N: Eu and the like, and as the alkaline earth silicon nitride phosphor, the general formula LSi 2 O 2 N 2
: Eu, general formula L x Si y N (2 / 3x + 4 / 3y): Eu or L x Si y O z N ( 2 / 3x + 4 / 3y-2 / 3z):
Eu (L is Sr, Ca, or any one of Sr and Ca).

(被覆部材)
被覆部材40は、図1に示すように、光透過部材20の一部を被覆し、具体的には光透
過部材20の側面の少なくとも一部を被覆する。そして、本発明においては、被覆部材が
素子等から垂下され、光の漏れ経路の形成を防ぐことから、基板、更にはそれに設けられ
た配線より、被覆部材の反射率が高いことが好ましい。また、光反射材料を含有する被覆
部材40は、その基材として透光性の樹脂材料が好ましく、シリコーン樹脂組成物、変性
シリコーン樹脂組成物等を使用することが好ましいが、エポキシ樹脂組成物、変性エポキ
シ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることがで
きる。また、これらの樹脂を少なくとも一種以上含むハイブリッド樹脂等、耐候性に優れ
た被覆部材も利用できる。さらに、ガラス、シリカゲル等の耐光性に優れた無機物を用い
ることもできる。また、樹脂材料を成形することで、所望の形状に成形でき、また所望領
域を被覆でき、本発明では光源部の発光素子、接着部材、光透過部材の表面、特にその側
面を被覆して形成できる。また、その発光面側の表面も同様に所望形状とでき、図示する
ような平坦な面状の他、凹や凸の曲面とできる。実施の形態1では耐熱性・耐候性の観点
から被覆部材としてシリコーン樹脂を使用する。
(Coating member)
As shown in FIG. 1, the covering member 40 covers a part of the light transmitting member 20, and specifically covers at least a part of the side surface of the light transmitting member 20. In the present invention, since the covering member is suspended from the element or the like to prevent the formation of a light leakage path, it is preferable that the reflectance of the covering member is higher than that of the substrate and the wiring provided thereon. Further, the covering member 40 containing the light reflecting material is preferably a translucent resin material as its base material, and preferably uses a silicone resin composition, a modified silicone resin composition, etc., an epoxy resin composition, An insulating resin composition having translucency such as a modified epoxy resin composition and an acrylic resin composition can be used. A covering member having excellent weather resistance, such as a hybrid resin containing at least one of these resins, can also be used. Furthermore, inorganic materials having excellent light resistance such as glass and silica gel can be used. In addition, by molding a resin material, it can be molded into a desired shape and a desired region can be covered. In the present invention, the surface of the light emitting element, the adhesive member, and the light transmitting member of the light source section, particularly the side surfaces thereof are formed. it can. In addition, the surface on the light emitting surface side can also have a desired shape, and can be a concave or convex curved surface in addition to a flat surface shape as illustrated. In the first embodiment, a silicone resin is used as a covering member from the viewpoint of heat resistance and weather resistance.

また、被覆部材40は、上記基材中に少なくとも1種類の光反射性材料45を含有して
なる。光反射性材料45を含有することで、被覆部材40の反射率が高まり、更に好適に
は低吸収性の粒子を用いると、光吸収、損失が低減され、光散乱性を備えた被覆部材とで
きる。被覆部材40中に含有される光反射性材料45は、Ti、Zr、Nb、Al、Si
からなる群から選択される1種の酸化物、若しくはAlN、MgFの少なくとも1種であ
り、具体的にはTiO2、ZrO2、Nb25、Al23、MgF、AlN、SiO2より
なる群から選択される少なくとも1種である。光反射性材料の粒子が、Ti、Zr、Nb
、Alからなる群から選択される1種の酸化物であることで、材料の高い反射性及び低吸
収性とでき、基材、特に透光性樹脂との屈折率差を高められ、好ましい。また、被覆部材
40は、上記光反射性材料による成形体でもって構成することもでき、具体的には上記粒
子を凝集した凝集体、焼結体、などの多孔質材料とすることもでき、その他に、ゾル・ゲ
ル法による成形体でもよく、上記光反射性材料と多孔質内の空気との屈折率差を大きくし
、光反射性を高められるため、また無機材料で構成できるため、好ましい。一方、上記樹
脂などの母材を備えた被覆部材と比較すると、所望の形状に成形すること及びその被覆領
域の制御性が良く、また封止性能、気密性能を高めること、ができ、本発明では上記母材
を備えた被覆部材とする方が好ましい。また、両者の被覆部材の特性を考慮して、両者の
複合的な成形体とでき、例えば、多孔質成形体の外表面側に樹脂を含浸させ、発光素子側
の内表面側では多孔質とした構造とできる。このように、被覆部材若しくはそれによる包
囲体は、内部領域と外部とが連通されたり、気体透過性であったりしてもよく、少なくと
も光が漏れ出さない形態であれば良い。
The covering member 40 includes at least one light reflective material 45 in the base material. By including the light reflective material 45, the reflectance of the covering member 40 is increased, and more preferably, when a low-absorbing particle is used, light absorption and loss are reduced, and the covering member having light scattering properties it can. The light reflecting material 45 contained in the covering member 40 is Ti, Zr, Nb, Al, Si.
One oxide selected from the group consisting of AlN and MgF, specifically TiO 2 , ZrO 2 , Nb 2 O 5 , Al 2 O 3 , MgF, AlN, SiO 2. It is at least one selected from the group consisting of: The particles of the light reflecting material are Ti, Zr, Nb
The oxide is preferably one oxide selected from the group consisting of Al, so that the material can have high reflectivity and low absorptivity, and the difference in refractive index from the base material, particularly the translucent resin, can be increased. The covering member 40 can also be constituted by a molded body made of the light reflecting material, specifically, a porous material such as an aggregate obtained by agglomerating the particles or a sintered body, In addition, a molded body by a sol-gel method may be used, which is preferable because the difference in refractive index between the light reflecting material and the air in the porous body can be increased, and the light reflecting property can be increased. . On the other hand, compared with a covering member provided with a base material such as the resin, it can be molded into a desired shape and controllability of the covering region is good, and sealing performance and airtightness can be improved. Then, it is preferable to use a covering member provided with the base material. Also, considering the characteristics of both covering members, a composite molded body of both can be formed. For example, the outer surface side of the porous molded body is impregnated with resin, and the inner surface side of the light emitting element side is porous. The structure can be made. As described above, the covering member or the surrounding body may be configured such that the inner region communicates with the outside or is gas permeable and at least does not leak light.

上述した母材中に光反射性材料45を含有する被覆部材40では、その含有濃度、密度
により光の漏れ出す深さが異なるため、発光装置形状、大きさに応じて、適宜濃度、密度
を調整すると良い。例えば比較的小さな発光装置で肉厚を小さくする場合は、高濃度の光
反射性材料45を備えることが好ましい。一方で、光反射性材料45を含有する被覆部材
40の原料の調製、その原料の塗布、成形などの製造過程において、それに適したように
その濃度を調整する。上記多孔質体についても同様である。一例として、実施例の場合に
は、光反射性材料45の含有濃度は20重量パーセント濃度(wt%)以上、その肉厚は
20μm以上とするのが好適であり、発光面90から高輝度で指向性の高い放出光が得ら
れ、適度な粘性で被覆部材によるアンダーフィルの形成など容易にできる。また、光反射
性材料の濃度を高くすれば被覆部材の熱拡散性を高めることができる。
In the covering member 40 containing the light reflective material 45 in the base material described above, the depth at which light leaks differs depending on the concentration and density of the covering member 40. Therefore, the concentration and density are appropriately set according to the shape and size of the light emitting device. Adjust it. For example, when the thickness is reduced with a relatively small light emitting device, it is preferable to provide the light-reflecting material 45 with a high concentration. On the other hand, in the manufacturing process such as the preparation of the covering member 40 containing the light reflecting material 45, the application of the raw material, and the molding, the concentration is adjusted so as to be suitable for it. The same applies to the porous body. As an example, in the case of the embodiment, it is preferable that the concentration of the light-reflecting material 45 is 20 weight percent (wt%) or more, and the thickness is 20 μm or more. The emitted light with high directivity can be obtained, and the underfill can be easily formed by the covering member with an appropriate viscosity. Moreover, if the density | concentration of a light reflective material is made high, the thermal diffusibility of a coating | coated member can be improved.

被覆部材の形成領域は、光透過部材20における少なくとも側面に被覆部材40を設け
、好ましくは発光素子10の側面も被覆し、更に好ましくは、光透過部材及び発光素子を
含む光源部において発光面を露出させてその他を被覆し、接着部材30を介する場合も同
様である。これにより、光透過部材の側面から光が漏れ出すのを回避でき、その側面から
の比較的強度の大きい、また光変換部材を有する場合は色味差を有する光を抑止して、放
射光の指向性を良好にし、輝度ムラ、色ムラを低減できる。また、各部材、素子の側面を
被覆して、光取り出し方向側へ制限することで、指向性、輝度を高められる。また、光透
過部材20が波長変換材料を含有する場合には、この波長変換材料の発熱が特に著しいた
め、それを改善できる。光透過部材20の側面が被覆部材40により被覆され、かつ表面
21が露出されていれば、その外面形状は特に限定されず、図1に示すように表出面が光
透過部材の表面21よりも窪んだ構造でもよい。この発光面90が突出することで被覆部
材40による遮光を回避でき、また略同一面でもよく、所望の表面とできる。
The covering member forming region is provided with a covering member 40 on at least the side surface of the light transmitting member 20, preferably also covering the side surface of the light emitting element 10, and more preferably, the light emitting surface in the light source unit including the light transmitting member and the light emitting element. The same applies to the case where the other members are exposed and covered with the adhesive member 30 interposed therebetween. As a result, light can be prevented from leaking from the side surface of the light transmitting member, and if the light converting member has a relatively high intensity from the side surface, light having a color difference can be suppressed, and radiation light can be prevented. The directivity can be improved, and luminance unevenness and color unevenness can be reduced. Moreover, the directivity and the brightness can be improved by covering the side surfaces of the respective members and elements and restricting them to the light extraction direction side. In addition, when the light transmitting member 20 contains a wavelength conversion material, the heat generation of the wavelength conversion material is particularly significant, which can be improved. If the side surface of the light transmitting member 20 is covered with the covering member 40 and the surface 21 is exposed, the outer surface shape is not particularly limited, and the exposed surface is more than the surface 21 of the light transmitting member as shown in FIG. A recessed structure may be used. By projecting the light emitting surface 90, light shielding by the covering member 40 can be avoided, and substantially the same surface may be used, and a desired surface can be obtained.

(添加部材)
また、被覆部材40には、光反射性材料45、光変換部材の他、粘度増量剤等を適宜添
加することができ、これによって所望の発光色、それら部材若しくは装置表面の色、例え
ば高コントラスト化の為の黒色など、また所望の指向特性を有する発光装置が得られる。
同様に不要な波長をカットするフィルター材として各種着色剤を添加できる。他の部材、
また光透過部材、接着部材などの光透過性材料も同様である。
(Additive components)
In addition to the light-reflective material 45 and the light conversion member, a viscosity extender or the like can be appropriately added to the covering member 40, whereby a desired emission color, color of these members or the surface of the device, for example, high contrast Thus, a light emitting device having a desired directional characteristic such as black for conversion to black can be obtained.
Similarly, various colorants can be added as filter materials for cutting unnecessary wavelengths. Other parts,
The same applies to light transmissive materials such as light transmissive members and adhesive members.

(接着部材)
接着部材30は、発光素子10と光透過部材20との間に介在して双方の部材を固着す
る接着剤に用いられる。この接着部材は、透光性を有して、発光素子10の出射光を光透
過部材側へ導光でき、双方の部材を光学的に結合できる材質が好ましい。その材料として
は上記各部材に用いられる樹脂材料が挙げられ、シリコーン樹脂やエポキシ樹脂など透光
性の熱硬化性樹脂がよく、シリコーン樹脂は耐熱性、耐光性に優れるため好ましい。また
、シリコーン樹脂を使用すれば、上記フッ素系離型剤の効果が高いため好ましい。さらに
、ジメチル系シリコーン樹脂であれば高温耐性など信頼性において優れ、フェニル系シリ
コーン樹脂であれば屈折率を高くして発光素子10からの光の取り出し効率を高めること
ができる。
(Adhesive member)
The adhesive member 30 is used as an adhesive that is interposed between the light emitting element 10 and the light transmitting member 20 and fixes both members. The adhesive member is preferably made of a material having translucency, capable of guiding the emitted light of the light emitting element 10 to the light transmitting member side, and optically coupling both members. Examples of the material include resin materials used for the above-described members, and a translucent thermosetting resin such as a silicone resin or an epoxy resin is preferable. A silicone resin is preferable because it is excellent in heat resistance and light resistance. In addition, it is preferable to use a silicone resin because the effect of the fluorine-based mold release agent is high. Furthermore, if it is a dimethyl-type silicone resin, it is excellent in reliability, such as high temperature tolerance, and if it is a phenyl-type silicone resin, the refractive index can be made high and the extraction efficiency of the light from the light emitting element 10 can be improved.

(実装基板50)
一方、図1の発光装置100において、上記の発光素子10が実装される基板50は、
少なくとも表面が素子の電極と接続される配線51を形成したものが利用でき、また外部
接続用の配線が裏面などに設けられても良い。基板の材料は、例として窒化アルミニウム
(AlN)で構成され、単結晶、多結晶、焼結基板、他の材料としてアルミナ等のセラミ
ック、ガラス、Si等の半金属あるいは金属基板、またそれらの積層体、複合体が使用で
き、金属性、セラミックは放熱性が高いため好ましい。なお、基板50は配線が無くても
よく、例えば図4の素子で成長基板側を実装して素子の電極を装置の電極にワイヤー接続
する形態、光透過部材に配線を設けて接続する形態でもでもよい。また、図示する発光装
置のように、被覆部材40が実装基板50の上に設けられる形態の他、実装基板50の外
側側面も覆う形態でもよい。また実装基板50は、少なくともその表面が高反射性材料で
構成されることが好ましい。また図1,2に示すように、発光素子10は、導電性接着材
60により配線51上に接着されて外部と電気的に接続される。導電性接着材60は、半
田、Agペースト、Auバンプなどが利用できる。
(Mounting board 50)
On the other hand, in the light emitting device 100 of FIG. 1, the substrate 50 on which the light emitting element 10 is mounted is as follows.
It is possible to use a wiring having at least a front surface connected to the electrode of the element, and a wiring for external connection may be provided on the back surface or the like. The substrate material is, for example, aluminum nitride (AlN), single crystal, polycrystal, sintered substrate, other materials such as ceramics such as alumina, glass, semi-metal or metal substrates such as Si, and laminates thereof. Bodies and composites can be used, and metallic and ceramic materials are preferred because of their high heat dissipation. Note that the substrate 50 may not have wiring. For example, in the form in which the growth substrate side is mounted with the element of FIG. 4 and the electrode of the element is wire-connected to the electrode of the apparatus, or the light-transmitting member is provided with wiring. But you can. Moreover, the form which covers the outer side surface of the mounting board | substrate 50 other than the form in which the coating | coated member 40 is provided on the mounting board | substrate 50 like the light-emitting device to show in figure may be sufficient. Further, it is preferable that at least the surface of the mounting substrate 50 is made of a highly reflective material. As shown in FIGS. 1 and 2, the light emitting element 10 is bonded onto the wiring 51 by a conductive adhesive 60 and is electrically connected to the outside. As the conductive adhesive 60, solder, Ag paste, Au bump, or the like can be used.

(枠体)
図1に示す発光装置100は、枠体55を有し、この枠体55は被覆部材40の保持部
材としても機能する。枠体55は、セラミックや樹脂などで形成することができる。光反
射性の高いアルミナが好ましいが、表面に反射膜を形成すればこれに限らない。樹脂であ
れば、スクリーン印刷等を用いるほか、成形体を実装基板に接着してもよい。また、被覆
部材40と同様に光反射性材料を用いるなどして、反射率を高くすると好ましい。また、
上記添加部材同様に、枠体を目的に応じて着色してもよい。なお、この枠体は、被覆部材
を充填又は成形後に、取り外すこともできる。また、枠体として、積層基板、基材などで
キャビティ構造を有する装置基体など、発光素子の実装基板に一体に形成されている形態
でもよい。
(Frame)
The light emitting device 100 illustrated in FIG. 1 includes a frame body 55, and the frame body 55 also functions as a holding member for the covering member 40. The frame body 55 can be formed of ceramic, resin, or the like. Alumina having high light reflectivity is preferable, but not limited to this as long as a reflective film is formed on the surface. If it is resin, besides using screen printing or the like, the molded body may be bonded to the mounting substrate. Further, it is preferable to increase the reflectance by using a light reflective material as in the covering member 40. Also,
Like the additive member, the frame may be colored according to the purpose. In addition, this frame can also be removed after filling or forming the covering member. Further, the frame body may be formed integrally with the mounting substrate of the light emitting element, such as a laminated substrate, an apparatus base having a cavity structure with a base material, and the like.

(発光装置の製造方法)
図1に示される例の発光装置100の製造方法の一例として以下に説明する。まず、実
装基板50の配線51上又は発光素子10にバンプ60を形成し、発光素子10をフリッ
プチップ実装する。この例では個片化前の基板50上で、1つの発光装置に対応する領域
に1個の発光素子10を並べて実装する。次に、発光素子10の出射面側(成長基板裏面
)に、接着部材30を塗布して、光透過部材20を積層し、その樹脂30を熱硬化して接
合する。次に、発光素子10の周囲に立設された枠体55内に、光透過部材20の側面を
被覆するように、ディスペンサ(液体定量吐出装置)等により、被覆部材40を構成する
樹脂を滴下(ポッティング)する。滴下された樹脂40は、表面張力によって発光素子1
0、光透過部材20の側面を這い上がり被覆し、表面21より枠体55に向かって低くな
る傾斜表面が形成される。また、樹脂40の表出面を表面21と略同一面となるよう平坦
化してもよい。そして、樹脂40を硬化させた後、所定の位置でダイシングを行い、所望
の大きさに切り出して発光装置100を得る。
(Method for manufacturing light emitting device)
An example of a method for manufacturing the light emitting device 100 shown in FIG. 1 will be described below. First, bumps 60 are formed on the wiring 51 of the mounting substrate 50 or on the light emitting element 10, and the light emitting element 10 is flip-chip mounted. In this example, one light emitting element 10 is mounted side by side in a region corresponding to one light emitting device on the substrate 50 before separation. Next, the adhesive member 30 is applied to the emission surface side (growth substrate rear surface) of the light emitting element 10, the light transmitting member 20 is laminated, and the resin 30 is thermoset and bonded. Next, a resin constituting the covering member 40 is dropped by a dispenser (liquid metering discharge device) or the like so as to cover the side surface of the light transmitting member 20 in a frame 55 standing around the light emitting element 10. (Potting). The dropped resin 40 is produced by the light emitting element 1 due to the surface tension.
0, the side surface of the light transmission member 20 is scooped up and covered, and an inclined surface that is lower than the surface 21 toward the frame body 55 is formed. Further, the exposed surface of the resin 40 may be flattened so as to be substantially flush with the surface 21. Then, after the resin 40 is cured, dicing is performed at a predetermined position, and the light emitting device 100 is obtained by cutting into a desired size.

<実施の形態2>
図5は、本発明の実施の形態2に係る発光装置を説明するための概略断面図である。図
5に示す例の発光装置において、分離部の構造を除く他の構成については、上述の実施の
形態1と実質上同様であり、したがって同様の構成については同一の符号を付して適宜説
明を省略する。
<Embodiment 2>
FIG. 5 is a schematic cross-sectional view for explaining the light-emitting device according to Embodiment 2 of the present invention. In the light emitting device of the example shown in FIG. 5, the configuration other than the structure of the separation portion is substantially the same as that of the above-described first embodiment, and therefore the same configuration is denoted by the same reference numeral and appropriately described. Is omitted.

本発明における分離部は、少なくとも半導体素子構造の活性層を分離して複数の発光部
を形成するものであればよく、好適には図1,2,5に示すように、発光部に対して正負
一対の電極が設けられ、電流注入で発光可能な発光構造部を設けると良い。図5に示す例
の発光素子では、深さの異なる2種類の分離部を有して、各分離形態を示している。図中
右側の第1の分離部15は、半導体素子構造11の途中までの深さで、半導体素子構造2
0内に形成されている。すなわち発光構造部12bは、第1の分離部15上に残存する半
導体素子構造11の一部である連結部によって、隣接する発光構造部12aと互いに連結
されている。残存部が第1導電型半導体層を有すると、互いに第1導電型半導体層で電気
的に接続され、互いの発光構造部において連携して発光可能となり、第1導電型半導体層
とその第1の電極の配置の自由度を高められる。一方で、第1導電型半導体層を分離する
など、互いに絶縁され、独立して発光可能な分離部を有する構造では、各発光構造部にお
いて、上述したようにその光取り出し、発光効率を高めることができ、好ましい。
The separating portion in the present invention may be any member as long as it separates at least the active layer of the semiconductor element structure to form a plurality of light emitting portions. Preferably, as shown in FIGS. A pair of positive and negative electrodes is provided, and a light emitting structure capable of emitting light by current injection is preferably provided. The light emitting element of the example shown in FIG. 5 has two types of separation portions having different depths, and shows each separation mode. The first separation portion 15 on the right side in the drawing has a depth up to the middle of the semiconductor element structure 11 and the semiconductor element structure 2.
It is formed within 0. That is, the light emitting structure portion 12 b is connected to the adjacent light emitting structure portion 12 a by a connecting portion that is a part of the semiconductor element structure 11 remaining on the first separation portion 15. When the remaining portion has the first conductivity type semiconductor layer, they are electrically connected to each other by the first conductivity type semiconductor layer, and can emit light in cooperation with each other in the light emitting structure portion. The degree of freedom of electrode arrangement can be increased. On the other hand, in the structure having separation parts that are insulated from each other and capable of independently emitting light, such as separating the first conductive type semiconductor layer, each light emitting structure part increases its light extraction and luminous efficiency as described above. This is preferable.

また被覆部材40は、この第1の分離部15の底面つまり連結部の表面を被覆しており
、被覆部材40と連結部の表面との界面に光反射部が設けられている。このように、発光
構造部間に連結部、その分離部に光反射部が形成されることによって、各発光構造部に共
通の光拡散領域の厚さを大きくすることができ、透光性基板1との界面と連結部において
光の拡散、並びに分離部上での光の重畳が得られやすく、さらに基板内でのそれと組み合
わされ好ましい。例えば第1の分離部15をバッファ層など絶縁性の層に至る深さで形成
、つまり連結部がそのような層で構成されることにより、各発光構造部を確実に電気的に
分離させ独立して発光可能で、上記の効果が得られる。後述するように分離部に空隙が設
けられる形態では、上記連結部に加えて分離部における光の分断作用を低減しつつ、上述
したように光反射部による散乱作用、分離部に光が取り出されることによる発光構造部、
素子構造内の自己吸収作用の低減、透光性基板への光入射機能により、上述したように本
発明の作用効果と協働させることで、それを高められる。
The covering member 40 covers the bottom surface of the first separating portion 15, that is, the surface of the connecting portion, and a light reflecting portion is provided at the interface between the covering member 40 and the surface of the connecting portion. Thus, by forming the connecting portion between the light emitting structure portions and the light reflecting portion at the separating portion, the thickness of the light diffusion region common to each light emitting structure portion can be increased, and the light transmitting substrate It is easy to obtain light diffusion and superimposition of light on the separation part at the interface with 1 and the connection part, and it is preferable to combine it with that in the substrate. For example, the first separation portion 15 is formed at a depth reaching an insulating layer such as a buffer layer, that is, the connection portion is formed of such a layer, so that each light emitting structure portion can be reliably electrically separated and independent. The above-described effects can be obtained. As will be described later, in the embodiment in which a gap is provided in the separation portion, light is extracted from the light reflection portion and the separation portion as described above while reducing the light dividing action in the separation portion in addition to the connection portion. Light emitting structure by
As described above, the self-absorption function in the element structure is reduced and the light incident function to the light-transmitting substrate can be enhanced by cooperating with the function and effect of the present invention.

他方、図中左側の第2の分離部14は、半導体素子構造11の全てを除去し、その深さ
が透光性基板1の内部にまで及んでおり、発光構造部12aは第2の分離部14によって
その隣(12bと反対側)の発光構造部と絶縁されている。このような分離部は、実施の
形態1と同様に、各発光構造部12の絶縁性を高めることができ、また分離部内に被覆部
材40を充填しやすくなり、分離部の光反射性を高めることができる。また第2の分離部
14において、該分離部内に形成された被覆部材40は、上述したように実装基板50の
配線51上を被覆しているが、透光性基板1との間に空隙16が設けられて、透光性基板
1とは離間され、更に分離部を覆うように設けられている。この場合、光反射部は、分離
部における被覆部材40の表面(と空隙16(空気)との界面)に設けられる。このよう
な構成により、第2の分離部14において、隣接する発光構造部12の絶縁性を高めて独
立して発光させながらも、隣接する発光構造部12から互いに光が行き来することが可能
となり、上述したように配線51の光吸収による光損失を抑制しながら、分離部上の光の
重畳を促進することができる。他方、光反射部において、一部の光は乱反射されるため、
透光性基板に好適に光を入射させることができる。また、実施の形態1と異なり、基板に
も凹部が形成されており、これにより凹凸構造1Aに類似した効果と、また空隙により分
離部内に閉じこめられた光の基板への入射口となって、分離部による輝度、色ムラを抑制
できる。尚、上述したように、ここでの分離部の内面を構成する半導体表面、基板表面は
、光出射可能な素子構造表面であり、すべての表面が光出射可能な表面であるが、一部が
電極、配線など、例えば実施の形態4のように、被覆されていて、一部が出射可能な表面
であっても良い。
On the other hand, the second separation part 14 on the left side in the drawing removes all of the semiconductor element structure 11 and the depth reaches the inside of the translucent substrate 1, and the light emitting structure part 12a is the second separation part. The portion 14 is insulated from the light emitting structure portion adjacent thereto (on the opposite side to 12b). Similar to the first embodiment, such a separation part can enhance the insulation of each light emitting structure part 12 and can easily fill the covering member 40 in the separation part, thereby improving the light reflectivity of the separation part. be able to. Further, in the second separation portion 14, the covering member 40 formed in the separation portion covers the wiring 51 of the mounting substrate 50 as described above, but the gap 16 is formed between the second separation portion 14 and the translucent substrate 1. Is provided so as to be separated from the translucent substrate 1 and further to cover the separation portion. In this case, the light reflecting portion is provided on the surface of the covering member 40 in the separating portion (and the interface between the gap 16 (air)). With such a configuration, in the second separation unit 14, it is possible to allow light to pass back and forth from the adjacent light emitting structure unit 12 while increasing the insulating property of the adjacent light emitting structure unit 12 to independently emit light. As described above, it is possible to promote superimposition of light on the separation portion while suppressing light loss due to light absorption of the wiring 51. On the other hand, since some light is irregularly reflected in the light reflecting portion,
Light can be suitably incident on the translucent substrate. Further, unlike the first embodiment, the substrate is also formed with a recess, thereby providing an effect similar to the concavo-convex structure 1A, and an entrance to the substrate of light confined in the separation portion by the gap, Luminance and color unevenness due to the separation unit can be suppressed. As described above, the semiconductor surface and the substrate surface constituting the inner surface of the separation part here are element structure surfaces capable of emitting light, and all surfaces are surfaces capable of emitting light, but some of them are surfaces. An electrode, wiring, etc., for example, as in Embodiment 4, may be a surface that is covered and from which a part can be emitted.

上述したように発光素子、その半導体表面、基板表面と被覆部材とを離間させ、その表
面、分離部に空隙を設ける方法としては、被覆部材の塗布方法、成形方法又はその条件、
部材の粘性などの条件を調整して形成することもでき、また、その表面に予め離型剤など
で表面処理して、空隙を形成することができ、こちらの方がその制御が容易で、量産性に
富むため好ましい。離型剤としては、被覆部材、例えば樹脂について、通常知られたもの
を用いることができ、例えば、フッ素系離型剤として、「デュラサーフHD−1101」
などがある。
As described above, as a method of separating the light emitting element, its semiconductor surface, the substrate surface and the covering member and providing a gap on the surface and the separation part, a coating member coating method, a molding method or conditions thereof,
It can also be formed by adjusting the conditions such as the viscosity of the member, and the surface can be surface treated with a release agent in advance to form voids, which is easier to control, This is preferable because of its high productivity. As the mold release agent, a commonly known coating member, for example, a resin, can be used. For example, “Durasurf HD-1101” can be used as the fluorine mold release agent.
and so on.

<実施の形態3>
図6は、本発明の実施の形態3に係る発光装置を説明するための概略断面図であって、
例えば図1(b)におけるB−B方向に切断した概略断面図である。図6に示す例の発光
装置において、被覆部材による素子構造の被覆形態を除く他の構成については、上述の実
施の形態1と実質上同様であり、したがって同様の構成については同一の符号を付して適
宜説明を省略する。
<Embodiment 3>
FIG. 6 is a schematic cross-sectional view for explaining a light-emitting device according to Embodiment 3 of the present invention,
For example, it is the schematic sectional drawing cut | disconnected in the BB direction in FIG.1 (b). In the light emitting device of the example shown in FIG. 6, the configuration other than the covering configuration of the element structure by the covering member is substantially the same as that of the above-described first embodiment, and therefore the same configuration is denoted by the same reference numeral. Therefore, the description will be omitted as appropriate.

図6に示す例の発光装置において、被覆部材40は、発光構造部12の下方において、
少なくとも配線52を被覆していれば、その領域に上記出射可能な素子構造表面からの光
が到達する場合、特に配線側にその表面が対面する場合に、該配線51による光吸収を低
減するができる。発光構造部12の実装面との間、又は素子と実装面との間に空隙17が
設けられることで、被覆部材の体積変化、樹脂の熱膨張などにより、素子の実装が一部で
剥がれたり、断線したり、悪影響を及ぼす場合にそれを解消する効果がある。また被覆部
材40と、発光構造部12の外側に面する側面、特に素子側面との間の一部に空隙18が
設けられ、被覆部材40は該空隙18により発光構造部12の該側面と離間されていても
よい。特に図6に示す例では、透光性基板1の半導体素子構造11が設けられる表面の周
縁が空隙18により露出されており、この露出部19にも空隙18から光結合することが
可能である。このような空隙は、該空隙との界面である被覆部材40表面での光反射によ
り光吸収を低減しながら、上述したように、光散乱機能、基板へ集光させる導光領域とし
ての機能、発光構造部、素子外部への光取り出し機能、により、本発明の作用効果、特に
素子周縁部における輝度、色ムラの改善効果を高められる。したがって、分離部により互
いに分離された発光構造部12から各々放出される光を、該空隙内を伝搬、拡散させなが
ら、透光性基板1側に反射させ光結合させることで、発光素子から均一化された光を発光
させることができる。空隙は、上述と同様に形成でき、例えば、実装面側に離間した被覆
部材は、実装前又は後に、予め1層目の比較的薄膜の被覆部材、実装面側を被覆して形成
し、2層目の被覆部材を素子、基板、光透過部材の各側面を被覆して形成する方法を用い
ることができる。
In the light emitting device of the example shown in FIG. 6, the covering member 40 is below the light emitting structure 12.
If at least the wiring 52 is covered, light from the surface of the element structure that can be emitted reaches the region, especially when the surface faces the wiring side, the light absorption by the wiring 51 is reduced. it can. Since the gap 17 is provided between the mounting surface of the light emitting structure 12 or between the device and the mounting surface, the mounting of the device may be partially peeled off due to volume change of the covering member, thermal expansion of the resin, or the like. In case of disconnection or adverse effects, it has the effect of eliminating it. In addition, a gap 18 is provided in a part between the covering member 40 and a side surface facing the outside of the light emitting structure 12, in particular, a side surface of the element. The covering member 40 is separated from the side surface of the light emitting structure 12 by the gap 18. May be. In particular, in the example shown in FIG. 6, the peripheral edge of the surface of the translucent substrate 1 where the semiconductor element structure 11 is provided is exposed by the gap 18, and the exposed portion 19 can be optically coupled from the gap 18. . Such a gap has a light scattering function, a function as a light guide region for condensing light to the substrate, as described above, while reducing light absorption by light reflection on the surface of the covering member 40 that is an interface with the gap, By the light emitting structure and the light extraction function to the outside of the element, the effect of the present invention, in particular, the effect of improving the luminance and color unevenness at the periphery of the element can be enhanced. Accordingly, the light emitted from the light emitting structure 12 separated from each other by the separating portion is reflected and optically coupled to the light transmissive substrate 1 while propagating and diffusing in the gap, thereby uniform from the light emitting element. Light can be emitted. The air gap can be formed in the same manner as described above. For example, the covering member separated to the mounting surface side is formed by covering the first thin film covering member and the mounting surface side before or after mounting. A method of forming a layer covering member by covering each side of the element, the substrate, and the light transmitting member can be used.

<実施の形態4>
図7は、本発明の実施の形態4に係る発光装置を説明するための概略断面図(a)と、
その発光素子の概略平面図(b)である。図7に示す例の発光装置において、発光構造部
間の電気的接続の構造を除く他の構成については、上述の実施の形態1と実質上同様であ
り、したがって同様の構成については同一の符号を付して適宜説明を省略する。
<Embodiment 4>
FIG. 7 is a schematic cross-sectional view (a) for explaining the light emitting device according to Embodiment 4 of the present invention,
It is a schematic plan view (b) of the light emitting element. In the light emitting device of the example shown in FIG. 7, the configuration other than the electrical connection structure between the light emitting structure portions is substantially the same as that of the above-described first embodiment. The description will be omitted as appropriate.

図7に示す例の発光装置において、分離部は透光性基板1の半導体素子構造11が設け
られる表面を露出する深さで形成されており、発光素子10に、分離部を横断して各発光
構造部12を互いに直列接続する電極が、発光構造部と分離部底面の基板表面を配線して
設けられている。これにより、実装基板50に発光素子10を実装するための突起電極な
どの導電性接着材60の形成、その設計自由度を高められ、それに対応する配線構造も簡
略化できる。またそれにより分離部および発光構造部12と実装基板50との間の空間の
容量が増え、該空間に被覆部材40を充填しやすくなり、分離部および発光構造部12と
実装基板50との間の空間の光吸収性を低減して光反射性を高めることができる。また上
述の実施の形態3で説明した導光領域として機能させることができる空隙を形成しやすく
することができる。また、配線9a〜9cは、隣接する発光構造部の各電極(9a,9c
)と電気的に接続し、また基板表面(9c)に延在されており、上述した分離部の内面の
一部を覆って、残部が露出されているため、その露出表面では上述した光出射表面として
機能させることができ、同様の効果を得ることができる。
In the light emitting device of the example shown in FIG. 7, the separating portion is formed with a depth exposing the surface on which the semiconductor element structure 11 of the translucent substrate 1 is provided. An electrode for connecting the light emitting structure 12 in series with each other is provided by wiring the light emitting structure and the substrate surface on the bottom of the separating portion. Thereby, the formation of the conductive adhesive 60 such as the protruding electrode for mounting the light emitting element 10 on the mounting substrate 50 and the degree of design freedom thereof can be increased, and the corresponding wiring structure can be simplified. This also increases the capacity of the space between the separation part and the light emitting structure 12 and the mounting substrate 50, and makes it easier to fill the space with the covering member 40. The light absorptivity of the space can be reduced and the light reflectivity can be increased. In addition, it is possible to easily form a gap that can function as the light guide region described in Embodiment 3 above. Further, the wirings 9a to 9c are connected to the electrodes (9a and 9c) of the adjacent light emitting structure.
) And is extended to the substrate surface (9c) and covers a part of the inner surface of the separation part described above, and the remaining part is exposed. It can function as a surface, and the same effect can be obtained.

<実施の形態5>
図8は、本発明の実施の形態5に係る発光装置の概略図であり、図8(a)は概略上面
図の図8(b)のA−Aにおける概略断面図であり、図8(c)は搭載されている発光素
子の概略上面図である。図8に示す例の発光装置において、発光素子の発光構造部の数や
電極、並びに実装基板の配線を除く他の構成については、上述の実施の形態1と実質上同
様であり、したがって同様の構成については同一の符号を付して適宜説明を省略する。
<Embodiment 5>
FIG. 8 is a schematic view of a light emitting device according to Embodiment 5 of the present invention, FIG. 8 (a) is a schematic cross-sectional view taken along line AA of FIG. 8 (b), and FIG. c) is a schematic top view of a light-emitting element mounted. In the light-emitting device of the example shown in FIG. 8, the number of light-emitting structure portions of the light-emitting element, electrodes, and other configurations except for the wiring of the mounting substrate are substantially the same as those of the above-described first embodiment. The components are denoted by the same reference numerals and description thereof is omitted as appropriate.

図8に示す例の発光装置200において、図8(c)に示すように、発光素子10は、
実施の形態1と同様に、ストライプ状の分離部によって互いに離間されて設けられた6つ
の発光構造部12を有している。またその発光構造部12には、実装面の周縁部に複数(
図中では各角部に1つずつで合計4つ)の第1導電型のパッド電極(ここではn側パッド
電極7)およびその上に突起電極の導電性接着材60が設けられており、これらを除いて
実装面の中央部を含む略全域に第1導電型とは導電型の異なる第2導電型のパッド電極(
ここではp側パッド電極6)が設けられ、その中央部には突起電極60が設けられている
。このように各電極を配置することにより、発光構造部12の略全域に亘って電流が拡散
しやすく、発光強度分布のムラを低減することができる。またこの第1導電型のパッド電
極7は、実装面の中央部を囲むように、該パッド電極を基点として中央部に向かって延伸
された延伸電極を有しており、さらに電流が拡散しやすくなっている。したがって、この
ような電極の配置によれば、発光構造部12を比較的大きく形成しても強度分布にムラの
少ない発光が得られるので、分離部の幅を小さくしたり数を減らしたりすることができ、
光束を高めることができる。
In the light emitting device 200 of the example shown in FIG. 8, as shown in FIG.
Similar to the first embodiment, there are six light-emitting structure portions 12 provided to be separated from each other by stripe-shaped separation portions. The light emitting structure 12 includes a plurality of (on the periphery of the mounting surface (
In the drawing, a pad electrode of the first conductivity type (here, n-side pad electrode 7) is provided in each corner and a total of four), and a conductive adhesive 60 of a protruding electrode is provided thereon, Except for these, a pad electrode of a second conductivity type, which is different from the first conductivity type, over substantially the entire area including the central portion of the mounting surface (
Here, a p-side pad electrode 6) is provided, and a protruding electrode 60 is provided at the center thereof. By disposing each electrode in this way, current is easily diffused over substantially the entire area of the light emitting structure 12, and unevenness in the light emission intensity distribution can be reduced. The first conductivity type pad electrode 7 has a stretched electrode extending from the pad electrode toward the central portion so as to surround the central portion of the mounting surface, and further facilitates current diffusion. It has become. Therefore, according to such an electrode arrangement, light emission with less unevenness in intensity distribution can be obtained even if the light emitting structure portion 12 is formed relatively large, so that the width of the separation portion can be reduced or the number of the separation portions can be reduced. Can
The luminous flux can be increased.

また図8(a)および(b)に示すように、実装基板210の基板50上には、上記発
光構造部12の各電極の配置に対応して、一方の発光構造部12の周縁部(電極7)と他
方の発光構造部12の中央部(電極6)とを接続するように、90度回転した略Y字状の
配線52が複数配列されており、発光構造部12間を直列接続可能となっている。このよ
うに、発光構造部12内の電流拡散性を高める電極配置とすれば、それに対応して配線5
2を設けており、被覆部材40がこれら発光構造部並びに分離部に対向して設けられた配
線52を被覆することにより、光吸収を低減して効率良く光を取り出し透光性基板1に光
結合することができる。
Further, as shown in FIGS. 8A and 8B, on the substrate 50 of the mounting substrate 210, the peripheral portion of one light emitting structure 12 (corresponding to the arrangement of each electrode of the light emitting structure 12). A plurality of substantially Y-shaped wirings 52 rotated 90 degrees are arranged so as to connect the electrode 7) and the central portion (electrode 6) of the other light emitting structure 12 and the light emitting structures 12 are connected in series. It is possible. As described above, if the electrode arrangement for improving the current diffusibility in the light emitting structure 12 is adopted, the wiring 5 is correspondingly provided.
2 and the covering member 40 covers the wiring 52 provided so as to face the light emitting structure portion and the separating portion, thereby reducing light absorption and efficiently extracting light to the translucent substrate 1. Can be combined.

上述の各実施の形態、そこに説明された各部については、相互に組み合わせ可能であり
、所望の発光特性を得るために適宜、その組み合わせを適用する。
Each of the above-described embodiments and each part described therein can be combined with each other, and the combination is appropriately applied in order to obtain desired light emission characteristics.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに
限定されないことは言うまでもない。
Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

<実施例1,2>
実施例1の発光装置の光源部には、図8に示すように、AlNのセラミックス基板50
の配線51,52上に、発光素子10として、1つのサファイア基板1上に互いに分離さ
れた6つの発光構造部12が設けられた、約1mm×6.5mmの略矩形状のLEDチッ
プ(発光波長455nm)1個がAuバンプ60によりフリップチップ実装されている。
これにより、各発光構造部12は配線52により直列接続されている。なお、このような
LEDチップ10は、サファイア基板1上に、窒化物半導体のn型層2、活性層3、p型
層4を順に含む半導体素子構造11を積層し、RIE(反応性イオンエッチング)により
部分的に半導体層を除去して、サファイア基板1の表面が露出された分離部(溝)を形成
することにより作製される。このLEDチップ10上に、光透過部材20としてYAGの
蛍光体とアルミナ(Al23)との焼結体である蛍光体板(この表面及び受光面の外形は
約0.8mm×6.3mmの略矩形状であり、厚みは約150μm)を1枚載置し、シリ
コーン樹脂の接着部材30により互いに接合させる。そして、セラミックス基板50上に
LEDチップ10及び蛍光体板20を包囲する枠体55を設置し、該枠体55の内側の凹
所に被覆部材40を充填し、蛍光体板20の表面21が発光面90として露出される状態
に、LEDチップ10および蛍光体板20の周部を該被覆部材40により被覆する。この
とき被覆部材40は、基板50とLEDチップ10との間に浸入して、配線51,52上
を被覆しながら分離部にも充填される。ここで、被覆部材40は、粒径約270nmのT
iO2の微粒子である光反射性材料45を約23重量パーセント濃度で含有するシリコー
ン樹脂である。そして、被覆部材40の硬化後、枠体を除去して発光装置を得る。
<Examples 1 and 2>
As shown in FIG. 8, the light source unit of the light emitting device of Example 1 includes an AlN ceramic substrate 50.
LED chips (light emitting elements) of about 1 mm × 6.5 mm, each having six light emitting structures 12 separated from each other on one sapphire substrate 1 as the light emitting element 10 on the wirings 51 and 52 of FIG. One (wavelength 455 nm) is flip-chip mounted by Au bumps 60.
Thereby, each light emitting structure part 12 is connected in series by the wiring 52. In addition, such an LED chip 10 includes a semiconductor element structure 11 including a nitride semiconductor n-type layer 2, an active layer 3, and a p-type layer 4 in this order stacked on a sapphire substrate 1, and RIE (reactive ion etching). ) To partially remove the semiconductor layer to form a separation portion (groove) where the surface of the sapphire substrate 1 is exposed. On this LED chip 10, a phosphor plate which is a sintered body of YAG phosphor and alumina (Al 2 O 3 ) as the light transmitting member 20 (the outer shape of the surface and the light receiving surface is about 0.8 mm × 6. A sheet of 3 mm and a substantially rectangular shape having a thickness of about 150 μm is placed and bonded to each other by an adhesive member 30 made of silicone resin. Then, a frame body 55 that surrounds the LED chip 10 and the phosphor plate 20 is installed on the ceramic substrate 50, and a covering member 40 is filled in a recess inside the frame body 55, and the surface 21 of the phosphor plate 20 is formed. The peripheral portions of the LED chip 10 and the phosphor plate 20 are covered with the covering member 40 so as to be exposed as the light emitting surface 90. At this time, the covering member 40 enters between the substrate 50 and the LED chip 10 and fills the separation part while covering the wirings 51 and 52. Here, the covering member 40 has a T diameter of about 270 nm.
It is a silicone resin containing light reflecting material 45 which is fine particles of iO 2 at a concentration of about 23 weight percent. And after hardening of the covering member 40, a frame is removed and a light-emitting device is obtained.

実施例2の発光装置は、光透過部材20の受光面22に発光素子10の出射面が内包さ
れる形態であり、実施例1における発光素子10を、1つのサファイア基板1上に6つの
発光構造部12が設けられた約1mm×6.5mmの略矩形状の1個のLEDチップとし
、さらに光透過部材20を約1.1mm×6.6mmの略矩形状として、実施例1と同様
に発光装置を作製する。
The light emitting device of the second embodiment has a configuration in which the light emitting surface of the light emitting element 10 is included in the light receiving surface 22 of the light transmitting member 20, and the light emitting element 10 of the first embodiment has six light emitting elements on one sapphire substrate 1. Similar to the first embodiment, one LED chip having a substantially rectangular shape of about 1 mm × 6.5 mm provided with the structure portion 12 is formed, and the light transmitting member 20 is formed in a substantially rectangular shape of about 1.1 mm × 6.6 mm. A light emitting device is manufactured.

この実施例1の発光装置は、電流700mA(各発光構造部当たり)で駆動させると、
光束約740[lm](色度y値約0.28)、最大輝度4629[cd/cm2]、平均
輝度4123[cd/cm2]、ムラ指数0.12で発光する、高輝度の発光装置が得られ
る。また、実施例2の発光装置は、同じく電流700mAで駆動させると、光束約812
[lm](色度y値約0.32)、最大輝度3717[cd/cm2]、平均輝度3212[
cd/cm2]、ムラ指数0.16で発光する、高光束の発光装置が得られる。なおムラ指
数とは、(最大輝度−平均輝度)/平均輝度で定義される。また色度は、国際照明委員会
(CIE)のxyz表色系に準拠する。
When the light emitting device of Example 1 is driven at a current of 700 mA (per light emitting structure),
High-luminance emission with a luminous flux of about 740 [lm] (chromaticity y value of about 0.28), maximum luminance of 4629 [cd / cm 2 ], average luminance of 4123 [cd / cm 2 ], and unevenness index of 0.12. A device is obtained. Further, when the light emitting device of Example 2 is also driven at a current of 700 mA, the luminous flux is about 812.
[Lm] (chromaticity y value about 0.32), maximum luminance 3717 [cd / cm 2 ], average luminance 3212 [
A light-emitting device having a high luminous flux that emits light with a cd / cm 2 ] and an unevenness index of 0.16 can be obtained. The unevenness index is defined as (maximum luminance−average luminance) / average luminance. The chromaticity is based on the International Lighting Commission (CIE) xyz color system.

<実施例3、比較例1>
実施例3の発光装置は、図1に示すように、実施例1における発光素子10を、1つの
サファイア基板1上に4つの発光構造部12が設けられた約1.0mm×4.3mmの略
矩形状の1個のLEDチップとし、さらに光透過部材20を約1.0mm×4.4mmの
略矩形状として、実施例1と同様に発光装置を作製する。
<Example 3, Comparative Example 1>
As shown in FIG. 1, the light-emitting device of Example 3 has a light-emitting element 10 of Example 1 of about 1.0 mm × 4.3 mm in which four light-emitting structure portions 12 are provided on one sapphire substrate 1. The light emitting device is manufactured in the same manner as in Example 1 by using one LED chip having a substantially rectangular shape, and further by setting the light transmitting member 20 to a substantially rectangular shape of about 1.0 mm × 4.4 mm.

他方、比較例1の発光装置300は、図9に示すように、実装基板50上に、1つの透
光性基板上に1つの発光構造部が設けられた発光素子10を複数個実装し、これらの発光
素子の上に1つの光透過部材20を接着部材30で接合し、その周部を被覆部材40によ
り被覆することで作製される。本比較例1の発光装置300は、発光素子10として、実
施例1と同じ材料を用いて作製された、約1.0mm×1.0mmの略正方形の4個のL
EDチップを用いること以外は、実施例3と同様に作製する。
On the other hand, as shown in FIG. 9, the light-emitting device 300 of Comparative Example 1 has a plurality of light-emitting elements 10 each having one light-emitting structure portion provided on one light-transmitting substrate on the mounting substrate 50. One light transmitting member 20 is bonded onto these light emitting elements with an adhesive member 30 and the periphery thereof is covered with a covering member 40. The light-emitting device 300 of Comparative Example 1 is manufactured using the same material as that of Example 1 as the light-emitting element 10.
It is fabricated in the same manner as in Example 3 except that an ED chip is used.

図10(a)は実施例3の発光装置、図10(b)は比較例1の装置をそれぞれ、電流
700mA(実施例3は各発光構造部当たり、比較例1は各発光素子当たり)で駆動させ
た場合の発光面90における色度y値の分布を各々示すものである。このような色度分布
は、例えばサイバネット社製「ProMetric」等の光学測定器により測定可能であ
る。実施例3の発光装置は、比較例1の発光装置と同等の輝度、ムラ指数で発光し、図1
0に示すように、比較例1の発光装置に比べ、発光面内の色ムラが低減される。また、本
発明の発光装置では、比較例1のような発光装置で発生しやすい、個々の発光素子の実装
精度(素子の高さ、傾き、回転)に起因する輝度ムラ、色ムラや、発光素子間の接着部材
30の垂れによる光損失などを抑制することができる。
10A is the light emitting device of Example 3, FIG. 10B is the device of Comparative Example 1, and the current is 700 mA (Example 3 is for each light emitting structure, and Comparative Example 1 is for each light emitting element). Each distribution of chromaticity y values on the light emitting surface 90 when driven is shown. Such a chromaticity distribution can be measured by an optical measuring instrument such as “ProMetric” manufactured by Cybernet. The light emitting device of Example 3 emits light with the same luminance and unevenness index as the light emitting device of Comparative Example 1, and FIG.
As shown in 0, color unevenness in the light emitting surface is reduced as compared with the light emitting device of Comparative Example 1. Further, in the light emitting device of the present invention, luminance unevenness, color unevenness, light emission caused by mounting accuracy (element height, inclination, rotation) of individual light emitting elements, which is likely to occur in the light emitting device as in Comparative Example 1, Light loss or the like due to sagging of the adhesive member 30 between elements can be suppressed.

本発明の発光装置は、照明用光源、LEDディスプレイ、液晶表示装置などのバックラ
イト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用す
ることができる。
The light-emitting device of the present invention can be suitably used for backlight sources such as illumination light sources, LED displays, liquid crystal display devices, traffic lights, illumination switches, various sensors, various indicators, and the like.

10…発光素子(1…透光性基板、成長基板(1A…凹凸構造)、2…第1導電型(n型)
半導体層、3…活性層、4…第2導電型(p型)半導体層、5…透光性導電層、6…第2
の電極(p側パッド電極)、7…第1の電極(n側パッド電極)、8…保護膜、11…素
子構造、12…発光構造部(12a, 12b…発光構造部[エピ非分離/基板非露出])
13〜15…分離部、16…空隙(分離部内)、17…空隙(実装側)、18…空隙(素
子内の半導体側面で露出した基板上)、19…基板外縁の露出部
20,24…光透過部材(21,23,25…表面、22,26…受光面)
30…接着部材、40…被覆部材、45…光反射性材料、50…実装基板(51,52…
配線)、55…枠体、60…導電性接着材、100,200…発光装置、210…実装基
DESCRIPTION OF SYMBOLS 10 ... Light emitting element (1 ... Translucent substrate, growth substrate (1A ... Uneven structure), 2 ... 1st conductivity type (n-type)
Semiconductor layer, 3 ... active layer, 4 ... second conductivity type (p-type) semiconductor layer, 5 ... translucent conductive layer, 6 ... second
Electrode (p-side pad electrode), 7 ... first electrode (n-side pad electrode), 8 ... protective film, 11 ... element structure, 12 ... light-emitting structure part (12a, 12b ... light-emitting structure part [epi non-isolation / Substrate not exposed])
13 to 15: separation part, 16 ... gap (within the separation part), 17 ... gap (mounting side), 18 ... gap (on the substrate exposed on the semiconductor side surface in the element), 19 ... exposed parts 20, 24 at the outer edge of the substrate Light transmitting member (21, 23, 25 ... surface, 22, 26 ... light receiving surface)
30 ... Adhesive member, 40 ... Cover member, 45 ... Light reflecting material, 50 ... Mounting substrate (51, 52 ...
Wiring), 55 ... Frame, 60 ... Conductive adhesive, 100, 200 ... Light emitting device, 210 ... Mounting substrate

Claims (14)

発光装置の発光面となる表面と受光面とを有する光透過部材と、
前記受光面に結合された出射面と、該出射面に対向し、半導体素子構造が設けられた表
面とを有する透光性基板を備えた発光素子と、
光反射性材料を含有し、前記発光面を露出して、前記発光素子の側面と、該側面から延
在して前記光透過部材の一部と、を被覆する被覆部材と、を備え、
前記発光素子は、前記透光性基板の表面上に、
分離部と、前記半導体素子構造が該分離部により互いに分離されて、該分離された半導
体素子構造の各領域に設けられた複数の発光構造部と、を有し、
前記被覆部材は、前記分離部と、該分離部に隣接する前記発光構造部とを被覆して、該
被覆側表面に光反射部を有する発光装置。
A light transmissive member having a light emitting surface and a light receiving surface of the light emitting device;
A light-emitting element comprising a light-transmitting substrate having an emission surface coupled to the light-receiving surface and a surface facing the emission surface and provided with a semiconductor element structure;
A light-reflective material, a light-exiting surface exposed, a side surface of the light-emitting element, and a covering member that extends from the side surface and covers a part of the light-transmitting member,
The light emitting element is formed on the surface of the translucent substrate.
And a plurality of light emitting structure parts provided in each region of the separated semiconductor element structure, wherein the semiconductor element structure is separated from each other by the separation part,
The said covering member is a light-emitting device which coat | covers the said isolation | separation part and the said light emission structure part adjacent to this isolation | separation part, and has a light reflection part on this coating | coated side surface.
前記発光構造部が、前記分離部により、独立して発光可能なように互いに分離された半
導体素子構造にそれぞれ設けられている請求項1に記載の発光装置。
2. The light emitting device according to claim 1, wherein the light emitting structure is provided in each of the semiconductor element structures separated from each other so as to be able to emit light independently by the separating unit.
前記発光構造部が、前記分離部により互いに分離され、前記半導体素子構造の一部で互
いに接続されて同時に発光可能である請求項1に記載の発光装置。
The light emitting device according to claim 1, wherein the light emitting structure parts are separated from each other by the separation part and are connected to each other in a part of the semiconductor element structure to emit light simultaneously.
前記半導体素子構造が、分離部に、前記発光構造部からの発光が発光素子外部に出射可
能な素子構造表面を有する請求項1乃至3のいずれか1項に記載の発光装置。
4. The light emitting device according to claim 1, wherein the semiconductor element structure has an element structure surface in which the light emitted from the light emitting structure part can be emitted to the outside of the light emitting element.
前記発光素子が、該側面に、前記発光構造部からの発光が発光素子外部に出射可能な素
子構造表面を有する請求項1乃至4のいずれか1項に記載の発光装置。
5. The light-emitting device according to claim 1, wherein the light-emitting element has an element structure surface on a side surface of which the light emission from the light-emitting structure part can be emitted to the outside of the light-emitting element.
前記分離部の底面に、前記透光性基板の表面が露出されている請求項1乃至5のいずれ
か1項に記載の発光装置。
The light emitting device according to claim 1, wherein a surface of the translucent substrate is exposed on a bottom surface of the separation portion.
前記被覆部材は、前記分離部において、前記透光性基板の表面を被覆して前記被覆部材
と前記透光性基板の表面との界面に前記光反射部が設けられる請求項6に記載の発光装置
The light emission according to claim 6, wherein the covering member covers the surface of the translucent substrate at the separating portion, and the light reflecting portion is provided at an interface between the covering member and the surface of the translucent substrate. apparatus.
前記透光性基板の表面は、凹凸構造を有し、該凹凸構造上に前記半導体素子構造、前記
分離部が配置されると共に、
前記分離部の底面に露出された前記透光性基板の表面に、前記被覆部材が設けられる請
求項1乃至7のいずれか1項に記載の発光装置。
The surface of the translucent substrate has a concavo-convex structure, and the semiconductor element structure and the separation portion are disposed on the concavo-convex structure,
The light emitting device according to any one of claims 1 to 7, wherein the covering member is provided on a surface of the translucent substrate exposed on a bottom surface of the separation portion.
前記被覆部材は、前記光透過部材の側面から、前記半導体素子構造及び透光性基板の側
面を連続して被覆する請求項1乃至8のいずれか1項に記載の発光装置。
The light emitting device according to claim 1, wherein the covering member continuously covers the semiconductor element structure and the side surface of the light transmitting substrate from the side surface of the light transmitting member.
前記分離部が、前記発光構造部の発光を発光素子外部に出射可能な素子構造表面、又は
該素子構造表面と該発光を発光素子外部に出射可能な前記透光性基板の表面を有し、
前記被覆部材が、前記分離部内の空隙を介して、前記分離部と、前記半導体素子構造を
被覆している請求項1乃至6のいずれか1項に記載の発光装置。
The separation part has an element structure surface capable of emitting light emitted from the light emitting structure part to the outside of the light emitting element, or the surface of the element structure and the surface of the translucent substrate capable of emitting the light emission to the outside of the light emitting element,
The light-emitting device according to claim 1, wherein the covering member covers the separation portion and the semiconductor element structure via a gap in the separation portion.
前記半導体素子構造が、前記発光構造部の発光を発光素子外部に出射可能な素子構造表
面を有し、前記被覆部材が、該素子構造表面において、空隙を介して被覆する領域と、直
接被覆する領域とを有する請求項1乃至10のいずれか1項に記載の発光装置。
The semiconductor element structure has an element structure surface capable of emitting light emitted from the light emitting structure portion to the outside of the light emitting element, and the covering member directly covers an area covered with a gap on the element structure surface. The light-emitting device according to claim 1, further comprising a region.
前記光透過部材は、前記発光素子に励起される波長変換部材である請求項1乃至11の
いずれか1項に記載の発光装置。
The light emitting device according to claim 1, wherein the light transmitting member is a wavelength conversion member excited by the light emitting element.
前記波長変換部材は、互いに対向する第1及び第2の主面を有する板状体である請求項
12に記載の発光装置。
The light emitting device according to claim 12, wherein the wavelength conversion member is a plate-like body having first and second main surfaces facing each other.
前記半導体素子構造が、前記分離部を横断する配線を備え、該配線により前記複数の発
光構造部を接続して実装する実装基板を有し、
前記被覆部材は、前記分離部を横断する前記配線を被覆するとともに、前記分離部にお
いて光反射部を有する請求項1乃至13のいずれか1項に記載の発光装置。
The semiconductor element structure includes a wiring board that includes a wiring that traverses the separation part, and that is mounted by connecting the plurality of light emitting structure parts by the wiring;
The light-emitting device according to claim 1, wherein the covering member covers the wiring crossing the separation portion and has a light reflection portion in the separation portion.
JP2014009991A 2014-01-23 2014-01-23 Light emitting device Active JP5761391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014009991A JP5761391B2 (en) 2014-01-23 2014-01-23 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014009991A JP5761391B2 (en) 2014-01-23 2014-01-23 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009291920A Division JP5463901B2 (en) 2009-12-24 2009-12-24 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015118000A Division JP5967269B2 (en) 2015-06-11 2015-06-11 Light emitting device

Publications (2)

Publication Number Publication Date
JP2014096605A true JP2014096605A (en) 2014-05-22
JP5761391B2 JP5761391B2 (en) 2015-08-12

Family

ID=50939398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014009991A Active JP5761391B2 (en) 2014-01-23 2014-01-23 Light emitting device

Country Status (1)

Country Link
JP (1) JP5761391B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157593A (en) * 2016-02-29 2017-09-07 三星電子株式会社Samsung Electronics Co.,Ltd. Light-emitting diode, manufacturing method for light-emitting diode, light-emitting diode display device, and manufacturing method for light-emitting diode display device
US9780258B2 (en) 2015-07-23 2017-10-03 Nichia Corporation Light emitting device
KR20180070149A (en) * 2016-12-16 2018-06-26 삼성전자주식회사 Semiconductor light emitting device
US11002427B2 (en) 2019-03-28 2021-05-11 Nichia Corporation Light emitting device
JP7503672B2 (en) 2021-02-24 2024-06-20 晶元光電股▲ふん▼有限公司 Photoelectric Components

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359402A (en) * 2001-03-29 2002-12-13 Lumileds Lighting Us Llc Monolithic series/parallel led array formed on highly resistive substrate
JP2005051233A (en) * 2003-07-15 2005-02-24 Matsushita Electric Ind Co Ltd Light emitting semiconductor device and manufacturing method therefor
JP2005109434A (en) * 2003-09-11 2005-04-21 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
JP2006237550A (en) * 2005-02-25 2006-09-07 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting element for flip chip
JP2006332381A (en) * 2005-05-26 2006-12-07 Matsushita Electric Works Ltd Light emitting apparatus
JP2007324579A (en) * 2006-05-01 2007-12-13 Mitsubishi Chemicals Corp Integrated semiconductor light-emitting device, and manufacturing method thereof
JP2008523637A (en) * 2004-12-14 2008-07-03 ソウル オプト−デバイス カンパニー リミテッド Light emitting device having a plurality of light emitting cells and package mounting the same
JP2009069671A (en) * 2007-09-14 2009-04-02 Ricoh Co Ltd Zoom lens and imaging apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359402A (en) * 2001-03-29 2002-12-13 Lumileds Lighting Us Llc Monolithic series/parallel led array formed on highly resistive substrate
JP2005051233A (en) * 2003-07-15 2005-02-24 Matsushita Electric Ind Co Ltd Light emitting semiconductor device and manufacturing method therefor
JP2005109434A (en) * 2003-09-11 2005-04-21 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
JP2008523637A (en) * 2004-12-14 2008-07-03 ソウル オプト−デバイス カンパニー リミテッド Light emitting device having a plurality of light emitting cells and package mounting the same
JP2006237550A (en) * 2005-02-25 2006-09-07 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting element for flip chip
JP2006332381A (en) * 2005-05-26 2006-12-07 Matsushita Electric Works Ltd Light emitting apparatus
JP2007324579A (en) * 2006-05-01 2007-12-13 Mitsubishi Chemicals Corp Integrated semiconductor light-emitting device, and manufacturing method thereof
JP2009069671A (en) * 2007-09-14 2009-04-02 Ricoh Co Ltd Zoom lens and imaging apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780258B2 (en) 2015-07-23 2017-10-03 Nichia Corporation Light emitting device
US10186633B2 (en) 2015-07-23 2019-01-22 Nichia Corporation Method of manufacturing light emitting device
JP2017157593A (en) * 2016-02-29 2017-09-07 三星電子株式会社Samsung Electronics Co.,Ltd. Light-emitting diode, manufacturing method for light-emitting diode, light-emitting diode display device, and manufacturing method for light-emitting diode display device
KR20180070149A (en) * 2016-12-16 2018-06-26 삼성전자주식회사 Semiconductor light emitting device
KR102680862B1 (en) * 2016-12-16 2024-07-03 삼성전자주식회사 Semiconductor light emitting device
US11002427B2 (en) 2019-03-28 2021-05-11 Nichia Corporation Light emitting device
US11313536B2 (en) 2019-03-28 2022-04-26 Nichia Corporation Light emitting device
JP7503672B2 (en) 2021-02-24 2024-06-20 晶元光電股▲ふん▼有限公司 Photoelectric Components

Also Published As

Publication number Publication date
JP5761391B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5463901B2 (en) Light emitting device
JP5326837B2 (en) Light emitting device
JP5967269B2 (en) Light emitting device
JP5326705B2 (en) Light emitting device
JP5689225B2 (en) Light emitting device
JP5521325B2 (en) Light emitting device and manufacturing method thereof
JP5526782B2 (en) Light emitting device and manufacturing method thereof
JP5799988B2 (en) Light emitting device
JP6020657B2 (en) Light emitting device
JP2010157637A (en) Wavelength conversion sintered compact and light emitting apparatus using the same, and method of manufacturing the wavelength conversion sintered compact
JP5610036B2 (en) Light emitting device
JP6015734B2 (en) Light emitting device
JP2011138815A (en) Light-emitting device
JP5761391B2 (en) Light emitting device
JP2015099940A (en) Light-emitting device
JP5644967B2 (en) Light emitting device and manufacturing method thereof
JP6665143B2 (en) Light emitting device manufacturing method
JP6222325B2 (en) Light emitting device
JP2024083405A (en) Light-emitting device
JP6680302B2 (en) Light emitting device
JP5931006B2 (en) Light emitting device
JP2016189488A (en) Light emitting device
JP6825636B2 (en) Light emitting device
JP6274240B2 (en) Light emitting device
JP7011196B2 (en) Luminescent device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R150 Certificate of patent or registration of utility model

Ref document number: 5761391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250