JP2014093410A - Vertical type thermal treatment device - Google Patents

Vertical type thermal treatment device Download PDF

Info

Publication number
JP2014093410A
JP2014093410A JP2012242848A JP2012242848A JP2014093410A JP 2014093410 A JP2014093410 A JP 2014093410A JP 2012242848 A JP2012242848 A JP 2012242848A JP 2012242848 A JP2012242848 A JP 2012242848A JP 2014093410 A JP2014093410 A JP 2014093410A
Authority
JP
Japan
Prior art keywords
insulating material
heat insulating
main body
upper lid
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012242848A
Other languages
Japanese (ja)
Other versions
JP5907044B2 (en
Inventor
Kazuhiko Kato
和彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2012242848A priority Critical patent/JP5907044B2/en
Publication of JP2014093410A publication Critical patent/JP2014093410A/en
Application granted granted Critical
Publication of JP5907044B2 publication Critical patent/JP5907044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To prevent separation and fall of an upper lid thermal insulation material in a case where a body thermal insulation material surrounding the side peripheral surface of a reaction pipe over the circumferential direction thereof and the upper lid thermal insulation material closing the upper opening of the body insulation material are provided as a thermal insulation material outside the vertical reaction pipe used for thermally processing a substrate.SOLUTION: In the contact part where the underside peripheral edge part of an upper lid thermal insulation material 22 is in contact with a body thermal insulation material 21, a protective layer 23 higher in density (hardness) than the body thermal insulation material 21 is arranged. This protective layer 23 is joined (sintered) integrally with the upper lid thermal insulation material 22 so that when the upper lid thermal insulation material 22 thermally expands or contracts as the temperature of a reaction pipe 2 increases or decreases, the protective layer 23 deforms following the thermal expansion or contraction. Additionally, the protective layer 23 is formed from ceramics fiber in order to thermally insulate the reaction pipe 2, and the thickness of the protective layer 23 is set to 1 mm to 2 mm.

Description

本発明は、基板保持具に棚状に積載された複数枚の基板に対して、縦型の反応管内にて熱処理を行う縦型熱処理装置に関する。   The present invention relates to a vertical heat treatment apparatus for performing heat treatment in a vertical reaction tube on a plurality of substrates stacked in a shelf on a substrate holder.

半導体ウエハなどの基板(以下「ウエハ」と言う)に対して熱酸化処理あるいはCVD(Chemical Vapor Deposition)処理などの熱処理を行う装置の一つとして、例えば縦型熱処理装置が知られている。この装置は、複数枚の基板を棚状に積載する基板保持具であるウエハボートと、このウエハボートを気密に収納する縦型の反応管とを備えている。そして、反応管の外側には、当該反応管の放熱を抑制するための断熱材が配置されており、この断熱材の内周面には反応管内を加熱するためのヒータが貼設されている。この断熱材は、反応管の側周面を周方向に亘って囲むように構成された概略筒状の本体断熱材と、この本体断熱材の上方側開口部を塞ぐ上蓋断熱材とを備えており、例えばアルミナ(Al2O3)やシリカ(SiO2)などのセラミックス繊維(クロス)などにより構成されている。従って、断熱材の内部には空隙が含まれている。   For example, a vertical heat treatment apparatus is known as one of apparatuses for performing heat treatment such as thermal oxidation treatment or CVD (Chemical Vapor Deposition) treatment on a substrate such as a semiconductor wafer (hereinafter referred to as “wafer”). This apparatus includes a wafer boat which is a substrate holder for stacking a plurality of substrates in a shelf shape, and a vertical reaction tube for airtightly storing the wafer boat. And the heat insulating material for suppressing the heat dissipation of the said reaction tube is arrange | positioned on the outer side of the reaction tube, The heater for heating the inside of a reaction tube is affixed on the internal peripheral surface of this heat insulating material. . This heat insulating material includes a substantially cylindrical main body heat insulating material configured to surround the side peripheral surface of the reaction tube in the circumferential direction, and an upper lid heat insulating material that closes the upper side opening of the main body heat insulating material. For example, it is made of ceramic fibers (cross) such as alumina (Al2O3) or silica (SiO2). Accordingly, voids are included in the heat insulating material.

このような装置では、複数の処理バッチ(ロット)に対して連続的に熱処理を行う中で、反応管の内部は処理バッチ毎に昇降温が繰り返される。具体的には、例えば300℃程度の比較的低温の搬入出温度に設定された反応管内に、複数枚のウエハを積載したウエハボートを下側から気密に収納し、次いで反応管内を例えば1000℃程度の熱処理温度に昇温する。続いて、この熱処理温度にて基板に対して熱処理を行った後、反応管内を既述の搬入出温度に降温させて、ウエハボートを反応管から搬出する。   In such an apparatus, while continuously heat-treating a plurality of processing batches (lots), the temperature inside the reaction tube is repeatedly raised and lowered for each processing batch. Specifically, for example, a wafer boat loaded with a plurality of wafers is stored in an airtight manner from the lower side in a reaction tube set at a relatively low temperature of about 300 ° C., for example, and then the inside of the reaction tube is, for example, 1000 ° C. The temperature is raised to about the heat treatment temperature. Subsequently, after heat-treating the substrate at this heat treatment temperature, the temperature inside the reaction tube is lowered to the aforementioned carry-in / out temperature, and the wafer boat is carried out of the reaction tube.

このように多数回に亘って連続的に熱処理を行うと、既述の上蓋断熱材の一部あるいは全体が脱落して落下する場合がある。特許文献1、2では、上蓋断熱材(天井断熱体や上部断熱材)における亀裂の発生や落下を防止する手法として、上蓋断熱材の下面に溝を形成したり、上蓋断熱材の位置決め部に応力を緩和する処理を施したりする手法が記載されている。また、特許文献3では、上蓋断熱材(頂部断熱材)の上方側の天板を同心円状に分割する手法や、上蓋断熱材の下面に耐熱性のアルミナクロスを貼り付ける技術について記載されており、特許文献4には縦型熱処理装置について記載されている。そして、特許文献5には、無機質成形体32の内面に、無機繊維製クロス33を備えた無機質被覆層31を配置する技術について記載されている。しかしながら、これら特許文献1〜5では、本体断熱材や上蓋断熱材の密度(硬度)については検討されていない。   When the heat treatment is continuously performed many times in this way, a part or the whole of the above-described upper lid heat insulating material may drop and fall. In Patent Documents 1 and 2, as a technique for preventing the occurrence of cracks and falling in the top cover heat insulating material (ceiling heat insulating material or upper heat insulating material), a groove is formed on the lower surface of the top cover heat insulating material, or in the positioning portion of the top cover heat insulating material. A technique for performing a process of relaxing stress is described. Patent Document 3 describes a method of concentrically dividing a top plate on the upper side of the upper lid heat insulating material (top heat insulating material) and a technique for attaching a heat-resistant alumina cloth to the lower surface of the upper lid heat insulating material. Patent Document 4 describes a vertical heat treatment apparatus. Patent Document 5 describes a technique in which an inorganic coating layer 31 including an inorganic fiber cloth 33 is disposed on the inner surface of an inorganic molded body 32. However, in these patent documents 1 to 5, the density (hardness) of the main body heat insulating material and the upper lid heat insulating material is not studied.

特開2009−194297号公報JP 2009-194297 A 特開2007−73865号公報JP 2007-73865 A 特開2003−22979号公報(段落0025)JP 2003-22979 A (paragraph 0025) 特開2004−31846号公報JP 2004-31846 A 特開平5−215473号公報JP-A-5-215473

本発明はこのような事情に鑑みてなされたものであり、その目的は、基板に対して熱処理を行うための縦型の反応管の外側に、当該反応管の側周面を周方向に亘って筒状に囲む本体断熱材と、この本体断熱材の上方側開口部を塞ぐ上蓋断熱材とを断熱材として設けるにあたって、当該上蓋断熱材の脱落を抑制できる縦型熱処理装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to extend the side peripheral surface of the reaction tube in the circumferential direction outside the vertical reaction tube for performing heat treatment on the substrate. To provide a vertical heat treatment apparatus that can suppress the falling off of the upper cover heat insulating material when providing the main body heat insulating material surrounded by a cylindrical shape and the upper cover heat insulating material that closes the upper opening of the main body heat insulating material as heat insulating materials. is there.

本発明の縦型熱処理装置は、
基板保持具に棚状に積載された複数枚の基板に対して、縦型の反応管内にて熱処理を行う縦型熱処理装置において、
前記反応管内の基板を加熱するための加熱部と、
この加熱部により加熱される領域の外側にて前記反応管の側周面を周方向に沿って筒状に囲むように配置され、空隙を含むセラミックスにより構成された本体断熱材と、
この本体断熱材の上方側開口部を塞ぐように配置され、前記本体断熱材と密度が揃うように構成された断熱材からなる上蓋断熱材と、
この上蓋断熱材が熱膨張収縮する時に、当該上蓋断熱材の熱膨張収縮に追随して変形しながら前記上蓋断熱材の損傷を抑えるために、前記上蓋断熱材の下面側周縁部における前記本体断熱材との接触部に設けられ、前記本体断熱材よりも高い密度であって、当該上蓋断熱材とは別部材である耐火物からなる保護層と、を備え、
この保護層は、無機成分を含む接着剤を用いて当該上蓋断熱材に接着された後、熱処理によって前記上蓋断熱材と一体化していることを特徴とする。
The vertical heat treatment apparatus of the present invention is
In a vertical heat treatment apparatus for performing heat treatment in a vertical reaction tube on a plurality of substrates stacked in a shelf on a substrate holder,
A heating unit for heating the substrate in the reaction tube;
A main body heat insulating material, which is disposed outside the region heated by the heating unit so as to surround the side peripheral surface of the reaction tube in a cylindrical shape along the circumferential direction, and is composed of ceramics including voids;
An upper lid heat insulating material, which is arranged so as to close the upper opening of the main body heat insulating material, and is configured to have the same density as the main body heat insulating material,
In order to suppress damage to the upper lid heat insulating material while deforming following the thermal expansion / shrinkage of the upper lid heat insulating material when the upper lid heat insulating material thermally expands / shrinks, the main body heat insulating material at the lower edge of the upper lid heat insulating material A protective layer made of a refractory material that is provided at a contact portion with the material, has a higher density than the main body heat insulating material, and is a separate member from the upper lid heat insulating material,
The protective layer is bonded to the upper lid heat insulating material using an adhesive containing an inorganic component, and then integrated with the upper lid heat insulating material by heat treatment.

既述の縦型熱処理装置は、以下の態様を採っても良い。即ち、前記保護層は、前記本体断熱材の密度に対して1.5倍〜2倍以上の密度となるように構成されている態様。
前記保護層の厚み寸法は、前記本体断熱材と前記上蓋断熱材との間の領域を介して前記反応容器が放熱することを抑制するために、且つ前記上蓋断熱材が前記本体断熱材と摺動して摩耗することを抑制するために、1mm以上2mm以下に設定されている態様。
前記反応管内にて行われる熱処理は、1000℃以上の熱処理である態様。
前記本体断熱材及び前記上蓋断熱材の外側には外装体が設けられ、
これら本体断熱材及び上蓋断熱材と前記外装体との間には、前記本体断熱材及び前記上蓋断熱材よりも密度の小さい緩衝材と、これら本体断熱材及び上蓋断熱材が熱膨張する時の伸び代となる隙間領域との少なくとも一方が介在している態様。
The above-described vertical heat treatment apparatus may take the following aspects. That is, the protective layer is configured to have a density of 1.5 to 2 times or more the density of the main body heat insulating material.
The thickness of the protective layer is set to prevent the reaction vessel from radiating heat through the region between the main body heat insulating material and the upper lid heat insulating material, and the upper cover heat insulating material slides on the main body heat insulating material. In order to suppress moving and wear, an aspect set to 1 mm or more and 2 mm or less.
The heat treatment performed in the reaction tube is a heat treatment at 1000 ° C. or higher.
An exterior body is provided outside the main body heat insulating material and the upper lid heat insulating material,
Between these main body heat insulating material and upper lid heat insulating material and the exterior body, a buffer material having a density lower than that of the main body heat insulating material and the upper cover heat insulating material, and when the main body heat insulating material and the upper cover heat insulating material are thermally expanded. A mode in which at least one of the gap region serving as the elongation allowance is interposed.

本発明は、基板に対して熱処理を行う反応管の側周面に沿うように筒状の本体断熱材を設けると共に、この本体断熱材の上方側開口部に上蓋断熱材を配置するにあたり、本体断熱材よりも高い密度の断熱材からなる保護層を上蓋断熱材の下面側周縁部における前記本体断熱材との接触部に配置している。そして、この保護層について、上蓋断熱材が熱膨張収縮する時に、当該上蓋断熱材の熱膨張収縮に追随して変形するように構成している。従って、反応管の昇降温を行っても、前記本体断熱材との摺動による上蓋断熱材の損傷を抑えることができる。   The present invention provides a cylindrical main body heat insulating material along the side peripheral surface of a reaction tube that performs heat treatment on a substrate, and the main body heat insulating material is disposed in an upper opening of the main body heat insulating material. A protective layer made of a heat insulating material having a density higher than that of the heat insulating material is arranged at the contact portion with the main body heat insulating material at the lower surface side peripheral portion of the upper cover heat insulating material. The protective layer is configured to be deformed following the thermal expansion and contraction of the upper lid heat insulating material when the upper lid heat insulating material is thermally expanded and contracted. Therefore, even if the temperature of the reaction tube is raised or lowered, damage to the upper lid heat insulating material due to sliding with the main body heat insulating material can be suppressed.

本発明の縦型熱処理装置の一例を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly an example of the vertical heat processing apparatus of this invention. 前記縦型熱処理装置の断熱材における上蓋断熱材を示す斜視図である。It is a perspective view which shows the upper cover heat insulating material in the heat insulating material of the said vertical heat processing apparatus. 前記断熱材を示す縦断面図である。It is a longitudinal cross-sectional view which shows the said heat insulating material. 前記断熱材を示す分解斜視図である。It is a disassembled perspective view which shows the said heat insulating material. 前記断熱材に保護層を形成しない場合に当該断熱材に生じる損傷を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the damage which arises in the said heat insulating material when a protective layer is not formed in the said heat insulating material. 前記断熱材に保護層を形成しない場合に当該断熱材に生じる損傷を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the damage which arises in the said heat insulating material when a protective layer is not formed in the said heat insulating material. 前記断熱材に保護層を形成しない場合に当該断熱材に生じる損傷を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the damage which arises in the said heat insulating material when a protective layer is not formed in the said heat insulating material. 液体からなる接着剤を用いて断熱材の表面を硬化させる様子を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically a mode that the surface of a heat insulating material is hardened using the adhesive agent which consists of a liquid. 前記接着剤を用いて断熱材の表面を硬化させた時の当該表面を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the said surface when the surface of a heat insulating material is hardened using the said adhesive agent. 前記断熱材に保護層に代えて石英板を設けた様子を示す縦断面図である。It is a longitudinal cross-sectional view which shows a mode that it replaced with the protective layer at the said heat insulating material, and provided the quartz plate. 前記石英板を設けた時の断熱材の熱膨張収縮を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the thermal expansion / contraction of a heat insulating material when the said quartz plate is provided. 前記断熱材に保護層に代えて芯材を配置した例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the example which replaced with the protective layer instead of the protective layer at the said heat insulating material. 本発明の保護層を形成する手法の一例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically an example of the method of forming the protective layer of this invention. 前記保護層の形成された断熱材を示す縦断面図である。It is a longitudinal cross-sectional view which shows the heat insulating material in which the said protective layer was formed. 本発明の断熱材が熱収縮する時の様子を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows a mode when the heat insulating material of this invention heat-shrinks. 本発明の断熱材が熱膨張する時の様子を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically a mode when the heat insulating material of this invention thermally expands. 本発明の断熱材を用いた時に当該断熱材に生じる損傷を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the damage which arises in the said heat insulating material when the heat insulating material of this invention is used. 本発明の他の例における断熱材を示す斜視図である。It is a perspective view which shows the heat insulating material in the other example of this invention. 前記他の例における断熱材を示す縦断面図である。It is a longitudinal cross-sectional view which shows the heat insulating material in the said other example.

本発明の実施の形態に係る縦型熱処理装置の一例について、図1〜図4を参照して説明する。始めにこの装置の概要について簡単に説明すると、この装置は、複数枚例えば150枚のウエハWを棚状に積載するウエハボート1と、当該ウエハボート1を気密に収納して熱処理を行うための縦型の反応管2とを備えている。そして、この装置は、ウエハWに対して熱処理を行うにあたって、反応管2内の昇降温を多数回に亘って行っても、当該反応管2を断熱するための断熱材3の天井面(上蓋断熱材22)が破損(脱落)しにくいように構成されている。続いて、この装置の具体的な構成について説明する。   An example of a vertical heat treatment apparatus according to an embodiment of the present invention will be described with reference to FIGS. First, the outline of this apparatus will be briefly described. This apparatus includes a wafer boat 1 on which a plurality of, for example, 150 wafers W are stacked in a shelf shape, and an airtight storage for the wafer boat 1 to perform heat treatment. A vertical reaction tube 2 is provided. And when this apparatus heat-processes with respect to the wafer W, even if it raises / lowers the temperature in the reaction tube 2 over many times, the ceiling surface (upper cover) of the heat insulating material 3 for thermally insulating the said reaction tube 2 The heat insulating material 22) is configured to be difficult to break (drop off). Next, a specific configuration of this apparatus will be described.

既述の反応管2の下方側には、当該反応管2の下端周縁部を周方向に亘って気密に支持するために概略円筒形状に形成された筒状体4が配置されており、この筒状体4は、円板状の蓋体5によって下端開口部が気密に塞がれている。また、反応管2の内部には、ウエハボート1に隣接するように、当該反応管2の長さ方向に沿って上下方向に伸びるガスノズル6が収納されている。このガスノズル6の下端部は、筒状体4の側壁部を気密に貫通して、バルブV及び流量調整部Mを介して処理ガス源6aに接続されている。この処理ガス源6aとしては、ウエハWに対して行われる熱処理の種別に応じて、例えば窒素(N2)ガスなどの不活性ガスや、シリコン(Si)系ガスあるいはオゾン(O3)ガスなどの貯留源が個別に配置される。図1中6bはガスノズル6の側面に形成されたガス吐出孔である。   On the lower side of the above-described reaction tube 2, a cylindrical body 4 formed in a substantially cylindrical shape is disposed in order to airtightly support the peripheral edge of the lower end of the reaction tube 2 in the circumferential direction. The cylindrical body 4 is hermetically closed at its lower end opening by a disc-shaped lid body 5. A gas nozzle 6 extending in the vertical direction along the length direction of the reaction tube 2 is accommodated in the reaction tube 2 so as to be adjacent to the wafer boat 1. The lower end portion of the gas nozzle 6 passes through the side wall portion of the cylindrical body 4 in an airtight manner, and is connected to the processing gas source 6a via the valve V and the flow rate adjusting portion M. As the processing gas source 6a, for example, an inert gas such as nitrogen (N2) gas, a silicon (Si) -based gas or ozone (O3) gas is stored depending on the type of heat treatment performed on the wafer W. The sources are arranged individually. In FIG. 1, reference numeral 6 b denotes a gas discharge hole formed on the side surface of the gas nozzle 6.

筒状体4の側周面におけるガスノズル6に対向する位置には、反応管2内を真空排気するための排気口7が形成されており、この排気口7から伸びる排気管8には、バタフライバルブなどの圧力調整部9を介して真空ポンプなどの真空排気機構10が接続されている。図1中11はウエハボート1を鉛直軸周りに回転自在に支持する回転軸、12はこの回転軸11の下端側に配置されたモータなどの駆動部である。   An exhaust port 7 for evacuating the inside of the reaction tube 2 is formed at a position facing the gas nozzle 6 on the side peripheral surface of the cylindrical body 4, and an exhaust tube 8 extending from the exhaust port 7 has a butterfly An evacuation mechanism 10 such as a vacuum pump is connected via a pressure adjustment unit 9 such as a valve. In FIG. 1, reference numeral 11 denotes a rotating shaft that supports the wafer boat 1 so as to be rotatable about a vertical axis, and reference numeral 12 denotes a driving unit such as a motor disposed on the lower end side of the rotating shaft 11.

ここで、反応管2の内部にてウエハWに対して行われる熱処理における一連のシーケンスについて簡単に説明しておく。始めに、例えば300℃程度の搬入出温度に設定された反応管2に対して下方側に離間した位置にて、ウエハボート1に複数枚のウエハWを積載した後、当該ウエハボート1を上昇させて、反応管2に気密に収納する。次いで、反応管2内を例えば1000℃程度の熱処理温度に加熱すると共に、ウエハボート1を鉛直軸周りに回転させながら、当該反応管2内に処理ガスを供給して、例えば真空雰囲気にて各ウエハWに対して熱処理を行う。続いて、反応管2内を既述の搬入出温度に降温させた後、ウエハボート1を下降させてウエハWを取り出す。こうして後続の未処理のウエハWについても、同様に熱処理を順次行う。このような熱処理を行っている間、反応管2の内部では、当該反応管2の外側に設けられた断熱材3により放熱が抑えられて、水平方向及び上下方向における均熱性が確保される。   Here, a series of sequences in the heat treatment performed on the wafer W inside the reaction tube 2 will be briefly described. First, after loading a plurality of wafers W on the wafer boat 1 at a position spaced apart from the reaction tube 2 set to a carry-in / out temperature of, for example, about 300 ° C., the wafer boat 1 is raised. And stored in the reaction tube 2 in an airtight manner. Next, the inside of the reaction tube 2 is heated to a heat treatment temperature of about 1000 ° C., for example, and a processing gas is supplied into the reaction tube 2 while rotating the wafer boat 1 around the vertical axis. A heat treatment is performed on the wafer W. Subsequently, after the inside of the reaction tube 2 is lowered to the carry-in / out temperature described above, the wafer boat 1 is lowered and the wafer W is taken out. In this way, the subsequent unprocessed wafers W are sequentially subjected to heat treatment in the same manner. During such heat treatment, heat dissipation is suppressed inside the reaction tube 2 by the heat insulating material 3 provided outside the reaction tube 2, so that heat uniformity in the horizontal and vertical directions is ensured.

即ち、以上説明した反応管2の外側には、既述の断熱材3と、反応管2内を前記熱処理温度に加熱するための加熱部をなすヒータ20とが配置されている。具体的には、断熱材3は、反応管2の側周面を周方向に沿って囲むように概略円筒状に形成された本体断熱材21と、この本体断熱材21の上方側開口部を塞ぐように配置された円板状の上蓋断熱材22とを備えている。既述のヒータ20は、この本体断熱材21の内周面に周方向に沿って設けられており、図1では簡略化しているが、高さ方向において複数の領域に区画されて、各領域の温度を個別に調整自在に構成されている。尚、本体断熱材21については、平面で見た時に円弧状をなす複数の部材を周方向に互いに接合して、環状に一体化したものを用いても良い。   That is, on the outside of the reaction tube 2 described above, the above-described heat insulating material 3 and the heater 20 serving as a heating unit for heating the inside of the reaction tube 2 to the heat treatment temperature are arranged. Specifically, the heat insulating material 3 includes a main body heat insulating material 21 formed in a substantially cylindrical shape so as to surround the side peripheral surface of the reaction tube 2 along the circumferential direction, and an upper opening of the main body heat insulating material 21. And a disc-shaped upper lid heat insulating material 22 arranged so as to be closed. The above-described heater 20 is provided along the circumferential direction on the inner peripheral surface of the main body heat insulating material 21 and is simplified in FIG. 1, but is divided into a plurality of regions in the height direction. The temperature is individually adjustable. In addition, about the main body heat insulating material 21, you may use what united the some member which made | forms circular arc shape when it sees in the plane in the circumferential direction, and was integrated in cyclic | annular form.

上蓋断熱材22の下端面における概略中央部には、図1及び図2に示すように、上方側に向かって窪むように凹部22aが形成されており、この凹部22aの側方側における前記下端面には、当該凹部22aの内部領域と装置の外部とを連通させるための溝部22bが配置されている。従って、ウエハWに対する熱処理が終了した後、反応管2と断熱材3との間に領域に対して図示しない吸気路を介して気体を流入させると共に溝部22bからこの気体を排出することにより、反応管2を強制的に空冷できるように構成されている。図1中22cは、例えば装置の外側から溝部22bに沿うように上蓋断熱材22に貫挿された排気管である。尚、これら凹部22a、溝部22b及び排気管22cについては、図3では描画を省略している。   As shown in FIGS. 1 and 2, a concave portion 22a is formed in the approximate center portion of the lower end surface of the upper lid heat insulating material 22 so as to be recessed upward, and the lower end surface on the side of the concave portion 22a. Is provided with a groove portion 22b for communicating the inner region of the concave portion 22a with the outside of the apparatus. Therefore, after the heat treatment on the wafer W is completed, the gas is allowed to flow into the region between the reaction tube 2 and the heat insulating material 3 via an intake passage (not shown) and discharged from the groove 22b. The tube 2 can be forcibly cooled by air. In FIG. 1, 22 c is an exhaust pipe that is inserted into the upper lid heat insulating material 22 along the groove 22 b from the outside of the apparatus, for example. In addition, drawing about these recessed part 22a, the groove part 22b, and the exhaust pipe 22c is abbreviate | omitted in FIG.

本体断熱材21及び上蓋断熱材22は、各々アルミナやシリカなどのセラミックスの繊維(クロス)により構成されており、従って各々内部に多数の空隙を備えている。そのため、本体断熱材21と上蓋断熱材22とが互いに摺動すると、これら本体断熱材21や上蓋断熱材22が破断しやすくなっていると言える。また、これら本体断熱材21と上蓋断熱材22とは、密度(嵩密度)が互いに揃うように、即ち強度が互いに揃うように構成されており、密度の一例を挙げるとこの例では各々0.45g/cm3となっている。   The main body heat insulating material 21 and the upper lid heat insulating material 22 are each composed of ceramic fibers (cloth) such as alumina and silica, and therefore each have a large number of voids therein. Therefore, it can be said that when the main body heat insulating material 21 and the upper lid heat insulating material 22 slide on each other, the main body heat insulating material 21 and the upper cover heat insulating material 22 are easily broken. In addition, the main body heat insulating material 21 and the upper lid heat insulating material 22 are configured such that the densities (bulk density) are aligned with each other, that is, the strengths are aligned with each other. 45 g / cm @ 3.

ここで、「密度が揃う」とは、上蓋断熱材22の密度が本体断熱材21の密度とほぼ同じ値となることであり、断熱能力で表現すると上蓋断熱材22の断熱能力が本体断熱材21の断熱能力に対して90%〜110%であることを指す。即ち、反応管2をある温度に設定すると共に、この温度に設定された反応管2の外側に上蓋断熱材22や本体断熱材21などの断熱材3を任意の時間配置した時、この断熱材3における反応管2とは反対側の面の温度について、上蓋断熱材22では本体断熱材21の90%〜110%になる。この例では、上蓋断熱材22の断熱能力は、本体断熱材21の断熱能力と同じ値になっている。   Here, “the density is uniform” means that the density of the upper lid heat insulating material 22 is substantially the same value as the density of the main body heat insulating material 21, and the heat insulating capacity of the upper cover heat insulating material 22 is expressed by the heat insulating capacity. It refers to 90% to 110% with respect to 21 heat insulation capacity. That is, when the reaction tube 2 is set to a certain temperature, and the heat insulating material 3 such as the top cover heat insulating material 22 and the main body heat insulating material 21 is disposed outside the reaction tube 2 set to this temperature, this heat insulating material 3, the temperature of the surface on the side opposite to the reaction tube 2 is 90% to 110% of the main body heat insulating material 21 in the upper lid heat insulating material 22. In this example, the heat insulating capacity of the upper lid heat insulating material 22 is the same value as the heat insulating capacity of the main body heat insulating material 21.

図1及び図3における30は、これら本体断熱材21及び上蓋断熱材22の外周面(側面及び上面)に沿うように例えばステンレスなどの金属板により構成された外装体(ケーシング)であり、側周面に設けられた側面部30aと天板30bとが図示しないボルトなどにより互いに固定されている。そして、外装体30と、本体断熱材21及び上蓋断熱材22との間には、本体断熱材21や上蓋断熱材22が熱膨張できるように、これら本体断熱材21や上蓋断熱材22よりも密度(硬度)が小さい補助断熱材3aが緩衝材(ブラケット)として各々介在している。補助断熱材3aは、本体断熱材21や上蓋断熱材22と同様に、セラミックスの繊維などから構成されている。また、補助断熱材3aの側周面と外装体30との間には、当該補助断熱材3aの側周面を周方向に亘って囲むように、補助断熱材3aや断熱材3の熱膨張収縮する時の伸び代として隙間領域3bが介在している。   1 and 3 is an exterior body (casing) made of a metal plate such as stainless steel along the outer peripheral surfaces (side surfaces and upper surface) of the main body heat insulating material 21 and the upper lid heat insulating material 22. A side surface portion 30a and a top plate 30b provided on the peripheral surface are fixed to each other by a bolt or the like (not shown). And between the exterior body 30 and the main body heat insulating material 21 and the upper lid heat insulating material 22, the main body heat insulating material 21 and the upper cover heat insulating material 22 can be more thermally expanded than the main body heat insulating material 21 and the upper cover heat insulating material 22. Auxiliary heat insulating materials 3a having a small density (hardness) are interposed as buffer materials (brackets). The auxiliary heat insulating material 3a is composed of ceramic fibers or the like, like the main body heat insulating material 21 and the upper lid heat insulating material 22. Further, between the side peripheral surface of the auxiliary heat insulating material 3a and the exterior body 30, the thermal expansion of the auxiliary heat insulating material 3a and the heat insulating material 3 so as to surround the side peripheral surface of the auxiliary heat insulating material 3a in the circumferential direction. A gap region 3b is interposed as an expansion allowance when contracting.

ここで、上蓋断熱材22の下面側の周縁部における本体断熱材21と接触する部位には、図2〜図4に示すように概略リング状の保護層23が配置されている。この保護層23は、本体断熱材21や上蓋断熱材22と同様にアルミナやシリカなどのセラミックスの繊維により構成された耐火物(断熱材)となっており、従って本体断熱材21及び上蓋断熱材22を構成する材質の少なくとも一つを含んでいる。   Here, in the part which contacts the main body heat insulating material 21 in the peripheral part of the lower surface side of the upper lid heat insulating material 22, as shown in FIGS. 2-4, the substantially ring-shaped protective layer 23 is arrange | positioned. This protective layer 23 is a refractory (heat insulating material) made of ceramic fibers such as alumina and silica, like the main body heat insulating material 21 and the upper cover heat insulating material 22, and therefore the main body heat insulating material 21 and the upper cover heat insulating material. 22 is included.

また、この保護層23は、本体断熱材21や上蓋断熱材22よりも密度(硬度)が高くなるように、例えば前記繊維が密に充填されている。具体的には、保護層23の密度は、例えば1.0g/cm3〜2.0g/cm3となっており、従って本体断熱材21の密度と比べて1.5倍以上、好ましくは2倍以上となっている。ここで、保護層23を本体断熱材21よりも高密度に構成するにあたり、保護層23がセラミックスの繊維により構成された「耐火物」をなしていることから、保護層23には気孔が含まれている。   The protective layer 23 is densely filled with, for example, the fibers so that the density (hardness) is higher than that of the main body heat insulating material 21 and the upper lid heat insulating material 22. Specifically, the density of the protective layer 23 is, for example, 1.0 g / cm 3 to 2.0 g / cm 3, so that the density of the main body heat insulating material 21 is 1.5 times or more, preferably 2 times or more. It has become. Here, when the protective layer 23 is formed at a higher density than the main body heat insulating material 21, since the protective layer 23 is a “refractory material” made of ceramic fibers, the protective layer 23 includes pores. It is.

このように保護層23を断熱材により構成していることから、当該保護層23(後述の接着層24を含む保護層23)の熱膨張収縮は、上蓋断熱材22の熱膨張収縮率と同程度(同じ値)となるように調整されている。また、保護層23の厚み寸法tは、図4に示すように、1mm以上2mm以下に設定されている。尚、図1では保護層23について描画を省略している。また、図2は、上蓋断熱材22を下方側から見た斜視図を示している。   Since the protective layer 23 is thus formed of a heat insulating material, the thermal expansion / shrinkage of the protective layer 23 (a protective layer 23 including an adhesive layer 24 described later) is the same as the thermal expansion / shrinkage rate of the upper lid heat insulating material 22. It is adjusted so that it will be about the same (same value). Moreover, the thickness dimension t of the protective layer 23 is set to 1 mm or more and 2 mm or less as shown in FIG. In FIG. 1, drawing of the protective layer 23 is omitted. Moreover, FIG. 2 has shown the perspective view which looked at the upper cover heat insulating material 22 from the downward side.

そして、保護層23は、反応管2の昇降温に伴って上蓋断熱材22が熱膨張収縮する時、当該熱膨張収縮に追随して変形するように、当該上蓋断熱材22と一体的に構成されている。このように保護層23を構成した理由について、当該保護層23の形成方法と共に以下に詳述する。
即ち、上蓋断熱材22は、既述のように概略円板状になっており、平面で見た時に中実(中央部についても上蓋断熱材22を構成する繊維が配置されている)となっている。一方、本体断熱材21は、平面で見た時に中央部にウエハボート1が配置されていて、中空になっている。従って、平面で見た時に、反応管2の昇降温に伴って熱膨張収縮する長さ寸法は、本体断熱材21と上蓋断熱材22とでは互いに異なる寸法になっている。そのため、反応管2が昇降温する時、保護層23を配置していないと、これら本体断熱材21と上蓋断熱材22とが互いに摺動することになる。
The protective layer 23 is configured integrally with the upper lid heat insulating material 22 so that the upper lid heat insulating material 22 is deformed following the thermal expansion and contraction when the upper lid heat insulating material 22 is thermally expanded and contracted as the reaction tube 2 is heated and lowered. Has been. The reason why the protective layer 23 is configured in this manner will be described in detail below together with a method for forming the protective layer 23.
That is, the upper lid heat insulating material 22 has a substantially disk shape as described above, and is solid when viewed on a plane (the fibers constituting the upper lid heat insulating material 22 are also arranged in the central portion). ing. On the other hand, the main body heat insulating material 21 is hollow because the wafer boat 1 is arranged in the center when viewed in a plane. Therefore, when viewed in a plane, the length dimension of thermal expansion / contraction as the temperature of the reaction tube 2 increases and decreases is different between the main body heat insulating material 21 and the upper lid heat insulating material 22. Therefore, when the reaction tube 2 moves up and down, if the protective layer 23 is not disposed, the main body heat insulating material 21 and the upper lid heat insulating material 22 slide on each other.

そして、本体断熱材21及び上蓋断熱材22は、互いの密度が揃っており、またセラミックスの繊維により各々構成されていて破損しやすい。そのため、製造ばらつきによって生じるこれら本体断熱材21と上蓋断熱材22との間の密度差により、あるいは本体断熱材21と上蓋断熱材22とが接触する部位における極僅かな表面状態の違いなどによって、上蓋断熱材22が優先的に摩耗して脱落するおそれがある。   The main body heat insulating material 21 and the upper cover heat insulating material 22 have the same density and are each composed of ceramic fibers and are easily damaged. Therefore, due to the difference in density between the main body heat insulating material 21 and the upper lid heat insulating material 22 caused by manufacturing variations, or due to a slight difference in surface condition at the site where the main body heat insulating material 21 and the upper cover heat insulating material 22 are in contact, etc. There is a possibility that the upper lid heat insulating material 22 is worn preferentially and falls off.

即ち、上蓋断熱材22及び本体断熱材21はいずれもセラミックスの繊維により構成されているので、互いに同じ物性となるように製造しようとしても、現実的には密度などがばらつきやすい。具体的には、上蓋断熱材22が本体断熱材21と比べて僅かであっても密度が高い場合、これら上蓋断熱材22と本体断熱材21とが摺動すると、図5に示すように、本体断熱材21の上面側内周部が上蓋断熱材22の下端側外縁部により削られる。この場合には、上蓋断熱材22の脱落は起こりにくい。尚、図5では、本体断熱材21が摩耗する様子について誇張して描画している。後述の図6、図7及び図17についても同様である。   That is, since both the upper lid heat insulating material 22 and the main body heat insulating material 21 are made of ceramic fibers, in reality, the density and the like are likely to vary even if they are manufactured so as to have the same physical properties. Specifically, if the upper lid heat insulating material 22 is slightly higher in density than the main body heat insulating material 21, if the upper cover heat insulating material 22 and the main body heat insulating material 21 slide, as shown in FIG. The inner peripheral portion on the upper surface side of the main body heat insulating material 21 is scraped by the lower edge side outer edge portion of the upper lid heat insulating material 22. In this case, the upper lid heat insulating material 22 is unlikely to drop off. In FIG. 5, the state in which the main body heat insulating material 21 is worn is exaggerated. The same applies to FIGS. 6, 7 and 17 described later.

一方、本体断熱材21が上蓋断熱材22よりも密度が高い場合、図6に示すように、摺動時に本体断熱材21の上面側内周部によって上蓋断熱材22の下面側外周部が段状に削られていき、段部25が形成される場合がある。この場合には、上蓋断熱材22が熱膨張する時に段部25に応力が集中することにより、当該段部25を基点としてクラック26が生じて、上蓋断熱材22の下面側の一部あるいは全体が反応管2に向かって脱落するおそれがある。このように上蓋断熱材22の脱落が生じると、その後のウエハWに対する熱処理では、反応管2内の均熱性が得られにくくなってしまう。   On the other hand, when the main body heat insulating material 21 has a higher density than the upper cover heat insulating material 22, the lower surface side outer peripheral portion of the upper cover heat insulating material 22 is stepped by the upper surface side inner peripheral portion of the main body heat insulating material 21 when sliding, as shown in FIG. In some cases, the step portion 25 is formed. In this case, when the upper lid heat insulating material 22 is thermally expanded, stress concentrates on the step portion 25, thereby generating a crack 26 with the step portion 25 as a base point, and a part or the whole of the lower surface side of the upper cover heat insulating material 22. May fall out toward the reaction tube 2. If the upper lid heat insulating material 22 falls off as described above, it is difficult to obtain the thermal uniformity in the reaction tube 2 in the subsequent heat treatment on the wafer W.

また、本体断熱材21の一部の部位については上蓋断熱材22よりも密度が高く、一方当該部位とは別の部位では密度が低い場合、即ち本体断熱材21及び上蓋断熱材22の密度が互いに拮抗している場合、図7に示すように、上蓋断熱材22及び本体断熱材21のいずれについても削れてしまう。この場合であっても、段部25やクラック26を基点として上蓋断熱材22の脱落が起こるおそれがある。   In addition, the density of the part of the main body heat insulating material 21 is higher than that of the upper cover heat insulating material 22, while the density of the main body heat insulating material 21 and the upper cover heat insulating material 22 is lower than the other part. When they are antagonistic to each other, as shown in FIG. 7, both the upper lid heat insulating material 22 and the main body heat insulating material 21 are scraped off. Even in this case, the upper lid heat insulating material 22 may fall off with the step portion 25 or the crack 26 as a base point.

ここで、断熱材3(上蓋断熱材22)の表面に例えば硬質の被膜を形成する技術として、断熱材3の表面を無機材料によりコーティングする手法が挙げられる。具体的には、図8に示すように、無機バインダを成分とする接着剤41を断熱材3の表面に塗布して、その後図9に示すように熱処理(焼結)を行う。この手法では、接着剤41に含まれるセラミックスからなる粉末が断熱材3を構成するセラミックスの繊維に付着した後焼結するので、あるいは前記粉末を介して互いに隣接する繊維同士が焼結するので、当該断熱材3の表面には、内部よりも密度(硬度)が向上した高密度層42が形成される。   Here, as a technique for forming, for example, a hard film on the surface of the heat insulating material 3 (upper cover heat insulating material 22), a method of coating the surface of the heat insulating material 3 with an inorganic material can be cited. Specifically, as shown in FIG. 8, an adhesive 41 containing an inorganic binder as a component is applied to the surface of the heat insulating material 3, and then heat treatment (sintering) is performed as shown in FIG. In this method, since the powder made of ceramics contained in the adhesive 41 adheres to the ceramic fibers constituting the heat insulating material 3 and then sinters, or fibers adjacent to each other through the powder sinter, On the surface of the heat insulating material 3, a high-density layer 42 having a density (hardness) higher than that inside is formed.

しかしながら、断熱材3が既に詳述したようにセラミックスの繊維により構成されているので、液体からなる接着剤41を用いると、この接着剤41は断熱材3の内部に浸透していく。言い換えると、液体からなる接着剤41を用いると、断熱材3にいわば含浸させていることになるので、図9の下側に拡大して示すように、断熱材3の表層よりも内側に入り込んだ位置にて高密度層42が形成される場合がある。このように高密度層42が断熱材3の内部に形成されると、当該断熱材3の表層には、依然として高密度層42よりも密度の低い層が露出してしまう。従って、液体からなる接着剤41を用いて多孔質状の断熱材3の表面を硬化させようとしても、当該断熱材3の表面の密度がまちまちになってしまう。即ち、接着剤41を用いて断熱材3の表面に皮膜を形成する手法は、例えば断熱材3を構成する繊維などが当該断熱材3の内部から外側に飛散することを抑制するための技術であり、断熱材3、3同士が互いに摺動することを想定した技術ではないと言える。尚、図8及び図9では、既述の図1などとは断熱材3(上蓋断熱材22)の上下を反転させている。   However, since the heat insulating material 3 is composed of ceramic fibers as already described in detail, the adhesive 41 penetrates into the heat insulating material 3 when a liquid adhesive 41 is used. In other words, when the adhesive 41 made of liquid is used, the heat insulating material 3 is impregnated so to speak, and as shown in an enlarged view on the lower side of FIG. The high-density layer 42 may be formed at the position. When the high-density layer 42 is thus formed inside the heat insulating material 3, a layer having a lower density than the high-density layer 42 is still exposed on the surface layer of the heat insulating material 3. Therefore, even if it is going to harden the surface of the porous heat insulating material 3 using the adhesive agent 41 which consists of liquids, the density of the surface of the said heat insulating material 3 will vary. That is, the technique of forming a film on the surface of the heat insulating material 3 using the adhesive 41 is a technique for suppressing, for example, fibers constituting the heat insulating material 3 from scattering from the inside of the heat insulating material 3 to the outside. Yes, it can be said that this is not a technique that assumes that the heat insulating materials 3 and 3 slide on each other. In FIGS. 8 and 9, the top and bottom of the heat insulating material 3 (upper cover heat insulating material 22) is inverted from that of FIG. 1 described above.

更に、上蓋断熱材22と本体断熱材21との間における摺動を抑える手法としては、高密度層42に代えて、図10に示すように、例えば石英などからなる固体の板状体43を上蓋断熱材22の下面側に配置する例が挙げられる。このように板状体43を配置した場合には、この板状体43は接着剤41のように断熱材3(上蓋断熱材22)の内部には進入しないので、当該上蓋断熱材22の周方向に亘って本体断熱材21との間に介在することになる。しかしながら、反応管2の昇降温を行う時、上蓋断熱材22と板状体43との間では熱膨張収縮率が互いに異なる。そのため、図11に示すように、上蓋断熱材22と板状体43との間で摺動が起こるので、当該板状体43によって上蓋断熱材22が削れてしまう。即ち、図11における板状体43は、上蓋断熱材22から見ると、当該上蓋断熱材22と一体的に熱膨張収縮しないので、本体断熱材21の一部を構成していると言える。また、このように上蓋断熱材22と本体断熱材21との間の領域に断熱材3以外の部材を配置すると、当該領域を介して反応管2が放熱するので、当該反応管2の内部では良好な均熱性が得られない。   Furthermore, as a method of suppressing the sliding between the upper lid heat insulating material 22 and the main body heat insulating material 21, instead of the high-density layer 42, as shown in FIG. The example arrange | positioned on the lower surface side of the upper cover heat insulating material 22 is given. When the plate-like body 43 is arranged in this way, the plate-like body 43 does not enter the heat insulating material 3 (upper cover heat insulating material 22) like the adhesive 41. It is interposed between the main body heat insulating material 21 over the direction. However, when raising and lowering the temperature of the reaction tube 2, the thermal expansion / contraction rate differs between the upper lid heat insulating material 22 and the plate-like body 43. Therefore, as shown in FIG. 11, since sliding occurs between the upper lid heat insulating material 22 and the plate-like body 43, the upper lid heat insulating material 22 is scraped by the plate-like body 43. That is, it can be said that the plate-like body 43 in FIG. 11 constitutes a part of the main body heat insulating material 21 because it does not thermally expand and contract integrally with the upper cover heat insulating material 22 when viewed from the upper cover heat insulating material 22. Further, when a member other than the heat insulating material 3 is arranged in the region between the upper lid heat insulating material 22 and the main body heat insulating material 21 in this way, the reaction tube 2 radiates heat through the region, so that the inside of the reaction tube 2 Good thermal uniformity cannot be obtained.

更にまた、上蓋断熱材22自体の密度を本体断熱材21の密度よりも高くした場合には、当該上蓋断熱材22の断熱性能が悪くなってしまう。即ち、これら上蓋断熱材22や本体断熱材21などの断熱材3は、内部に含まれる空隙が大きい程断熱性が高くなり、一方空隙が小さい程断熱性が劣ってしまう。従って、上蓋断熱材22そのものの高密度化を図った場合には、反応管2内では良好な均熱性が得られなくなってしまう。そのため、上蓋断熱材22そのものを高密度化しながら良好な断熱性を得ようとすると、当該上蓋断熱材22の高さ寸法を大きくする必要があるので、装置の大型化やコストアップに繋がってしまう。   Furthermore, when the density of the upper lid heat insulating material 22 itself is higher than the density of the main body heat insulating material 21, the heat insulating performance of the upper lid heat insulating material 22 is deteriorated. That is, the heat insulating materials 3 such as the upper cover heat insulating material 22 and the main body heat insulating material 21 have a higher heat insulating property as the voids contained therein are larger, and the heat insulating properties are deteriorated as the voids are smaller. Therefore, when the density of the upper lid heat insulating material 22 itself is increased, good temperature uniformity in the reaction tube 2 cannot be obtained. Therefore, if it is intended to obtain good heat insulation while increasing the density of the upper lid heat insulating material 22 itself, it is necessary to increase the height dimension of the upper lid heat insulating material 22, which leads to an increase in the size and cost of the apparatus. .

また、図12に示すように、例えば水平方向に伸びる概略棒状あるいは板状の芯材45を上蓋断熱材22の内部に埋設した場合であっても、このような芯材45の下方側の部位にクラック26が発生すると、当該部位では上蓋断熱材22の損傷や脱落を抑制し難い。   Further, as shown in FIG. 12, for example, even when a substantially rod-like or plate-like core material 45 extending in the horizontal direction is embedded in the upper lid heat insulating material 22, the lower portion of such a core material 45. When the crack 26 occurs in the area, it is difficult to suppress damage and dropout of the upper lid heat insulating material 22 at the site.

そこで、本発明では、上蓋断熱材22の下面側における本体断熱材21との接触部に、反応管2の内部の均熱性(断熱性)を確保しながら、当該上蓋断熱材22の摩耗を抑制するために、既述のようにセラミックスの繊維などからなる保護層23を配置している。即ち、この保護層23の形成方法について具体的に説明すると、図13に示すように、始めに上蓋断熱材22と保護層23との間に、例えばアルミナやシリカなどのセラミックスの粒子を含む接着剤からなる接着層24を介在させる。そして、接着層24によって、これら上蓋断熱材22と保護層23とを互いに接着させる。あるいは、保護層23に接着層24を染み込ませて、当該保護層23を上蓋断熱材22に貼り付ける。次いで、例えば1200℃程度の熱処理温度にてこれら上蓋断熱材22、保護層23及び接着層24からなる構成の熱処理を行うと、図14に示すように、上蓋断熱材22と保護層23とが接着層24を構成する既述の粒子などを介して焼結(一体化)する。尚、図13及び図14では、図1などに対して上蓋断熱材22の上下を反転させて描画している。   Therefore, in the present invention, the heat insulation (heat insulation) inside the reaction tube 2 is secured at the contact portion with the main body heat insulating material 21 on the lower surface side of the upper cover heat insulating material 22 and the wear of the upper cover heat insulating material 22 is suppressed. For this purpose, the protective layer 23 made of ceramic fibers or the like is disposed as described above. That is, the method for forming the protective layer 23 will be described in detail. As shown in FIG. 13, first, an adhesive containing ceramic particles such as alumina or silica is interposed between the upper lid heat insulating material 22 and the protective layer 23. An adhesive layer 24 made of an agent is interposed. Then, the upper lid heat insulating material 22 and the protective layer 23 are bonded to each other by the adhesive layer 24. Alternatively, the protective layer 23 is soaked with the adhesive layer 24 and the protective layer 23 is attached to the upper lid heat insulating material 22. Next, when heat treatment of the structure including the upper lid heat insulating material 22, the protective layer 23, and the adhesive layer 24 is performed at a heat treatment temperature of about 1200 ° C., for example, as shown in FIG. Sintering (integration) is performed through the above-described particles constituting the adhesive layer 24. 13 and 14, the upper lid heat insulating material 22 is drawn upside down with respect to FIG. 1 and the like.

従って、保護層23が既述のようにセラミックスの繊維により構成されていて自由に変形できることから、また保護層23と上蓋断熱材22との熱膨張率が互いに揃っていることから、保護層23は、上蓋断熱材22の熱膨張収縮に伴って変形(熱膨張収縮)する。具体的には、図15に示すように、高温状態(熱処理温度)の反応管2が既述の搬入出温度まで降温する時、上蓋断熱材22が水平方向に収縮するので、保護層23は、当該収縮に合わせて縮径する。一方、搬入出温度の反応管2が熱処理温度まで昇温する時、上蓋断熱材22が水平方向に膨張するので、保護層23は、この膨張に合わせて拡径する。   Therefore, since the protective layer 23 is made of ceramic fibers as described above and can be freely deformed, and since the thermal expansion coefficients of the protective layer 23 and the upper lid heat insulating material 22 are aligned with each other, the protective layer 23 Is deformed (thermal expansion and contraction) in accordance with the thermal expansion and contraction of the upper lid heat insulating material 22. Specifically, as shown in FIG. 15, when the reaction tube 2 in a high temperature state (heat treatment temperature) is lowered to the carry-in / out temperature described above, the upper lid heat insulating material 22 contracts in the horizontal direction. The diameter is reduced in accordance with the contraction. On the other hand, when the temperature of the reaction tube 2 at the carry-in / out temperature is raised to the heat treatment temperature, the upper lid heat insulating material 22 expands in the horizontal direction, so that the protective layer 23 increases in diameter in accordance with this expansion.

そのため、多数回の処理バッチを行うにあたり、図15及び図16に示すように反応管2の昇降温を繰り返すと、保護層23は、本体断熱材21に対して摺動することになるが、既述のように当該保護層23の密度(硬度)は本体断熱材21の密度よりも大きい。従って、このような摺動を繰り返すと、図17に示すように、本体断熱材21の上端部内周縁が保護層23によって削られて摩耗する。そして、既述のように本体断熱材21の密度と保護層23との密度との差を1.5倍以上好ましくは2倍以上もの大きさにしていることから、本体断熱材21の摩耗が選択的に(優先的に)起こる。そのため、上蓋断熱材22については摩耗が抑えられるので、既述の段部25やクラック26が形成されにくくなるか、あるいは形成されない。従って、上蓋断熱材22の脱落が抑制される。   Therefore, in performing a large number of processing batches, when the temperature rise and fall of the reaction tube 2 is repeated as shown in FIGS. 15 and 16, the protective layer 23 slides with respect to the main body heat insulating material 21. As described above, the density (hardness) of the protective layer 23 is larger than the density of the main body heat insulating material 21. Therefore, when such sliding is repeated, the inner peripheral edge of the upper end portion of the main body heat insulating material 21 is scraped and worn by the protective layer 23 as shown in FIG. As described above, the difference between the density of the main body heat insulating material 21 and the density of the protective layer 23 is 1.5 times or more, preferably 2 times or more, so that the main body heat insulating material 21 is worn. Happens selectively (preferentially). Therefore, since the wear of the upper lid heat insulating material 22 is suppressed, the stepped portion 25 and the crack 26 described above are hardly formed or not formed. Therefore, dropping off of the upper lid heat insulating material 22 is suppressed.

更に、保護層23について、本体断熱材21や上蓋断熱材22と同様にセラミックスの繊維により構成しているので、断熱材3の一部をなしていると言える。更にまた、保護層23の厚み寸法tを既述のように薄く設定しているので、上蓋断熱材22の摩耗を抑制しながら、当該上蓋断熱材22と本体断熱材21との間の領域を介して反応管2の放熱が起こりにくくなっている。従って、保護層23は、上蓋断熱材22の摩耗(脱落)を抑えながら、断熱材3による反応管2の断熱機能を確保していると言える。   Furthermore, since the protective layer 23 is made of ceramic fibers in the same manner as the main body heat insulating material 21 and the upper lid heat insulating material 22, it can be said that it forms a part of the heat insulating material 3. Furthermore, since the thickness dimension t of the protective layer 23 is set thin as described above, an area between the upper lid heat insulating material 22 and the main body heat insulating material 21 is reduced while suppressing wear of the upper lid heat insulating material 22. Therefore, heat radiation of the reaction tube 2 is less likely to occur. Therefore, it can be said that the protective layer 23 secures the heat insulating function of the reaction tube 2 by the heat insulating material 3 while suppressing the wear (drop off) of the upper lid heat insulating material 22.

上述の実施の形態によれば、本体断熱材21の上方側開口部に上蓋断熱材22を配置するにあたり、本体断熱材21よりも高い密度の断熱材3からなる保護層23を当該上蓋断熱材22とは別部材として上蓋断熱材22の下面側周縁部における本体断熱材21との接触部に配置している。そして、保護層23について、上蓋断熱材22の熱膨張収縮に追随して変形するように、当該保護層23の材質及び密度を構成すると共に、上蓋断熱材22に一体的に設けている。そのため、本体断熱材21との摺動による上蓋断熱材22の損傷や脱落を抑制できる。   According to the above-described embodiment, when the upper lid heat insulating material 22 is disposed in the upper opening of the main body heat insulating material 21, the protective layer 23 made of the heat insulating material 3 having a density higher than that of the main body heat insulating material 21 is applied to the upper cover heat insulating material. As a separate member from 22, the upper lid heat insulating material 22 is disposed at a contact portion with the main body heat insulating material 21 at the lower surface side peripheral edge portion. And about the protective layer 23, while comprising the material and density of the said protective layer 23 so that it may deform | transform following the thermal expansion and contraction of the upper cover heat insulating material 22, it is provided in the upper cover heat insulating material 22 integrally. For this reason, it is possible to suppress damage and dropout of the upper lid heat insulating material 22 due to sliding with the main body heat insulating material 21.

そして、保護層23の密度について、本体断熱材21の密度よりも1.5倍以上、好ましくは2倍以上に設定していることから、本体断熱材21を選択的に摩耗させることができる。また、保護層23をセラミックスの繊維により構成して、いわば断熱材3の一部として配置しているので、また保護層23の厚み寸法tを既述の範囲内に抑えているので、反応管2の断熱性を保ちながら、上蓋断熱材22の摩耗を抑制できる。従って、各々セラミックスの繊維からなる上蓋断熱材22、本体断熱材21及び保護層23を断熱材3として用いるにあたり、1000℃以上もの高温で熱処理を行う縦型熱処理装置に好適に適用できる。   And since the density of the protective layer 23 is set to 1.5 times or more, preferably 2 times or more than the density of the main body heat insulating material 21, the main body heat insulating material 21 can be selectively worn. Further, since the protective layer 23 is made of ceramic fibers and arranged as a part of the heat insulating material 3, the thickness t of the protective layer 23 is kept within the above-described range. The wear of the upper lid heat insulating material 22 can be suppressed while maintaining the heat insulating property of 2. Therefore, when the upper lid heat insulating material 22, the main body heat insulating material 21, and the protective layer 23 each made of ceramic fibers are used as the heat insulating material 3, it can be suitably applied to a vertical heat treatment apparatus that performs heat treatment at a high temperature of 1000 ° C. or higher.

また、このように上蓋断熱材22の摩耗を抑制することにより、上蓋断熱材22が突発的に破損しにくくなる。即ち、上蓋断熱材22の劣化(摩耗)は、突発的な現象ではなく、あくまでも経時的な使用に伴う現象として発生する。従って、ある任意の製造ロットの上蓋断熱材22と、当該上蓋断熱材22とは製造ロットが異なる他の上蓋断熱材22との間であっても、各々の上蓋断熱材22が経年摩耗によって劣化する期間(時期)がある程度揃う。そのため、上蓋断熱材22を定期的に交換する周期を設定しやすくなるので、装置のメンテナンスが容易になる。そして、これら上蓋断熱材22及び本体断熱材21からなる断熱材3の外側に、当該断熱材3が熱膨張収縮する時の緩衝材として機能する補助断熱材3aを配置しているので、更には補助断熱材3aと外装体30との間に隙間領域3bを設けているので、いわば断熱材3が熱膨張収縮する伸び代を確保できる。尚、外装体30の内周面には、補助断熱材3aを設けずに、隙間領域3bだけを配置しても良い。即ち、外装体30と断熱材3との間には、補助断熱材3aと隙間領域3bとの少なくとも一方が配置される。   In addition, by suppressing the wear of the upper lid heat insulating material 22 in this manner, the upper lid heat insulating material 22 is less likely to be suddenly damaged. That is, the deterioration (abrasion) of the upper lid heat insulating material 22 is not a sudden phenomenon but a phenomenon that accompanies use over time. Therefore, even if it is between the upper lid heat insulating material 22 of a certain arbitrary production lot and the other upper lid heat insulating material 22 having a different production lot from the upper lid heat insulating material 22, each upper lid heat insulating material 22 deteriorates due to aged wear. A certain period (time) to complete. Therefore, since it becomes easy to set the period which replace | exchanges the upper cover heat insulating material 22 regularly, the maintenance of an apparatus becomes easy. And since the auxiliary heat insulating material 3a that functions as a buffer material when the heat insulating material 3 thermally expands and contracts is disposed outside the heat insulating material 3 composed of the upper cover heat insulating material 22 and the main body heat insulating material 21, further. Since the gap region 3 b is provided between the auxiliary heat insulating material 3 a and the exterior body 30, it is possible to secure an expansion allowance for the heat insulating material 3 to thermally expand and contract. In addition, you may arrange | position only the clearance gap area | region 3b in the inner peripheral surface of the exterior body 30, without providing the auxiliary heat insulating material 3a. That is, at least one of the auxiliary heat insulating material 3 a and the gap region 3 b is disposed between the exterior body 30 and the heat insulating material 3.

以上の説明では、上蓋断熱材22の下面側周縁部における本体断熱材21との接触部に保護層23を形成したが、図18及び図19に示すように、当該上蓋断熱材22の下面側全体に配置しても良い。また、上蓋断熱材22の下面側に凹部22aや溝部22bを形成して反応管2の強制空冷を行うように構成したが、これら図18及び図19に示すように、上蓋断熱材22を板状に形成しても良い。   In the above description, the protective layer 23 is formed in the contact portion with the main body heat insulating material 21 at the lower surface side peripheral portion of the upper cover heat insulating material 22, but as shown in FIGS. 18 and 19, the lower surface side of the upper cover heat insulating material 22. You may arrange in the whole. Moreover, although the recessed part 22a and the groove part 22b were formed in the lower surface side of the upper cover heat insulating material 22 and it comprised so that forced air cooling of the reaction tube 2 was carried out, as shown in these FIG.18 and FIG.19, the upper cover heat insulating material 22 is made into a board. You may form in a shape.

更に、反応管2としては、内管と外管とを備えた2重管構造として構成しても良い。この場合には、内管の側壁面に上下方向に伸びるスリット状の排気口を形成しても良いし、あるいは当該内管の上面側を開口させて、これら排気口や上面側の開口部を介してウエハボート1の置かれる雰囲気を排気しても良い。
また、以上述べた上蓋断熱材22、本体断熱材21及び保護層23としては、セラミックスの繊維により構成することに代えて、例えばセラミックスからなる粉末と樹脂などからなるバインダーの粉末とを互いに混合して成型及び焼結した多孔質体を各々用いても良い。更に、保護層23としては、上蓋断熱材22及び本体断熱材21を構成する材質(化合物)の少なくとも一つを含むように構成したが、例えば上蓋断熱材22及び本体断熱材21を夫々アルミナなどからなる繊維により構成すると共に、保護層23をシリカなどの繊維により構成しても良い。
Furthermore, the reaction tube 2 may be configured as a double tube structure including an inner tube and an outer tube. In this case, a slit-like exhaust port extending in the vertical direction may be formed on the side wall surface of the inner tube, or the upper surface side of the inner tube is opened, and the exhaust port and the opening on the upper surface side are formed. The atmosphere in which the wafer boat 1 is placed may be exhausted.
In addition, the upper lid heat insulating material 22, the main body heat insulating material 21, and the protective layer 23 described above are mixed with ceramic powder and binder powder made of resin, for example, instead of being made of ceramic fibers. Each of the porous bodies molded and sintered may be used. Further, the protective layer 23 is configured to include at least one of the materials (compounds) constituting the upper lid heat insulating material 22 and the main body heat insulating material 21. For example, the upper cover heat insulating material 22 and the main body heat insulating material 21 are each made of alumina or the like. The protective layer 23 may be made of a fiber such as silica.

W ウエハ
1 ウエハボート
2 反応管
3 断熱材
20 ヒータ
21 本体断熱材
22 上蓋断熱材
23 保護層
W Wafer 1 Wafer boat 2 Reaction tube 3 Heat insulating material 20 Heater 21 Main body heat insulating material 22 Upper cover heat insulating material 23 Protective layer

Claims (6)

基板保持具に棚状に積載された複数枚の基板に対して、縦型の反応管内にて熱処理を行う縦型熱処理装置において、
前記反応管内の基板を加熱するための加熱部と、
この加熱部により加熱される領域の外側にて前記反応管の側周面を周方向に沿って筒状に囲むように配置され、空隙を含むセラミックスにより構成された本体断熱材と、
この本体断熱材の上方側開口部を塞ぐように配置され、前記本体断熱材と密度が揃うように構成された断熱材からなる上蓋断熱材と、
この上蓋断熱材が熱膨張収縮する時に、当該上蓋断熱材の熱膨張収縮に追随して変形しながら前記上蓋断熱材の損傷を抑えるために、前記上蓋断熱材の下面側周縁部における前記本体断熱材との接触部に設けられ、前記本体断熱材よりも高い密度であって、当該上蓋断熱材とは別部材である耐火物からなる保護層と、を備え、
この保護層は、無機成分を含む接着剤を用いて当該上蓋断熱材に接着された後、熱処理によって前記上蓋断熱材と一体化していることを特徴とする縦型熱処理装置。
In a vertical heat treatment apparatus for performing heat treatment in a vertical reaction tube on a plurality of substrates stacked in a shelf on a substrate holder,
A heating unit for heating the substrate in the reaction tube;
A main body heat insulating material, which is disposed outside the region heated by the heating unit so as to surround the side peripheral surface of the reaction tube in a cylindrical shape along the circumferential direction, and is composed of ceramics including voids;
An upper lid heat insulating material, which is arranged so as to close the upper opening of the main body heat insulating material, and is configured to have the same density as the main body heat insulating material,
In order to suppress damage to the upper lid heat insulating material while deforming following the thermal expansion / shrinkage of the upper lid heat insulating material when the upper lid heat insulating material thermally expands / shrinks, the main body heat insulating material at the lower edge of the upper lid heat insulating material A protective layer made of a refractory material that is provided at a contact portion with the material, has a higher density than the main body heat insulating material, and is a separate member from the upper lid heat insulating material,
This protective layer is bonded to the upper lid heat insulating material using an adhesive containing an inorganic component, and then integrated with the upper lid heat insulating material by heat treatment.
前記保護層は、前記本体断熱材の密度に対して1.5倍以上の密度となるように構成されていることを特徴とする請求項1に記載の縦型熱処理装置。   The vertical heat treatment apparatus according to claim 1, wherein the protective layer is configured to have a density that is 1.5 times or more the density of the main body heat insulating material. 前記保護層は、前記本体断熱材の密度に対して2倍以上の密度となるように構成されていることを特徴とする請求項1に記載の縦型熱処理装置。   The vertical heat treatment apparatus according to claim 1, wherein the protective layer is configured to have a density that is twice or more the density of the main body heat insulating material. 前記保護層の厚み寸法は、前記本体断熱材と前記上蓋断熱材との間の領域を介して前記反応容器が放熱することを抑制するために、且つ前記上蓋断熱材が前記本体断熱材と摺動して摩耗することを抑制するために、1mm以上2mm以下に設定されていることを特徴とする請求項1ないし3のいずれか一つに記載の縦型熱処理装置。   The thickness of the protective layer is set to prevent the reaction vessel from radiating heat through the region between the main body heat insulating material and the upper lid heat insulating material, and the upper cover heat insulating material slides on the main body heat insulating material. The vertical heat treatment apparatus according to any one of claims 1 to 3, wherein the vertical heat treatment apparatus is set to 1 mm or more and 2 mm or less in order to suppress movement and wear. 前記反応管内にて行われる熱処理は、1000℃以上の熱処理であることを特徴とする請求項1ないし4のいずれか一つに記載の縦型熱処理装置。   The vertical heat treatment apparatus according to any one of claims 1 to 4, wherein the heat treatment performed in the reaction tube is a heat treatment at 1000 ° C or higher. 前記本体断熱材及び前記上蓋断熱材の外側には外装体が設けられ、
これら本体断熱材及び上蓋断熱材と前記外装体との間には、前記本体断熱材及び前記上蓋断熱材よりも密度の小さい緩衝材と、これら本体断熱材及び上蓋断熱材が熱膨張する時の伸び代となる隙間領域との少なくとも一方が介在していることを特徴とする請求項1ないし5のいずれか一つに記載の縦型熱処理装置。
An exterior body is provided outside the main body heat insulating material and the upper lid heat insulating material,
Between these main body heat insulating material and upper lid heat insulating material and the exterior body, a buffer material having a density lower than that of the main body heat insulating material and the upper cover heat insulating material, and when the main body heat insulating material and the upper cover heat insulating material are thermally expanded. The vertical heat treatment apparatus according to any one of claims 1 to 5, wherein at least one of a gap region serving as an elongation margin is interposed.
JP2012242848A 2012-11-02 2012-11-02 Vertical heat treatment equipment Active JP5907044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242848A JP5907044B2 (en) 2012-11-02 2012-11-02 Vertical heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242848A JP5907044B2 (en) 2012-11-02 2012-11-02 Vertical heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2014093410A true JP2014093410A (en) 2014-05-19
JP5907044B2 JP5907044B2 (en) 2016-04-20

Family

ID=50937289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242848A Active JP5907044B2 (en) 2012-11-02 2012-11-02 Vertical heat treatment equipment

Country Status (1)

Country Link
JP (1) JP5907044B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268442A (en) * 1985-05-23 1986-11-27 信越化学工業株式会社 Heat-resistant vessel having multilayer structure
JPH06135741A (en) * 1992-02-12 1994-05-17 Shinetsu Quartz Prod Co Ltd Silica heat insulating body and production thereof
JPH09213646A (en) * 1996-01-30 1997-08-15 Daido Hoxan Inc Semiconductor heat treatment method and apparatus for the same
JP2002025925A (en) * 2000-07-06 2002-01-25 Tokyo Electron Ltd Method for manufacturing vertical heat treatment equipment and platelike heat insulator thereof
JP2007073865A (en) * 2005-09-09 2007-03-22 Hitachi Kokusai Electric Inc Heat treatment device
WO2007097199A1 (en) * 2006-02-20 2007-08-30 Tokyo Electron Limited Heat treatment equipment, heater and its manufacturing method
US20090209113A1 (en) * 2008-02-18 2009-08-20 Hitachi Kokusai Electric, Inc. Substrate processing apparatus, method of manufacturing semiconductor device, and ceiling insulating part

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268442A (en) * 1985-05-23 1986-11-27 信越化学工業株式会社 Heat-resistant vessel having multilayer structure
US4775565A (en) * 1985-05-23 1988-10-04 Shin-Etsu Chemical Co., Ltd. Vessel for refractory use having multi-layered wall
JPH06135741A (en) * 1992-02-12 1994-05-17 Shinetsu Quartz Prod Co Ltd Silica heat insulating body and production thereof
JPH09213646A (en) * 1996-01-30 1997-08-15 Daido Hoxan Inc Semiconductor heat treatment method and apparatus for the same
JP2002025925A (en) * 2000-07-06 2002-01-25 Tokyo Electron Ltd Method for manufacturing vertical heat treatment equipment and platelike heat insulator thereof
JP2007073865A (en) * 2005-09-09 2007-03-22 Hitachi Kokusai Electric Inc Heat treatment device
WO2007097199A1 (en) * 2006-02-20 2007-08-30 Tokyo Electron Limited Heat treatment equipment, heater and its manufacturing method
US20090209113A1 (en) * 2008-02-18 2009-08-20 Hitachi Kokusai Electric, Inc. Substrate processing apparatus, method of manufacturing semiconductor device, and ceiling insulating part
JP2009194297A (en) * 2008-02-18 2009-08-27 Hitachi Kokusai Electric Inc Substrate processor, semiconductor device manufacturing method, and ceiling heat insulator

Also Published As

Publication number Publication date
JP5907044B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6806051B2 (en) Electrostatic chuck device
JP6398761B2 (en) Substrate processing equipment
JP6119430B2 (en) Electrostatic chuck device
JP6676537B2 (en) Substrate mounting table
US20140202382A1 (en) Deposition apparatus
JPH09134951A (en) Electrostatic chuck
JP6424700B2 (en) Electrostatic chuck device
JP5743746B2 (en) Heat treatment furnace and heat treatment apparatus
JP2007088325A (en) Heat insulation wall, heating element hold structure, heating device, and substrate processing equipment
US9975320B2 (en) Diffusion bonded plasma resisted chemical vapor deposition (CVD) chamber heater
KR101848573B1 (en) Method for manufacturing semiconductor device, substrate processing apparatus and recording medium
KR20160016477A (en) Substrate processing apparatus, chamber lid assembly, method of manufacturing substrate and program storing the same
US20090241837A1 (en) Ceramic member, ceramic heater, substrate placing mechanism, substrate processing apparatus and method for manufacturing ceramic member
US9422624B2 (en) Heat treatment method
KR20090089250A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and ceiling insulating part
KR102418315B1 (en) substrate processing equipment
JP5907044B2 (en) Vertical heat treatment equipment
JP4683332B2 (en) Heat treatment equipment
JP5352156B2 (en) Heat treatment equipment
JP2011187543A (en) Substrate processing apparatus, and method of manufacturing semiconductor device
JP2019041026A (en) Inner wall and substrate processing apparatus
JP2010272720A (en) Substrate processing device and manufacturing method of semiconductor device
CN107768299A (en) Bogey and semiconductor processing equipment
KR101677661B1 (en) Process chamber included in substrate disposition apparatus
KR20140116000A (en) Heater device and heat treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5907044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250