JP2013179020A - Organic photoelectronic element - Google Patents
Organic photoelectronic element Download PDFInfo
- Publication number
- JP2013179020A JP2013179020A JP2012117145A JP2012117145A JP2013179020A JP 2013179020 A JP2013179020 A JP 2013179020A JP 2012117145 A JP2012117145 A JP 2012117145A JP 2012117145 A JP2012117145 A JP 2012117145A JP 2013179020 A JP2013179020 A JP 2013179020A
- Authority
- JP
- Japan
- Prior art keywords
- organic
- conductive
- film
- conductive film
- optoelectronic device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 50
- 239000004020 conductor Substances 0.000 claims abstract description 18
- 230000001747 exhibiting effect Effects 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims description 34
- 230000005693 optoelectronics Effects 0.000 claims description 26
- 229920003023 plastic Polymers 0.000 claims description 11
- 239000004033 plastic Substances 0.000 claims description 11
- 239000000853 adhesive Substances 0.000 claims description 9
- 230000001070 adhesive effect Effects 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 22
- 239000002184 metal Substances 0.000 abstract description 22
- 238000000034 method Methods 0.000 abstract description 9
- 238000004528 spin coating Methods 0.000 abstract description 6
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 229910052755 nonmetal Inorganic materials 0.000 abstract 2
- 239000010408 film Substances 0.000 description 57
- 229910052782 aluminium Inorganic materials 0.000 description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 15
- 239000010409 thin film Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 238000007756 gravure coating Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229920000144 PEDOT:PSS Polymers 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical compound [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- XZCJVWCMJYNSQO-UHFFFAOYSA-N butyl pbd Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)O1 XZCJVWCMJYNSQO-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
本発明は、有機導電膜をグラビアコート、スピンコートなどにより基材全面に塗布した状態で、上部構造を構築し素子化する有機光電子素子に関する。 The present invention relates to an organic optoelectronic device that builds an upper structure and forms a device in a state where an organic conductive film is applied to the entire surface of a substrate by gravure coating, spin coating, or the like.
通常、有機ELや太陽電池などの光電子素子を作製するには、パターニングした透明電極を要する。一般的な有機EL素子の作製手順と構造を図1に示す。この図1に示すように、まず、(a)透明な基材の上にパターニングした透明電極を作製して基板とし、基板に、(b)有機発光材料を成膜する。次に、(c)陰電極を蒸着する。(d)は、このようにして作製した素子の断面構造を示す。透明電極と陰電極に挟まれた部分の有機発光材料層から発光する。 Usually, a patterned transparent electrode is required to produce an optoelectronic device such as an organic EL or a solar battery. A manufacturing procedure and a structure of a general organic EL element are shown in FIG. As shown in FIG. 1, first, (a) a transparent electrode patterned on a transparent base material is prepared and used as a substrate, and (b) an organic light emitting material is formed on the substrate. Next, (c) a negative electrode is deposited. (D) shows the cross-sectional structure of the device thus fabricated. Light is emitted from a portion of the organic light emitting material layer sandwiched between the transparent electrode and the negative electrode.
ガラスやプラスティックなどの電気絶縁性の透明基材上にindium tin oxide (ITO)に代表される透明導電膜を、部分的に作製(パターニング)した基板の上に、有機発光材料の薄膜を成膜し、さらに陰電極を作製する。有機ELの場合、陰電極にはアルミニウム、銀/マグネシウム、カルシウムなどの仕事関数の小さい金属を、マスクを介して蒸着する。電極界面でのキャリア注入効率を高めるため、薄いLiF層を導入することもある。基材に用いるプラスティックや作製した素子構造の外面には、素子の寿命を延ばすためガスバリア層を設けることもある。 A thin film of organic light-emitting material is formed on a substrate on which a transparent conductive film typified by indium tin oxide (ITO) is partially fabricated (patterned) on an electrically insulating transparent substrate such as glass or plastic. Further, a negative electrode is produced. In the case of organic EL, a metal having a small work function such as aluminum, silver / magnesium, calcium, etc. is deposited on the negative electrode through a mask. In order to increase carrier injection efficiency at the electrode interface, a thin LiF layer may be introduced. A gas barrier layer may be provided on the outer surface of the plastic used for the substrate or the fabricated element structure in order to extend the lifetime of the element.
一方、陽電極となる透明電極には、近年ITOを代替する材料が研究開発されている。ITOのバッファ層としても使われるpoly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS)などの導電性有機材料をベースにした透明導電膜もその一つであり、特に大面積化が可能な塗布式で作製する高分子ELの低コスト化のための重要な要素技術である。 On the other hand, materials that substitute for ITO have recently been researched and developed for transparent electrodes that serve as positive electrodes. One example is a transparent conductive film based on conductive organic materials such as poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonate) (PEDOT: PSS), which is also used as a buffer layer for ITO. This is an important elemental technology for reducing the cost of a polymer EL produced by a coating type that can be made.
しかし、有機薄膜はプラスティックフィルムの全面を被覆してからパターニングするためエッチングする場合、同じ有機材料である基材を損傷せずに有機導電膜だけを除去するのは難しく、図1(a) の前段階においてコストがかかってしまう欠点がある。
また、インクジェット法による直接描画も試みたが、ノズルの詰まりが頻繁に生じるため信頼性に欠けるという問題がある。
However, when the organic thin film is etched for patterning after covering the entire surface of the plastic film, it is difficult to remove only the organic conductive film without damaging the base material, which is the same organic material, as shown in FIG. There is a disadvantage that costs are increased in the previous stage.
In addition, although direct drawing by the ink jet method has been tried, there is a problem that the nozzle is clogged frequently and is not reliable.
上記の従来の問題点から、有機導電膜をグラビアコート、スピンコートなどにより基材全面に塗布した状態で、上部構造を構築して素子化する簡便な方法を提供することを課題とする。 In view of the above-described conventional problems, an object is to provide a simple method for constructing an upper structure and forming an element in a state where an organic conductive film is applied to the entire surface of a substrate by gravure coating, spin coating, or the like.
以上から、本発明は、
1)基材と基材上の有機導電膜、該有機導電膜上に設けた金属性電気導通層、電気導通層と接触するように設けた前記有機導電膜に対して高抵抗状態を示す非金属導電材料膜を備えることを特徴とする有機光電子素子
2)基材と基材上の有機導電膜が、透明導電性電極又は透明導電性電極と有機発光材料からなることを特徴とする請求項1記載の有機光電子素子
3)基材がガラス又はプラスティックからなる透明基材であることを特徴とする上記1)又は2)のいずれか一項に記載の有機光電子素子
4)有機導電膜上に設けた金属性電気導通層の部分に電流が流れる構造を備えていることを特徴とする上記1)〜3)のいずれか一項に記載の有機光電子素子
5)有機導電膜上に設けた金属性電気導通層の部分が発光領域であることを特徴とする上記1)〜4)のいずれか一項に記載の有機光電子素子
6)前記有機導電膜に対して高抵抗を示す非金属導電材料膜が粘着性の材料であることを特徴とする上記1)〜5)のいずれか一項に記載の有機光電子素子
From the above, the present invention
1) A base material, an organic conductive film on the base material, a metallic electric conduction layer provided on the organic conductive film, and a non-resistance state showing a high resistance state with respect to the organic conductive film provided in contact with the electric conduction layer 2. An organic optoelectronic device comprising a metal conductive material film. 2) The substrate and the organic conductive film on the substrate are made of a transparent conductive electrode or a transparent conductive electrode and an organic light emitting material. 1. The organic optoelectronic device 3) according to any one of 1) or 2) above, wherein the organic optoelectronic device 3) is a transparent substrate made of glass or plastic. The organic optoelectronic device according to any one of the above 1) to 3), wherein the metal is provided on the organic conductive film, wherein the metal electroconductive element has a structure in which a current flows in a portion of the provided metallic electrically conductive layer. The electrically conductive layer is a light emitting region. The organic optoelectronic device according to any one of 1) to 4) 6) The non-metallic conductive material film having a high resistance to the organic conductive film is an adhesive material. 5) The organic optoelectronic device according to any one of
また、本願発明は、
7)印字可能なプラスティック部材の印字面の背面に設けることを特徴とする上記1)〜6)のいずれか一項に記載の有機光電子素子
8)印字可能なプラスティック部材にインク受像層を設けることを特徴とする上記7)に記載の有機光電子素子、を提供する。
In addition, the present invention
7) The organic optoelectronic device according to any one of 1) to 6) above, wherein an ink image receiving layer is provided on the printable plastic member, which is provided on the back surface of the printable plastic member. The organic optoelectronic device as described in 7) above is provided.
本発明は、有機導電膜をグラビアコート、スピンコートなどにより基材全面に塗布した状態で、上部構造を構築して素子化する簡便な方法を提供できる著しい効果を有し、陽電極のパターニング、陰電極との位置合わせ、陰電極へ給電する配線などのプロセスが大幅に簡素化され、低コスト生産が可能になる。 The present invention has a remarkable effect that can provide a simple method of constructing an upper structure and forming an element in a state where an organic conductive film is applied to the entire surface of a substrate by gravure coating, spin coating, etc. Processes such as positioning with the negative electrode and wiring for supplying power to the negative electrode are greatly simplified, enabling low-cost production.
一般に、有機分子など非金属性導電材料内で電流を流すキャリアは、材料固有の電子状態に起因するエネルギーを有しており、連続したバンド構造を有する金属と接触するとエネルギー準位が重なり合って導通があるが、重なり合わないバンド構造を有する非金属性の導電材料との間ではキャリアが移動できず高抵抗を示す(図2(a)参照)。
適当な有機導電膜と非金属性導電材料を組み合わせると、一方の導電材料膜の上に部分的に作製した金属薄膜部分を介して電流を流すことが可能になる。
In general, carriers that pass current in non-metallic conductive materials such as organic molecules have energy due to the electronic state inherent to the material. When they come into contact with a metal having a continuous band structure, the energy levels overlap and become conductive. However, carriers cannot move between the non-metallic conductive materials having a non-overlapping band structure, which shows high resistance (see FIG. 2A).
When an appropriate organic conductive film and a non-metallic conductive material are combined, it is possible to pass a current through a metal thin film portion partially formed on one conductive material film.
この図2の(a)に示すように、有機導電膜と非金属性導電材料が直接接触しても電流は流れない。しかし、図2の(b)に示すように、有機導電膜と非金属性導電材料が金属薄膜を介して接触することにより、導通が得られる。 As shown in FIG. 2A, no current flows even if the organic conductive film and the nonmetallic conductive material are in direct contact. However, as shown in FIG. 2B, conduction is obtained when the organic conductive film and the nonmetallic conductive material are in contact with each other through the metal thin film.
ここで導通を向上させる金属薄膜は、厚さ数μmのフォイルだけでなく、数十〜数百nmの蒸着膜でも良い。また、この金属薄膜は、有機光電子素子を構成している金属陰電極(カソード)であっても良く、接続されていない複数の陰電極を一層の非金属性導電材料で覆って接続することも可能である。 Here, the metal thin film for improving conduction may be not only a foil having a thickness of several μm but also a deposited film of several tens to several hundreds of nm. Further, the metal thin film may be a metal negative electrode (cathode) constituting an organic optoelectronic device, and a plurality of unconnected negative electrodes may be covered with a single non-metallic conductive material and connected. Is possible.
図3に、この原理を用いた有機EL素子の構造の一例を示す。通常は外部電極から陰電極への接続は、短絡を避けるため透明導電膜で覆われていない絶縁部分で行うようにパターニングし、発光部分の外側からリード線を接続する必要があるが、本発明では不要であり、リード線による電圧降下がないので各部への均一な電圧印加ができる。 FIG. 3 shows an example of the structure of an organic EL element using this principle. Usually, the connection from the external electrode to the negative electrode needs to be patterned so as to be performed in an insulating portion not covered with the transparent conductive film in order to avoid a short circuit, and the lead wire needs to be connected from the outside of the light emitting portion. This is unnecessary, and there is no voltage drop due to the lead wire, so a uniform voltage can be applied to each part.
図3の(a)に示すように、基材全面を有機導電膜で被覆する。次に、この有機導電膜上に、図3の(b)に示すように、有機発光材料層、該有機発光材料層の上に金属陰電極を形成する。電流が流れて発光する領域は金属陰電極部分となる。図3の(c)に示すように、非金属導電材料膜(6)と金属フィルム(5)は、導電性テープとして一体になったものを使用することが出来る。 As shown to (a) of FIG. 3, the whole base material is coat | covered with an organic electrically conductive film. Next, as shown in FIG. 3B, an organic light emitting material layer and a metal negative electrode are formed on the organic light emitting material layer on the organic conductive film. A region where current flows and emits light is a metal negative electrode portion. As shown in FIG. 3 (c), the non-metallic conductive material film (6) and the metal film (5) can be integrated as a conductive tape.
例えば、文字や絵が光る名刺・ポスターのような応用を考えると、従来法ではすべての文字要素となる陰電極に絶縁された配線で接続する必要があるが、本発明による接触する物質によって低抵抗状態と高抵抗状態が切り替わる材料を使用することで、陽電極のパターニング、陰電極との位置合わせ、陰電極へ給電する配線などのプロセスが大幅に簡素化され、低コスト生産が可能になる。 For example, when considering applications such as business cards and posters where letters and pictures shine, the conventional method requires connection to the negative electrode, which is all the character elements, with insulated wiring. By using a material that switches between a resistance state and a high resistance state, processes such as patterning of the positive electrode, alignment with the negative electrode, and wiring for supplying power to the negative electrode are greatly simplified, enabling low-cost production. .
本願発明の有機光電子素子は、基材と基材上の有機導電膜、該有機導電膜上に設けた金属性電気導通層、電気導通層を覆うように設けた前記有機導電膜に対して高抵抗を示す非金属導電材料膜からなり、これらを基材上に、順次形成する。
前記基材と基材上の有機導電膜については、電極又は透明導電性電極と有機発光材料とすることができる。基材については、通常ガラス、プラスティックからなる透明基材を用いることができる。
The organic optoelectronic device of the present invention is higher than the base material, the organic conductive film on the base material, the metallic conductive layer provided on the organic conductive film, and the organic conductive film provided to cover the conductive layer. It consists of a nonmetallic conductive material film exhibiting resistance, and these are sequentially formed on a substrate.
About the said base material and the organic electrically conductive film on a base material, it can be set as an electrode or a transparent conductive electrode, and an organic luminescent material. As the substrate, a transparent substrate usually made of glass or plastic can be used.
このように構成した有機光電子素子は、有機導電膜上に設けた金属性電気導通層の部分に選択的に電流が流れるようにすることができる。そして、有機導電膜上に設けた金属性電気導通層の部分を発光領域とすることができる。
前記有機導電膜に対して高抵抗を示す非金属導電材料膜については、粘着性の材料を使用することができる。
The organic optoelectronic device configured as described above can allow a current to selectively flow through a portion of the metallic electrical conduction layer provided on the organic conductive film. And the part of the metal electrical conduction layer provided on the organic electrically conductive film can be made into a light emission area | region.
An adhesive material can be used for the non-metallic conductive material film exhibiting high resistance to the organic conductive film.
また、本願発明の有機光電子素子は、基材と基材上の有機透明導電膜、該有機透明導電膜上に形成した有機発光材料膜、該有機発光材料膜上に設けた金属性電気導通層、該金属性電気導通層に接するように設けた、前記有機導電膜に対して高抵抗を示す非金属導電材料膜から構成することができる。これらを基材上に形成する。
この場合、前記有機発光材料膜上に設けた金属性電気導通層が陰電極(カソード)とすることができる。基材については、ガラス又はプラスティックからなる透明基材を使用することができる。
The organic optoelectronic device of the present invention includes a base material, an organic transparent conductive film on the base material, an organic light emitting material film formed on the organic transparent conductive film, and a metallic electrical conductive layer provided on the organic light emitting material film. And a non-metallic conductive material film which is provided so as to be in contact with the metallic conductive layer and which exhibits high resistance to the organic conductive film. These are formed on a substrate.
In this case, the metallic conductive layer provided on the organic light emitting material film can be a negative electrode (cathode). As the substrate, a transparent substrate made of glass or plastic can be used.
このように構成した有機光電子素子は、有機発光材料膜上に設けた金属性電気導通層の部分に選択的に電流が流れるようにするこができ、また前記有機発光材料膜上に設けた金属性電気導通層の部分を発光領域とすることができる。
また、前記有機透明導電膜に対して高抵抗を示す非金属導電材料膜が粘着性の材料を使用することができる。
The organic optoelectronic device configured in this manner can selectively allow a current to flow through a portion of the metallic electrical conduction layer provided on the organic light emitting material film, and can also be used for the metal provided on the organic light emitting material film. The conductive electrically conductive layer can be a light emitting region.
Moreover, the non-metallic electroconductive material film | membrane which shows high resistance with respect to the said organic transparent conductive film can use an adhesive material.
以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on Examples and Comparative Examples. In addition, a present Example is an example to the last and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.
(実施例1と比較例1)
PEDOT:PSSベースの有機導電膜とアクリル系の導電粘着剤を組み合わせる。前者として電子化工株式会社製のDKC−5PP、後者として3M社製の導電性アルミテープ(AL−25BT)を用いた。
洗浄したpoly(ethylene terephthalate) (PET)フィルム基材全面にDKC−5PP溶液を2000rpmで30秒間スピンコートし、100℃で10分間加熱・乾燥したものを透明導電性基板として用いた。
(Example 1 and Comparative Example 1)
A PEDOT: PSS-based organic conductive film is combined with an acrylic conductive adhesive. As the former, DKC-5PP manufactured by Denka Kako Co., Ltd. was used, and as the latter, 3M conductive aluminum tape (AL-25BT) was used.
A DKC-5PP solution was spin-coated at 2000 rpm for 30 seconds on the entire surface of the washed poly (ethylene terephthalate) (PET) film substrate, heated and dried at 100 ° C. for 10 minutes, and used as a transparent conductive substrate.
この導電性基板上に、まず面積約75mm2の導電性アルミテープを直接貼り合わせた(比較例1)。この比較例1では、導電性基板とアルミテープ間に18Vの印加で、1MΩ程度の抵抗値を示した。
これに対して、実施例1では、有機導電膜と導電性粘着剤の間に金箔の小片を挟み、同様に電流電圧特性を調べた結果、導通性が著しく向上した。
On this conductive substrate, first, a conductive aluminum tape having an area of about 75 mm 2 was directly bonded (Comparative Example 1). In Comparative Example 1, a resistance value of about 1 MΩ was exhibited when 18 V was applied between the conductive substrate and the aluminum tape.
On the other hand, in Example 1, a small piece of gold foil was sandwiched between the organic conductive film and the conductive adhesive, and the current-voltage characteristics were examined in the same manner. As a result, the conductivity was remarkably improved.
図4の左のグラフに有機導電膜と導電性粘着剤を直接接触させたときの高抵抗状態の電流電圧特性 (電流値を100倍して点線でプロット)と、有機導電膜と導電性粘着剤の間に金箔の小片を挟み、導通が向上した特性(実線)を示す。
導電性向上の程度は、挟み込んだ金箔のサイズなどに依存するが、この例では抵抗値が数百分の一となった。実線が実施例1であり、点線が比較例1である。図4の右図は、測定した試料の模式図である。図2(b)の構造は、有機導電膜に通電する際のコンタクトパッドとしても有用である。
The left graph in FIG. 4 shows the current-voltage characteristics in the high resistance state when the organic conductive film and the conductive adhesive are in direct contact (the current value is multiplied by 100 and plotted with a dotted line), and the organic conductive film and the conductive adhesive. A small piece of gold foil is sandwiched between the agents, and the characteristics (solid line) showing improved conduction are shown.
The degree of conductivity improvement depends on the size of the sandwiched gold foil and the like, but in this example, the resistance value is one hundredth. The solid line is Example 1, and the dotted line is Comparative Example 1. The right figure of FIG. 4 is a schematic diagram of the measured sample. The structure of FIG. 2B is also useful as a contact pad when energizing the organic conductive film.
(実施例2)
有機発光材料層は、poly(N-vinyl carbazole) (PVK)、2-(4-biphenylyl) -5-(4-tertbutylphenyl)-1,3,4-oxadiazole (PBD)、N,N'-diphenyl- N,N' -bis(3-methylphenyl) -1,1-biphenyl-4,40-diamine (TPD)、fac-tris(2-phenylpyridine)iridium (Ir(ppy)3)を0.61:0.24:0.09:0.06の比で混合したクロロベンゼン溶液(PVK mix)を、図5に示すように、仮基板poly(ether sulfone) (PES)フィルム上に3000rpmで30秒間スピンコート成膜した。
(Example 2)
The organic light-emitting material layer consists of poly (N-vinyl carbazole) (PVK), 2- (4-biphenylyl) -5- (4-tertbutylphenyl) -1,3,4-oxadiazole (PBD), N, N'-diphenyl -N, N'-bis (3-methylphenyl) -1,1-biphenyl-4,40-diamine (TPD), fac-tris (2-phenylpyridine) iridium (Ir (ppy) 3 ) 0.61: 0.24: 0.09 A chlorobenzene solution (PVK mix) mixed at a ratio of 0.06 was spin-coated on a temporary substrate poly (ether sulfone) (PES) film at 3000 rpm for 30 seconds as shown in FIG.
次に、有機発光材料層の表面に0.8nm のLiFと100nmのAlを真空蒸着した。そして、図5の(b)、(c)に示すように、導電性アルミテープで剥離して用いる。また、図5の(d)に示すように、透明導電性基板を別途作製した。
次に、有機発光材料層と金属電極を、図5の(e)に示すように、PES基板から引き剥がして、導電性アルミテープに付着させたまま、前記有機透明電極上に固定し、約130℃に加熱されたヒーターで、約2MPaで10秒間加圧して貼り合わせた。
できあがった素子について、透明導電性基板に正電圧、導電性アルミテープに負電圧を印加し、発光特性を測定したところ、図6に示すように、良好な特性が得られた。
Next, 0.8 nm of LiF and 100 nm of Al were vacuum deposited on the surface of the organic light emitting material layer. Then, as shown in FIGS. 5B and 5C, they are peeled off with a conductive aluminum tape. Further, as shown in FIG. 5D, a transparent conductive substrate was separately prepared.
Next, as shown in FIG. 5 (e), the organic light emitting material layer and the metal electrode are peeled off from the PES substrate and fixed on the organic transparent electrode while being attached to the conductive aluminum tape. A heater heated to 130 ° C. was pressed and bonded for 10 seconds at about 2 MPa.
With respect to the completed device, a positive voltage was applied to the transparent conductive substrate and a negative voltage was applied to the conductive aluminum tape, and the light emission characteristics were measured. As a result, good characteristics were obtained as shown in FIG.
(実施例3)
図3で示した素子構造を順次積層することで構築した例を図7に示す。透明導電性基板(1)の上に(実施例2)で用いた有機発光材料をスピンコートし、その表面に陰電極(4)としてシャドウマスクを介して0.8nm のLiFと100nmのAlを真空蒸着した。シャドウマスクには市販のステンシル・テンプレートを用いてパターニングすることにより、複数の陰電極を組み合わせて図7(a)に示すようにテディベアと花を画像化した。
(Example 3)
FIG. 7 shows an example constructed by sequentially laminating the element structure shown in FIG. On the transparent conductive substrate (1), the organic light emitting material used in (Example 2) was spin-coated, and 0.8 nm LiF and 100 nm Al were applied to the surface through a shadow mask as a negative electrode (4). Vacuum deposited. The shadow mask was patterned using a commercially available stencil template, and a plurality of negative electrodes were combined to image teddy bears and flowers as shown in FIG.
陰電極と電気的に接続するため、それぞれの陰電極パターンと接続するよう導電性アルミテープ(9)を貼り付け、電圧印加用クリップ(12,12a)により透明導電性基板に正電圧、導電性アルミテープに負電圧を印加し、発光面を観察したところ、図7(b)に示すように左のアルミテープにクリップで接続するとテディベアの像が発光し、次にクリップを右に移動し、右のアルミテープにクリップで接続すると花の像が発光して浮かび上がった。 In order to make electrical connection with the negative electrode, a conductive aluminum tape (9) is applied so as to connect with each negative electrode pattern, and positive voltage and conductivity are applied to the transparent conductive substrate by the voltage application clips (12, 12a). When a negative voltage was applied to the aluminum tape and the light emitting surface was observed, as shown in FIG. 7B, when the clip was connected to the left aluminum tape, a teddy bear image was emitted, and then the clip was moved to the right. When connected to the right aluminum tape with a clip, a flower image was emitted and emerged.
また、導電性アルミテープが透明導電性基板に直接接触している部分に短絡は生じていない。なお、有機透明電極への正電圧の印加には、図2(b)で示した構造、すなわち金箔を挟んで導電性アルミテープを貼り、その上からクリップで接続することで有機導電膜がクリップの接触により傷つくことから保護するとともに、接触抵抗を低減させている。 In addition, no short circuit occurs in the portion where the conductive aluminum tape is in direct contact with the transparent conductive substrate. In addition, for applying a positive voltage to the organic transparent electrode, the organic conductive film is clipped by attaching a conductive aluminum tape with a gold foil sandwiched between the structures shown in FIG. It protects from being damaged by the contact of the contact and reduces the contact resistance.
(実施例4)
プリンタにより印字可能なプラスティックシート(OHPシート)の一表面には、インク受像層が設けられている。この表面と対向する面に導電層を設けることができる。OHPシートを用いて、表面に印字した後、印字の裏面に有機ELを作製してバックライトとし、文字、記号、図あるいはその背景を光らせることが可能である。
Example 4
An ink image receiving layer is provided on one surface of a plastic sheet (OHP sheet) that can be printed by a printer. A conductive layer can be provided on the surface facing the surface. After printing on the front surface using an OHP sheet, it is possible to produce an organic EL on the back surface of the print and use it as a backlight to shine characters, symbols, drawings or the background.
図8にバックライト方式の素子構造を示す。印字したOHPシート(14)の背面に有機透明導電膜(7)と発光層(3)をスピンコートなどで成膜し、文字の位置に合わせて陰電極(LiF+Al)(4)の真空蒸着を行った。
その上から導電性テープ(9)で陰電極に接続して電圧を印加する。実際に白抜きの数字を光らせる効果を図9に示す。図9(a)は電圧をかけておらず、図9(b)では10Vの電圧を印加し、印字の背面に作製した有機ELを点灯させている。
FIG. 8 shows an element structure of a backlight system. An organic transparent conductive film (7) and a light emitting layer (3) are formed on the back surface of the printed OHP sheet (14) by spin coating or the like, and vacuum deposition of the negative electrode (LiF + Al) (4) is performed in accordance with the position of the character. went.
A voltage is applied from above by connecting to the negative electrode with a conductive tape (9). The effect of actually shining the white numbers is shown in FIG. In FIG. 9A, no voltage is applied. In FIG. 9B, a voltage of 10 V is applied, and the organic EL produced on the back side of the printing is turned on.
本発明は、有機導電膜をグラビアコート、スピンコートなどにより基材全面に塗布した状態で、上部構造を構築して素子化する簡便な方法を提供できる著しい効果を有し、陽電極のパターニング、陰電極との位置合わせ、陰電極へ給電する配線などのプロセスが大幅に簡素化され、低コスト生産が可能になるので、有機光電子素子の製作に極めて有用である。 The present invention has a remarkable effect that can provide a simple method of constructing an upper structure and forming an element in a state where an organic conductive film is applied to the entire surface of a substrate by gravure coating, spin coating, etc. Processes such as alignment with the negative electrode and wiring for supplying power to the negative electrode are greatly simplified, and low-cost production is possible, which is extremely useful for the production of organic optoelectronic devices.
1: 透明電極(ITO,有機薄膜)
2: 透明で絶縁性の基材 (ガラス、プラスティック)
3: 有機発光材料層
4: 陰電極(アルミ、Mg/Ag)、金属性電気導通層の一つ
5: 金属フィルム
6: 非金属性導電材料
7: 有機導電膜
8: 金属薄膜、金属性電気導通層の一つ
9: 導電性テープ(5:金属フィルムと6:非金属性導電材料から構成される)
10: 導電性粘着剤
11: 仮基板
12: クリップ(正電圧印加用)
12a: クリップ(負電圧印加用)
13:印字
14:OHPシート
1: Transparent electrode (ITO, organic thin film)
2: Transparent and insulating substrate (glass, plastic)
3: Organic light emitting material layer 4: Negative electrode (aluminum, Mg / Ag), one of metallic conductive layers 5: Metal film 6: Nonmetallic conductive material 7: Organic conductive film 8: Metal thin film, metallic electricity One of the conductive layers 9: conductive tape (5: composed of metal film and 6: non-metallic conductive material)
10: Conductive adhesive 11: Temporary substrate 12: Clip (for positive voltage application)
12a: Clip (for negative voltage application)
13: Printing 14: OHP sheet
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012117145A JP2013179020A (en) | 2012-02-08 | 2012-05-23 | Organic photoelectronic element |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012024627 | 2012-02-08 | ||
JP2012024627 | 2012-02-08 | ||
JP2012117145A JP2013179020A (en) | 2012-02-08 | 2012-05-23 | Organic photoelectronic element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013179020A true JP2013179020A (en) | 2013-09-09 |
Family
ID=49270471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012117145A Pending JP2013179020A (en) | 2012-02-08 | 2012-05-23 | Organic photoelectronic element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013179020A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08505705A (en) * | 1991-10-01 | 1996-06-18 | アートライト・コーポレーション・リミテッド | Signboard for lighting signboard equipment |
JPH10333600A (en) * | 1997-05-27 | 1998-12-18 | Sato Seigyo Kk | Pseudo projecting character and mark, and manufacture thereof |
JP2003084697A (en) * | 2001-09-10 | 2003-03-19 | Brother Ind Ltd | Display, method of manufacturing display and apparatus for manufacturing display |
US20050184650A1 (en) * | 2004-02-24 | 2005-08-25 | Yu-Ren Peng | [organic electro-luminescent device and fabricating method thereof] |
US20060134822A1 (en) * | 2004-12-22 | 2006-06-22 | Jie Liu | Vertical interconnect for organic electronic devices |
JP2009500832A (en) * | 2005-06-30 | 2009-01-08 | ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア | Conductive polymer adhesive, device produced using conductive polymer adhesive, and manufacturing method |
US20090184628A1 (en) * | 2006-03-07 | 2009-07-23 | Kang Min-Soo | Oled and Fabricating Method of the Same |
WO2011048956A1 (en) * | 2009-10-22 | 2011-04-28 | コニカミノルタホールディングス株式会社 | Decorated light-emitting body and method for producing same |
-
2012
- 2012-05-23 JP JP2012117145A patent/JP2013179020A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08505705A (en) * | 1991-10-01 | 1996-06-18 | アートライト・コーポレーション・リミテッド | Signboard for lighting signboard equipment |
JPH10333600A (en) * | 1997-05-27 | 1998-12-18 | Sato Seigyo Kk | Pseudo projecting character and mark, and manufacture thereof |
JP2003084697A (en) * | 2001-09-10 | 2003-03-19 | Brother Ind Ltd | Display, method of manufacturing display and apparatus for manufacturing display |
US20050184650A1 (en) * | 2004-02-24 | 2005-08-25 | Yu-Ren Peng | [organic electro-luminescent device and fabricating method thereof] |
JP2005243604A (en) * | 2004-02-24 | 2005-09-08 | Delta Optoelectronics Inc | Organic electroluminescence device and method for manufacturing same |
US20060134822A1 (en) * | 2004-12-22 | 2006-06-22 | Jie Liu | Vertical interconnect for organic electronic devices |
JP2006179867A (en) * | 2004-12-22 | 2006-07-06 | General Electric Co <Ge> | Vertical interconnection for organic electronic device |
JP2009500832A (en) * | 2005-06-30 | 2009-01-08 | ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア | Conductive polymer adhesive, device produced using conductive polymer adhesive, and manufacturing method |
US20090184628A1 (en) * | 2006-03-07 | 2009-07-23 | Kang Min-Soo | Oled and Fabricating Method of the Same |
JP2009529234A (en) * | 2006-03-07 | 2009-08-13 | エルジー・ケム・リミテッド | ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF |
WO2011048956A1 (en) * | 2009-10-22 | 2011-04-28 | コニカミノルタホールディングス株式会社 | Decorated light-emitting body and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5683589B2 (en) | Photoelectric device manufacturing method | |
JP6110695B2 (en) | Light emitting device | |
US7259391B2 (en) | Vertical interconnect for organic electronic devices | |
JP4624664B2 (en) | Large organic device and method for manufacturing large organic device | |
US8563967B2 (en) | Organic functional device and manufacturing method therefor | |
TWI524515B (en) | Optoelectronic device array | |
KR20060089839A (en) | Methods for fabricating patterned organic electroluminescent devices | |
CN107290084A (en) | A kind of pressure sensor and preparation method thereof, electronic device | |
CN103081159B (en) | Organic luminescent device and preparation method thereof | |
TW201043079A (en) | Luminescent device | |
JPWO2008126267A1 (en) | Light emitting device | |
JP2017501592A (en) | Light emitting film structure | |
KR20130048079A (en) | Method for flexible electrode substrate | |
JP2010066766A5 (en) | ||
JP5830711B2 (en) | Light emitting module | |
JP7445734B2 (en) | Contact between optoelectronic components | |
JP5606450B2 (en) | Electro-optic element and manufacturing method thereof | |
Wang et al. | Polymer light emitting diodes powered via paper-mounted electronics | |
JP2013179020A (en) | Organic photoelectronic element | |
JP2016066482A (en) | Organic el panel and manufacturing method of the same | |
KR101032026B1 (en) | Organic light emitting device for large area organic illumination, and method for manufacturing the same | |
JP5957787B2 (en) | Method for producing photoelectric conversion device and photoelectric conversion device | |
JP2018077499A (en) | Optical device | |
WO2014027395A1 (en) | Light-emitting device equipped with organic el element | |
JP2014096439A (en) | Electrode lead-out structure of organic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151208 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160405 |