JP2014094429A - 鋼製部材の加工方法、フライス盤及びcvtプーリシャフト - Google Patents

鋼製部材の加工方法、フライス盤及びcvtプーリシャフト Download PDF

Info

Publication number
JP2014094429A
JP2014094429A JP2012247300A JP2012247300A JP2014094429A JP 2014094429 A JP2014094429 A JP 2014094429A JP 2012247300 A JP2012247300 A JP 2012247300A JP 2012247300 A JP2012247300 A JP 2012247300A JP 2014094429 A JP2014094429 A JP 2014094429A
Authority
JP
Japan
Prior art keywords
column
cutting
spindle
milling cutter
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012247300A
Other languages
English (en)
Inventor
Kazunari Inamori
一成 稲森
Yasuyuki Suzuki
靖幸 鈴木
Naoji Hakamata
直司 袴田
Shigeto Kaneko
成都 金子
Naruhiro Masuda
考浩 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012247300A priority Critical patent/JP2014094429A/ja
Publication of JP2014094429A publication Critical patent/JP2014094429A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】焼入れした鋼製部材に外溝を形成するときに、生産性を向上させることができる技術を提供することを課題とする。
【解決手段】図(b)に示すように、軸部81に一次切削による切削溝81aが形成されている。そこへ、回転中の超硬総形フライスカッタ70を白抜き矢印のように軸部81へ近づけ、切削溝81aに切り込む。
【効果】従来の粗砥石加工と仕上げ砥石加工を、本発明では一回の切削で実施するため、生産性を高めることができる。
【選択図】図6

Description

本発明は、鋼製部材、特にCVTプーリシャフトの外溝製造に好適な製造技術に関する。
車両に搭載される変速機構の一種として、可動シーブを含むベルト式無段変速機構(以下、CVTと略記する。)が広く採用される(例えば、特許文献1(図7)参照。)。
特許文献1の図7にCVTの原理図が示されている。同図7に示されるように、CVT(100)(括弧付き数字は、特許文献1に記載された符号を示す。以下同様)は、駆動側可動プーリ(101)と、従動側可動プーリ(102)と、ベルト(103)とからなる。
さらに、駆動側可動プーリ(101)は、固定シーブ(104)と可動シーブ(105)とからなり、従動側可動プーリ(102)も、固定シーブ(106)と可動シーブ(107)とからなる。
例えば、一方の可動シーブ(105)を矢印Aのごとく移動し、他方の可動シーブ(107)を矢印Bのごとく移動すると、ベルト(103)の掛かり位置が変化し、減速比を高めることができる。逆の動作で増速させることができる。
以上の変速動作を実現する上で、可動シーブはA、B方向には移動可能であるが、固定シーブ(104、106)に対しては空転不能にする必要がある。
軸方向移動可能で空転不能にする構造には、ボールスプライン溝が好適である。通常のスプライン連結では、軸側のスプライン溝とカップ側のスプライン溝とを接触させるため摩擦損失が大きい。この点、ボールスプライン連結では、スプラン溝とスプライン溝の間にボールを介在させるため、摩擦損失が小さくなる。
ボールスプライン連結に供するスプライン溝は、ボールスプライン溝と呼ばれる。ボールを円滑に転動させるためには、ボールスプライン溝は精密さが要求される。このようなボールスプライン溝は砥石で精密加工されることが知られている(例えば、特許文献2(図5)参照。)。
特許文献2の図5にCVTプーリシャフトの加工方法が示されている。同図5(a)にて、軸部(16)(括弧付き数字は、特許文献2に記載された符号を示す。以下同様)に、ホブ(34)で、6条の外溝(28)を形成する。次に、図5(b)にて、砥石(35)で、6条の外溝(28)を仕上げる。
すなわち、ホブ(34)により粗加工が施され、総形砥石(35)により仕上げ加工が施されることで、精密な外溝(28)が得られる。
ところで、特許文献2には明示されていないが、一般に、粗加工と仕上げ加工の間に焼入れなどの熱処理が施される。
熱処理により熱処理歪が発生する。この熱処理歪が、予め設定されている砥石による取り代に加算される。この加算された加工量は取り代よりは大きくなる。そこで、砥石による仕上げの前に、粗砥石による粗仕上げが必要となる。結果、粗砥石加工と仕上げ砥石加工の2工程が必要となり、砥石作業時間が延びて、生産性が低下する。
しかし、生産性の向上が求められる中、溝加工時間の短縮が求められる。
特開2007−38388公報 特開2001−153200公報
本発明は、鋼製部材に外溝などを形成するときに、生産性を向上させることができる技術を提供することを課題とする。
請求項1に係る発明は、鋼製部材の加工方法において、
鋼製素材に一次切削を施すことで製品形状に近似させた切削品を得る一次切削工程と、
前記切削品に焼入れを施すことで熱処理品を得る熱処理工程と、
前記熱処理品に超硬総形フライスカッタで二次切削を施すことで製品を得る二次切削工程とからなることを特徴とする。
請求項2に係る発明では、超硬総形フライスカッタは複数の切れ刃を有し、これらの切れ刃の1個だけを熱処理品に切り込むようにしたことを特徴とする。
請求項3に係る発明は、請求項1又は請求項2記載の鋼製部品の加工方法における前記二次切削工程に供するフライス盤であって、
このフライス盤は、ベースと、このベースに移動自在に設けられ前記熱処理品を支えるテーブルと、前記ベースから起立するコラムと、このコラムに取付けられ主軸を支える主軸ケースと、前記コラムに取付けられ前記主軸を回転させる回転手段と、前記主軸の先端に取付けられる前記超硬総形フライスカッタとを備え、
前記主軸ケース及び前記コラムは、共に冷媒通路を有し、前記主軸ケース及び前記コラムが冷媒で強制冷却されることを特徴とする。
請求項4に係る発明では、主軸ケースは、スライダを介してコラムに昇降自在に取付けられており、スライダは冷媒通路を有し、スライダが冷媒で強制冷却されることを特徴とする。
請求項5に係る発明では、超硬総形フライスカッタは、AlTiNで被覆されていることを特徴とする。
請求項6に係る発明は、請求項1記載の鋼製部品の加工方法で製造されるCVTプーリシャフトであって、
軸部の外溝が前記超硬総形フライスカッタによる前記二次切削で形成されていることを特徴とする。
請求項1に係る発明では、熱処理品に超硬総形フライスカッタで二次切削を施すことで製品を得る。
ここでいう超硬総形フライスカッタは、超硬合金による総形フライスカッタである。
超硬合金は、一般に定義される周期律表IVa、Va、VIa族金属の炭化物をFe、Co、Niなどの鉄系金属で焼結した複合材料であり、低温でも高温でも硬く高強度で諸物性が安定している。
総形フライスカッタとは、円板もしくは円筒体の外周面あるいは端面に多数の切れ刃を設け、これを回転させながら工作物を切削する工具のうち、特殊な形状の切れ刃を予め成形したフライスである。特殊な形状とは、溝の場合であれば、溝の内断面に対応する形(総形という。)を意味する。
そして、本発明では、超硬総形フライスカッタにより外溝などを一回で形成する。従来の粗砥石加工と仕上げ砥石加工を、本発明では一回の切削で実施するため、生産性を高めることができる。
請求項2に係る発明では、切れ刃の1個だけを熱処理品に切り込むようにしたので、びびりの発生を抑えることができ、仕上がり精度を向上させることができる。
請求項3に係る発明では、主軸ケース及びコラムは、共に冷媒通路を有し、冷媒で強制冷却される。
従来のコラムであれば、周囲の温度変化に対応して伸縮する。この伸縮により、保持している主軸ケースの位置が変化する。また、従来の主軸ケースであれば、内蔵する軸受の発熱により、寿命が短くなる。
この点、本発明によれば、主軸ケースを強制冷却するため、軸受の寿命の延ばすことができる。併せて、コラムを冷媒で強制冷却するため、周囲の温度が変化しても主軸ケースの位置が変わらない。結果、加工精度を高めることができる。
請求項4に係る発明では、主軸ケースは、スライダを介してコラムに昇降自在に取付けられ、スライダが冷媒で強制冷却される。
従来のスライダであれば、周囲の温度変化により伸縮する。この伸縮により、コラムと主軸ケースとの距離が変化する。結果、加工精度が低下する。対策として位置補正を行う必要があり、生産作業に影響する。
この点、本発明によれば、スライダを強制冷却するため、周囲の温度が変化してもコラムと主軸ケースとの距離が変化しない。結果、位置補正が不要となり、生産性が良好に維持される。
請求項5に係る発明では、超硬総形フライスカッタは、AlTiNで被覆されているため、超硬総形フライスカッタの寿命を延ばすことができる。工具交換頻度を小さくすることができ、生産性を高めることができる。
請求項6に係る発明では、軸部の外溝が超硬総形フライスカッタで形成されたCVTプーリシャフトを提供する。
超硬総形フライスカッタにより外溝を一回で形成する。従来の粗砥石加工と仕上げ砥石加工を、本発明では一回の切削で実施するため、生産性を高めることができ、より安価なCVTプーリシャフトが提供される。
本発明に係るフライス盤の正面図である。 本発明に係るフライス盤の左側面図である。 コラムの断面図である。 主軸の断面図である。 図4の5−5線断面図である。 本発明に係るCVTプーリシャフトの製造工程を説明する図である。 砥石により研削と超硬総形フライスカッタによる切削の比較図である。 1個の切れ刃による作用図である。
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1に示すように、フライス盤10は、ベース11と、このベース11にレース12を介してx軸に沿って移動可能に載せられるテーブル13と、ベース11の一端に設けられテーブル13を移動させるテーブル移動手段14と、テーブル13にレール15、16を介してx軸に沿って移動可能に載せられるワークチャック部17及び心押し台18と、ベース11から起立するコラム20と、このコラム20に取付けられる主軸ユニット50、主軸回転手段41及び主軸昇降手段43とからなる。
テーブル移動手段14と主軸昇降手段43は、サーボモータにボールねじ機構とを組み合わせたものが好適である。
主軸回転手段41は、誘導電動機などモータが好適であり、想像線で示すベルト42でプーリ57に連結される。
図2に示すように、コラム20は、ベース11にレール21を介してy軸に沿って移動可能に載せられており、ベース11に設けられるコラム移動手段22により、位置決めされる。コラム移動手段22は、サーボモータにボールねじ機構とを組み合わせたものが好適である。
コラム20に、縦レール23及びこの縦レール23に沿って移動するスライダ45を介して、主軸ユニット50がz軸方向に移動可能に支持される。コラム20に主軸昇降手段43が設けられる。
スライダ45は冷媒通路46を有し、冷媒入口47から冷媒を注入し、冷媒出口48から暖まった冷媒を排出させることができるような構造にすることが望まれる。
コラム20は箱体であり、背面に、冷却媒体の供給管24と排出管25が接続される。
図3に示すように、コラム20は、断面コ字状のコラム本体26と、このコラム本体26内を十文字に仕切る縦壁27及び横壁28と、コラム本体26の開口を塞ぐ蓋体29と、この蓋体29とコラム本体26との水密性を確保するパッキン31とからなる。
縦壁27の下部及び上部に通穴32、33が設けられ、蓋体29から遠い部位にて横壁28に通穴34が設けられている。
したがって、供給管24から導入されるクーラント35は矢印のように、縦壁27と横壁28で区画された4つの室36〜39を順に流れ、排出管25から排出される。すなわち、室36〜39が冷媒(クーラント35)を流す冷媒通路となる。
クーラント35は、導入前に一定温度に管理される。連続してクーラント35を流すことで、コラム20はクーラント35の温度にほぼ保たれ、周囲の温度が上下しても長さ及び幅が変わる心配はない。
図2において、心押し台18の中心から主軸56の中心までの距離Lは、最も重要な長さである。仮に、コラム20が周囲の温度の上昇で熱膨張すると、コラム20の幅寸法が大きくなり、結果、距離Lは標準状態(例えば25℃)より小さくなる。
また、仮に、スライダ45が周囲の温度の上昇で熱膨張すると、幅寸法(図面左右方向の寸法)が大きくなり、結果、距離Lは更に小さくなる。
対策の1つに、距離の補正がある。しかし、距離の補正は、例えば昼間と夜間のように気温の変化が起こる毎に行う必要があり、面倒である。
本発明のように、コラム20を冷却する対策を講じることで、距離Lの変化が小さくなり、距離の補正が不要になる。加えて、スライダ45を冷却する対策を講じることで、距離Lの変化がさらに小さくなる。
図4に示すように、主軸ユニット50は、筒状の主軸ケース51と、この主軸ケース51に内側から嵌められ外周部に螺旋溝52を有する内筒53と、この内筒53に軸受54、55を介して回転自在に支持される主軸56と、主軸56の上端に取付けられるプーリ57と、内筒53の上下開口を塞ぐリッド58、59とからなる。
主軸56は毎分1000回転程度で回される。この回転により軸受54、55は不可的に発熱する。
熱対策を講じないと、軸受54、55の寿命が短くなるため、対策が望まれる。
本発明では、次に述べる対策を講じる。
主軸ケース51には、下にクーラントの供給口61が設けられ、上に排出口62が設けられる。矢印(1)のように供給口61から供給されるクーラントは螺旋溝52に沿って流れ、矢印(2)のように排出口62から排出される。すなわち、螺旋溝52は、冷媒を流す冷媒通路である。
クーラント35は、導入前に一定温度に管理される。連続してクーラントを流すことで、主軸56、内筒53及び主軸ケース51はクーラント35の温度にほぼ保たれ、軸受54、55の温度上昇が抑えられる。
図5に示すように、超硬総形フライスカッタ70は、ドーナツ状の基部71に、複数枚(この例では14枚)の刃部72を備える。この刃部72は、切れ刃73と逃げ面74と切粉排出溝75とからなる。
刃部72を、AlTiNで被覆することが望ましい。この被覆により、工具交換の頻度を小さくすることができる。
以上の述べたフライス盤10の作用を次に述べる。
鍛造等で造形された鋼製素材に一次切削を施し、製品形状に近似した切削品を準備し(一次切削工程)、この切削品に焼入れなどの熱処理を施す(熱処理工程)。得られた熱処理品は、例えば図6(a)に示すプーリシャフト熱処理品80である。
図6(b)に示すように、一次切削によって軸部81に切削溝81aが形成されている。そこへ、回転中の超硬総形フライスカッタ70を白抜き矢印のように軸部81へ近づけ、切削溝81aに切り込む(二次切削工程)。
熱処理品の軸部81は硬い。この硬い軸部81に切り込むと超硬総形フライスカッタ70に、大きな反力が加わる。超硬総形フライスカッタ70を支える軸受(図4、符号54)が盛んに発熱するが、熱対策が講じられているため、問題とならない。
結果、図6(d)に示すように、3条の外溝82が軸部81に形成される。すなわち、図6(c)に示すように、外溝82を軸部81に備えるCVTプーリシャフト83が得られる。外溝82はボールスプライン溝に相当する。
図6(a)〜(d)は、熱処理品80を出発材料として、この材料に、超硬総形フライスカッタ70を1パスさせるだけで、所望の外溝82を得た。
従来であれば、切削溝形成→熱処理→粗砥石加工→仕上げ砥石加工による外溝仕上げ加工を施すところ、本発明では、粗砥石加工を省いて、切削溝形成→熱処理→フライスカッタによる外溝形成としたので、一工程での溝形成が可能となり、コストダウンが図れる。
次に、本発明方法と従来の砥石による仕上げ方法との比較検討を行う。
図7(a)に示す砥石84による研削では、砥石84の外周面が研削面85に密に接触している。そのため、クーラント管86から供給されるクーラント35が砥石84の外周面と研削面85との間に入らない。
これに対して、図7(c)に示す超硬総形フライスカッタ70による切削では、切粉排出溝75にクーラント35を投入することができるため、刃部72と切削面87との間に充分にクーラント35を供給することができ、このクーラント35で発生熱を冷却し、切粉を排出することができる。
次に、CVTプーリシャフト83の外溝82が、超硬総形フライスカッタ70で切削されたか砥石84で研削されたかの判別方法の一例を説明する。
図7(b)に示すように、顕微鏡で拡大した研削面85は、微細な凹88、凸89が存在する面であるが、凹88、凸89の出現に規則性がない。
一方、図7(d)に示すように、切削面87は、凸89のピッチPが一定である。この現象は、超硬総形フライスカッタ70を往復させたときには顕著でなく、超硬総形フライスカッタ70を1パスだけさせたときに顕著になる。
すなわち、図7(c)に示す切れ刃73で押されると凹88が出現し、切れ刃73が抜けて切粉排出溝75に臨むと戻って凸89ができる。以上により、等ピッチの凹88が出現するか否かにより、切削面87か研削面85かが区別できる。
次に、超硬総形フライスカッタ70の更なる好ましい形態を説明する。
図8(a)及び(a)のb部拡大図である(b)に示すように、従来は、複数(この例では2個)の切れ刃73A、73Bを同時に切り込ませる。切削能率が上がるからである。しかし、先行する切れ刃73Aが切削中に、次の切れ刃73Bが熱処理品に衝突する。すると、大きな反力が超硬総形フライスカッタ70に加わり、いわゆる、びびり現象が起こる。この現象は熱処理品が硬いため、顕著になる。
対策として、図8(c)及び(c)のd部拡大図である(d)に示すように、切削に関与する切り刃の数を1個に限定する。すなわち、(d)に示すように、切れ刃73Aが逃げた後に、切れ刃73Bの切り込みが始まるようにする。結果、反力は半減し、びびりの発生を抑えることができる。
尚、本発明の二次切削は、CVTプーリシャフトの外溝の形成に適用したが、CVTプーリシャフトの他の部位の形成に適用することは差し支えない。
また、製品はCVTプーリシャフトの他、焼入れ後に二次切削を施す精密部品であれば、種類は問わない。
また、コラムを冷却するに際し、本実施例は、全体に冷媒を満たした。コラムが立方体(又は直方体)であるため、水槽化することは容易である。しかし、コラムの一部に冷媒通路を設けることを妨げるものではない。
本発明の二次切削は、CVTプーリシャフトの外溝の形成に好適である。
10…フライス盤、11…ベース、20…コラム、35〜39…冷媒通路(室)、41…主軸回転手段、45…スライダ、46…スライダに形成される冷媒通路、51…主軸ケース、52…冷媒通路(螺旋溝)、56…主軸、70…超硬総形フライスカッタ、73、73A、73B…切れ刃、80…熱処理品(プーリシャフト熱処理品)、81…軸部、82…外溝(ボールスプライン溝)、83…CVTプーリシャフト。

Claims (6)

  1. 鋼製部材の加工方法において、
    鋼製素材に一次切削を施すことで製品形状に近似させた切削品を得る一次切削工程と、
    前記切削品に焼入れを施すことで熱処理品を得る熱処理工程と、
    前記熱処理品に超硬総形フライスカッタで二次切削を施すことで製品を得る二次切削工程とからなることを特徴とする鋼製部材の加工方法。
  2. 前記超硬総形フライスカッタは複数の切れ刃を有し、これらの切れ刃の1個だけを前記熱処理品に切り込むようにしたことを特徴とする請求項1記載の鋼製部材の加工方法。
  3. 請求項1又は請求項2記載の鋼製部品の加工方法における前記二次切削工程に供するフライス盤であって、
    このフライス盤は、ベースと、このベースに移動自在に設けられ前記熱処理品を支えるテーブルと、前記ベースから起立するコラムと、このコラムに取付けられ主軸を支える主軸ケースと、前記コラムに取付けられ前記主軸を回転させる回転手段と、前記主軸の先端に取付けられる前記超硬総形フライスカッタとを備え、
    前記主軸ケース及び前記コラムは、共に冷媒通路を有し、前記主軸ケース及び前記コラムが冷媒で強制冷却されることを特徴とするフライス盤。
  4. 前記主軸ケースは、スライダを介して前記コラムに昇降自在に取付けられており、前記スライダは冷媒通路を有し、前記スライダが冷媒で強制冷却されることを特徴とする請求項3記載のフライス盤。
  5. 前記超硬総形フライスカッタは、AlTiNで被覆されていることを特徴とする請求項3又は請求項4記載のフライス盤。
  6. 請求項1記載の鋼製部品の加工方法で製造されるCVTプーリシャフトであって、
    軸部の外溝が前記超硬総形フライスカッタによる前記二次切削で形成されていることを特徴とするCVTプーリシャフト。
JP2012247300A 2012-11-09 2012-11-09 鋼製部材の加工方法、フライス盤及びcvtプーリシャフト Pending JP2014094429A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012247300A JP2014094429A (ja) 2012-11-09 2012-11-09 鋼製部材の加工方法、フライス盤及びcvtプーリシャフト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012247300A JP2014094429A (ja) 2012-11-09 2012-11-09 鋼製部材の加工方法、フライス盤及びcvtプーリシャフト

Publications (1)

Publication Number Publication Date
JP2014094429A true JP2014094429A (ja) 2014-05-22

Family

ID=50937972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247300A Pending JP2014094429A (ja) 2012-11-09 2012-11-09 鋼製部材の加工方法、フライス盤及びcvtプーリシャフト

Country Status (1)

Country Link
JP (1) JP2014094429A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289870A (zh) * 2014-09-03 2015-01-21 安徽应流机电股份有限公司 一种薄壁铣槽不锈钢零件加工工艺
CN105382498A (zh) * 2015-12-23 2016-03-09 常熟市淼泉压缩机配件有限公司 一种薄壁内腔细长轴零件的加工方法
CN106862867A (zh) * 2017-02-28 2017-06-20 厦门宏发精密机械有限公司 一种工装治具的加工方法
CN107263028A (zh) * 2017-06-20 2017-10-20 合肥尚涵装饰工程有限公司 一种新型轴类零件机械的加工工艺
CN107745225A (zh) * 2017-08-18 2018-03-02 江苏力星通用钢球股份有限公司 一种风电大球支撑轴加工工艺
CN110919053A (zh) * 2019-11-21 2020-03-27 福州三迅机械有限公司 一种托辊轴双头数控铣扁机
CN112621115A (zh) * 2020-12-07 2021-04-09 西安交通大学 一种薄壁细长轴类零件轴向拉伸加工设备及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058209A (ja) * 2008-09-02 2010-03-18 Mitsugu Karasawa 回転用カッター及び切削方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058209A (ja) * 2008-09-02 2010-03-18 Mitsugu Karasawa 回転用カッター及び切削方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289870A (zh) * 2014-09-03 2015-01-21 安徽应流机电股份有限公司 一种薄壁铣槽不锈钢零件加工工艺
CN104289870B (zh) * 2014-09-03 2017-01-18 安徽应流机电股份有限公司 一种薄壁铣槽不锈钢零件加工工艺
CN105382498A (zh) * 2015-12-23 2016-03-09 常熟市淼泉压缩机配件有限公司 一种薄壁内腔细长轴零件的加工方法
CN106862867A (zh) * 2017-02-28 2017-06-20 厦门宏发精密机械有限公司 一种工装治具的加工方法
CN107263028A (zh) * 2017-06-20 2017-10-20 合肥尚涵装饰工程有限公司 一种新型轴类零件机械的加工工艺
CN107745225A (zh) * 2017-08-18 2018-03-02 江苏力星通用钢球股份有限公司 一种风电大球支撑轴加工工艺
CN110919053A (zh) * 2019-11-21 2020-03-27 福州三迅机械有限公司 一种托辊轴双头数控铣扁机
CN112621115A (zh) * 2020-12-07 2021-04-09 西安交通大学 一种薄壁细长轴类零件轴向拉伸加工设备及方法

Similar Documents

Publication Publication Date Title
JP2014094429A (ja) 鋼製部材の加工方法、フライス盤及びcvtプーリシャフト
CN104015016B (zh) 高精度薄壁深腔零件的加工方法
Ding et al. Experimental study on machinability improvement of hardened tool steel using two dimensional vibration-assisted micro-end-milling
CN102794622B (zh) 一种精密内齿轮的加工方法
de Lacalle et al. Improving the surface finish in high speed milling of stamping dies
Grzesik et al. Surface finish on hardened bearing steel parts produced by superhard and abrasive tools
CN104493446B (zh) 一种渗碳钢轴承套圈加工方法
CN107042329A (zh) 针对冷硬产品的铣削加工方法
CN100556610C (zh) 传感器用qs-4弹性体加工工艺
US7930954B2 (en) Method for producing forging die, forging die and forged article
Davoudinejad et al. Effect of cutting edge preparation on tool performance in hard-turning of DF-3 tool steel with ceramic tools
Aspinwall et al. Hybrid high speed machining (HSM): system design and experimental results for grinding/HSM and EDM/HSM
CN106002127A (zh) 汽车发动机盖板模具的型腔加工方法
CN106312152A (zh) 薄壁零件的加工方法
JP2012086296A (ja) 溝加工方法
Zębala et al. Hard turning of cold work tool steel with CBN tools
CN109175925A (zh) 一体式高速转子轴的工艺制造方法
Conradie et al. Effect of milling strategy and tool geometry on machining cost when cutting titanium alloys
Stachurski et al. Influence of cutting conditions in turning with wiper type inserts on surface roughness and cutting forces
CN111185731A (zh) 一种面齿轮的加工方法
CN111185732A (zh) 一种螺旋伞齿轮的加工方法
JP5610124B2 (ja) 成形工具の加工方法
Xiu et al. Study on surface finish mechanism in quick-point grinding
Neslusan et al. Analysis of surface roughness on bearing steel parts after cutting, superfinishing and burnishing operations
Klingelnberg Manufacturing Process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224