JP2014096439A - Electrode lead-out structure of organic device - Google Patents

Electrode lead-out structure of organic device Download PDF

Info

Publication number
JP2014096439A
JP2014096439A JP2012246349A JP2012246349A JP2014096439A JP 2014096439 A JP2014096439 A JP 2014096439A JP 2012246349 A JP2012246349 A JP 2012246349A JP 2012246349 A JP2012246349 A JP 2012246349A JP 2014096439 A JP2014096439 A JP 2014096439A
Authority
JP
Japan
Prior art keywords
electrode
transparent substrate
extraction
photoelectric conversion
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012246349A
Other languages
Japanese (ja)
Inventor
Yutaka Okuyama
豊 奥山
Hiroo Sato
裕生 佐藤
Kenji Sano
健志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITO DENSHI KOGYO KK
Original Assignee
ITO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITO DENSHI KOGYO KK filed Critical ITO DENSHI KOGYO KK
Priority to JP2012246349A priority Critical patent/JP2014096439A/en
Publication of JP2014096439A publication Critical patent/JP2014096439A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that it is general to connect a portion to be connected with solder while using a lead wire or an FPC, as a method of connecting an electrode of a photoelectric conversion element and an external electrode, and improvement of a photoelectric conversion efficiency is required especially in the case a small power organic photoelectric conversion element is used.SOLUTION: By sandwiching a lead-out electrode 11 of a photoelectric conversion element 10 composed of organic semiconductor layers laminated between paired facing transparent electrode 10a and negative electrode 10e, with an edge cover 131 composed of an insulating material and a connector 13 provided with a conductive part 132 composed of a conductive material inside of the edge cover to electrically connect the electrode 11 therewith, the electrode lead-out structure of an organic device 1 having a high photoelectric conversion efficiency is achieved.

Description

本発明は、透明基板上に形成した有機物の光電変換素子の取出電極を透明基板の周端部に設け、導電部を有する一対のコネクタで透明基板の周端部を挟持して電極の取り出しをする有機デバイスの電極取り出し構造に関する。   In the present invention, an extraction electrode for an organic photoelectric conversion element formed on a transparent substrate is provided at the peripheral end of the transparent substrate, and the electrode is taken out by sandwiching the peripheral end of the transparent substrate with a pair of connectors having conductive portions. The present invention relates to an electrode extraction structure for an organic device.

近年、クリーンエネルギーである太陽光エネルギーの関心の高まりに伴い、光電変換素子の発達が目覚ましい。光電変換素子とは、光エネルギーを電気エネルギーに変換する素子、およびその逆に電気エネルギーを光エネルギーに変換する素子である。   In recent years, with the growing interest in solar energy, which is clean energy, the development of photoelectric conversion elements has been remarkable. A photoelectric conversion element is an element that converts light energy into electrical energy, and vice versa.

光エネルギーを電気エネルギーに直接変換するものとしては、太陽電池が急速に成長している。なかでも、安価で、軽量で、フレキシブル化も可能な有機太陽電池が次世代太陽電池として注目されている。現在も有機材料や製造方法の改良が進められており、光電変換効率が8%以上の高効率な有機太陽電池も実現されている。また、電気エネルギーを光エネルギーに変換するものとしては、有機EL(Electro Luminescence)素子がある。有機EL素子は、省エネルギーの観点より、表示素子や照明用光源として市場に供給されてきた。   As a direct conversion of light energy to electrical energy, solar cells are growing rapidly. In particular, organic solar cells that are inexpensive, lightweight, and flexible are attracting attention as next-generation solar cells. Improvements in organic materials and manufacturing methods are ongoing, and high-efficiency organic solar cells having a photoelectric conversion efficiency of 8% or more have been realized. Moreover, there exists an organic EL (Electro Luminescence) element as what converts an electrical energy into a light energy. Organic EL devices have been supplied to the market as display devices and illumination light sources from the viewpoint of energy saving.

特許文献1には、図7に示すように、発光層54及び誘電体層55を透明電極53と背面電極56との間に挟みこんだ発光部57が下ガラス基板52に一体的に形成され、一対の上下ガラス基板51、52を封止部材59で溶着接合したEL50が示されている。上ガラス基板にはスルーホール51aが形成され、このスルーホールの内径部にペースト塗布・焼成膜60を形成し、更にスルーホール近傍の上ガラス基板の上面に積層蒸着膜61を施した後に、半田をスルーホール51a内に流し込み、発光部57の取出電極58と導通する半田部62を形成し、この半田部62にリード線(図示せず)を取り付けて外部電極と接続させるものである。すなわち、スルーホールに設けたペースト塗布・焼成膜60及び積層蒸着膜61により、はんだとガラス基板51の良好な密着性を実現している。   In Patent Document 1, as shown in FIG. 7, a light emitting portion 57 in which a light emitting layer 54 and a dielectric layer 55 are sandwiched between a transparent electrode 53 and a back electrode 56 is integrally formed on a lower glass substrate 52. The EL 50 is shown in which a pair of upper and lower glass substrates 51 and 52 are welded and joined with a sealing member 59. A through hole 51a is formed in the upper glass substrate, a paste coating / firing film 60 is formed on the inner diameter portion of the through hole, and a laminated vapor deposition film 61 is applied to the upper surface of the upper glass substrate in the vicinity of the through hole. Is flowed into the through-hole 51a to form a solder portion 62 that is electrically connected to the extraction electrode 58 of the light emitting portion 57, and a lead wire (not shown) is attached to the solder portion 62 to be connected to an external electrode. That is, good adhesion between the solder and the glass substrate 51 is realized by the paste application / fired film 60 and the laminated vapor deposition film 61 provided in the through hole.

特許文献2には、図8に示すように、少なくとも一方が透明面材70で、他方の面材が表示デバイスや太陽電池モジュールである積層体71と、透明面材と積層体に挟まれた層状部72と、積層体の外周部に接続された電気信号を伝達するフレキシブルプリント配線板73(Flexible printed circuit、以下FPCと省略する)とを有する装置が示されている。   In Patent Document 2, as shown in FIG. 8, at least one is a transparent surface material 70, and the other surface material is sandwiched between a laminate 71, which is a display device or a solar cell module, and the transparent surface material and the laminate. An apparatus having a layered portion 72 and a flexible printed circuit board 73 (flexible printed circuit, hereinafter abbreviated as FPC) for transmitting an electrical signal connected to the outer peripheral portion of the laminate is shown.

上述した構造では、外部電極と電気的に接続する場合には、はんだ付けが必要となるが、はんだはガラス基板やプラスチック基板に接着し難い。また外部電極との接続にFPCを用いる場合には、熱圧着でも接続を行えるが、透明電極は熱に弱い。従って、確実に、外部電極と有機デバイスとを電気的に接続できる取り出し電極構造が以下のように模索されている。   In the structure described above, soldering is required when electrically connecting to the external electrode, but the solder is difficult to adhere to a glass substrate or a plastic substrate. When FPC is used for connection to the external electrode, the connection can be made by thermocompression bonding, but the transparent electrode is weak against heat. Therefore, an extraction electrode structure that can reliably connect the external electrode and the organic device is sought as follows.

特開2000−243559号公報JP 2000-243559 A 特開2012−158688号公報JP 2012-158688 A

上述した光電変換素子を用いた有機デバイスは、室内での利用に限らず自然環境下での利用、例えば道路標識の照明などへの用途拡大に伴い、光電変換効率や耐久性などの向上が進められている。   The organic devices using the above-described photoelectric conversion elements are not limited to indoor use, but are used in natural environments, such as lighting for road signs, etc., and improvements in photoelectric conversion efficiency and durability have been promoted. It has been.

しかし、光電変換素子の電極と外部電極との接続にリード線やFPCを用いる構造では、必ず接続部位は半田付けによる点接続となる。そうすると、接続部位までの光電変換素子面内の透明電極の電気抵抗が大きいので、それに伴い電圧降下が生じる。一般的な電子部品であれば電圧降下による効率の低下は無視できる程度であるが、有機物の光電変換素子は極めて小電力であるため、このような電圧降下は光電変換効率に大きな影響を与える問題点がある。   However, in a structure in which a lead wire or FPC is used for connection between the electrode of the photoelectric conversion element and the external electrode, the connection part is always a point connection by soldering. Then, since the electrical resistance of the transparent electrode in the photoelectric conversion element surface to a connection site | part is large, a voltage drop arises in connection with it. For general electronic components, the decrease in efficiency due to a voltage drop is negligible, but organic photoelectric conversion elements have extremely low power, so such a voltage drop has a significant effect on photoelectric conversion efficiency. There is a point.

また、接着材にはんだを用いる場合には、はんだがガラス基板やプラスチック基板上の透明電極に付きにくいという問題点もある。そのため、はんだの固着性を向上させるために下地層を透明電極上に予め設ける工程が、余分に必要となる。   In addition, when solder is used as the adhesive, there is a problem that the solder is difficult to adhere to the transparent electrode on the glass substrate or the plastic substrate. Therefore, an extra step of providing a base layer in advance on the transparent electrode in order to improve the adhesion of solder is required.

更に、はんだを用いる場合は、ガラス基板等の上面に成膜された透明電極は熱に弱いため、固着時の加熱によりフィルムが変形したり、透明電極の電極が剥がれやすくなるので、固着工程での不良が多く発生する問題点もある。   Furthermore, when using solder, the transparent electrode formed on the upper surface of a glass substrate or the like is vulnerable to heat, so the film is deformed by heating at the time of fixing or the electrode of the transparent electrode is easily peeled off. There is also a problem that many defects occur.

更に、FPCを用いる場合は、取り替え時にFPCごと交換することが必要である。しかしFPCは高価なため、安価な有機物の光電変換素子を用いることのメリットが薄れる問題点もある。   Furthermore, when using FPC, it is necessary to replace the FPC at the time of replacement. However, since FPC is expensive, there is a problem that the merit of using an inexpensive organic photoelectric conversion element is reduced.

本発明は上記した問題点に鑑みて為されたものであり、光電変換素子面内の取り出しのための電気抵抗値を最小にし、かつ確実に電気的接続を実現できる有機デバイスの電極取り出し構造を提供することにある。   The present invention has been made in view of the above problems, and has an electrode extraction structure for an organic device that can minimize electrical resistance for extraction within the surface of a photoelectric conversion element and can reliably realize electrical connection. It is to provide.

本発明に依れば、透明基板と、前記透明基板上に設けた陽極となる透明電極と、前記透明電極に対向配置される陰極と、前記陽極と前記陰極の間に積層される有機半導体層とから成る有機デバイスであって、前記透明基板の周端部に設けた取出電極と、前記有機デバイスを封止する封止基板と、絶縁性材料からなるエッジカバーと、前記エッジカバーの内側に設けた一対の導電性材料の導電部を有するコネクタとを備え、前記透明基板の外周に配置される前記取出電極を前記コネクタで挟持し、前記取出電極と前記導電部とを圧接させて電極の取り出しをすることを特徴とする。   According to the present invention, a transparent substrate, a transparent electrode serving as an anode provided on the transparent substrate, a cathode disposed opposite to the transparent electrode, and an organic semiconductor layer laminated between the anode and the cathode An extraction device provided at a peripheral edge of the transparent substrate, a sealing substrate for sealing the organic device, an edge cover made of an insulating material, and an inner side of the edge cover A connector having a conductive portion of a pair of conductive materials provided, the extraction electrode disposed on the outer periphery of the transparent substrate is sandwiched by the connector, and the extraction electrode and the conductive portion are pressed to contact each other. It is characterized by taking out.

また、本発明に依れば、前記取出電極は、前記透明基板の周端部に、透明基板の長さ方向に連続して複数形成されることを特徴とする。   According to the invention, a plurality of the extraction electrodes are continuously formed in the peripheral direction of the transparent substrate in the length direction of the transparent substrate.

更に、本発明に依れば、前記取出電極は、前記透明基板の裏面に引き回されることを特徴とする。   Further, according to the present invention, the extraction electrode is routed around the back surface of the transparent substrate.

更に、本発明に依れば、前記エッジカバーは剛性あるいは強度のある素材で形成されることを特徴とする。   Furthermore, according to the present invention, the edge cover is formed of a material having rigidity or strength.

更に、本発明に依れば、前記透明基板は、ガラス基板あるいはフレキシブル素材であることを特徴とする。   Furthermore, according to the present invention, the transparent substrate is a glass substrate or a flexible material.

更に、本発明に依れば、透明基板と、前記透明基板上に設けた陽極となる透明電極と、前記透明電極に対向配置される陰極と、前記陽極と前記陰極の間に積層される有機半導体層とから成る有機デバイスであって、前記透明基板の周端部に設けた取出電極と、前記取出電極の一部を被覆する絶縁部材と、前記有機デバイスを封止する封止基板と、絶縁性材料からなるエッジカバーと、前記エッジカバーの内側に設けた一対の導電性材料の導電部を有するコネクタとを備え、前記透明基板の外周に配置される前記取出電極を前記コネクタで挟持し、前記取出電極と前記導電部とを圧接させて電極の取り出しをすることを特徴とする。   Furthermore, according to the present invention, a transparent substrate, a transparent electrode serving as an anode provided on the transparent substrate, a cathode disposed opposite to the transparent electrode, and an organic layer laminated between the anode and the cathode An organic device comprising a semiconductor layer, an extraction electrode provided at a peripheral end of the transparent substrate, an insulating member covering a part of the extraction electrode, a sealing substrate for sealing the organic device, An edge cover made of an insulating material and a connector having a conductive portion of a pair of conductive materials provided inside the edge cover, the extraction electrode disposed on the outer periphery of the transparent substrate being sandwiched by the connector The electrode is taken out by press-contacting the extraction electrode and the conductive portion.

本発明の有機デバイスの電極取り出し構造によれば、以下の効果が得られる。   According to the electrode take-out structure of the organic device of the present invention, the following effects can be obtained.

第1に、透明基板上に設けた透明電極と前記透明電極に対向配置した陰極の間に正孔輸送層および発電層を積層した光電変換素子を封止基板で封止し、前記封止基板の外側で前記透明基板の周端部に設けた取出電極を、コネクタのエッジカバーの内側に設けた一対の導電部で挟持して圧接させる構造により、有機デバイスの電極を取り出すことができる。   1stly, the photoelectric conversion element which laminated | stacked the positive hole transport layer and the electric power generation layer between the transparent electrode provided on the transparent substrate and the cathode arrange | positioned facing the said transparent electrode is sealed with a sealing substrate, The said sealing substrate The electrode of the organic device can be taken out by a structure in which the extraction electrode provided on the outer peripheral portion of the transparent substrate is sandwiched and pressed by a pair of conductive portions provided on the inner side of the edge cover of the connector.

これにより、導電部を取出電極に圧接させるだけで電気的接続が可能なため、半田付けが不要になる。なお、有機デバイスの配線部分はコネクタのエッジカバーに被覆されるため外部から見えることがなく、配線による乱雑さは解消され、デザイン性に優れる効果もある。   As a result, electrical connection is possible by simply bringing the conductive portion into pressure contact with the extraction electrode, so that soldering is unnecessary. In addition, since the wiring part of the organic device is covered with the edge cover of the connector, it is not visible from the outside, so that the disorder due to the wiring is eliminated and the design is excellent.

第2に、光電変換素子の取出電極は透明基板の長さ方向に連続して形成され、またコネクタの導電部はエッジカバーの長さ方向に形成されるので、透明基板の周端部をコネクタで挟持し導電部を圧接させるだけで、多点で電気的に接続できる。   Second, the extraction electrode of the photoelectric conversion element is formed continuously in the length direction of the transparent substrate, and the conductive portion of the connector is formed in the length direction of the edge cover. It can be electrically connected at multiple points simply by sandwiching with and pressing the conductive portion.

これにより、抵抗成分が小さくなる。すなわち、並列接続した場合と同様の効果が得られるので、光電変換素子面内の透明電極の電気抵抗値の最小化を実現でき、更に、取り出し電圧や電流を増大できる。具体的には、有機ELの場合は発光起電力を大きくでき、有機太陽電池の場合は光エネルギーから電気エネルギーへの変換効率が増大されて発電量を大きくできる。   Thereby, a resistance component becomes small. That is, since the same effect as in the case of parallel connection can be obtained, the electrical resistance value of the transparent electrode in the photoelectric conversion element surface can be minimized, and the extraction voltage and current can be increased. Specifically, in the case of organic EL, the light emission electromotive force can be increased, and in the case of an organic solar cell, the conversion efficiency from light energy to electric energy is increased, and the amount of power generation can be increased.

また、多点において電気的接続ができるため、ある接続部位の劣化により故障や接触不良などを発生しても、残りの正常な接続部位で確実な電気的接続を提供できる。その結果、接続部位の劣化による故障の確率を大幅に低減できる。   In addition, since electrical connection can be made at multiple points, reliable electrical connection can be provided at the remaining normal connection sites even if a failure or contact failure occurs due to deterioration of a connection site. As a result, the probability of failure due to the deterioration of the connection site can be greatly reduced.

第3に、コネクタは、絶縁性材料から成るエッジカバーの内側に一対の導電性材料の導電部を設けるので、一方が陽極になり、他方が陰極となる。これにより、透明基板の電極部分を挟持するだけで容易に電気的接続を実現でき、陽極と陰極の確認をする必要はない。すなわち、コネクタの装着時に位置合わせや半田付けが一切不要であり、容易に着脱も行えるので、コネクタを接続する作業が容易となる。その結果、半田付けによる加熱工程も省けるので、有機デバイスの特性に悪影響を与える恐れも無くなる。また、設備投資の低コスト化に繋がる。   Third, since the connector is provided with a conductive portion of a pair of conductive materials inside the edge cover made of an insulating material, one is an anode and the other is a cathode. As a result, it is possible to easily realize electrical connection simply by sandwiching the electrode portion of the transparent substrate, and it is not necessary to check the anode and the cathode. That is, no positioning or soldering is required at the time of mounting the connector, and the connector can be easily attached and detached, so that the operation of connecting the connector becomes easy. As a result, the heating step by soldering can be omitted, and there is no possibility of adversely affecting the characteristics of the organic device. Moreover, it leads to the cost reduction of capital investment.

また、高価なFPCとは異なり、プラスチックなどの絶縁性材料に導電性ゴムなどの導電性材料を貼着した構造なので、コスト低減にもつながる。   Further, unlike an expensive FPC, the structure is made by attaching a conductive material such as conductive rubber to an insulating material such as plastic, which leads to cost reduction.

第4に、有機デバイスの周端部をコネクタで挟持するので、コネクタで透明基板を機械的に支持できる。   Fourth, since the peripheral end portion of the organic device is sandwiched by the connector, the transparent substrate can be mechanically supported by the connector.

第5に、光電変換素子の透明基板の周端部に設けた取出電極を、導電部を有するコネクタで挟持するだけでよいので、多様な基板の大きさに対応できる。   Fifth, since the extraction electrode provided at the peripheral end of the transparent substrate of the photoelectric conversion element only needs to be sandwiched by the connector having the conductive portion, it can accommodate various substrate sizes.

本発明の実施形態における有機デバイスの(A)上面図、(B)断面図である。It is (A) top view and (B) sectional drawing of the organic device in embodiment of this invention. (A)本発明に用いる光電変換素子の一実施形態を説明する上面図、(B)その光電変換素子を封止した有機デバイスの断面図である。(A) The top view explaining one Embodiment of the photoelectric conversion element used for this invention, (B) It is sectional drawing of the organic device which sealed the photoelectric conversion element. (A)本発明に用いる光電変換素子の他の実施形態を説明する上面図、(B)その光電変換素子を封止した有機デバイスの断面図である。(A) The top view explaining other embodiment of the photoelectric conversion element used for this invention, (B) It is sectional drawing of the organic device which sealed the photoelectric conversion element. 本発明に用いる(A)長型のコネクタの平面図、(B)その側面図、(C)短型のコネクタの平面図、(D)その側面図である。(A) The top view of a long type connector used for this invention, (B) The side view, (C) The top view of a short type connector, (D) The side view. (A)本発明のコネクタの他の接続例を示す有機デバイスの上面図、(B)そのコネクタの平面図である。(A) The top view of the organic device which shows the other connection example of the connector of this invention, (B) The top view of the connector. (A)〜(F)は、本発明の有機デバイスの製造工程を説明する断面図である。(A)-(F) are sectional drawings explaining the manufacturing process of the organic device of this invention. 従来の光電変換装置の接続方法を説明する断面図である。It is sectional drawing explaining the connection method of the conventional photoelectric conversion apparatus. 従来の光電変換装置の接続方法を説明する断面図である。It is sectional drawing explaining the connection method of the conventional photoelectric conversion apparatus.

図1から図5を参照し、本発明の有機デバイスの電極取り出し構造の実施形態を説明する。   With reference to FIGS. 1 to 5, an embodiment of an electrode extraction structure for an organic device of the present invention will be described.

図1(A)は本発明の有機デバイスの上面図であり、図1(B)は図1(A)のa−a線断面図である。図2(A)は本発明に用いる光電変換素子の一実施形態を示した上面図であり、図2(B)はそれを封止した有機デバイスの図2(A)のa−a線断面図である。図3(A)は本発明に用いる光電変換素子の他の実施形態を示した上面図であり、図3(B)はそれを封止した有機デバイスの図3(A)のa−a線断面図である。図4(A)は図1(A)に示した長型のコネクタの平面図であり、図4(B)はその側面図であり、図4(C)は短型のコネクタの平面図であり、図4(D)はその側面図である。図5(A)は本発明のコネクタの他の接続例を示す有機デバイスの上面図であり、図5(B)はそのコネクタの平面図である。   1A is a top view of the organic device of the present invention, and FIG. 1B is a cross-sectional view taken along the line aa of FIG. 2A is a top view showing one embodiment of the photoelectric conversion element used in the present invention, and FIG. 2B is a cross-sectional view taken along the line aa of FIG. 2A of the organic device in which the photoelectric conversion element is sealed. FIG. FIG. 3 (A) is a top view showing another embodiment of the photoelectric conversion element used in the present invention, and FIG. 3 (B) is an aa line in FIG. 3 (A) of the organic device sealing it. It is sectional drawing. 4 (A) is a plan view of the long connector shown in FIG. 1 (A), FIG. 4 (B) is a side view thereof, and FIG. 4 (C) is a plan view of the short connector. FIG. 4D is a side view thereof. FIG. 5A is a top view of an organic device showing another connection example of the connector of the present invention, and FIG. 5B is a plan view of the connector.

本実施形態の有機デバイス1は、図1(A)に示すように、少なくとも、光電変換素子10と、取出電極11と、封止基板12と、コネクタ13とから構成される。   As shown in FIG. 1A, the organic device 1 according to this embodiment includes at least a photoelectric conversion element 10, an extraction electrode 11, a sealing substrate 12, and a connector 13.

有機デバイス1は、有機物の光電変換素子10を封止基板12内に封止し、光電変換素子の取出電極11をコネクタ13で挟持して電気的接続をするデバイスであり、有機デバイス単体で用いることができる。本実施形態では、一例として、有機太陽電池や有機EL素子として働く。具体的には、有機デバイス1の大きさは100mm×100mmであり、その厚さt1は1〜1.5mmである。なお、内蔵する光電変換素子の能力や大きさに応じて、有機デバイスのサイズは任意に選択することができる。   The organic device 1 is a device in which an organic photoelectric conversion element 10 is sealed in a sealing substrate 12 and an extraction electrode 11 of the photoelectric conversion element is sandwiched between connectors 13 to be electrically connected. be able to. In this embodiment, as an example, it functions as an organic solar cell or an organic EL element. Specifically, the size of the organic device 1 is 100 mm × 100 mm, and the thickness t1 is 1 to 1.5 mm. The size of the organic device can be arbitrarily selected according to the capability and size of the built-in photoelectric conversion element.

光電変換素子10は、図1(B)に示すように、透明基板10a上に形成され、一対の電極間10b、10eに有機半導体層10c、10dを積層する構造であり、光エネルギーを電気エネルギーに変換する素子、およびその逆に電気エネルギーを光エネルギーに変換する素子である。光エネルギーを電気エネルギーに変換する素子には有機太陽電池があり、電気エネルギーを光エネルギーに変換する素子には有機EL素子がある。本実施形態では、一例として、有機太陽電池を用いる。   As shown in FIG. 1B, the photoelectric conversion element 10 is formed on a transparent substrate 10a and has a structure in which organic semiconductor layers 10c and 10d are stacked between a pair of electrodes 10b and 10e, and light energy is converted into electric energy. An element that converts electric energy into light energy, and vice versa. An element that converts light energy into electric energy is an organic solar cell, and an element that converts electric energy into light energy is an organic EL element. In this embodiment, an organic solar cell is used as an example.

なお、光電変換素子については、図2〜図3を用いて詳述するのでここでは省略する。   The photoelectric conversion element will be described in detail with reference to FIGS.

取出電極11は、光電変換素子10の陽極および陰極にそれぞれ接続され、後述するコネクタ13の導電部132と電気的に接続される。取出電極11は、透明基板10a上の透明電極10bを予めパターニングして形成された取出下地電極11aと、取出下地電極11aと重畳して接触し透明基板10aの裏面まで延在される取出接触電極11bとで形成される。取出下地電極11aは透明基板10aの周端にある透明電極10bをパターニングして形成される。取出接触電極11bは銅などの良導電性金属箔で形成され、各取出下地電極11aに異方性導電性接着剤で固着され、透明基板10aの側面及び裏面まで異方性導電性接着剤で固着されて延在されている。そのために取出下地電極11aと同様のパターンが透明基板10aの裏面にも作られる。異方性導電性接着剤を用いると、取出下地電極11aと取出接触電極11bとは導電性が維持され、他の部分では絶縁される。   The extraction electrode 11 is connected to the anode and the cathode of the photoelectric conversion element 10 and is electrically connected to a conductive portion 132 of the connector 13 described later. The extraction electrode 11 includes an extraction base electrode 11a formed by previously patterning the transparent electrode 10b on the transparent substrate 10a, and an extraction contact electrode that overlaps and contacts the extraction base electrode 11a and extends to the back surface of the transparent substrate 10a. 11b. The extraction base electrode 11a is formed by patterning the transparent electrode 10b at the peripheral edge of the transparent substrate 10a. The extraction contact electrode 11b is formed of a highly conductive metal foil such as copper, and is fixed to each extraction base electrode 11a with an anisotropic conductive adhesive, and with the anisotropic conductive adhesive to the side surface and the back surface of the transparent substrate 10a. It is fixed and extended. Therefore, a pattern similar to the extraction base electrode 11a is also formed on the back surface of the transparent substrate 10a. When an anisotropic conductive adhesive is used, the extraction base electrode 11a and the extraction contact electrode 11b are maintained in electrical conductivity and insulated at other portions.

なお、取出接触電極11bは良導電性金属箔以外でも良く、例えば銀ペーストなどの導電性ペーストを塗布して作ることもできる。   Note that the extraction contact electrode 11b may be other than a highly conductive metal foil, and may be made by applying a conductive paste such as a silver paste.

取出接触電極11bは必ず透明基板10aの表面から裏面まで延在されるため、コネクタ13で挟持する際に一対の導電部132で陽極と陰極がショートする。ショート防止のため、透明基板10aの表面の陰極は全て絶縁部材15で覆い、透明基板10aの表面の陽極のみが透明基板10aの表面側でコネクタの導電部132と電気的に接触をする。従って、透明基板10aの表面側の導電部132が陽極の取り出しを行い、外部導出電極14まで引き回される。   Since the extraction contact electrode 11b always extends from the front surface to the back surface of the transparent substrate 10a, the anode and the cathode are short-circuited by the pair of conductive portions 132 when sandwiched by the connector 13. In order to prevent a short circuit, all the cathodes on the surface of the transparent substrate 10a are covered with the insulating member 15, and only the anode on the surface of the transparent substrate 10a is in electrical contact with the conductive portion 132 of the connector on the surface side of the transparent substrate 10a. Accordingly, the conductive portion 132 on the front surface side of the transparent substrate 10 a takes out the anode and is routed to the external lead-out electrode 14.

また、透明基板10aの裏面の陽極は全て絶縁部材15で覆い、透明基板10aの裏面の陰極のみが透明基板10aの裏面側でコネクタの導電部132と電気的に接触をする。従って、透明基板10aの裏面側の導電部132が陰極の取り出しを行い、外部導出電極14まで引き回される。   Further, the anode on the back surface of the transparent substrate 10a is entirely covered with the insulating member 15, and only the cathode on the back surface of the transparent substrate 10a is in electrical contact with the conductive portion 132 of the connector on the back surface side of the transparent substrate 10a. Therefore, the conductive portion 132 on the back surface side of the transparent substrate 10 a takes out the cathode and is routed to the external lead-out electrode 14.

封止基板12は、光電変換素子10の保護基板として働き、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエステル、ポリイミド樹脂、エポキシ樹脂、フッ素系樹脂などのプラスチック基板、ガラス基板などの絶縁基板である。なお、封止基板12の内側で、光電変換素子10に対向する位置に、吸湿剤を設けても良い。吸湿剤は、水分や湿気による素子の劣化を防止するためである。   The sealing substrate 12 functions as a protective substrate for the photoelectric conversion element 10 and is an insulating substrate such as a plastic substrate such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyester, polyimide resin, epoxy resin, or fluorine resin, or a glass substrate. Note that a hygroscopic agent may be provided at a position facing the photoelectric conversion element 10 inside the sealing substrate 12. The hygroscopic agent is for preventing deterioration of the element due to moisture or moisture.

本実施形態では、一例として、ガラス基板を用いて封止する。具体的には、封止基板12の大きさは94mm×94mmであり、その高さh1は400μm〜700μm程度である。   In this embodiment, as an example, sealing is performed using a glass substrate. Specifically, the size of the sealing substrate 12 is 94 mm × 94 mm, and the height h1 is about 400 μm to 700 μm.

コネクタ13は、エッジカバー131とその内側に対向して接着された一対の導電部132から成り、透明基板10aの周端部を挟持する。コネクタのエッジカバーの内側に設けた導電部132は、取出電極11の取出接触電極11bに圧接することで電気的に接続される。陽極か陰極かの選択は絶縁部材15で覆うか露出するかで選択される。   The connector 13 includes an edge cover 131 and a pair of conductive portions 132 that are bonded to the inner side of the edge cover 131 and sandwich the peripheral end portion of the transparent substrate 10a. The conductive portion 132 provided inside the edge cover of the connector is electrically connected by being in pressure contact with the extraction contact electrode 11b of the extraction electrode 11. The selection of the anode or the cathode is selected depending on whether it is covered with the insulating member 15 or exposed.

また、コネクタ13は、光電変換素子や配線部分の保護カバーとしても働く。非透明素材のエッジカバー131を用いた場合には、有機デバイス1の配線部分を隠すことができる。   The connector 13 also serves as a protective cover for the photoelectric conversion element and the wiring portion. When the edge cover 131 made of a non-transparent material is used, the wiring portion of the organic device 1 can be hidden.

なお、コネクタについては、図4を用いて詳述するのでここでは省略する。   The connector will be described in detail with reference to FIG.

外部導出電極14は、コネクタ13の導電部132の一端から延在した電極であり、図示しない外部電極に電気的に接続される。外部導出電極14は、導電部132と同じ材質で形成される。本実施形態では、図1(A)の如く、有機デバイス1の右下部分に外部導出電極14を形成する。   The external lead-out electrode 14 is an electrode extending from one end of the conductive portion 132 of the connector 13 and is electrically connected to an external electrode (not shown). The external lead electrode 14 is formed of the same material as that of the conductive portion 132. In the present embodiment, the external lead-out electrode 14 is formed in the lower right portion of the organic device 1 as shown in FIG.

次に、図2および図3を用いて、本発明の光電変換素子について詳細に説明する。なお、ここでは有機太陽電池を用いる。   Next, the photoelectric conversion element of this invention is demonstrated in detail using FIG. 2 and FIG. Here, an organic solar cell is used.

本発明に用いる光電変換素子10は、透明基板10aと、透明電極10bと、正孔輸送層10cと、発電層10dと、陰極10eとを有する。透明電極10bと陰極10eは、一対の電極を構成する。   The photoelectric conversion element 10 used in the present invention includes a transparent substrate 10a, a transparent electrode 10b, a hole transport layer 10c, a power generation layer 10d, and a cathode 10e. The transparent electrode 10b and the cathode 10e constitute a pair of electrodes.

透明基板10aは、一主面を太陽光の光入射面として用い、反対主面を透明電極10bの支持基板として用いる。透明基板は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエステル、ポリイミド樹脂、エポキシ樹脂、フッ素系樹脂などのプラスチック基板、ガラス基板などの絶縁基板である。なお、フレキシブル性フィルム基板でもよい。   In the transparent substrate 10a, one main surface is used as a sunlight incident surface, and the opposite main surface is used as a support substrate for the transparent electrode 10b. The transparent substrate is an insulating substrate such as a plastic substrate such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyester, polyimide resin, epoxy resin, or fluorine resin, or a glass substrate. A flexible film substrate may be used.

本実施形態では、一例として、透明ガラス基板を用いる。具体的には、透明ガラス基板は100mm×100mmであり、その厚さt2は400μm〜700μm程度である。   In this embodiment, a transparent glass substrate is used as an example. Specifically, the transparent glass substrate is 100 mm × 100 mm, and its thickness t2 is about 400 μm to 700 μm.

透明電極10bは、透明基板10aの上面のほぼ全面に形成される透明電極膜である。透明電極には、酸化インジウム等を蒸着した酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)などを用いる。   The transparent electrode 10b is a transparent electrode film formed on almost the entire upper surface of the transparent substrate 10a. As the transparent electrode, indium tin oxide (ITO), indium zinc oxide (IZO), or the like on which indium oxide or the like is deposited is used.

本実施形態では、一例として、ITO膜を用い、透明基板10aの周端部分をパターニングし、ほぼ全面に形成する。具体的には、透明基板の周端部を除いた部分に、光電変換素子の陽極が矩形に形成され、透明基板の周端部には取出下地電極11aが形成される。なお、ITO膜の膜厚は、有機デバイスの電流容量などによって任意に決定することができる。   In the present embodiment, as an example, an ITO film is used, and the peripheral end portion of the transparent substrate 10a is patterned and formed on substantially the entire surface. Specifically, the anode of the photoelectric conversion element is formed in a rectangular shape in a portion excluding the peripheral end portion of the transparent substrate, and the extraction base electrode 11a is formed in the peripheral end portion of the transparent substrate. The film thickness of the ITO film can be arbitrarily determined depending on the current capacity of the organic device.

正孔輸送層10cは、発電層に正孔を輸送する有機層であり、光電変換素子の陽極の上面に所望の形状に形成される。正孔輸送層には、ポリエチレンジオイサイドチオフェン(PEDOT)、三酸化モリブデン(MoO)などを用いる。PEDOTを用いる場合にはスピンコート法により塗布成膜され、MoOを用いる場合には真空蒸着法により成膜される。 The hole transport layer 10c is an organic layer that transports holes to the power generation layer, and is formed in a desired shape on the upper surface of the anode of the photoelectric conversion element. Polyethylene geoside thiophene (PEDOT), molybdenum trioxide (MoO 3 ), or the like is used for the hole transport layer. When PEDOT is used, the film is formed by spin coating. When MoO 3 is used, the film is formed by vacuum evaporation.

本実施形態では、一例として、PEDOTを成膜する。具体的には、透明電極10bの光電変換素子の陽極の上面に矩形に形成され、正孔輸送層の膜厚は40nmである。   In the present embodiment, as an example, PEDOT is formed. Specifically, the transparent electrode 10b is formed in a rectangular shape on the upper surface of the anode of the photoelectric conversion element, and the thickness of the hole transport layer is 40 nm.

発電層10dは、太陽光を吸収して発電する層、すなわち光電変換層であり、正孔輸送層10cの上面のほぼ全面に形成される。光電層には、導電性高分子材料の一種であるポリ(3−ヘキシルチオフェン)(以下、P3HTと省略する)あるいはスクワリリウム誘導体などに、フラーレン誘導体として、[60]PCBM([6,6]−フェニルC61酪酸メチルエステル)あるいは[70]PCBM([6,6]−フェニルC71酪酸メチルエステル)などを混合したものを用いる。P3HTと[60]PCBMの混合物を用いる場合には、オルトジクロロベンゼンに溶解させた溶液をスピンコート法により塗布成膜、または真空蒸着法により成膜する。スクワリリウム誘導体と[70]PCMBの混合物を用いる場合には、クロロホルムに溶解させた溶液をダイコーターやキャピラリコーターにより塗布成膜、または真空蒸着法により成膜する。 The power generation layer 10d is a layer that absorbs sunlight to generate power, that is, a photoelectric conversion layer, and is formed on almost the entire upper surface of the hole transport layer 10c. For the photoelectric layer, poly (3-hexylthiophene) (hereinafter abbreviated as P3HT), which is a kind of conductive polymer material, or squarylium derivatives, [60] PCBM ([6,6]- A mixture of phenyl C 61 butyric acid methyl ester) or [70] PCBM ([6,6] -phenyl C 71 butyric acid methyl ester) is used. When a mixture of P3HT and [60] PCBM is used, a solution dissolved in orthodichlorobenzene is applied by spin coating or by vacuum deposition. When a mixture of squarylium derivative and [70] PCMB is used, a solution dissolved in chloroform is formed by coating using a die coater or capillary coater, or by vacuum deposition.

本実施形態では、一例として、P3HTと[60]PCBMの混合物を用いる。具体的には、正孔輸送層10cの上面のほぼ全面に形成され、発電層の膜厚は60nmである。   In the present embodiment, as an example, a mixture of P3HT and [60] PCBM is used. Specifically, it is formed on almost the entire upper surface of the hole transport layer 10c, and the thickness of the power generation layer is 60 nm.

陰極10eは、発電層で発生したホールを収集するための電極であり、発電層10dの上面に形成される。陰極にはCa、Alなどが用いられ、蒸着法、スパッタ法、塗布法等により形成される。なおこの際、使用する材料や膜厚制御により、透明太陽電池素子を形成できる。   The cathode 10e is an electrode for collecting holes generated in the power generation layer, and is formed on the upper surface of the power generation layer 10d. Ca, Al, or the like is used for the cathode, and it is formed by vapor deposition, sputtering, coating, or the like. At this time, a transparent solar cell element can be formed by controlling the material used and the film thickness.

本実施形態では、一例として、Alを用い、真空蒸着により形成する。具体的には、発電層10dの上面に形成し、陰極の膜厚は100nmである。   In the present embodiment, as an example, Al is used and formed by vacuum deposition. Specifically, it is formed on the upper surface of the power generation layer 10d, and the thickness of the cathode is 100 nm.

有機太陽電池のセルパターンは用途対象に応じて多様に対応できる。ここでは、一例として、10mm×85mmの有機太陽電池のセルを8個配列する場合(図2)と、80mm×80mmの有機太陽電池のセルを1つ中央に配置する場合(図3)を説明する。   The cell pattern of the organic solar battery can be variously adapted according to the application object. Here, as an example, a case where eight 10 mm × 85 mm organic solar cells are arranged (FIG. 2) and a case where one 80 mm × 80 mm organic solar cell is arranged in the center (FIG. 3) will be described. To do.

図2(A)に、10mm×85mmの有機太陽電池のセルを8個配列した光電変換素子10を示す。具体的には、透明基板10aは100mm×100mmの透明ガラス基板を用い、その板厚t2は400μmである。透明電極10bはあらかじめパターニングされ、各セルの有機太陽電池の陽極部分は10mm×85mmの矩形状に形成され、両端に陽極および陰極の取出下地電極11a形成される。正孔輸送層10cおよび発電層10dはそれぞれ10mm×85mmの矩形状に形成される。陰極10eは10mm×85mmの矩形状に形成され、取出下地電極11aの陰極と電気的に接続される。なお、有機デバイス1の厚さt1は1mmである。   FIG. 2A shows a photoelectric conversion element 10 in which eight cells of an organic solar battery of 10 mm × 85 mm are arranged. Specifically, the transparent substrate 10a uses a 100 mm × 100 mm transparent glass substrate, and the thickness t2 thereof is 400 μm. The transparent electrode 10b is patterned in advance, and the anode portion of the organic solar battery of each cell is formed in a rectangular shape of 10 mm × 85 mm, and anode and cathode extraction base electrodes 11a are formed at both ends. The hole transport layer 10c and the power generation layer 10d are each formed in a rectangular shape of 10 mm × 85 mm. The cathode 10e is formed in a 10 mm × 85 mm rectangular shape, and is electrically connected to the cathode of the extraction base electrode 11a. The thickness t1 of the organic device 1 is 1 mm.

また、図2(B)に示すように、取出下地電極11aの陽極および陰極は、取出接触電極11bで透明基板10aの裏面に引き回される。   Further, as shown in FIG. 2B, the anode and cathode of the extraction base electrode 11a are routed to the back surface of the transparent substrate 10a by the extraction contact electrode 11b.

なお、取出接触電極11bは必ず透明基板10aの表面から裏面まで延在されるため、コネクタ13で挟持する際に一対の導電部132で陽極と陰極がショートする。ショート防止のため、透明基板10aの表面の陰極は全て絶縁部材15で覆い、透明基板10aの表面の陽極のみが透明基板10aの表面側のコネクタ13の導電部132と電気的に接触をする。従って、透明基板10aの表面側の導電部132が陽極の取り出しを行い、外部導出電極まで引き回される。   Since the extraction contact electrode 11b always extends from the front surface to the back surface of the transparent substrate 10a, the anode and the cathode are short-circuited by the pair of conductive portions 132 when sandwiched by the connector 13. In order to prevent a short circuit, all the cathodes on the surface of the transparent substrate 10a are covered with the insulating member 15, and only the anode on the surface of the transparent substrate 10a is in electrical contact with the conductive portion 132 of the connector 13 on the surface side of the transparent substrate 10a. Therefore, the conductive portion 132 on the surface side of the transparent substrate 10a takes out the anode and is routed to the external lead-out electrode.

また、透明基板10aの裏面の陽極は全て絶縁部材15で覆い、透明基板10aの裏面の陰極のみが透明基板10aの裏面側のコネクタ13の導電部132と電気的に接触をする。従って、透明基板10aの裏面側の導電部132が陰極の取り出しを行い、外部導出電極まで引き回される。   Further, the anode on the back surface of the transparent substrate 10a is covered with the insulating member 15, and only the cathode on the back surface of the transparent substrate 10a is in electrical contact with the conductive portion 132 of the connector 13 on the back surface side of the transparent substrate 10a. Therefore, the conductive portion 132 on the back surface side of the transparent substrate 10a takes out the cathode and is routed to the external lead-out electrode.

この10mm×85mmの有機太陽電池のセルが、図2(A)の如く、8個並べて配列されることにより、取出接触電極11bの陽極および陰極がそれぞれ連続して交互に複数設けられる。図中、取出接触電極11bが露出する部分(斜線部分)が陽極であり、絶縁部材15が露出する部分(黒く塗りつぶした部分)が陰極である。このように、複数の電極を設けることにより、コネクタ13で電気的に接続した際に、並列接続した場合と同様の効果が得られる。すなわち、光電変換素子面内の透明電極10bの電気抵抗値の最小化を実現でき、更に、取り出し電圧や電流を増大できる。従って、光電変換量が上昇するので、小電力の有機太陽電池の場合には輝度率アップを実現できる。   As shown in FIG. 2A, eight 10 mm × 85 mm organic solar battery cells are arranged side by side, so that a plurality of anodes and cathodes of the extraction contact electrode 11b are alternately provided. In the drawing, the portion where the extraction contact electrode 11b is exposed (shaded portion) is the anode, and the portion where the insulating member 15 is exposed (blackened portion) is the cathode. Thus, by providing a plurality of electrodes, when electrically connected by the connector 13, the same effect as in the case of parallel connection can be obtained. That is, the electrical resistance value of the transparent electrode 10b in the photoelectric conversion element surface can be minimized, and the extraction voltage and current can be increased. Therefore, since the photoelectric conversion amount increases, an increase in the luminance factor can be realized in the case of a low-power organic solar cell.

また、多点接続となるので、ある接続部位が劣化により故障や接触不良などを発生しても、残りの正常な接続部位で確実な電気的接続を実現できる。これにより、接続部位の劣化による故障の確率が大幅に低減される。   In addition, since the connection is multi-point, even if a certain connection part is deteriorated and a failure or contact failure occurs, reliable electrical connection can be realized at the remaining normal connection parts. As a result, the probability of failure due to deterioration of the connection site is greatly reduced.

図3(A)に、80mm×80mmの有機太陽電池のセルを中央に配置した光電変換素子を示す。具体的には、透明基板10aは100mm×100mmの透明ガラス基板を用い、その板厚t2は700μmである。透明電極10bはあらかじめパターニングされ、有機太陽電池の陽極部分は80mm×80mmの矩形状に形成され、陽極および陰極の取出下地電極11aは両端にそれぞれ形成される。正孔輸送層10cおよび発電層10dはそれぞれ80mm×80mmの矩形状に形成される。陰極10eは80mm×80mmの矩形状に形成され、取出下地電極11aの陰極と電気的に接続される。なお、有機デバイスの厚さt1は1.5mmである。   FIG. 3A shows a photoelectric conversion element in which a cell of an 80 mm × 80 mm organic solar battery is arranged in the center. Specifically, a transparent glass substrate of 100 mm × 100 mm is used as the transparent substrate 10a, and the plate thickness t2 is 700 μm. The transparent electrode 10b is patterned in advance, the anode portion of the organic solar cell is formed in a rectangular shape of 80 mm × 80 mm, and the anode and cathode extraction base electrodes 11a are formed on both ends, respectively. The hole transport layer 10c and the power generation layer 10d are each formed in a rectangular shape of 80 mm × 80 mm. The cathode 10e is formed in a rectangular shape of 80 mm × 80 mm, and is electrically connected to the cathode of the extraction base electrode 11a. The thickness t1 of the organic device is 1.5 mm.

また、図3(B)に示すように、取出接触電極11bの陽極および陰極は、取出接触電極11bで透明基板10aの裏面に引き回される。   Further, as shown in FIG. 3B, the anode and the cathode of the extraction contact electrode 11b are routed around the back surface of the transparent substrate 10a by the extraction contact electrode 11b.

なお、取出接触電極11bは必ず透明基板10aの表面から裏面まで延在されるため、コネクタ13で挟持する際に一対の導電部132で陽極と陰極がショートする。ショート防止のため、透明基板10aの表面の陰極は全て絶縁部材15で覆い、透明基板10aの表面の陽極のみが透明基板10aの表面側のコネクタの導電部132と電気的に接触をする。従って、透明基板10aの表面側の導電部132が陽極の取り出しを行い、外部導出電極まで引き回される。   Since the extraction contact electrode 11b always extends from the front surface to the back surface of the transparent substrate 10a, the anode and the cathode are short-circuited by the pair of conductive portions 132 when sandwiched by the connector 13. In order to prevent a short circuit, all the cathodes on the surface of the transparent substrate 10a are covered with the insulating member 15, and only the anode on the surface of the transparent substrate 10a is in electrical contact with the conductive portion 132 of the connector on the surface side of the transparent substrate 10a. Therefore, the conductive portion 132 on the surface side of the transparent substrate 10a takes out the anode and is routed to the external lead-out electrode.

また、透明基板10aの裏面の陽極は全て絶縁部材15で覆い、透明基板10aの裏面の陰極のみが透明基板10aの裏面側のコネクタの導電部132と電気的に接触をする。従って、透明基板10aの裏面側の導電部132が陰極の取り出しを行い、外部導出電極まで引き回される。   Further, all the anodes on the back surface of the transparent substrate 10a are covered with the insulating member 15, and only the cathode on the back surface of the transparent substrate 10a is in electrical contact with the conductive portion 132 of the connector on the back surface side of the transparent substrate 10a. Therefore, the conductive portion 132 on the back surface side of the transparent substrate 10a takes out the cathode and is routed to the external lead-out electrode.

なお、取出電極11の陽極および陰極の数は適宜選択できる。また、取出電極11は透明基板10aの2辺に形成する場合に限らず、透明基板10aの4辺に形成してもよい。   In addition, the number of anodes and cathodes of the extraction electrode 11 can be selected as appropriate. Further, the extraction electrode 11 is not limited to being formed on the two sides of the transparent substrate 10a, but may be formed on the four sides of the transparent substrate 10a.

次に、図4を用いて本発明のコネクタを説明する。   Next, the connector of this invention is demonstrated using FIG.

図4(A)〜(D)に示すように、コネクタ13は、プラスチックなどの非導電性素材で形成されたエッジカバー131と、エッジカバーの内側で光電変換素子を挟持する面に接着して設けた一対の導電部132とを有する。   As shown in FIGS. 4A to 4D, the connector 13 is bonded to an edge cover 131 made of a non-conductive material such as plastic and a surface that sandwiches the photoelectric conversion element inside the edge cover. And a pair of conductive portions 132 provided.

エッジカバー131は、光電変換素子の透明基板10aを挟持するカバーであり、配線部分を被覆するカバーでもある。また、光電変換素子を外傷から保護するカバーとしても働く。従って、光電変換素子の透明基板10aあるいは取出電極11を挟持し、固定できる剛性と強度があればよく、プラスチック素材を用いるのが好適である。   The edge cover 131 is a cover that sandwiches the transparent substrate 10a of the photoelectric conversion element, and is also a cover that covers the wiring portion. It also serves as a cover that protects the photoelectric conversion element from external damage. Accordingly, it is sufficient that the transparent substrate 10a or the extraction electrode 11 of the photoelectric conversion element is sandwiched and fixed, and it is preferable to use a plastic material.

また、エッジカバーの形状は、図4(A)(C)に示す平面図のように、透明基板10aの長さ方向に長辺を設けた長方形に形成される。また、図4(B)(D)に示す側面図から分かるように先端はやや狭まり、断面は片仮名の略コの字状に形成される。なお、外圧に耐え得るように尖った部分をなくし丸みを持たせてもよく、例えば断面は英文字の略C字状(図示せず)に形成しても良い。   Further, the shape of the edge cover is formed in a rectangle having a long side in the length direction of the transparent substrate 10a as shown in the plan views of FIGS. Further, as can be seen from the side views shown in FIGS. 4B and 4D, the tip is slightly narrowed, and the cross section is formed in a substantially U-shape of Katakana. In addition, a sharp portion may be removed and rounded so as to withstand external pressure, and for example, the cross section may be formed in a substantially C shape (not shown) of English letters.

導電部132は、樹脂にカーボンを混ぜた導電性ゴムなどで形成され、エッジカバー131の裏側に接着材などで固着される。導電部の長さは、任意の長さが適宜選択される。光電変換素子の取出電極11と導電部132を圧接することにより電気的接続ができる。本発明のコネクタの大きな特徴は、コネクタの挟持面に一対の導電部132を設けるので、一方が陽極になり、他方が陰極となるので、取出電極11を挟持するだけで容易に電気的接続ができ、半田付けを一切不要にできる。   The conductive portion 132 is formed of conductive rubber obtained by mixing carbon in resin, and is fixed to the back side of the edge cover 131 with an adhesive or the like. An arbitrary length is appropriately selected as the length of the conductive portion. Electrical connection can be made by press-contacting the extraction electrode 11 of the photoelectric conversion element and the conductive portion 132. A major feature of the connector of the present invention is that a pair of conductive portions 132 are provided on the holding surface of the connector, so that one becomes an anode and the other becomes a cathode, so that an electrical connection can be easily made only by holding the extraction electrode 11. It is possible to eliminate the need for soldering.

また、光電変換素子に接触する部分にゴム材を用いるので、挟持する圧力により透明基板10aや取出電極11を傷つける恐れがなく、クッション性があるのでずれることもない。   In addition, since a rubber material is used for the portion in contact with the photoelectric conversion element, there is no risk of damaging the transparent substrate 10a and the extraction electrode 11 due to the clamping pressure, and the cushioning property prevents the displacement.

本発明のコネクタに依れば、コネクタの取り付け方は多様である。一例として、図1(A)に示す取り付け方と、図5(A)に示す取り付け方を説明する。   According to the connector of the present invention, there are various ways of attaching the connector. As an example, the attachment method shown in FIG. 1 (A) and the attachment method shown in FIG. 5 (A) will be described.

図1(A)に示すコネクタ13の取り付け方の場合は、図4(A)に示す長型のコネクタ13aと、図4(C)に示す短型のコネクタ13bを、各々2本ずつ用いる。隣り合う長型コネクタ13aと短型コネクタ13bは、各々の導電部132を重ね合せることにより導通される。   In the case of attaching the connector 13 shown in FIG. 1 (A), two long connectors 13a shown in FIG. 4 (A) and two short connectors 13b shown in FIG. 4 (C) are used. Adjacent long connector 13a and short connector 13b are brought into conduction by overlapping the respective conductive portions 132.

図示したように、短型のコネクタ13bは導電部132をエッジカバー131の長さより長く設け、長型のコネクタ13aは導電部132をエッジカバー131の長さより短く設ける。短型のコネクタ13bで透明基板10aの一対の辺を挟持した後、隣の辺を長型のコネクタ13aで挟持することで、各コネクタの導電部は重なり合い、電気的に接続される。従って、透明基板10aの表面側の導電部132が陽極の取り出しを行い、透明基板10aの裏面側の導電部132が陰極の取り出しを行い、外部導出電極14まで引き回される。なお、一の長型コネクタ13aの導電部132の一端に、外部導出電極14が設けられる。   As illustrated, the short connector 13 b is provided with the conductive portion 132 longer than the length of the edge cover 131, and the long connector 13 a is provided with the conductive portion 132 shorter than the length of the edge cover 131. After sandwiching a pair of sides of the transparent substrate 10a with the short connector 13b, the adjacent sides are sandwiched with the long connector 13a, so that the conductive portions of the connectors overlap and are electrically connected. Accordingly, the conductive portion 132 on the front surface side of the transparent substrate 10a takes out the anode, and the conductive portion 132 on the back surface side of the transparent substrate 10a takes out the cathode and is routed to the external lead-out electrode 14. The external lead-out electrode 14 is provided at one end of the conductive portion 132 of one long connector 13a.

図5(A)に示すコネクタ13の取り付け方の場合は、図5(B)に示す一の形状のコネクタ13cを4本用いる。エッジカバー131の一端側のみ導電部132を突出させることで、隣り合うコネクタの導電部が重なり合い電気的に接続される。従って、透明基板10aの表面側の導電部132が陽極の取り出しを行い、透明基板10aの裏面側の導電部132が陰極の取り出しを行い、外部導出電極14まで引き回される。なお、図示したように、一のコネクタ13cに外部導出電極14が設けられる。   In the case of attaching the connector 13 shown in FIG. 5A, four connectors 13c having the same shape shown in FIG. 5B are used. By projecting the conductive portion 132 only at one end side of the edge cover 131, the conductive portions of adjacent connectors are overlapped and electrically connected. Accordingly, the conductive portion 132 on the front surface side of the transparent substrate 10a takes out the anode, and the conductive portion 132 on the back surface side of the transparent substrate 10a takes out the cathode and is routed to the external lead-out electrode 14. As shown in the figure, the external lead-out electrode 14 is provided on one connector 13c.

本発明の特徴は、光電変換素子の取出電極11とコネクタ13の導電部132とを広範囲で多点接触させることにある。これは、従来の光電変換素子の電極と取出電極とをリード線やFPCを用いて半田で電気的に接続させていた、いわゆる1点での点接触による接続構造とは根本的に異なる。   A feature of the present invention is that the extraction electrode 11 of the photoelectric conversion element and the conductive portion 132 of the connector 13 are brought into multipoint contact over a wide range. This is fundamentally different from a so-called point contact connection structure in which a conventional photoelectric conversion element electrode and extraction electrode are electrically connected by solder using a lead wire or FPC.

すなわち、光電変換素子の取出電極とコネクタの接続が「多点接触」となるので、並列接続した場合と同様の効果が得られ、光電変換素子面内の電気抵抗値を確実に最小化できる。そして、光電変換素子にかかる電圧あるいは電流を大きくする効果が得られる。その結果、小電力である有機物の光電変換素子の光電変換効率を増大させることが可能となる。   That is, since the connection between the extraction electrode of the photoelectric conversion element and the connector is “multi-point contact”, the same effect as in the case of parallel connection can be obtained, and the electric resistance value in the surface of the photoelectric conversion element can be surely minimized. And the effect which enlarges the voltage or electric current concerning a photoelectric conversion element is acquired. As a result, it is possible to increase the photoelectric conversion efficiency of the organic photoelectric conversion element with low power.

また、多点接触にしたことで接続部位の部分劣化による故障の確率が低減できる。   Moreover, the probability of a failure due to partial deterioration of the connection site can be reduced by using multipoint contact.

更に、導電部132を貼着させたコネクタ13と取出電極11とを圧接させるだけで良いので、低コストで簡便な有機デバイスの接続も提供できる。   Furthermore, since it is only necessary to press-contact the connector 13 to which the conductive portion 132 is adhered and the extraction electrode 11, it is possible to provide a simple organic device connection at low cost.

次に、図6を用いて本発明の有機デバイスの製造工程を説明する。なお有機デバイスは、図2(A)の有機太陽電池を封止したものである。   Next, the manufacturing process of the organic device of this invention is demonstrated using FIG. In addition, an organic device seals the organic solar cell of FIG. 2 (A).

図6(A)〜(F)は第1工程〜第6工程を説明する断面図である。   6A to 6F are cross-sectional views for explaining the first to sixth steps.

第1工程は、図6(A)に示すように、透明電極10bがパターンニングされたガラス基板10aを準備する工程である。ガラス基板は洗浄し、表面の改質処理を行う。具体的には、ガラス基板の表面に、UV/O処理を行う。 As shown in FIG. 6A, the first step is a step of preparing a glass substrate 10a on which the transparent electrode 10b is patterned. The glass substrate is cleaned and the surface is modified. Specifically, UV / O 3 treatment is performed on the surface of the glass substrate.

第2工程は、図6(B)に示すように、透明電極10bの上面に正孔輸送層10cを形成する。具体的には、PEDOTをスピンコート法により40nmの厚さに塗布成膜する。   In the second step, as shown in FIG. 6B, a hole transport layer 10c is formed on the upper surface of the transparent electrode 10b. Specifically, PEDOT is formed by coating to a thickness of 40 nm by spin coating.

第3工程は、図6(C)に示すように、正孔輸送層10cの上面に、発電層10dを形成する。具体的には、P3HTと[60]PCBMの混合物をオルトジクロロベンゼンに溶解させた溶液をスピンコート法により60nmの厚さに塗布成膜、または真空蒸着法により成膜する。   In the third step, as shown in FIG. 6C, a power generation layer 10d is formed on the upper surface of the hole transport layer 10c. Specifically, a solution in which a mixture of P3HT and [60] PCBM is dissolved in orthodichlorobenzene is applied by spin coating to a thickness of 60 nm, or formed by vacuum deposition.

第4工程は、図6(D)に示すように、発電層10dの上面に、陰極層10eを形成する。具体的には、Alを真空蒸着により形成する。具体的には、100nmの厚さに成膜する。なお、Alに代えて、Agを使用したり、膜厚を制御することにより、透明太陽電池素子にできる。   In the fourth step, as shown in FIG. 6D, the cathode layer 10e is formed on the upper surface of the power generation layer 10d. Specifically, Al is formed by vacuum deposition. Specifically, the film is formed to a thickness of 100 nm. In addition, it can replace with Al and it can be set as a transparent solar cell element by using Ag or controlling a film thickness.

なお、透明基板10aの裏面に取出接触電極11bの陽極および陰極を引き回す場合には、この工程の後に続けて行う。また、取出接触電極11bの陰極あるいは陽極に、絶縁部材15を形成する工程を行う。   In addition, when drawing out the anode and cathode of the extraction contact electrode 11b on the back surface of the transparent substrate 10a, it is performed after this step. Moreover, the process of forming the insulating member 15 in the cathode or anode of the extraction contact electrode 11b is performed.

第5工程は、図6(E)に示すように、封止ガラス基板12の裏面で光電変換素子10に対向する位置に吸湿剤を貼り付け、光電変換素子を封止ガラス基板12で封止する。なお、吸湿剤を封止ガラス基板の所望の位置に成膜してもよい。   In the fifth step, as shown in FIG. 6E, a hygroscopic agent is attached to the back surface of the sealing glass substrate 12 at a position facing the photoelectric conversion element 10, and the photoelectric conversion element is sealed with the sealing glass substrate 12. To do. Note that a hygroscopic agent may be formed at a desired position on the sealing glass substrate.

第6工程は、図6(F)に示すように、コネクタ13で光電変換素子10の4辺を挟持し、コネクタの導電部132と、光電変換素子の取出電極11とを電気的に接続する。   In the sixth step, as shown in FIG. 6F, the connector 13 holds the four sides of the photoelectric conversion element 10 and electrically connects the conductive portion 132 of the connector and the extraction electrode 11 of the photoelectric conversion element. .

本実施形態の有機デバイス1は、単体で照明として用いたり、窓や壁などに貼り付けて後付の照明や有機太陽電池としても用いることができる。   The organic device 1 of the present embodiment can be used alone as illumination, or attached to a window, a wall, or the like as a retrofit illumination or organic solar cell.

1 有機デバイス
10 光電変換素子
10a 透明基板
10b 透明電極
10c 正孔輸送層
10d 発電層
10e 陰極
11 取出電極
11a 取出下地電極
11b 取出接触電極
12 封止基板
13 コネクタ
131 エッジカバー
132 導電部
14 外部導出電極
15 絶縁部材
DESCRIPTION OF SYMBOLS 1 Organic device 10 Photoelectric conversion element 10a Transparent substrate 10b Transparent electrode 10c Hole transport layer 10d Power generation layer 10e Cathode 11 Extraction electrode 11a Extraction base electrode 11b Extraction contact electrode 12 Sealing substrate 13 Connector 131 Edge cover 132 Conductive part 14 External lead-out electrode 15 Insulating material

Claims (6)

透明基板と、
前記透明基板上に設けた陽極となる透明電極と、
前記透明電極に対向配置される陰極と、
前記陽極と前記陰極の間に積層される有機半導体層とから成る有機デバイスであって、
前記透明基板の周端部に設けた取出電極と、
前記有機デバイスを封止する封止基板と、
絶縁性材料からなるエッジカバーと、前記エッジカバーの内側に設けた一対の導電性材料の導電部を有するコネクタとを備え、
前記透明基板の外周に配置される前記取出電極を前記コネクタで挟持し、前記取出電極と前記導電部とを圧接させて電極の取り出しをすることを特徴とする有機デバイスの電極取り出し構造。
A transparent substrate;
A transparent electrode serving as an anode provided on the transparent substrate;
A cathode disposed opposite to the transparent electrode;
An organic device comprising an organic semiconductor layer laminated between the anode and the cathode,
An extraction electrode provided at a peripheral end of the transparent substrate;
A sealing substrate for sealing the organic device;
An edge cover made of an insulating material, and a connector having a conductive portion of a pair of conductive materials provided inside the edge cover;
An electrode extraction structure for an organic device, wherein the extraction electrode disposed on the outer periphery of the transparent substrate is sandwiched by the connector, and the extraction electrode and the conductive portion are brought into pressure contact to extract the electrode.
前記取出電極は、前記透明基板の周端部に、透明基板の長さ方向に連続して複数形成されることを特徴とする請求項1に記載の有機デバイスの電極取り出し構造。   2. The organic device electrode extraction structure according to claim 1, wherein a plurality of the extraction electrodes are continuously formed at a peripheral end portion of the transparent substrate in a length direction of the transparent substrate. 前記取出電極は、前記透明基板の裏面に引き回されることを特徴とする請求項1に記載の有機デバイスの電極取り出し構造。   The electrode extraction structure for an organic device according to claim 1, wherein the extraction electrode is routed around the back surface of the transparent substrate. 前記エッジカバーは剛性あるいは強度のある素材で形成されることを特徴とする請求項1に記載の有機デバイスの電極取り出し構造。   2. The organic device electrode lead-out structure according to claim 1, wherein the edge cover is formed of a material having rigidity or strength. 前記透明基板は、ガラス基板あるいはフレキシブル素材であることを特徴とする請求項1に記載の有機デバイスの電極取り出し構造。   2. The organic device electrode extraction structure according to claim 1, wherein the transparent substrate is a glass substrate or a flexible material. 透明基板と、
前記透明基板上に設けた陽極となる透明電極と、
前記透明電極に対向配置される陰極と、
前記陽極と前記陰極の間に積層される有機半導体層とから成る有機デバイスであって、
前記透明基板の周端部に設けた取出電極と、
前記取出電極の一部を被覆する絶縁部材と、
前記有機デバイスを封止する封止基板と、
絶縁性材料からなるエッジカバーと、前記エッジカバーの内側に設けた一対の導電性材料の導電部を有するコネクタとを備え、
前記透明基板の外周に配置される前記取出電極を前記コネクタで挟持し、前記取出電極と前記導電部とを圧接させて電極の取り出しをすることを特徴とする有機デバイスの電極取り出し構造。
A transparent substrate;
A transparent electrode serving as an anode provided on the transparent substrate;
A cathode disposed opposite to the transparent electrode;
An organic device comprising an organic semiconductor layer laminated between the anode and the cathode,
An extraction electrode provided at a peripheral end of the transparent substrate;
An insulating member covering a part of the extraction electrode;
A sealing substrate for sealing the organic device;
An edge cover made of an insulating material, and a connector having a conductive portion of a pair of conductive materials provided inside the edge cover;
An electrode extraction structure for an organic device, wherein the extraction electrode disposed on the outer periphery of the transparent substrate is sandwiched by the connector, and the extraction electrode and the conductive portion are brought into pressure contact to extract the electrode.
JP2012246349A 2012-11-08 2012-11-08 Electrode lead-out structure of organic device Pending JP2014096439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012246349A JP2014096439A (en) 2012-11-08 2012-11-08 Electrode lead-out structure of organic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012246349A JP2014096439A (en) 2012-11-08 2012-11-08 Electrode lead-out structure of organic device

Publications (1)

Publication Number Publication Date
JP2014096439A true JP2014096439A (en) 2014-05-22

Family

ID=50939304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012246349A Pending JP2014096439A (en) 2012-11-08 2012-11-08 Electrode lead-out structure of organic device

Country Status (1)

Country Link
JP (1) JP2014096439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062931A (en) * 2014-09-15 2016-04-25 国立大学法人長岡技術科学大学 Condensation type solar battery module and condensation type photovoltaic power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062931A (en) * 2014-09-15 2016-04-25 国立大学法人長岡技術科学大学 Condensation type solar battery module and condensation type photovoltaic power generation system

Similar Documents

Publication Publication Date Title
US20110297996A1 (en) Electronic device and method of manufacturing the same
JP5486756B2 (en) Vertical interconnects for organic electronic devices
CN100550467C (en) OLED device
US8207664B2 (en) Organic electroluminescence module having a bent strip conductor
EP1831928B1 (en) Organic electronic devices having two dimensional series interconnections
TWI524515B (en) Optoelectronic device array
WO2011115096A1 (en) Photoelectric conversion device
EP2513998A2 (en) Large area light emitting device comprising organic light emitting diodes
JP5830711B2 (en) Light emitting module
US8716705B2 (en) Organic light emitting diode module
JP2017105664A (en) Multiple glass
JP2014096439A (en) Electrode lead-out structure of organic device
KR20150143405A (en) Electrical connection of an oled device
CN111048560B (en) Display device
JP2014096507A (en) Electrode lead-out structure of organic device
JP2004327148A (en) Joint structure of organic el panel
EP3011612B1 (en) Light-emitting device with alternating arrangement of anode pads and cathode pads
CN104781895A (en) Dye-sensitized solar cell element
KR102042418B1 (en) Organic electronic device and method for preparing the same
JP2014102977A (en) Method for manufacturing electric module and electric module
JP2013179020A (en) Organic photoelectronic element