JP2013179020A - Organic photoelectronic element - Google Patents

Organic photoelectronic element Download PDF

Info

Publication number
JP2013179020A
JP2013179020A JP2012117145A JP2012117145A JP2013179020A JP 2013179020 A JP2013179020 A JP 2013179020A JP 2012117145 A JP2012117145 A JP 2012117145A JP 2012117145 A JP2012117145 A JP 2012117145A JP 2013179020 A JP2013179020 A JP 2013179020A
Authority
JP
Japan
Prior art keywords
organic
conductive
film
conductive film
optoelectronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012117145A
Other languages
Japanese (ja)
Inventor
Wataru Mizutani
亘 水谷
Kazumi Aoba
和巳 青葉
Takashi Omori
崇 大森
Hideki Sakai
秀樹 酒井
Isato Momotake
勇人 百武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENSHIKAKO CO Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
DENSHIKAKO CO Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENSHIKAKO CO Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical DENSHIKAKO CO Ltd
Priority to JP2012117145A priority Critical patent/JP2013179020A/en
Publication of JP2013179020A publication Critical patent/JP2013179020A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple method for preparing an organic photoelectronic element in which an upper structure thereof is structured while an organic conductive film is applied over the entire surface of a base material by photogravure coating, spin coating or the like.SOLUTION: An organic photoelectronic element includes: a base material and an organic conductive film on the base material; a metal electricity-conductive layer provided on the organic conductive film; and a non-metal conductive material film exhibiting high resistivity against the organic conductive film provided so as to be brought into contact with the electricity-conductive layer. Another organic photoelectronic element includes: a base material and an organic transparent conductive film on the base material; an organic luminescent material film formed on the organic transparent conductive film; a metal electricity-conductive layer provided on the organic luminescent material film; and a non-metal conductive material film exhibiting high resistivity against the organic conductive film provided so as to be brought into contact with the metal electricity-conductive layer.

Description

本発明は、有機導電膜をグラビアコート、スピンコートなどにより基材全面に塗布した状態で、上部構造を構築し素子化する有機光電子素子に関する。   The present invention relates to an organic optoelectronic device that builds an upper structure and forms a device in a state where an organic conductive film is applied to the entire surface of a substrate by gravure coating, spin coating, or the like.

通常、有機ELや太陽電池などの光電子素子を作製するには、パターニングした透明電極を要する。一般的な有機EL素子の作製手順と構造を図1に示す。この図1に示すように、まず、(a)透明な基材の上にパターニングした透明電極を作製して基板とし、基板に、(b)有機発光材料を成膜する。次に、(c)陰電極を蒸着する。(d)は、このようにして作製した素子の断面構造を示す。透明電極と陰電極に挟まれた部分の有機発光材料層から発光する。   Usually, a patterned transparent electrode is required to produce an optoelectronic device such as an organic EL or a solar battery. A manufacturing procedure and a structure of a general organic EL element are shown in FIG. As shown in FIG. 1, first, (a) a transparent electrode patterned on a transparent base material is prepared and used as a substrate, and (b) an organic light emitting material is formed on the substrate. Next, (c) a negative electrode is deposited. (D) shows the cross-sectional structure of the device thus fabricated. Light is emitted from a portion of the organic light emitting material layer sandwiched between the transparent electrode and the negative electrode.

ガラスやプラスティックなどの電気絶縁性の透明基材上にindium tin oxide (ITO)に代表される透明導電膜を、部分的に作製(パターニング)した基板の上に、有機発光材料の薄膜を成膜し、さらに陰電極を作製する。有機ELの場合、陰電極にはアルミニウム、銀/マグネシウム、カルシウムなどの仕事関数の小さい金属を、マスクを介して蒸着する。電極界面でのキャリア注入効率を高めるため、薄いLiF層を導入することもある。基材に用いるプラスティックや作製した素子構造の外面には、素子の寿命を延ばすためガスバリア層を設けることもある。   A thin film of organic light-emitting material is formed on a substrate on which a transparent conductive film typified by indium tin oxide (ITO) is partially fabricated (patterned) on an electrically insulating transparent substrate such as glass or plastic. Further, a negative electrode is produced. In the case of organic EL, a metal having a small work function such as aluminum, silver / magnesium, calcium, etc. is deposited on the negative electrode through a mask. In order to increase carrier injection efficiency at the electrode interface, a thin LiF layer may be introduced. A gas barrier layer may be provided on the outer surface of the plastic used for the substrate or the fabricated element structure in order to extend the lifetime of the element.

一方、陽電極となる透明電極には、近年ITOを代替する材料が研究開発されている。ITOのバッファ層としても使われるpoly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS)などの導電性有機材料をベースにした透明導電膜もその一つであり、特に大面積化が可能な塗布式で作製する高分子ELの低コスト化のための重要な要素技術である。 On the other hand, materials that substitute for ITO have recently been researched and developed for transparent electrodes that serve as positive electrodes. One example is a transparent conductive film based on conductive organic materials such as poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonate) (PEDOT: PSS), which is also used as a buffer layer for ITO. This is an important elemental technology for reducing the cost of a polymer EL produced by a coating type that can be made.

しかし、有機薄膜はプラスティックフィルムの全面を被覆してからパターニングするためエッチングする場合、同じ有機材料である基材を損傷せずに有機導電膜だけを除去するのは難しく、図1(a) の前段階においてコストがかかってしまう欠点がある。
また、インクジェット法による直接描画も試みたが、ノズルの詰まりが頻繁に生じるため信頼性に欠けるという問題がある。
However, when the organic thin film is etched for patterning after covering the entire surface of the plastic film, it is difficult to remove only the organic conductive film without damaging the base material, which is the same organic material, as shown in FIG. There is a disadvantage that costs are increased in the previous stage.
In addition, although direct drawing by the ink jet method has been tried, there is a problem that the nozzle is clogged frequently and is not reliable.

上記の従来の問題点から、有機導電膜をグラビアコート、スピンコートなどにより基材全面に塗布した状態で、上部構造を構築して素子化する簡便な方法を提供することを課題とする。   In view of the above-described conventional problems, an object is to provide a simple method for constructing an upper structure and forming an element in a state where an organic conductive film is applied to the entire surface of a substrate by gravure coating, spin coating, or the like.

以上から、本発明は、
1)基材と基材上の有機導電膜、該有機導電膜上に設けた金属性電気導通層、電気導通層と接触するように設けた前記有機導電膜に対して高抵抗状態を示す非金属導電材料膜を備えることを特徴とする有機光電子素子
2)基材と基材上の有機導電膜が、透明導電性電極又は透明導電性電極と有機発光材料からなることを特徴とする請求項1記載の有機光電子素子
3)基材がガラス又はプラスティックからなる透明基材であることを特徴とする上記1)又は2)のいずれか一項に記載の有機光電子素子
4)有機導電膜上に設けた金属性電気導通層の部分に電流が流れる構造を備えていることを特徴とする上記1)〜3)のいずれか一項に記載の有機光電子素子
5)有機導電膜上に設けた金属性電気導通層の部分が発光領域であることを特徴とする上記1)〜4)のいずれか一項に記載の有機光電子素子
6)前記有機導電膜に対して高抵抗を示す非金属導電材料膜が粘着性の材料であることを特徴とする上記1)〜5)のいずれか一項に記載の有機光電子素子
From the above, the present invention
1) A base material, an organic conductive film on the base material, a metallic electric conduction layer provided on the organic conductive film, and a non-resistance state showing a high resistance state with respect to the organic conductive film provided in contact with the electric conduction layer 2. An organic optoelectronic device comprising a metal conductive material film. 2) The substrate and the organic conductive film on the substrate are made of a transparent conductive electrode or a transparent conductive electrode and an organic light emitting material. 1. The organic optoelectronic device 3) according to any one of 1) or 2) above, wherein the organic optoelectronic device 3) is a transparent substrate made of glass or plastic. The organic optoelectronic device according to any one of the above 1) to 3), wherein the metal is provided on the organic conductive film, wherein the metal electroconductive element has a structure in which a current flows in a portion of the provided metallic electrically conductive layer. The electrically conductive layer is a light emitting region. The organic optoelectronic device according to any one of 1) to 4) 6) The non-metallic conductive material film having a high resistance to the organic conductive film is an adhesive material. 5) The organic optoelectronic device according to any one of

また、本願発明は、
7)印字可能なプラスティック部材の印字面の背面に設けることを特徴とする上記1)〜6)のいずれか一項に記載の有機光電子素子
8)印字可能なプラスティック部材にインク受像層を設けることを特徴とする上記7)に記載の有機光電子素子、を提供する。
In addition, the present invention
7) The organic optoelectronic device according to any one of 1) to 6) above, wherein an ink image receiving layer is provided on the printable plastic member, which is provided on the back surface of the printable plastic member. The organic optoelectronic device as described in 7) above is provided.

本発明は、有機導電膜をグラビアコート、スピンコートなどにより基材全面に塗布した状態で、上部構造を構築して素子化する簡便な方法を提供できる著しい効果を有し、陽電極のパターニング、陰電極との位置合わせ、陰電極へ給電する配線などのプロセスが大幅に簡素化され、低コスト生産が可能になる。   The present invention has a remarkable effect that can provide a simple method of constructing an upper structure and forming an element in a state where an organic conductive film is applied to the entire surface of a substrate by gravure coating, spin coating, etc. Processes such as positioning with the negative electrode and wiring for supplying power to the negative electrode are greatly simplified, enabling low-cost production.

従来の、一般的な有機EL素子の作製手順と構造を示す説明図である。It is explanatory drawing which shows the preparation procedure and structure of the conventional common organic EL element. 接触する材料による電気抵抗の変化を示す説明図である。It is explanatory drawing which shows the change of the electrical resistance by the material which contacts. 透明電極のパターニングを必要としない有機EL素子の構造を示す説明図である。It is explanatory drawing which shows the structure of the organic EL element which does not require the patterning of a transparent electrode. 実施例1と比較例1の電流電圧特性を示す説明図である。It is explanatory drawing which shows the current-voltage characteristic of Example 1 and Comparative Example 1. 実施例2の有機EL素子の製造工程を示す説明図である。FIG. 10 is an explanatory diagram showing a production process of the organic EL element of Example 2. 透明導電性基板に正電圧、導電性アルミテープに負電圧を印加し、発光特性を測定した結果を示す図である。It is a figure which shows the result of having applied the positive voltage to the transparent conductive substrate and applying the negative voltage to the conductive aluminum tape, and measuring the light emission characteristic. 積層型の有機EL素子で複数陰極への接続を導電性テープで行った素子の構造と発光の様子を示す図である。It is a figure which shows the mode of the structure of the element which connected to the multiple cathode with the conductive tape in the laminated type organic EL element, and the mode of light emission. バックライト素子の構造を示す説明図である。It is explanatory drawing which shows the structure of a backlight element. 背景を黒とし、白抜きの数字を印刷した後、裏面に有機ELを作製し、バックライトとして数字を光らせた様子を示す図である。It is a figure which shows a mode that after making the background black and printing the white number, organic EL was produced on the back surface and the number was lit as a backlight.

一般に、有機分子など非金属性導電材料内で電流を流すキャリアは、材料固有の電子状態に起因するエネルギーを有しており、連続したバンド構造を有する金属と接触するとエネルギー準位が重なり合って導通があるが、重なり合わないバンド構造を有する非金属性の導電材料との間ではキャリアが移動できず高抵抗を示す(図2(a)参照)。
適当な有機導電膜と非金属性導電材料を組み合わせると、一方の導電材料膜の上に部分的に作製した金属薄膜部分を介して電流を流すことが可能になる。
In general, carriers that pass current in non-metallic conductive materials such as organic molecules have energy due to the electronic state inherent to the material. When they come into contact with a metal having a continuous band structure, the energy levels overlap and become conductive. However, carriers cannot move between the non-metallic conductive materials having a non-overlapping band structure, which shows high resistance (see FIG. 2A).
When an appropriate organic conductive film and a non-metallic conductive material are combined, it is possible to pass a current through a metal thin film portion partially formed on one conductive material film.

この図2の(a)に示すように、有機導電膜と非金属性導電材料が直接接触しても電流は流れない。しかし、図2の(b)に示すように、有機導電膜と非金属性導電材料が金属薄膜を介して接触することにより、導通が得られる。 As shown in FIG. 2A, no current flows even if the organic conductive film and the nonmetallic conductive material are in direct contact. However, as shown in FIG. 2B, conduction is obtained when the organic conductive film and the nonmetallic conductive material are in contact with each other through the metal thin film.

ここで導通を向上させる金属薄膜は、厚さ数μmのフォイルだけでなく、数十〜数百nmの蒸着膜でも良い。また、この金属薄膜は、有機光電子素子を構成している金属陰電極(カソード)であっても良く、接続されていない複数の陰電極を一層の非金属性導電材料で覆って接続することも可能である。 Here, the metal thin film for improving conduction may be not only a foil having a thickness of several μm but also a deposited film of several tens to several hundreds of nm. Further, the metal thin film may be a metal negative electrode (cathode) constituting an organic optoelectronic device, and a plurality of unconnected negative electrodes may be covered with a single non-metallic conductive material and connected. Is possible.

図3に、この原理を用いた有機EL素子の構造の一例を示す。通常は外部電極から陰電極への接続は、短絡を避けるため透明導電膜で覆われていない絶縁部分で行うようにパターニングし、発光部分の外側からリード線を接続する必要があるが、本発明では不要であり、リード線による電圧降下がないので各部への均一な電圧印加ができる。 FIG. 3 shows an example of the structure of an organic EL element using this principle. Usually, the connection from the external electrode to the negative electrode needs to be patterned so as to be performed in an insulating portion not covered with the transparent conductive film in order to avoid a short circuit, and the lead wire needs to be connected from the outside of the light emitting portion. This is unnecessary, and there is no voltage drop due to the lead wire, so a uniform voltage can be applied to each part.

図3の(a)に示すように、基材全面を有機導電膜で被覆する。次に、この有機導電膜上に、図3の(b)に示すように、有機発光材料層、該有機発光材料層の上に金属陰電極を形成する。電流が流れて発光する領域は金属陰電極部分となる。図3の(c)に示すように、非金属導電材料膜(6)と金属フィルム(5)は、導電性テープとして一体になったものを使用することが出来る。 As shown to (a) of FIG. 3, the whole base material is coat | covered with an organic electrically conductive film. Next, as shown in FIG. 3B, an organic light emitting material layer and a metal negative electrode are formed on the organic light emitting material layer on the organic conductive film. A region where current flows and emits light is a metal negative electrode portion. As shown in FIG. 3 (c), the non-metallic conductive material film (6) and the metal film (5) can be integrated as a conductive tape.

例えば、文字や絵が光る名刺・ポスターのような応用を考えると、従来法ではすべての文字要素となる陰電極に絶縁された配線で接続する必要があるが、本発明による接触する物質によって低抵抗状態と高抵抗状態が切り替わる材料を使用することで、陽電極のパターニング、陰電極との位置合わせ、陰電極へ給電する配線などのプロセスが大幅に簡素化され、低コスト生産が可能になる。 For example, when considering applications such as business cards and posters where letters and pictures shine, the conventional method requires connection to the negative electrode, which is all the character elements, with insulated wiring. By using a material that switches between a resistance state and a high resistance state, processes such as patterning of the positive electrode, alignment with the negative electrode, and wiring for supplying power to the negative electrode are greatly simplified, enabling low-cost production. .

本願発明の有機光電子素子は、基材と基材上の有機導電膜、該有機導電膜上に設けた金属性電気導通層、電気導通層を覆うように設けた前記有機導電膜に対して高抵抗を示す非金属導電材料膜からなり、これらを基材上に、順次形成する。
前記基材と基材上の有機導電膜については、電極又は透明導電性電極と有機発光材料とすることができる。基材については、通常ガラス、プラスティックからなる透明基材を用いることができる。
The organic optoelectronic device of the present invention is higher than the base material, the organic conductive film on the base material, the metallic conductive layer provided on the organic conductive film, and the organic conductive film provided to cover the conductive layer. It consists of a nonmetallic conductive material film exhibiting resistance, and these are sequentially formed on a substrate.
About the said base material and the organic electrically conductive film on a base material, it can be set as an electrode or a transparent conductive electrode, and an organic luminescent material. As the substrate, a transparent substrate usually made of glass or plastic can be used.

このように構成した有機光電子素子は、有機導電膜上に設けた金属性電気導通層の部分に選択的に電流が流れるようにすることができる。そして、有機導電膜上に設けた金属性電気導通層の部分を発光領域とすることができる。
前記有機導電膜に対して高抵抗を示す非金属導電材料膜については、粘着性の材料を使用することができる。
The organic optoelectronic device configured as described above can allow a current to selectively flow through a portion of the metallic electrical conduction layer provided on the organic conductive film. And the part of the metal electrical conduction layer provided on the organic electrically conductive film can be made into a light emission area | region.
An adhesive material can be used for the non-metallic conductive material film exhibiting high resistance to the organic conductive film.

また、本願発明の有機光電子素子は、基材と基材上の有機透明導電膜、該有機透明導電膜上に形成した有機発光材料膜、該有機発光材料膜上に設けた金属性電気導通層、該金属性電気導通層に接するように設けた、前記有機導電膜に対して高抵抗を示す非金属導電材料膜から構成することができる。これらを基材上に形成する。
この場合、前記有機発光材料膜上に設けた金属性電気導通層が陰電極(カソード)とすることができる。基材については、ガラス又はプラスティックからなる透明基材を使用することができる。
The organic optoelectronic device of the present invention includes a base material, an organic transparent conductive film on the base material, an organic light emitting material film formed on the organic transparent conductive film, and a metallic electrical conductive layer provided on the organic light emitting material film. And a non-metallic conductive material film which is provided so as to be in contact with the metallic conductive layer and which exhibits high resistance to the organic conductive film. These are formed on a substrate.
In this case, the metallic conductive layer provided on the organic light emitting material film can be a negative electrode (cathode). As the substrate, a transparent substrate made of glass or plastic can be used.

このように構成した有機光電子素子は、有機発光材料膜上に設けた金属性電気導通層の部分に選択的に電流が流れるようにするこができ、また前記有機発光材料膜上に設けた金属性電気導通層の部分を発光領域とすることができる。
また、前記有機透明導電膜に対して高抵抗を示す非金属導電材料膜が粘着性の材料を使用することができる。
The organic optoelectronic device configured in this manner can selectively allow a current to flow through a portion of the metallic electrical conduction layer provided on the organic light emitting material film, and can also be used for the metal provided on the organic light emitting material film. The conductive electrically conductive layer can be a light emitting region.
Moreover, the non-metallic electroconductive material film | membrane which shows high resistance with respect to the said organic transparent conductive film can use an adhesive material.

以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。   Hereinafter, description will be made based on Examples and Comparative Examples. In addition, a present Example is an example to the last and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

(実施例1と比較例1)
PEDOT:PSSベースの有機導電膜とアクリル系の導電粘着剤を組み合わせる。前者として電子化工株式会社製のDKC−5PP、後者として3M社製の導電性アルミテープ(AL−25BT)を用いた。
洗浄したpoly(ethylene terephthalate) (PET)フィルム基材全面にDKC−5PP溶液を2000rpmで30秒間スピンコートし、100℃で10分間加熱・乾燥したものを透明導電性基板として用いた。
(Example 1 and Comparative Example 1)
A PEDOT: PSS-based organic conductive film is combined with an acrylic conductive adhesive. As the former, DKC-5PP manufactured by Denka Kako Co., Ltd. was used, and as the latter, 3M conductive aluminum tape (AL-25BT) was used.
A DKC-5PP solution was spin-coated at 2000 rpm for 30 seconds on the entire surface of the washed poly (ethylene terephthalate) (PET) film substrate, heated and dried at 100 ° C. for 10 minutes, and used as a transparent conductive substrate.

この導電性基板上に、まず面積約75mmの導電性アルミテープを直接貼り合わせた(比較例1)。この比較例1では、導電性基板とアルミテープ間に18Vの印加で、1MΩ程度の抵抗値を示した。
これに対して、実施例1では、有機導電膜と導電性粘着剤の間に金箔の小片を挟み、同様に電流電圧特性を調べた結果、導通性が著しく向上した。
On this conductive substrate, first, a conductive aluminum tape having an area of about 75 mm 2 was directly bonded (Comparative Example 1). In Comparative Example 1, a resistance value of about 1 MΩ was exhibited when 18 V was applied between the conductive substrate and the aluminum tape.
On the other hand, in Example 1, a small piece of gold foil was sandwiched between the organic conductive film and the conductive adhesive, and the current-voltage characteristics were examined in the same manner. As a result, the conductivity was remarkably improved.

図4の左のグラフに有機導電膜と導電性粘着剤を直接接触させたときの高抵抗状態の電流電圧特性 (電流値を100倍して点線でプロット)と、有機導電膜と導電性粘着剤の間に金箔の小片を挟み、導通が向上した特性(実線)を示す。
導電性向上の程度は、挟み込んだ金箔のサイズなどに依存するが、この例では抵抗値が数百分の一となった。実線が実施例1であり、点線が比較例1である。図4の右図は、測定した試料の模式図である。図2(b)の構造は、有機導電膜に通電する際のコンタクトパッドとしても有用である。
The left graph in FIG. 4 shows the current-voltage characteristics in the high resistance state when the organic conductive film and the conductive adhesive are in direct contact (the current value is multiplied by 100 and plotted with a dotted line), and the organic conductive film and the conductive adhesive. A small piece of gold foil is sandwiched between the agents, and the characteristics (solid line) showing improved conduction are shown.
The degree of conductivity improvement depends on the size of the sandwiched gold foil and the like, but in this example, the resistance value is one hundredth. The solid line is Example 1, and the dotted line is Comparative Example 1. The right figure of FIG. 4 is a schematic diagram of the measured sample. The structure of FIG. 2B is also useful as a contact pad when energizing the organic conductive film.

(実施例2)
有機発光材料層は、poly(N-vinyl carbazole) (PVK)、2-(4-biphenylyl) -5-(4-tertbutylphenyl)-1,3,4-oxadiazole (PBD)、N,N'-diphenyl- N,N' -bis(3-methylphenyl) -1,1-biphenyl-4,40-diamine (TPD)、fac-tris(2-phenylpyridine)iridium (Ir(ppy)3)を0.61:0.24:0.09:0.06の比で混合したクロロベンゼン溶液(PVK mix)を、図5に示すように、仮基板poly(ether sulfone) (PES)フィルム上に3000rpmで30秒間スピンコート成膜した。
(Example 2)
The organic light-emitting material layer consists of poly (N-vinyl carbazole) (PVK), 2- (4-biphenylyl) -5- (4-tertbutylphenyl) -1,3,4-oxadiazole (PBD), N, N'-diphenyl -N, N'-bis (3-methylphenyl) -1,1-biphenyl-4,40-diamine (TPD), fac-tris (2-phenylpyridine) iridium (Ir (ppy) 3 ) 0.61: 0.24: 0.09 A chlorobenzene solution (PVK mix) mixed at a ratio of 0.06 was spin-coated on a temporary substrate poly (ether sulfone) (PES) film at 3000 rpm for 30 seconds as shown in FIG.

次に、有機発光材料層の表面に0.8nm のLiFと100nmのAlを真空蒸着した。そして、図5の(b)、(c)に示すように、導電性アルミテープで剥離して用いる。また、図5の(d)に示すように、透明導電性基板を別途作製した。
次に、有機発光材料層と金属電極を、図5の(e)に示すように、PES基板から引き剥がして、導電性アルミテープに付着させたまま、前記有機透明電極上に固定し、約130℃に加熱されたヒーターで、約2MPaで10秒間加圧して貼り合わせた。
できあがった素子について、透明導電性基板に正電圧、導電性アルミテープに負電圧を印加し、発光特性を測定したところ、図6に示すように、良好な特性が得られた。
Next, 0.8 nm of LiF and 100 nm of Al were vacuum deposited on the surface of the organic light emitting material layer. Then, as shown in FIGS. 5B and 5C, they are peeled off with a conductive aluminum tape. Further, as shown in FIG. 5D, a transparent conductive substrate was separately prepared.
Next, as shown in FIG. 5 (e), the organic light emitting material layer and the metal electrode are peeled off from the PES substrate and fixed on the organic transparent electrode while being attached to the conductive aluminum tape. A heater heated to 130 ° C. was pressed and bonded for 10 seconds at about 2 MPa.
With respect to the completed device, a positive voltage was applied to the transparent conductive substrate and a negative voltage was applied to the conductive aluminum tape, and the light emission characteristics were measured. As a result, good characteristics were obtained as shown in FIG.

(実施例3)
図3で示した素子構造を順次積層することで構築した例を図7に示す。透明導電性基板(1)の上に(実施例2)で用いた有機発光材料をスピンコートし、その表面に陰電極(4)としてシャドウマスクを介して0.8nm のLiFと100nmのAlを真空蒸着した。シャドウマスクには市販のステンシル・テンプレートを用いてパターニングすることにより、複数の陰電極を組み合わせて図7(a)に示すようにテディベアと花を画像化した。
(Example 3)
FIG. 7 shows an example constructed by sequentially laminating the element structure shown in FIG. On the transparent conductive substrate (1), the organic light emitting material used in (Example 2) was spin-coated, and 0.8 nm LiF and 100 nm Al were applied to the surface through a shadow mask as a negative electrode (4). Vacuum deposited. The shadow mask was patterned using a commercially available stencil template, and a plurality of negative electrodes were combined to image teddy bears and flowers as shown in FIG.

陰電極と電気的に接続するため、それぞれの陰電極パターンと接続するよう導電性アルミテープ(9)を貼り付け、電圧印加用クリップ(12,12a)により透明導電性基板に正電圧、導電性アルミテープに負電圧を印加し、発光面を観察したところ、図7(b)に示すように左のアルミテープにクリップで接続するとテディベアの像が発光し、次にクリップを右に移動し、右のアルミテープにクリップで接続すると花の像が発光して浮かび上がった。 In order to make electrical connection with the negative electrode, a conductive aluminum tape (9) is applied so as to connect with each negative electrode pattern, and positive voltage and conductivity are applied to the transparent conductive substrate by the voltage application clips (12, 12a). When a negative voltage was applied to the aluminum tape and the light emitting surface was observed, as shown in FIG. 7B, when the clip was connected to the left aluminum tape, a teddy bear image was emitted, and then the clip was moved to the right. When connected to the right aluminum tape with a clip, a flower image was emitted and emerged.

また、導電性アルミテープが透明導電性基板に直接接触している部分に短絡は生じていない。なお、有機透明電極への正電圧の印加には、図2(b)で示した構造、すなわち金箔を挟んで導電性アルミテープを貼り、その上からクリップで接続することで有機導電膜がクリップの接触により傷つくことから保護するとともに、接触抵抗を低減させている。 In addition, no short circuit occurs in the portion where the conductive aluminum tape is in direct contact with the transparent conductive substrate. In addition, for applying a positive voltage to the organic transparent electrode, the organic conductive film is clipped by attaching a conductive aluminum tape with a gold foil sandwiched between the structures shown in FIG. It protects from being damaged by the contact of the contact and reduces the contact resistance.

(実施例4)
プリンタにより印字可能なプラスティックシート(OHPシート)の一表面には、インク受像層が設けられている。この表面と対向する面に導電層を設けることができる。OHPシートを用いて、表面に印字した後、印字の裏面に有機ELを作製してバックライトとし、文字、記号、図あるいはその背景を光らせることが可能である。
Example 4
An ink image receiving layer is provided on one surface of a plastic sheet (OHP sheet) that can be printed by a printer. A conductive layer can be provided on the surface facing the surface. After printing on the front surface using an OHP sheet, it is possible to produce an organic EL on the back surface of the print and use it as a backlight to shine characters, symbols, drawings or the background.

図8にバックライト方式の素子構造を示す。印字したOHPシート(14)の背面に有機透明導電膜(7)と発光層(3)をスピンコートなどで成膜し、文字の位置に合わせて陰電極(LiF+Al)(4)の真空蒸着を行った。
その上から導電性テープ(9)で陰電極に接続して電圧を印加する。実際に白抜きの数字を光らせる効果を図9に示す。図9(a)は電圧をかけておらず、図9(b)では10Vの電圧を印加し、印字の背面に作製した有機ELを点灯させている。
FIG. 8 shows an element structure of a backlight system. An organic transparent conductive film (7) and a light emitting layer (3) are formed on the back surface of the printed OHP sheet (14) by spin coating or the like, and vacuum deposition of the negative electrode (LiF + Al) (4) is performed in accordance with the position of the character. went.
A voltage is applied from above by connecting to the negative electrode with a conductive tape (9). The effect of actually shining the white numbers is shown in FIG. In FIG. 9A, no voltage is applied. In FIG. 9B, a voltage of 10 V is applied, and the organic EL produced on the back side of the printing is turned on.

本発明は、有機導電膜をグラビアコート、スピンコートなどにより基材全面に塗布した状態で、上部構造を構築して素子化する簡便な方法を提供できる著しい効果を有し、陽電極のパターニング、陰電極との位置合わせ、陰電極へ給電する配線などのプロセスが大幅に簡素化され、低コスト生産が可能になるので、有機光電子素子の製作に極めて有用である。 The present invention has a remarkable effect that can provide a simple method of constructing an upper structure and forming an element in a state where an organic conductive film is applied to the entire surface of a substrate by gravure coating, spin coating, etc. Processes such as alignment with the negative electrode and wiring for supplying power to the negative electrode are greatly simplified, and low-cost production is possible, which is extremely useful for the production of organic optoelectronic devices.

1: 透明電極(ITO,有機薄膜)
2: 透明で絶縁性の基材 (ガラス、プラスティック)
3: 有機発光材料層
4: 陰電極(アルミ、Mg/Ag)、金属性電気導通層の一つ
5: 金属フィルム
6: 非金属性導電材料
7: 有機導電膜
8: 金属薄膜、金属性電気導通層の一つ
9: 導電性テープ(5:金属フィルムと6:非金属性導電材料から構成される)
10: 導電性粘着剤
11: 仮基板
12: クリップ(正電圧印加用)
12a: クリップ(負電圧印加用)
13:印字
14:OHPシート
1: Transparent electrode (ITO, organic thin film)
2: Transparent and insulating substrate (glass, plastic)
3: Organic light emitting material layer 4: Negative electrode (aluminum, Mg / Ag), one of metallic conductive layers 5: Metal film 6: Nonmetallic conductive material 7: Organic conductive film 8: Metal thin film, metallic electricity One of the conductive layers 9: conductive tape (5: composed of metal film and 6: non-metallic conductive material)
10: Conductive adhesive 11: Temporary substrate 12: Clip (for positive voltage application)
12a: Clip (for negative voltage application)
13: Printing 14: OHP sheet

Claims (8)

基材と基材上の有機導電膜、該有機導電膜上に設けた金属性電気導通層、電気導通層と接触するように設けた前記有機導電膜に対して高抵抗状態を示す非金属導電材料膜を備えることを特徴とする有機光電子素子。 Base material, organic conductive film on the base material, metallic electrical conductive layer provided on the organic conductive film, non-metallic electrical conductivity exhibiting a high resistance state with respect to the organic conductive film provided in contact with the electrical conductive layer An organic optoelectronic device comprising a material film. 基材と基材上の有機導電膜が、透明導電性電極又は透明導電性電極と有機発光材料からなることを特徴とする請求項1記載の有機光電子素子。   2. The organic optoelectronic device according to claim 1, wherein the base material and the organic conductive film on the base material comprise a transparent conductive electrode or a transparent conductive electrode and an organic light emitting material. 基材がガラス又はプラスティックからなる透明基材であることを特徴とする請求項1又は2のいずれか一項に記載の有機光電子素子。   The organic optoelectronic device according to claim 1, wherein the substrate is a transparent substrate made of glass or plastic. 有機導電膜上に設けた金属性電気導通層の部分に電流が流れる構造を備えていることを特徴とする請求項1〜3のいずれか一項に記載の有機光電子素子。 The organic optoelectronic device according to any one of claims 1 to 3, further comprising a structure in which a current flows through a portion of the metallic electrical conduction layer provided on the organic conductive film. 有機導電膜上に設けた金属性電気導通層の部分が発光領域であることを特徴とする請求項1〜4のいずれか一項に記載の有機光電子素子。 The organic optoelectronic device according to any one of claims 1 to 4, wherein a portion of the metallic electrically conductive layer provided on the organic conductive film is a light emitting region. 前記有機導電膜に対して高抵抗を示す非金属導電材料膜が粘着性の材料であることを特徴とする請求項1〜4のいずれか一項に記載の有機光電子素子。 The organic optoelectronic device according to claim 1, wherein the non-metallic conductive material film exhibiting high resistance with respect to the organic conductive film is an adhesive material. 印字可能なプラスティック部材の印字面の背面に設けることを特徴とする請求項1〜6のいずれか一項に記載の有機光電子素子とを備える有機光電子素子。 An organic optoelectronic device comprising the organic optoelectronic device according to claim 1, wherein the organic optoelectronic device is provided on a back surface of a printing surface of a printable plastic member. 印字可能なプラスティック部材にインク受像層を設けることを特徴とする請求項7に記載の有機光電子素子。 8. The organic optoelectronic device according to claim 7, wherein an ink image-receiving layer is provided on a printable plastic member.
JP2012117145A 2012-02-08 2012-05-23 Organic photoelectronic element Pending JP2013179020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117145A JP2013179020A (en) 2012-02-08 2012-05-23 Organic photoelectronic element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012024627 2012-02-08
JP2012024627 2012-02-08
JP2012117145A JP2013179020A (en) 2012-02-08 2012-05-23 Organic photoelectronic element

Publications (1)

Publication Number Publication Date
JP2013179020A true JP2013179020A (en) 2013-09-09

Family

ID=49270471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117145A Pending JP2013179020A (en) 2012-02-08 2012-05-23 Organic photoelectronic element

Country Status (1)

Country Link
JP (1) JP2013179020A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505705A (en) * 1991-10-01 1996-06-18 アートライト・コーポレーション・リミテッド Signboard for lighting signboard equipment
JPH10333600A (en) * 1997-05-27 1998-12-18 Sato Seigyo Kk Pseudo projecting character and mark, and manufacture thereof
JP2003084697A (en) * 2001-09-10 2003-03-19 Brother Ind Ltd Display, method of manufacturing display and apparatus for manufacturing display
US20050184650A1 (en) * 2004-02-24 2005-08-25 Yu-Ren Peng [organic electro-luminescent device and fabricating method thereof]
US20060134822A1 (en) * 2004-12-22 2006-06-22 Jie Liu Vertical interconnect for organic electronic devices
JP2009500832A (en) * 2005-06-30 2009-01-08 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア Conductive polymer adhesive, device produced using conductive polymer adhesive, and manufacturing method
US20090184628A1 (en) * 2006-03-07 2009-07-23 Kang Min-Soo Oled and Fabricating Method of the Same
WO2011048956A1 (en) * 2009-10-22 2011-04-28 コニカミノルタホールディングス株式会社 Decorated light-emitting body and method for producing same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505705A (en) * 1991-10-01 1996-06-18 アートライト・コーポレーション・リミテッド Signboard for lighting signboard equipment
JPH10333600A (en) * 1997-05-27 1998-12-18 Sato Seigyo Kk Pseudo projecting character and mark, and manufacture thereof
JP2003084697A (en) * 2001-09-10 2003-03-19 Brother Ind Ltd Display, method of manufacturing display and apparatus for manufacturing display
US20050184650A1 (en) * 2004-02-24 2005-08-25 Yu-Ren Peng [organic electro-luminescent device and fabricating method thereof]
JP2005243604A (en) * 2004-02-24 2005-09-08 Delta Optoelectronics Inc Organic electroluminescence device and method for manufacturing same
US20060134822A1 (en) * 2004-12-22 2006-06-22 Jie Liu Vertical interconnect for organic electronic devices
JP2006179867A (en) * 2004-12-22 2006-07-06 General Electric Co <Ge> Vertical interconnection for organic electronic device
JP2009500832A (en) * 2005-06-30 2009-01-08 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア Conductive polymer adhesive, device produced using conductive polymer adhesive, and manufacturing method
US20090184628A1 (en) * 2006-03-07 2009-07-23 Kang Min-Soo Oled and Fabricating Method of the Same
JP2009529234A (en) * 2006-03-07 2009-08-13 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
WO2011048956A1 (en) * 2009-10-22 2011-04-28 コニカミノルタホールディングス株式会社 Decorated light-emitting body and method for producing same

Similar Documents

Publication Publication Date Title
JP5683589B2 (en) Photoelectric device manufacturing method
JP6110695B2 (en) Light emitting device
US7259391B2 (en) Vertical interconnect for organic electronic devices
JP4624664B2 (en) Large organic device and method for manufacturing large organic device
US8563967B2 (en) Organic functional device and manufacturing method therefor
TWI524515B (en) Optoelectronic device array
KR20060089839A (en) Methods for fabricating patterned organic electroluminescent devices
CN107290084A (en) A kind of pressure sensor and preparation method thereof, electronic device
CN103081159B (en) Organic luminescent device and preparation method thereof
TW201043079A (en) Luminescent device
JPWO2008126267A1 (en) Light emitting device
JP2017501592A (en) Light emitting film structure
KR20130048079A (en) Method for flexible electrode substrate
JP2010066766A5 (en)
JP5830711B2 (en) Light emitting module
JP7445734B2 (en) Contact between optoelectronic components
JP5606450B2 (en) Electro-optic element and manufacturing method thereof
Wang et al. Polymer light emitting diodes powered via paper-mounted electronics
JP2013179020A (en) Organic photoelectronic element
JP2016066482A (en) Organic el panel and manufacturing method of the same
KR101032026B1 (en) Organic light emitting device for large area organic illumination, and method for manufacturing the same
JP5957787B2 (en) Method for producing photoelectric conversion device and photoelectric conversion device
JP2018077499A (en) Optical device
WO2014027395A1 (en) Light-emitting device equipped with organic el element
JP2014096439A (en) Electrode lead-out structure of organic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160405