JP2014092399A - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP2014092399A
JP2014092399A JP2012241839A JP2012241839A JP2014092399A JP 2014092399 A JP2014092399 A JP 2014092399A JP 2012241839 A JP2012241839 A JP 2012241839A JP 2012241839 A JP2012241839 A JP 2012241839A JP 2014092399 A JP2014092399 A JP 2014092399A
Authority
JP
Japan
Prior art keywords
current
temperature
resistor
potential difference
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012241839A
Other languages
Japanese (ja)
Other versions
JP5987639B2 (en
Inventor
Takashi Yamada
貴史 山田
Yuichi Sakagami
祐一 坂上
Takashi Koyama
貴志 小山
Masanori Tabayashi
政則 田林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012241839A priority Critical patent/JP5987639B2/en
Publication of JP2014092399A publication Critical patent/JP2014092399A/en
Application granted granted Critical
Publication of JP5987639B2 publication Critical patent/JP5987639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a current measuring device capable of accurately obtaining current flowing through a fuel cell with a simple structure.SOLUTION: A current measurement body 101 includes resistors Ra, Rb connected in series between an electrode part 110a and a wiring layer 115. A potential difference generated in the resistor Ra is denoted by Va, a potential difference generated in the resistor Rb by Vb, current flowing through the resistors Ra, Rb by I, the known temperature coefficient of the resistor Ra by α, the known temperature coefficient of the resistor Rb by β, temperature of the resistors Ra, Rb by t, a known reference temperature of the resistor Ra by ta, a known reference temperature of the resistor Rb by tb, an ohmic value of the resistor Ra at the known reference temperature ta by Rao, and an ohmic value of the resistor Rb at the known reference temperature tb by Rbo. The known temperature coefficient α of the resistor Ra and the known temperature coefficient β of the resistor Rb are set to be different values from one another. The current I flowing through the resistors Ra, Rb is obtained based on mathematical expressions 1, 2 representing the relationship between the current I and the temperature t.

Description

本発明は、酸化剤ガスおよび燃料ガスの電気化学反応により電気エネルギを発生するセルを備える燃料電池の電流を測定する電流計測装置に関するものである。   The present invention relates to a current measuring device that measures the current of a fuel cell including a cell that generates electrical energy by an electrochemical reaction between an oxidant gas and a fuel gas.

従来、電流測定装置において、複数のセルのうち隣り合う2つのセルの間に配置される電流測定体を備え、セルのうち電流測定体に対応する部分に流れる電流を測定するものがある(例えば特許文献1参照)。   2. Description of the Related Art Conventionally, a current measuring device includes a current measuring body arranged between two adjacent cells among a plurality of cells, and measures a current flowing through a portion of the cell corresponding to the current measuring body (for example, Patent Document 1).

このものにおいては、電流測定体は、2つのセルの間に配置される電流測定用抵抗体および温度測定用抵抗体から構成されている。温度測定用抵抗体は、電流測定用抵抗体に絶縁した状態で対向するように設けられている。さらに、温度測定用抵抗体に一定電流を流す定電流電源と、電流測定用抵抗体に生じる電位差を検出する電流測定用電圧センサと、温度測定用抵抗体に生じる電位差を検出する温度測定用電圧センサとが設けられている。   In this device, the current measuring body is composed of a current measuring resistor and a temperature measuring resistor disposed between two cells. The temperature measuring resistor is provided so as to face the current measuring resistor in an insulated state. Furthermore, a constant current power source for supplying a constant current to the temperature measurement resistor, a current measurement voltage sensor for detecting a potential difference generated in the current measurement resistor, and a temperature measurement voltage for detecting a potential difference generated in the temperature measurement resistor And a sensor.

制御装置は、温度測定用電圧センサの検出電圧に基づいて温度測定用抵抗体の温度を取得し、この取得した温度に基づいて、電流測定用抵抗体の抵抗値を求める。これにより、温度誤差の小さい電流測定用抵抗体の抵抗値を求めることができる。制御装置は、この求めた抵抗値と電流測定用電圧センサの検出電圧とに基づいて、電流測定用抵抗体に流れる電流を、セルのうち電流測定体に対応する部分に流れる電流として算出する。このことにより、燃料電池に流れる電流を正確に求めることができる。   The control device acquires the temperature of the temperature measuring resistor based on the detection voltage of the temperature measuring voltage sensor, and determines the resistance value of the current measuring resistor based on the acquired temperature. Thereby, the resistance value of the current measuring resistor with a small temperature error can be obtained. Based on the obtained resistance value and the detection voltage of the current measuring voltage sensor, the control device calculates the current flowing through the current measuring resistor as the current flowing through the portion of the cell corresponding to the current measuring body. As a result, the current flowing through the fuel cell can be accurately obtained.

特開2007−280643号公報JP 2007-280643 A

上記電流測定装置では、燃料電池に流れる電流として、温度変化に起因する誤差を小さくした高精度の電流に測定することができるものの、温度測定用抵抗体に一定電流を流す定電流電源を用いることが必要となり、複雑な構成になる、という問題がある。   In the above current measuring device, the current flowing through the fuel cell can be measured as a highly accurate current with a small error due to a temperature change, but a constant current power source that supplies a constant current to the temperature measuring resistor is used. There is a problem that a complicated configuration is required.

本発明は上記点に鑑みて、簡素な構成により、燃料電池に流れる電流を正確に求める電流測定装置を提供することを目的とする。   An object of the present invention is to provide a current measuring device that accurately obtains a current flowing through a fuel cell with a simple configuration in view of the above points.

上記目的を達成するため、請求項1に記載の発明では、第1、第2の集電板(11、12)の間に積層される複数のセル(10a)が酸化剤ガスおよび燃料ガスの電気化学反応により電気エネルギをそれぞれ発生して前記第1、第2の集電板の間に電流が流れるように構成されている燃料電池(10)のうち隣り合う2つのセル間の局所に流れる電流と前記局所の温度を求める電流計測装置であって、
前記隣り合う2つのセルのうち一方のセルに接触する第1の電極部(110a)と、前記隣り合う2つのセルのうち前記一方のセル以外の他方のセルに接触する第2の電極部(115)と、前記第1、第2の電極部の間に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第1の抵抗体(Ra)と、前記第1、第2の電極部の間で前記第1抵抗体に直列に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第2の抵抗体(Rb)とからなる電流測定体(101)と、
前記第1の抵抗体に生じる電位差と前記第2の抵抗体に生じる電位差とをそれぞれ検出する第1電位差検出手段(60、61)と
前記第1電位差検出手段により検出される前記第1、第2の抵抗体のそれぞれの電位差、および前記第1、第2の抵抗体のそれぞれの温度係数を用いて、前記第1、第2の抵抗体に流れる電流と前記第1、第2の抵抗体の温度とを算出する電流温度算出手段(50)と、を備え、
前記第1、第2の抵抗体は、互いに相違する温度特性を有しており、
前記電流温度算出手段により算出される電流を前記局所に流れる電流とし、前記電流温度算出手段により算出される温度を前記局所の温度とすることを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, the plurality of cells (10a) stacked between the first and second current collector plates (11, 12) are made of oxidant gas and fuel gas. A current flowing locally between two adjacent cells of the fuel cell (10) configured to generate electric energy by an electrochemical reaction and to cause a current to flow between the first and second current collector plates; A current measuring device for obtaining the local temperature,
A first electrode part (110a) in contact with one of the two adjacent cells, and a second electrode part in contact with the other cell other than the one of the two adjacent cells ( 115), a first resistor (Ra) disposed between the first and second electrode portions and having a temperature coefficient of resistance set to a predetermined value, and the first A current comprising a second resistor (Rb) disposed in series with the first resistor between the second electrode portions and having a temperature coefficient of resistance set to a predetermined value. A measuring body (101);
First potential difference detecting means (60, 61) for detecting a potential difference generated in the first resistor and a potential difference generated in the second resistor, respectively, and the first and first detected by the first potential difference detecting means. Current flowing through the first and second resistors and the first and second resistors using the potential difference between the two resistors and the temperature coefficients of the first and second resistors, respectively. Current temperature calculating means (50) for calculating the temperature of
The first and second resistors have different temperature characteristics,
The current calculated by the current temperature calculation means is the current that flows locally, and the temperature calculated by the current temperature calculation means is the local temperature.

請求項1に記載の発明によれば、電流温度算出手段(50)によって、第1、第2の抵抗体に流れる電流を算出する。このため、燃料電池に流れる電流を正確に求めることができる。これに加えて、定電流電源を用いていなく、抵抗体間の電気絶縁等を実施する必要もない。したがって、簡素な構成により、燃料電池に流れる電流を正確に求めることができる。   According to the first aspect of the present invention, the current flowing through the first and second resistors is calculated by the current temperature calculating means (50). For this reason, the electric current which flows into a fuel cell can be calculated | required correctly. In addition to this, a constant current power source is not used, and it is not necessary to perform electrical insulation between resistors. Therefore, the current flowing through the fuel cell can be accurately obtained with a simple configuration.

具体的には、請求項14に記載の発明では、前記第1の抵抗体(Ra)に生じる電位差をVaとし、前記第2の抵抗体(Rb)に生じる電位差をVbとし、前記第1、第2の抵抗体に流れる電流をIとし、
前記第1の抵抗体の既知の温度係数をαとし、前記第2の抵抗体の既知の温度係数をβとし、前記第1、第2の抵抗体の温度をtとし、前記第1の抵抗体の既知の基準温度をtaとし、前記第2の抵抗体の既知の基準温度をtbとし、前記第1の抵抗体において前記既知の基準温度taにおける抵抗値Raoとし、前記第2の抵抗体において前記既知の基準温度tbにおける抵抗値Rboとしたとき、数式1、数式2が成立し、
Va=I・Rao{1+α(t−ta)}・・・・・(数式1)
Vb=I・Rbo{1+β(t−tb)}・・・・・(数式2)
前記電流温度算出手段は、前記数式1および前記数式2を用いて、前記電流および前記温度を算出することを特徴とする。
Specifically, in the invention described in claim 14, the potential difference generated in the first resistor (Ra) is Va, the potential difference generated in the second resistor (Rb) is Vb, and the first, Let I be the current flowing through the second resistor,
The known temperature coefficient of the first resistor is α, the known temperature coefficient of the second resistor is β, the temperature of the first and second resistors is t, and the first resistance The known reference temperature of the body is ta, the known reference temperature of the second resistor is tb, the resistance value Rao at the known reference temperature ta in the first resistor, and the second resistor When the resistance value Rbo at the known reference temperature tb is expressed by Equations 1 and 2,
Va = I · Rao {1 + α (t−ta)} (Formula 1)
Vb = I · Rbo {1 + β (t−tb)} (Formula 2)
The current temperature calculating means calculates the current and the temperature using the formula 1 and the formula 2.

請求項14に記載の発明によれば、電流温度算出手段は、数式1および数式2を用いて、電流を算出するので、燃料電池に流れる電流を正確に求めることができる。   According to the fourteenth aspect of the present invention, since the current temperature calculation means calculates the current using Equation 1 and Equation 2, the current flowing through the fuel cell can be accurately obtained.

請求項5に記載の発明では、第1、第2の集電板(11、12)の間に積層される複数のセル(10a)が酸化剤ガスおよび燃料ガスの電気化学反応により電気エネルギをそれぞれ発生して前記第1、第2の集電板の間に電流が流れるように構成されている燃料電池(10)における前記第1、第2の集電板のうち一方の集電板とこの一方の集電板に隣り合う前記セルとの間の局所に流れる電流と前記局所の温度を求めるための電流計測装置であって、
前記一方の集電板に接触する第1の電極部(110a)と、前記一方の集電板に隣り合う前記セルに接触する第2の電極部(115)と、前記第1、第2の電極部の間に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第1の抵抗体(Ra)と、前記第1、第2の電極部の間で前記第1抵抗体と直列に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第2の抵抗体(Rb)とからなる電流測定体(101)と、
前記第1の抵抗体に生じる電位差と前記第2の抵抗体に生じる電位差とをそれぞれ検出する第1電位差検出手段(60、61)と
前記第1電位差検出手段により検出される前記第1、第2の抵抗体のそれぞれの電位差、および前記第1、第2の抵抗体のそれぞれの温度係数を用いて前記電流および前記温度を算出する電流温度算出手段(50)と、を備え、
前記第1、第2の抵抗体は、互いに相違する温度特性を有しており、
前記電流温度算出手段により算出される電流を前記局所に流れる電流とし、前記電流温度算出手段により算出される温度を前記局所の温度とすることを特徴とする。
In the invention according to claim 5, the plurality of cells (10a) stacked between the first and second current collector plates (11, 12) generate electric energy by an electrochemical reaction of the oxidant gas and the fuel gas. One of the first and second current collector plates and one of the current collector plates in the fuel cell (10) configured to generate current and flow between the first and second current collector plates, respectively. A current measuring device for obtaining a local current flowing between the cells adjacent to the current collector plate and the local temperature,
A first electrode portion (110a) in contact with the one current collector plate; a second electrode portion (115) in contact with the cell adjacent to the one current collector plate; and the first and second electrodes A first resistor (Ra) disposed between the electrode portions and having a temperature coefficient of resistance set to a predetermined value; and the first and second electrode portions between the first and second electrode portions. A current measuring body (101) comprising a second resistor (Rb) disposed in series with one resistor and having a temperature coefficient of resistance set to a predetermined value;
First potential difference detecting means (60, 61) for detecting a potential difference generated in the first resistor and a potential difference generated in the second resistor, respectively, and the first and first detected by the first potential difference detecting means. Current temperature calculation means (50) for calculating the current and the temperature using the potential difference of each of the two resistors and the temperature coefficient of each of the first and second resistors,
The first and second resistors have different temperature characteristics,
The current calculated by the current temperature calculation means is the current that flows locally, and the temperature calculated by the current temperature calculation means is the local temperature.

請求項5に記載の発明によれば、電流温度算出手段によって温度を算出するので、電流測定体を集電板およびセルの間に配置した場合にも、燃料電池に流れる電流を正確に求めることができる。これに加えて、定電流電源を用いていなく、抵抗体間の電気絶縁等を実施する必要もない。したがって、請求項1に記載の発明と同様、簡素な構成により、燃料電池に流れる電流を正確に求めることができる。   According to the invention described in claim 5, since the temperature is calculated by the current temperature calculating means, the current flowing through the fuel cell can be accurately obtained even when the current measuring body is disposed between the current collector plate and the cell. Can do. In addition to this, a constant current power source is not used, and it is not necessary to perform electrical insulation between resistors. Therefore, similarly to the first aspect of the invention, the current flowing through the fuel cell can be accurately obtained with a simple configuration.

請求項9に記載の発明では、第1、第2の集電板(11、12)の間に配置される1つのセル(10a)が酸化剤ガスおよび燃料ガスの電気化学反応により電気エネルギを発生して前記第1、第2の集電板の間に電流が流れるように構成されている燃料電池(10)における前記第1、第2の集電板のうち一方の集電板および前記セルの間の局所に流れる電流と前記局所の温度を求めるための電流計測装置であって、
前記一方の集電板に接触する第1の電極部(110a)と、前記セルに接触する第2の電極部(115)と、前記第1、第2の電極部の間に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第1の抵抗体(Ra)と、前記第1、第2の電極部の間で前記第1抵抗体と直列に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第2の抵抗体(Rb)とからなる電流測定体(101)と、
前記第1の抵抗体に生じる電位差と前記第2の抵抗体に生じる電位差とをそれぞれ検出する第1電位差検出手段(60、61)と
前記第1電位差検出手段により検出される前記第1、第2の抵抗体のそれぞれの電位差、および前記第1、第2の抵抗体のそれぞれの温度係数を用いて前記電流および前記温度を算出する電流温度算出手段(50)と、を備え、
前記第1、第2の抵抗体は、互いに相違する温度特性を有しており、
前記電流温度算出手段により算出される電流を前記局所に流れる電流とし、前記電流温度算出手段により算出される温度を前記局所の温度とすることを特徴とする。
In the invention according to claim 9, one cell (10a) disposed between the first and second current collector plates (11, 12) generates electric energy by an electrochemical reaction between the oxidant gas and the fuel gas. One of the first and second current collector plates and the cell in the fuel cell (10) configured to generate a current between the first and second current collector plates. A current measuring device for determining a local current flowing between and a local temperature,
The first electrode part (110a) that contacts the one current collector plate, the second electrode part (115) that contacts the cell, and the first and second electrode parts, In addition, the first resistor (Ra) having a temperature coefficient of resistance set to a predetermined value is disposed in series with the first resistor between the first and second electrode portions. And a current measuring body (101) comprising a second resistor (Rb) having a temperature coefficient of resistance set to a predetermined value;
First potential difference detecting means (60, 61) for detecting a potential difference generated in the first resistor and a potential difference generated in the second resistor, respectively, and the first and first detected by the first potential difference detecting means. Current temperature calculation means (50) for calculating the current and the temperature using the potential difference of each of the two resistors and the temperature coefficient of each of the first and second resistors,
The first and second resistors have different temperature characteristics,
The current calculated by the current temperature calculation means is the current that flows locally, and the temperature calculated by the current temperature calculation means is the local temperature.

請求項9に記載の発明によれば、電流温度算出手段によって電流および温度を算出するので、第1、第2の集電板の間に1つのセルが配置される場合にも、燃料電池に流れる電流を正確に求めることができる。これに加えて、定電流電源を用いていなく、抵抗体間の電気絶縁等を実施する必要もない。したがって、請求項1に記載の発明と同様、簡素な構成により、燃料電池に流れる電流を正確に求めることができる。   According to the ninth aspect of the present invention, since the current and temperature are calculated by the current temperature calculating means, even when one cell is disposed between the first and second current collecting plates, the current flowing through the fuel cell Can be obtained accurately. In addition to this, a constant current power source is not used, and it is not necessary to perform electrical insulation between resistors. Therefore, similarly to the first aspect of the invention, the current flowing through the fuel cell can be accurately obtained with a simple configuration.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の第1実施形態における燃料電池システムの全体構成を示す図である。1 is a diagram illustrating an overall configuration of a fuel cell system according to a first embodiment of the present invention. 第1実施形態における燃料電池の構成を示す図である。It is a figure which shows the structure of the fuel cell in 1st Embodiment. 図2の電流測定部材の正面図である。FIG. 3 is a front view of the current measuring member of FIG. 2. 図3中A−A断面図である。It is AA sectional drawing in FIG. 電流測定部材の各部分を示す図である。It is a figure which shows each part of an electric current measurement member. 本発明の第2実施形態における電流測定部の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the electric current measurement part in 2nd Embodiment of this invention. 本発明の第3実施形態における電流測定部の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the electric current measurement part in 3rd Embodiment of this invention. 本発明の第4実施形態における電流測定部の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the electric current measurement part in 4th Embodiment of this invention. 本発明の第5実施形態における電流測定部の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the electric current measurement part in 5th Embodiment of this invention. 本発明の第6実施形態における他の電流測定部の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the other electric current measurement part in 6th Embodiment of this invention.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.

(第1実施形態)
以下、本発明の第1実施形態について図1〜図5に基づいて説明する。図1は本実施形態に係る燃料電池システム1を示す模式図で、この燃料電池システム1は例えば電気自動車に適用される。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing a fuel cell system 1 according to the present embodiment. The fuel cell system 1 is applied to, for example, an electric vehicle.

図1に示すように、本実施形態の燃料電池システム1は、水素と酸素との電気化学反応を利用して電力を発生する燃料電池10を備えている。この燃料電池10は、図示しない電気負荷や2次電池等の電気機器に電力を供給するものである。因みに、電気自動車の場合、車両走行駆動源としての電動モータが電気負荷に相当している。   As shown in FIG. 1, the fuel cell system 1 of this embodiment includes a fuel cell 10 that generates electric power by utilizing an electrochemical reaction between hydrogen and oxygen. The fuel cell 10 supplies electric power to an electric load (not shown) or an electric device such as a secondary battery. Incidentally, in the case of an electric vehicle, an electric motor as a vehicle driving source corresponds to an electric load.

本実施形態では燃料電池10として固体高分子電解質型燃料電池を用いており、基本単位となるセル10aが集電板11、12の間に複数積層され、かつ電気的に直列接続されている。   In this embodiment, a solid polymer electrolyte fuel cell is used as the fuel cell 10, and a plurality of cells 10 a serving as a basic unit are stacked between current collector plates 11 and 12 and electrically connected in series.

燃料電池10では、以下の水素と酸素の電気化学反応が起こり電気エネルギが発生する。   In the fuel cell 10, the following electrochemical reaction between hydrogen and oxygen occurs to generate electric energy.

(負極側)H2→2H++2e-
(正極側)2H++1/2O2+2e-→H2
これにより、上記電気化学反応に伴って、複数のセル10aを通して集電板11、12の間には電流が流れる。集電板11、12のうち一方の集電板は、セル10aに対してその面方向に分散化して電流を供給し、他方の集電板は、セル10aにその面方向に分散して流れる電流を集める。
(Negative electrode side) H 2 → 2H + + 2e
(Positive electrode side) 2H + + 1 / 2O 2 + 2e → H 2 O
Thereby, a current flows between the current collecting plates 11 and 12 through the plurality of cells 10a in accordance with the electrochemical reaction. One of the current collector plates 11 and 12 distributes the cell 10a in the surface direction and supplies current, and the other current collector plate flows in the cell 10a in the surface direction. Collect current.

図2は、燃料電池10の斜視図である。図2に示すように、燃料電池10には、燃料電池10のセル10aの面内の電流分布を測定するために、板状に形成されている電流測定部材100が設けられている。電流測定部材100は、複数のセル10aのうち隣り合う2つのセル10aに挟まれて配置されており、隣り合う2つのセル10aと電気的に直列接続されている。   FIG. 2 is a perspective view of the fuel cell 10. As shown in FIG. 2, the fuel cell 10 is provided with a current measuring member 100 formed in a plate shape in order to measure the current distribution in the surface of the cell 10 a of the fuel cell 10. The current measuring member 100 is disposed between two adjacent cells 10a among the plurality of cells 10a, and is electrically connected in series with the two adjacent cells 10a.

図1の燃料電池システム1には、燃料電池10の空気極(正極)側に空気(酸素)を供給するための空気流路20と、燃料電池10の水素極(負極)側に水素を供給するための水素流路30が設けられている。ここで、空気流路20における燃料電池10より上流側を空気供給流路20aといい、下流側を空気排出流路20bという。また、水素流路30における燃料電池10より上流側を水素供給流路30aといい、下流側を水素排出流路30bという。なお、空気は本発明の酸化剤ガスに相当し、水素は本発明の燃料ガスに相当している。   In the fuel cell system 1 of FIG. 1, hydrogen is supplied to an air flow path 20 for supplying air (oxygen) to the air electrode (positive electrode) side of the fuel cell 10 and to a hydrogen electrode (negative electrode) side of the fuel cell 10. A hydrogen flow path 30 is provided for this purpose. Here, the upstream side of the fuel cell 10 in the air channel 20 is referred to as an air supply channel 20a, and the downstream side is referred to as an air discharge channel 20b. Further, the upstream side of the fuel cell 10 in the hydrogen channel 30 is referred to as a hydrogen supply channel 30a, and the downstream side is referred to as a hydrogen discharge channel 30b. Air corresponds to the oxidant gas of the present invention, and hydrogen corresponds to the fuel gas of the present invention.

空気供給流路20aの最上流部には、大気中から吸入した空気を燃料電池10に圧送するための空気ポンプ21が設けられ、空気供給流路20aにおける空気ポンプ21と燃料電池10との間には、空気への加湿を行う加湿器22が設けられている。また、空気排出流路20bには、燃料電池10内の空気の圧力を調整するための空気調圧弁23が設けられている。   An air pump 21 for pressure-feeding air sucked from the atmosphere to the fuel cell 10 is provided at the most upstream portion of the air supply channel 20a, and between the air pump 21 and the fuel cell 10 in the air supply channel 20a. Is provided with a humidifier 22 for humidifying the air. The air discharge passage 20b is provided with an air pressure regulating valve 23 for adjusting the pressure of air in the fuel cell 10.

水素供給流路30aの最上流部には、水素が充填された高圧水素タンク31が設けられ、水素供給流路30aにおける高圧水素タンク31と燃料電池10との間には、燃料電池10に供給される水素の圧力を調整するための水素調圧弁32が設けられている。   A high-pressure hydrogen tank 31 filled with hydrogen is provided at the most upstream portion of the hydrogen supply flow path 30a, and the fuel cell 10 is supplied between the high-pressure hydrogen tank 31 and the fuel cell 10 in the hydrogen supply flow path 30a. A hydrogen pressure regulating valve 32 for adjusting the pressure of the generated hydrogen is provided.

水素排出流路30bには、水素供給流路30aにおける水素調圧弁32の下流側に接続されて閉ループを構成する水素循環流路30cが分岐して設けられており、これにより水素流路30内で水素を循環させて、未反応の水素を燃料電池10に再供給するようにしている。そして、水素循環流路30cには、水素流路30内で水素を循環させるための水素ポンプ33が設けられている。   The hydrogen discharge passage 30b is provided with a branching hydrogen circulation passage 30c that is connected to the downstream side of the hydrogen pressure regulating valve 32 in the hydrogen supply passage 30a and forms a closed loop. Then, hydrogen is circulated so that unreacted hydrogen is supplied to the fuel cell 10 again. The hydrogen circulation channel 30 c is provided with a hydrogen pump 33 for circulating hydrogen in the hydrogen channel 30.

燃料電池10は発電効率確保のために運転中一定温度(例えば80℃程度)に維持する必要がある。このため、燃料電池10を冷却するための冷却システムが設けられている。冷却システムには、燃料電池10に冷却水(熱媒体)を循環させる冷却水経路40、冷却水を循環させるウォータポンプ41、およびファン42を備えたラジエータ(放熱器)43が設けられている。   The fuel cell 10 needs to be maintained at a constant temperature (for example, about 80 ° C.) during operation to ensure power generation efficiency. For this reason, a cooling system for cooling the fuel cell 10 is provided. The cooling system is provided with a cooling water path 40 that circulates the cooling water (heat medium) in the fuel cell 10, a water pump 41 that circulates the cooling water, and a radiator (radiator) 43 that includes a fan 42.

冷却水経路40には、冷却水をラジエータ52をバイパスさせるためのバイパス経路44が設けられている。冷却水経路40とバイパス経路44との合流点には、バイパス経路44に流れる冷却水流量を調整するための流路切替弁45が設けられている。また、冷却水経路40における燃料電池10の出口側近傍には、燃料電池10から流出した冷却水の温度を検出する温度検出手段としての温度センサ46が設けられている。この温度センサ46により冷却水温度Wtを検出することで、燃料電池10の温度を間接的に検出することができる。   The cooling water path 40 is provided with a bypass path 44 for bypassing the cooling water to the radiator 52. A flow path switching valve 45 for adjusting the flow rate of the cooling water flowing through the bypass path 44 is provided at the junction of the cooling water path 40 and the bypass path 44. Further, a temperature sensor 46 is provided in the vicinity of the outlet side of the fuel cell 10 in the cooling water passage 40 as temperature detecting means for detecting the temperature of the cooling water flowing out from the fuel cell 10. By detecting the coolant temperature Wt by the temperature sensor 46, the temperature of the fuel cell 10 can be indirectly detected.

燃料電池システム1には、各種制御を行う制御部(ECU)50が設けられている。制御部50は、CPU、ROM、RAM等からなる周知のマイクロコンピュータとその周辺回路にて構成されている。そして、制御部50は、温度センサ46の検出温度、および後述する電圧センサ60、61(図4参照)の検出電圧などに基づいてセル10aの面内における電流分布を検出し、この検出される電流分布に応じて、空気ポンプ21、加湿器22、空気調圧弁23、水素調圧弁32、水素ポンプ33、ウォータポンプ41、流路切替弁45を制御する。   The fuel cell system 1 is provided with a control unit (ECU) 50 that performs various controls. The control unit 50 is composed of a well-known microcomputer comprising a CPU, ROM, RAM, etc. and its peripheral circuits. Then, the control unit 50 detects the current distribution in the plane of the cell 10a based on the detected temperature of the temperature sensor 46, the detected voltages of voltage sensors 60 and 61 (see FIG. 4) described later, and the like. The air pump 21, the humidifier 22, the air pressure regulating valve 23, the hydrogen pressure regulating valve 32, the hydrogen pump 33, the water pump 41, and the flow path switching valve 45 are controlled in accordance with the current distribution.

次に、電流測定部材100について説明する。図3は、電流測定部材100を
セル10aの積層方向から視た正面である。図4は、図3中A−A断面面であって、図中の外形線の内側は、図示の明確化のために、電流測定部材100の内部を透視した図を示している。
Next, the current measuring member 100 will be described. FIG. 3 is a front view of the current measuring member 100 as viewed from the stacking direction of the cells 10a. FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3, and the inside of the outline in the drawing shows a perspective view of the inside of the current measuring member 100 for clarity of illustration.

電流測定部材100は、複数の配線層を有するプリント基板(積層基板)から構成されるもので、配線層110、115の間に、配線層111、112、113、114、および電気絶縁層120、121、122、123、124が積層されている。   The current measuring member 100 is composed of a printed circuit board (laminated substrate) having a plurality of wiring layers. Between the wiring layers 110 and 115, the wiring layers 111, 112, 113, 114, and the electrical insulating layer 120, 121, 122, 123, and 124 are laminated.

ここで、配線層110、111、112、113、114、115は、金属箔(例えば、銅箔等)からなる。電気絶縁層120、121、122、123、124はエポキシ樹脂等からなる。   Here, the wiring layers 110, 111, 112, 113, 114, and 115 are made of metal foil (eg, copper foil). The electrically insulating layers 120, 121, 122, 123, 124 are made of epoxy resin or the like.

電流測定部材100は、その板厚方向(すなわち、セル10aの積層方向)の抵抗値が面方向に亘って同等になるように構成されている。電流測定部材100は、セル10aの面内における電流分布を測定するための複数の電流測定体101を構成している。複数の電流測定体101は、電流測定部材100の面方向に分散して配置されている。   The current measuring member 100 is configured such that the resistance value in the plate thickness direction (that is, the stacking direction of the cells 10a) is equal over the surface direction. The current measuring member 100 constitutes a plurality of current measuring bodies 101 for measuring the current distribution in the plane of the cell 10a. The plurality of current measuring bodies 101 are arranged in a distributed manner in the surface direction of the current measuring member 100.

本実施形態の電流測定体101には、複数の電流測定体101がマトリクス状に配列されている。本実施形態では、(4×7)の電流測定体101がマトリクス状に配列されている。複数の電流測定体101は、それぞれ、同一の構造を有している。電流測定体101は、隣り合う2つのセル10aの間の局所の電流を測定可能となっている。   In the current measuring body 101 of this embodiment, a plurality of current measuring bodies 101 are arranged in a matrix. In this embodiment, (4 × 7) current measuring bodies 101 are arranged in a matrix. Each of the plurality of current measuring bodies 101 has the same structure. The current measuring body 101 can measure a local current between two adjacent cells 10a.

ここで、配線層110は、図4、図5(a)に示すように、複数の電極部110aから構成されている。図5(a)は、配線層110をその面方向に垂直である方向(図4中上側)から視た図である。複数の電極部110aは、電流測定体101の第1の電極部をそれぞれ構成するもので、隣り合う2つのセル10のうち一方のセル10aに接続されている。   Here, as shown in FIGS. 4 and 5A, the wiring layer 110 is composed of a plurality of electrode portions 110a. FIG. 5A is a diagram of the wiring layer 110 viewed from a direction (upper side in FIG. 4) perpendicular to the surface direction. The plurality of electrode portions 110 a constitute the first electrode portion of the current measuring body 101 and are connected to one cell 10 a of the two adjacent cells 10.

複数の電極部110aは、電流測定体101毎に独立して設けられている。配線層115は、図4、図5(c)に示すように、複数の電流測定体101の共通の第2の電極部を構成する。図5(c)は、配線層115を板厚方向(図4中下側)から視た図である。配線層115は、隣り合う2つのセル10のうち一方のセル10a以外の他方のセル10aに接続されている。   The plurality of electrode portions 110 a are provided independently for each current measuring body 101. As shown in FIGS. 4 and 5C, the wiring layer 115 constitutes a second electrode portion common to the plurality of current measuring bodies 101. FIG. 5C is a view of the wiring layer 115 as viewed from the thickness direction (lower side in FIG. 4). The wiring layer 115 is connected to the other cell 10 a other than the one cell 10 a of the two adjacent cells 10.

配線層111は、図5(b)に示すように、電流測定体101毎に独立して設けられている。図5(b)は、配線層111を板厚方向(図4中上下方向)から視た図である。配線層111は、電流測定体101毎に第1の抵抗体としての抵抗体Raを構成する。配線層114は、配線層111と同様、電流測定体101毎に独立して設けられている。配線層114は、電流測定体101毎に第2の抵抗体としての抵抗体Rbを構成する。   As shown in FIG. 5B, the wiring layer 111 is provided independently for each current measuring body 101. FIG. 5B is a diagram when the wiring layer 111 is viewed from the thickness direction (vertical direction in FIG. 4). The wiring layer 111 constitutes a resistor Ra as a first resistor for each current measuring body 101. Similar to the wiring layer 111, the wiring layer 114 is provided independently for each current measuring body 101. The wiring layer 114 constitutes a resistor Rb as a second resistor for each current measuring body 101.

ここで、配線層110、111の間には、配線層110、111の間を接続するスルーホール(層間接続部材)140が設けられている。配線層111、114の間には、配線層111、114の間を接続するスルーホール(層間接続部材)141が設けられている。配線層114、115の間には、配線層114、115の間を接続するスルーホール(層間接続部材)142が設けられている。   Here, a through hole (interlayer connection member) 140 that connects the wiring layers 110 and 111 is provided between the wiring layers 110 and 111. A through hole (interlayer connection member) 141 for connecting the wiring layers 111 and 114 is provided between the wiring layers 111 and 114. Between the wiring layers 114 and 115, a through hole (interlayer connection member) 142 for connecting the wiring layers 114 and 115 is provided.

このように電流測定体101は、電極部110a、配線層115、スルーホール140、141、142、および抵抗体Ra、Rbから構成されている。   As described above, the current measuring body 101 includes the electrode portion 110a, the wiring layer 115, the through holes 140, 141, 142, and the resistors Ra, Rb.

ここで、電極部110aおよび配線層115の間で抵抗体Ra、Rbが直列接続されている。抵抗体Ra、Rbは、後述するように、互いに温度特性が相違するように構成されている。   Here, the resistors Ra and Rb are connected in series between the electrode part 110 a and the wiring layer 115. As will be described later, the resistors Ra and Rb are configured to have different temperature characteristics.

なお、本実施形態の電流測定部材100、制御部50、電圧センサ60、61、62が本発明の電流計測装置を構成している。電圧センサ62は、後述する抵抗体Rcの両端子間の電位差V3を求める電圧センサである。   In addition, the current measurement member 100, the control unit 50, and the voltage sensors 60, 61, and 62 of the present embodiment constitute the current measurement device of the present invention. The voltage sensor 62 is a voltage sensor for obtaining a potential difference V3 between both terminals of a resistor Rc described later.

次に、電流測定部材100による電流測定方法について説明する。   Next, a current measurement method using the current measurement member 100 will be described.

まず、燃料電池10に対する水素および空気の供給が開始されることで、燃料電池10の複数のセル10aで発電が開始される。電流測定部材100の複数の電流測定体101では、電流流れ方向上流側のセル10aから電極部(第1電極部)110aに電流が流れる。そして、電極部110a→スルーホール140→抵抗体Ra→スルーホール141→抵抗体Rb→スルーホール142→配線層(第2電極部)115の順に電流が流れ、配線層115の板面から電流流れ方向下流側のセル10aに電流が流れる。   First, by starting the supply of hydrogen and air to the fuel cell 10, power generation is started in the plurality of cells 10 a of the fuel cell 10. In the plurality of current measuring bodies 101 of the current measuring member 100, a current flows from the cell 10a on the upstream side in the current flow direction to the electrode portion (first electrode portion) 110a. Then, current flows in the order of electrode portion 110a → through hole 140 → resistor Ra → through hole 141 → resistor Rb → through hole 142 → wiring layer (second electrode portion) 115, and current flows from the plate surface of wiring layer 115. A current flows in the cell 10a on the downstream side in the direction.

このとき、制御部50は、電流測定体101毎に、電圧センサ60、61の検出電圧を用いて抵抗体Ra、Rbに流れる電流を求める。電圧センサ60は、電流測定体101毎に抵抗体Raの両端子間の電位差を測定する。電圧センサ61は、電流測定体101毎に抵抗体Rbの両端子間の電位差を測定する。   At this time, the control part 50 calculates | requires the electric current which flows into resistance body Ra and Rb using the detection voltage of the voltage sensors 60 and 61 for every electric current measurement body 101. FIG. The voltage sensor 60 measures the potential difference between both terminals of the resistor Ra for each current measuring body 101. The voltage sensor 61 measures a potential difference between both terminals of the resistor Rb for each current measuring body 101.

ここで、抵抗体Raの両端子間に生じる電位差をVaとし、抵抗体Rbの両端子間に生じる電位差をVbとし、抵抗体Ra、Rbに流れる電流をIとし、抵抗体Raの既知の温度係数をαとし、抵抗体Rbの既知の温度係数をβとし、抵抗体Ra、Rbの温度をtとし、抵抗体Ra、の既知の基準温度をtaとし、抵抗体Rbの既知の基準温度をtbとし、抵抗体Raにおいて既知の基準温度taにおける抵抗値Raoとし、抵抗体Rbにおいて既知の基準温度tbにおける抵抗値Rboとする。   Here, the potential difference generated between both terminals of the resistor Ra is Va, the potential difference generated between both terminals of the resistor Rb is Vb, the current flowing through the resistors Ra and Rb is I, and the known temperature of the resistor Ra The coefficient is α, the known temperature coefficient of the resistor Rb is β, the temperature of the resistors Ra and Rb is t, the known reference temperature of the resistor Ra is ta, and the known reference temperature of the resistor Rb is Let tb be a resistance value Rao at a known reference temperature ta in the resistor Ra, and a resistance value Rbo at a known reference temperature tb in the resistor Rb.

ここで、抵抗体Raの既知の温度係数をαと、抵抗体Rbの既知の温度係数β(≠α)とが互いに異なる値に設定されている。このため、電流Iと温度tとの関係を示す次の数式1、数式2が成立する。   Here, the known temperature coefficient α of the resistor Ra and the known temperature coefficient β (≠ α) of the resistor Rb are set to different values. Therefore, the following formulas 1 and 2 showing the relationship between the current I and the temperature t are established.

Va=I・Rao{1+α(t−ta)}・・・・・(数式1)
Vb=I・Rbo{1+α(t−tb)}・・・・・(数式2)
そこで、制御部50は、数式1および数式2に基づいて、抵抗体Ra、Rbに流れる電流I、および抵抗体Ra、Rbの温度tを求める。このとき、電流Iは、上記局所に流れる電流を示し、温度tは上記局所の温度を示す。
Va = I · Rao {1 + α (t−ta)} (Formula 1)
Vb = I · Rbo {1 + α (t−tb)} (Formula 2)
Therefore, the control unit 50 obtains the current I flowing through the resistors Ra and Rb and the temperature t of the resistors Ra and Rb based on the equations 1 and 2. At this time, the current I indicates the current that flows locally, and the temperature t indicates the local temperature.

以上説明した本実施形態によれば、数式1および数式2に基づいて、抵抗体Ra、Rbに流れる電流Iを局所に流れる電流として求めることができる。このため、局所に流れる電流を正確に求めることができる。   According to the present embodiment described above, the current I that flows through the resistors Ra and Rb can be obtained as the current that flows locally based on Expression 1 and Expression 2. For this reason, the electric current which flows locally can be calculated | required correctly.

これに加えて、本実施形態では、抵抗体Ra、Rbを直列接続して抵抗体Ra、Rbに電流Iが流れるように構成したので、定電流電源を必要としない。このため、電気絶縁等のための余分なスペースを確保しなくてもよい。   In addition to this, in the present embodiment, the resistors Ra and Rb are connected in series so that the current I flows through the resistors Ra and Rb, so a constant current power source is not required. For this reason, it is not necessary to secure an extra space for electrical insulation or the like.

以上により、簡素な構成で、局所に流れる電流を正確に求めることができる。   As described above, the current flowing locally can be accurately obtained with a simple configuration.

(第2実施形態)
上記第1実施形態では、相違する配線層111、114に抵抗体Ra、Rbを設けた例について説明したが、これに代えて、本実施形態では、図6に示すように、同一配線層111に抵抗体Ra、Rbを設けてもよい。
(Second Embodiment)
In the first embodiment, the example in which the resistors Ra and Rb are provided in the different wiring layers 111 and 114 has been described. Instead, in the present embodiment, as shown in FIG. The resistors Ra and Rb may be provided on the substrate.

ここで、抵抗体Ra、Rbを金属抵抗薄膜により形成してよい。例えば、配線層111内において互いに異なる種類の金属箔を用いて、抵抗体Ra、Rbを形成する。或いは、基板内に抵抗器を内蔵して抵抗体Ra、Rbを形成してもよい。図6(a)は抵抗体Rbを金属抵抗薄膜により形成した例を示し、図6(b)は抵抗器を内蔵して抵抗体Rbを形成した例を示している。
(第3実施形態)
上記第1実施形態では、相違する配線層111、114に抵抗体Ra、Rbを設けた例について説明したが、これに代えて、図7に示すように、スルーホール141により抵抗体Rbを形成してもよい。この場合、スルーホール141内に導電性ペーストを充填して抵抗体Rbを形成してもよい。
Here, the resistors Ra and Rb may be formed of a metal resistance thin film. For example, the resistors Ra and Rb are formed using different types of metal foils in the wiring layer 111. Alternatively, the resistors Ra and Rb may be formed by incorporating resistors in the substrate. FIG. 6A shows an example in which the resistor Rb is formed of a metal resistance thin film, and FIG. 6B shows an example in which the resistor Rb is formed with a built-in resistor.
(Third embodiment)
In the first embodiment, the example in which the resistors Ra and Rb are provided in the different wiring layers 111 and 114 has been described, but instead, the resistor Rb is formed by the through hole 141 as shown in FIG. May be. In this case, the resistor Rb may be formed by filling the through hole 141 with a conductive paste.

この場合、スルーホール141を構成するメッキ部や導電性ペーストの抵抗率は、配線層111を構成する銅箔の抵抗率と異なる値にすることができる。これにより、抵抗体Ra、Rbを互いに異なる温度特性に設定することができる。図示を省略するが、別のスルーホールにより抵抗体Raを形成してもよい。   In this case, the resistivity of the plated portion and the conductive paste constituting the through hole 141 can be set to a value different from the resistivity of the copper foil constituting the wiring layer 111. Thereby, the resistors Ra and Rb can be set to different temperature characteristics. Although not shown, the resistor Ra may be formed by another through hole.

(第4実施形態)
上記第1実施形態では、抵抗体Raの両端子を2つの配線を介して電圧センサ60に接続し、抵抗体Rbの両端子を2つの配線を介して電圧センサ61にそれぞれ接続した例について説明したが、これに代えて、図8のようにしてもよい。
(Fourth embodiment)
In the first embodiment, an example in which both terminals of the resistor Ra are connected to the voltage sensor 60 via two wires, and both terminals of the resistor Rb are connected to the voltage sensor 61 via two wires, respectively. However, instead of this, it may be as shown in FIG.

図8では、スルーホール141により抵抗体Rbが形成されている。そして、抵抗体Raのスルーホール140側端子と電圧センサ60との間を配線150で接続され、かつ、抵抗体Raのスルーホール141側端子と電圧センサ60との間を配線150で接続されている。   In FIG. 8, the resistor Rb is formed by the through hole 141. Then, the through hole 140 side terminal of the resistor Ra and the voltage sensor 60 are connected by the wiring 150, and the through hole 141 side terminal of the resistor Ra and the voltage sensor 60 are connected by the wiring 150. Yes.

さらに、抵抗体Rbの抵抗体Ra側端子と電圧センサ61との間を配線151で接続され、かつ、抵抗体Rbのスルーホール142側端子と電圧センサ61との間を配線152で接続されている。このため、抵抗体Ra、Rbと電圧センサ60、61との間を3本の配線150、151、152で接続することができる。よって、使用する配線の本数を減らすことができる。   Further, the resistor Ra side terminal of the resistor Rb and the voltage sensor 61 are connected by the wiring 151, and the through hole 142 side terminal of the resistor Rb and the voltage sensor 61 are connected by the wiring 152. Yes. Therefore, the resistors Ra and Rb and the voltage sensors 60 and 61 can be connected by the three wires 150, 151, and 152. Therefore, the number of wirings used can be reduced.

(第5実施形態)
上記第1実施形態では、配線層111、114により抵抗体Ra、Rbを形成した例について説明したが、これに代えて、本実施形態では、図9に示すように、配線層111、114およびスルーホール141により抵抗体Ra、Rbを形成してもよい。
(Fifth embodiment)
In the first embodiment, the example in which the resistors Ra and Rb are formed by the wiring layers 111 and 114 has been described. Instead of this, in the present embodiment, as shown in FIG. The resistors Ra and Rb may be formed by the through holes 141.

ここで、配線層111により抵抗体Ra2を形成し、スルーホール141により抵抗体Ra1を形成し、配線層114により抵抗体Rbを形成する。抵抗体Ra1と抵抗体Ra2とを合成した抵抗体を抵抗体Raとする。これにより、配線層111、114およびスルーホール141により抵抗体Ra、Rbを形成することができる。   Here, the resistor Ra <b> 2 is formed by the wiring layer 111, the resistor Ra <b> 1 is formed by the through hole 141, and the resistor Rb is formed by the wiring layer 114. A resistor obtained by synthesizing the resistor Ra1 and the resistor Ra2 is referred to as a resistor Ra. Thereby, the resistors Ra and Rb can be formed by the wiring layers 111 and 114 and the through hole 141.

(第6実施形態)
上記第1実施形態では、複数の電流測定体101の全てにおいて、抵抗体Ra、Rbを第1、第2の電極部の間に直列接続した例について説明したが、これに代えて、複数の電流測定体101のうち1つの電流測定体101で上記第1実施形態と同様に求められた局所の温度tを用いて、上記隣り合う2つのセル10aの間のうち上記局所以外の他の局所に流れる電流を求める例について説明する。
(Sixth embodiment)
In the first embodiment, the example in which the resistors Ra and Rb are connected in series between the first and second electrode portions in all of the plurality of current measuring bodies 101 has been described. Using the local temperature t obtained in the same manner as in the first embodiment with one of the current measuring bodies 101, a local area other than the local area between the two adjacent cells 10a is used. An example in which the current flowing through the current is obtained will be described.

本実施形態において、上記隣り合う2つのセル10aの間のうち上記温度tを求めた局所に対応する電流測定体101を1つの電流測定体101という。上記隣り合う2つのセル10aの間のうち上記局所以外の他の局所に対応する電流測定体101を他の電流測定体101という。   In the present embodiment, the current measuring body 101 corresponding to the local area where the temperature t is obtained between the two adjacent cells 10 a is referred to as one current measuring body 101. The current measurement body 101 corresponding to a local area other than the local area between the two adjacent cells 10 a is referred to as another current measurement body 101.

他の電流測定体101は、図10に示すように、電極部110a、および配線層115の間に1つの抵抗体Rcが形成されている。抵抗体Rcの両端子間の電位差V3を求める電圧センサ62が設けられている。   In the other current measuring body 101, as shown in FIG. 10, one resistor Rc is formed between the electrode portion 110a and the wiring layer 115. A voltage sensor 62 for obtaining a potential difference V3 between both terminals of the resistor Rc is provided.

本実施形態では、局所(つまり、上記1つの電流測定体101)の温度tが抵抗体Rcの温度Tに同一であると仮定する。抵抗体Rcの抵抗値Rtは、抵抗体Rcの温度Tによって変化する。そして、抵抗体Rcの温度Tは、抵抗体Rcの抵抗値Rtと1対1で特定される関係にある。このため、制御部50は、局所の温度t(=温度T)によって抵抗体Rcの抵抗値Rtを求めることができる。つまり、抵抗体Rcにおける温度誤差の小さな抵抗値Rtを求めることができる。これに加えて、制御部50は、電圧センサ62の検出電位差V3を抵抗体Rcの抵抗値Rtで割ることにより、抵抗体Rc(つまり、他の局所)に流れる電流Ibを正確に求めることができる。   In the present embodiment, it is assumed that the local temperature t (that is, the one current measuring body 101) is the same as the temperature T of the resistor Rc. The resistance value Rt of the resistor Rc varies depending on the temperature T of the resistor Rc. The temperature T of the resistor Rc is in a one-to-one relationship with the resistance value Rt of the resistor Rc. Therefore, the control unit 50 can obtain the resistance value Rt of the resistor Rc from the local temperature t (= temperature T). That is, the resistance value Rt with a small temperature error in the resistor Rc can be obtained. In addition to this, the control unit 50 can accurately obtain the current Ib flowing through the resistor Rc (that is, other local area) by dividing the detection potential difference V3 of the voltage sensor 62 by the resistance value Rt of the resistor Rc. it can.

以上説明した本実施形態によれば、上記1つの電流測定体101と上記他の電流測定体101との間で温度差が生じていると、その温度差が原因で「温度係数に起因した抵抗値Rtの差分」が生じるものの、その抵抗値Rtの差分は小さい。したがって、上記1つの電流測定体101の温度tと上記他の電流測定体101の温度Tが同一であると仮定しても、上記他の局所温度を求めることなく電流を求める従来技術に比べて、正確に電流を求めることができる。   According to the present embodiment described above, if a temperature difference occurs between the one current measuring body 101 and the other current measuring body 101, the resistance difference due to the temperature coefficient is caused by the temperature difference. Although the difference of the value Rt occurs, the difference of the resistance value Rt is small. Therefore, even if it is assumed that the temperature t of the one current measuring body 101 and the temperature T of the other current measuring body 101 are the same, the current is obtained without obtaining the other local temperature. The current can be calculated accurately.

(第7実施形態)
本実施形態では、複数の電流測定体101のうち第1、第2の電流測定体101で、それぞれ上記第1実施形態と同様に局所の温度t1、t2を求め、この求められた局所の温度t1、t2を用いて、複数の電流測定体101のうち第1、第2の電流測定体101以外の他の電流測定体101に流れる電流を他の局所に流れる電流として求める例について説明する。
(Seventh embodiment)
In the present embodiment, the first and second current measuring bodies 101 out of the plurality of current measuring bodies 101 obtain local temperatures t1 and t2 as in the first embodiment, and the obtained local temperatures. An example will be described in which the current flowing through the current measuring body 101 other than the first and second current measuring bodies 101 among the plurality of current measuring bodies 101 is obtained as another locally flowing current using t1 and t2.

本実施形態では、第1、第2の電流測定体101は、それぞれ、抵抗体Ra、Rbが電極部110aと配線層115との間に直列接続されて構成されている。他の電流測定体101は、図10に示すように、電極部110a、および配線層115の間に1つの抵抗体Rcが形成されている。   In the present embodiment, the first and second current measuring bodies 101 are configured by connecting resistors Ra and Rb in series between the electrode part 110a and the wiring layer 115, respectively. In the other current measuring body 101, as shown in FIG. 10, one resistor Rc is formed between the electrode portion 110a and the wiring layer 115.

他の電流測定体101としては、その温度が、第1、第2の電流測定体101の温度に相関関係にあるものである。例えば、第1、第2の電流測定体101の間に位置する電流測定体101(以下、中間電流測定体101という)を他の電流測定体101としてもよく、中間電流測定体101の周辺に位置する電流測定体101を他の電流測定体101としてもよい。   The other current measuring body 101 has a temperature that is correlated with the temperature of the first and second current measuring bodies 101. For example, a current measurement body 101 (hereinafter referred to as an intermediate current measurement body 101) positioned between the first and second current measurement bodies 101 may be another current measurement body 101, and may be disposed around the intermediate current measurement body 101. The current measurement body 101 positioned may be another current measurement body 101.

そこで、本実施形態では、制御部50は、第1、第2の電流測定体101で求められた温度t1、t2を用いて他の電流測定体101で求められる他の局所の温度t3を、線形補間等の推定方法により推定する。制御部50は、上記第6実施形態と同様に、この推定される他の局所の温度t3を用いて、抵抗体Rcの抵抗値Rtを求めることができる。これに加えて、制御部50は、電圧センサ62の検出電位差V3を抵抗体Rcの抵抗値Rtで割って抵抗体Rc(つまり、他の局所)に流れる電流Ibを正確に求めることができる。   Therefore, in the present embodiment, the control unit 50 uses the temperatures t1 and t2 obtained by the first and second current measuring bodies 101 to obtain other local temperatures t3 obtained by other current measuring bodies 101, Estimation is performed by an estimation method such as linear interpolation. Similarly to the sixth embodiment, the control unit 50 can obtain the resistance value Rt of the resistor Rc using the estimated other local temperature t3. In addition to this, the control unit 50 can accurately determine the current Ib flowing through the resistor Rc (ie, another local area) by dividing the detected potential difference V3 of the voltage sensor 62 by the resistance value Rt of the resistor Rc.

(第8実施形態)
上記第7実施形態では、複数の電流測定体101のうち第1、第2の電流測定体101で、それぞれ、上記第1実施形態と同様に、局所の温度t1、t2を求める例について説明したが、これに代えて、複数の電流測定体101のうち第1の電流測定体101で上記第1実施形態と同様に求められた局所の温度tと冷却水の温度Wtとを用いて、上記隣り合う2つのセル10aの間の局所以外の他の局所の電流を求める例について説明する。
(Eighth embodiment)
In the seventh embodiment, the example in which the first and second current measuring bodies 101 among the plurality of current measuring bodies 101 obtain the local temperatures t1 and t2 as in the first embodiment has been described. However, instead of this, the local temperature t obtained by the first current measuring body 101 in the same manner as in the first embodiment and the cooling water temperature Wt among the plurality of current measuring bodies 101 are used. An example of obtaining a local current other than the local between two adjacent cells 10a will be described.

本実施形態では、複数の電流測定体101のうち第2電流測定体101の温度は温度センサ46の検出冷却水温度Wtと同じであると設定する。第2電流測定体101としては、例えば、冷却水経路40に近い位置に設けられている電流測定体101を用いることができる。或いは、第2電流測定体101として、電流測定部材100のうち外周側に位置する電流測定体101を設定してもよい。   In the present embodiment, the temperature of the second current measuring body 101 among the plurality of current measuring bodies 101 is set to be the same as the detected coolant temperature Wt of the temperature sensor 46. As the second current measuring body 101, for example, the current measuring body 101 provided at a position close to the cooling water path 40 can be used. Alternatively, as the second current measurement body 101, the current measurement body 101 located on the outer peripheral side of the current measurement member 100 may be set.

本実施形態の他の電流測定体101は、図10に示すように、電極部110a、および配線層115の間に1つの抵抗体Rcが形成されているものとする。   As shown in FIG. 10, the other current measurement body 101 of this embodiment is configured such that one resistor Rc is formed between the electrode portion 110 a and the wiring layer 115.

そこで、制御部50は、上記第7実施形態と同様に、第1、第2の電流測定体101で求められた温度t、Wtを用いて他の電流測定体101で求められる他の局所の温度t3を、線形補間等の推定方法により推定する。さらに、上記第7実施形態と同様、当該推定される他の局所の温度t3を用いて、抵抗体Rcの抵抗値Rtを求める。これに加えて、制御部50は、電圧センサ62の検出電位差V3を抵抗体Rcの抵抗値Rtで割って抵抗体Rc(つまり、他の局所)に流れる電流Ibを正確に求めることができる。   Therefore, as in the seventh embodiment, the control unit 50 uses other temperatures t and Wt obtained by the first and second current measurement bodies 101 to obtain other local measurements obtained by other current measurement bodies 101. The temperature t3 is estimated by an estimation method such as linear interpolation. Further, similarly to the seventh embodiment, the resistance value Rt of the resistor Rc is obtained using the estimated other local temperature t3. In addition to this, the control unit 50 can accurately determine the current Ib flowing through the resistor Rc (ie, another local area) by dividing the detected potential difference V3 of the voltage sensor 62 by the resistance value Rt of the resistor Rc.

(他の実施形態)
上記第1〜第8の実施形態では、電流測定部材100を隣り合う2つのセル10aの間に配置した例について説明したが、これに代えて、集電板11、12のうち一方の集電板と、この一方の集電板に隣り合うセル10a(以下、隣り合うセル10aという)との間に電流測定部材100を配置してもよい。なお、前記一方の集電板に隣り合うセル10aを以下、隣り合うセル10aという。
(Other embodiments)
In the first to eighth embodiments, the example in which the current measuring member 100 is disposed between two adjacent cells 10a has been described. Instead, one of the current collecting plates 11 and 12 is collected. The current measuring member 100 may be disposed between the plate and a cell 10a adjacent to the one current collector plate (hereinafter referred to as the adjacent cell 10a). The cells 10a adjacent to the one current collector plate are hereinafter referred to as adjacent cells 10a.

この場合、前記一方の集電板および隣り合うセル10aのうち、一方の部材に複数の電極部110a(第1の電極部)が接続され、前記一方の集電板および隣り合うセル10aのうち前記一方の部材以外の他方の部材が配線層115(第2の電極部)に接続されている。   In this case, among the one current collector plate and the adjacent cell 10a, a plurality of electrode portions 110a (first electrode portions) are connected to one member, and the one current collector plate and the adjacent cell 10a The other member other than the one member is connected to the wiring layer 115 (second electrode portion).

上記第1〜第8の実施形態では、複数のセル10aから燃料電池10を構成した例について説明したが、これに代えて、集電板11、12の間に1つのセル10aだけを配置して燃料電池10を構成してもよい。   In the first to eighth embodiments, the example in which the fuel cell 10 is configured from a plurality of cells 10a has been described, but instead, only one cell 10a is disposed between the current collecting plates 11 and 12. The fuel cell 10 may be configured.

この場合、集電板11、12のうち一方の集電板とセル10aとの間に電流測定部材100を配置することになる。   In this case, the current measuring member 100 is disposed between one of the current collector plates 11 and 12 and the cell 10a.

このため、前記一方の集電板およびセル10aのうち一方の部材に複数の電極部110a(第1の電極部)が接続され、前記一方の集電板およびセル10aのうち一方の部材以外の他の部材に配線層115(第2の電極部)が接続されている。   For this reason, a plurality of electrode portions 110a (first electrode portions) are connected to one member of the one current collector plate and the cell 10a, and other than one member of the one current collector plate and the cell 10a. The wiring layer 115 (second electrode portion) is connected to another member.

上記第1〜第8の実施形態では、配線層間を接続する層間接続部材として、スルーホールを用いた例について説明したが、これに代えて、レーザービアを用いてもよい。これにより基板の表面において電極部に生じる穴を無くすことができる。   In the first to eighth embodiments, the example in which the through hole is used as the interlayer connection member for connecting the wiring layers has been described, but a laser via may be used instead. Thereby, the hole which arises in the electrode part in the surface of a board | substrate can be eliminated.

この場合、スルーホールを用いる場合に比べて、層間接続部材において基板の面方向の大きさを小さくすることができる。このため、基板において細かいピッチで層間接続部材を数多く配置することができる。このため、配線層間の接触面積を大きくとることができ、配線層間の接触抵抗を低減できる。これに加えて、細かいピッチで層間接続部材を配置することができるので、基板(すなわち、電流測定部材100)の設計の自由度が向上する。   In this case, the size of the interlayer connection member in the surface direction of the substrate can be reduced as compared with the case of using the through hole. For this reason, many interlayer connection members can be arranged at a fine pitch on the substrate. Therefore, the contact area between the wiring layers can be increased, and the contact resistance between the wiring layers can be reduced. In addition, since the interlayer connection members can be arranged with a fine pitch, the degree of freedom in designing the substrate (that is, the current measurement member 100) is improved.

上記第1〜第8の実施形態では、電流測定部材100において複数の電流測定体101をマトリクス状に配列した例について説明したが、電極部110aと配線層115との間の抵抗値(すなわち、第1、第2電極部の間の抵抗値)が電流測定体101毎に同等になるように構成されていれば、複数の電流測定体101をマトリックス状にしなくてもよく、また複数の電流測定体101を同一の形状にしなくてもよい。   In the first to eighth embodiments, the example in which the plurality of current measuring bodies 101 are arranged in a matrix in the current measuring member 100 has been described. However, the resistance value between the electrode part 110a and the wiring layer 115 (that is, If the resistance values between the first and second electrode portions) are configured to be equal for each current measuring body 101, the plurality of current measuring bodies 101 may not be arranged in a matrix, and the plurality of currents The measuring body 101 does not have to have the same shape.

なお、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。   In addition, this invention is not limited to above-described embodiment, In the range described in the claim, it can change suitably. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered essential in principle. Yes.

1 燃料電池システム
10 燃料電池
10a セル
11 集電板
12 集電板
20 空気流路
20a 空気供給流路
21 空気ポンプ
22 加湿器
30a 水素供給流路
30b 水素排出流路
30c 水素循環流路
31 高圧水素タンク
32 水素調圧弁
33 水素ポンプ
40 冷却水経路
41 ウォータポンプ
42 ファン
43 ラジエータ
46 温度センサ(冷却水温度検出手段)
50 制御部(電流温度算出手段、電流温度算出手段)
60 電圧センサ(第1電位差検出手段)
61 電圧センサ(第1電位差検出手段)
62 電圧センサ(第2電位差検出手段)
100 電流測定部材
101 電流測定体
110a 電極部(第1電極部)
115 配線層(第2電極部)
141 スルーホール(層間接続部材)
Ra 抵抗体(第1抵抗体)
Rb 抵抗体(第2抵抗体)
Rc 抵抗体(他の抵抗体)
DESCRIPTION OF SYMBOLS 1 Fuel cell system 10 Fuel cell 10a Cell 11 Current collecting plate 12 Current collecting plate 20 Air flow path 20a Air supply flow path 21 Air pump 22 Humidifier 30a Hydrogen supply flow path 30b Hydrogen discharge flow path 30c Hydrogen circulation flow path 31 High pressure hydrogen Tank 32 Hydrogen pressure regulating valve 33 Hydrogen pump 40 Cooling water path 41 Water pump 42 Fan 43 Radiator 46 Temperature sensor (cooling water temperature detecting means)
50 control unit (current temperature calculation means, current temperature calculation means)
60 Voltage sensor (first potential difference detection means)
61 Voltage sensor (first potential difference detection means)
62 Voltage sensor (second potential difference detection means)
DESCRIPTION OF SYMBOLS 100 Current measuring member 101 Current measuring body 110a Electrode part (1st electrode part)
115 Wiring layer (second electrode part)
141 Through hole (interlayer connection member)
Ra resistor (first resistor)
Rb resistor (second resistor)
Rc resistor (other resistors)

Claims (15)

第1、第2の集電板(11、12)の間に積層される複数のセル(10a)が酸化剤ガスおよび燃料ガスの電気化学反応により電気エネルギをそれぞれ発生して前記第1、第2の集電板の間に電流が流れるように構成されている燃料電池(10)のうち隣り合う2つのセル間の局所に流れる電流と前記局所の温度を求める電流計測装置であって、
前記隣り合う2つのセルのうち一方のセルに接触する第1の電極部(110a)と、前記隣り合う2つのセルのうち前記一方のセル以外の他方のセルに接触する第2の電極部(115)と、前記第1、第2の電極部の間に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第1の抵抗体(Ra)と、前記第1、第2の電極部の間で前記第1抵抗体に直列に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第2の抵抗体(Rb)とからなる電流測定体(101)と、
前記第1の抵抗体に生じる電位差と前記第2の抵抗体に生じる電位差とをそれぞれ検出する第1電位差検出手段(60、61)と、
前記第1電位差検出手段により検出される前記第1、第2の抵抗体のそれぞれの電位差、および前記第1、第2の抵抗体のそれぞれの温度係数を用いて、前記第1、第2の抵抗体に流れる電流と前記第1、第2の抵抗体の温度とを算出する電流温度算出手段(50)と、を備え、
前記第1、第2の抵抗体は、互いに相違する温度特性を有しており、
前記電流温度算出手段により算出される電流を前記局所に流れる電流とし、前記電流温度算出手段により算出される温度を前記局所の温度とすることを特徴とする電流計測装置。
The plurality of cells (10a) stacked between the first and second current collecting plates (11, 12) generate electric energy by the electrochemical reaction of the oxidant gas and the fuel gas, respectively, thereby generating the first and second current collector plates (11, 12). A current measuring device for obtaining a local current flowing between two adjacent cells of the fuel cell (10) configured to allow a current to flow between two current collector plates and the local temperature,
A first electrode part (110a) in contact with one of the two adjacent cells, and a second electrode part in contact with the other cell other than the one of the two adjacent cells ( 115), a first resistor (Ra) disposed between the first and second electrode portions and having a temperature coefficient of resistance set to a predetermined value, and the first A current comprising a second resistor (Rb) disposed in series with the first resistor between the second electrode portions and having a temperature coefficient of resistance set to a predetermined value. A measuring body (101);
First potential difference detection means (60, 61) for respectively detecting a potential difference generated in the first resistor and a potential difference generated in the second resistor;
Using the respective potential differences of the first and second resistors detected by the first potential difference detecting means and the respective temperature coefficients of the first and second resistors, the first and second resistors Current temperature calculation means (50) for calculating the current flowing through the resistor and the temperatures of the first and second resistors,
The first and second resistors have different temperature characteristics,
A current measuring device characterized in that the current calculated by the current temperature calculating means is the current flowing locally, and the temperature calculated by the current temperature calculating means is the local temperature.
前記隣り合う2つのセル間のうち前記局所以外の他の局所に配置されている他の抵抗体(Rc)と、
前記他の抵抗体に生じる電位差を検出する第2電位差検出手段(62)と、
前記電流温度算出手段により算出される温度を用いて前記他の抵抗体の抵抗値を求め、この求めた抵抗値と前記第2電位差検出手段により検出される電位差とを用いて前記他の抵抗体に流れる電流を算出する電流算出手段(50)と、を備えることを特徴とする請求項1に記載の電流計測装置。
Another resistor (Rc) disposed in a region other than the local region between the two adjacent cells;
Second potential difference detection means (62) for detecting a potential difference generated in the other resistor;
The resistance value of the other resistor is obtained using the temperature calculated by the current temperature calculating means, and the other resistor is obtained using the obtained resistance value and the potential difference detected by the second potential difference detecting means. The current measuring device according to claim 1, further comprising: a current calculating means (50) for calculating a current flowing through the current measuring device.
前記電流測定体が2つ以上設けられており、
前記第1電位差検出手段は、前記第1、第2の抵抗体に生じる電位差を前記電流測定体毎に検出するものであり、
前記電流温度算出手段は、前記第1、第2の抵抗体に流れる電流と前記第1、第2の抵抗体の温度とを前記電流測定体毎に算出するものであり、
前記隣り合う2つのセル間のうち前記局所以外の他の局所に配置されている他の抵抗体(Rc)と、
前記他の抵抗体に生じる電位差を検出する第2電位差検出手段(62)と、
前記電流温度算出手段により前記電流測定体毎に算出される温度を用いて前記他の抵抗体の抵抗値を求め、この求めた抵抗値と前記第2電位差検出手段により検出される電位差とを用いて前記他の抵抗体に流れる電流を算出する電流算出手段(50)と、を備えることを特徴とする請求項1に記載の電流計測装置。
Two or more current measuring bodies are provided,
The first potential difference detecting means detects a potential difference generated in the first and second resistors for each current measuring body,
The current temperature calculation means calculates the current flowing through the first and second resistors and the temperature of the first and second resistors for each current measuring body,
Another resistor (Rc) disposed in a region other than the local region between the two adjacent cells;
Second potential difference detection means (62) for detecting a potential difference generated in the other resistor;
The resistance value of the other resistor is obtained using the temperature calculated for each of the current measuring bodies by the current temperature calculating means, and the obtained resistance value and the potential difference detected by the second potential difference detecting means are used. The current measuring device according to claim 1, further comprising: current calculating means (50) for calculating a current flowing through the other resistor.
前記複数のセルを冷却するための冷却水を循環させる冷却水経路(40)内の冷却水の温度を検出する冷却水温度検出手段(46)と、
前記隣り合う2つのセル間のうち前記局所以外の他の局所に配置されている他の抵抗体(Rc)と、
前記他の抵抗体に生じる電位差を検出する第2電位差検出手段(62)と、
前記電流温度算出手段により算出される温度と前記冷却水温度検出手段の検出温度とを用いて前記他の抵抗体の抵抗値を求め、この求めた抵抗値と前記第2電位差検出手段により検出される電位差とを用いて前記他の抵抗体に流れる電流を算出する電流算出手段(50)と、を備えることを特徴とする請求項1に記載の電流計測装置。
Cooling water temperature detecting means (46) for detecting the temperature of the cooling water in the cooling water path (40) for circulating cooling water for cooling the plurality of cells;
Another resistor (Rc) disposed in a region other than the local region between the two adjacent cells;
Second potential difference detection means (62) for detecting a potential difference generated in the other resistor;
A resistance value of the other resistor is obtained using the temperature calculated by the current temperature calculating means and the detected temperature of the cooling water temperature detecting means, and the obtained resistance value and the second potential difference detecting means are detected. The current measuring device according to claim 1, further comprising: a current calculating unit (50) that calculates a current flowing through the other resistor using a potential difference.
第1、第2の集電板(11、12)の間に積層される複数のセル(10a)が酸化剤ガスおよび燃料ガスの電気化学反応により電気エネルギをそれぞれ発生して前記第1、第2の集電板の間に電流が流れるように構成されている燃料電池(10)における前記第1、第2の集電板のうち一方の集電板とこの一方の集電板に隣り合う前記セルとの間の局所に流れる電流と前記局所の温度を求めるための電流計測装置であって、
前記一方の集電板に接触する第1の電極部(110a)と、前記一方の集電板に隣り合う前記セルに接触する第2の電極部(115)と、前記第1、第2の電極部の間に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第1の抵抗体(Ra)と、前記第1、第2の電極部の間で前記第1抵抗体と直列に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第2の抵抗体(Rb)とからなる電流測定体(101)と、
前記第1の抵抗体に生じる電位差と前記第2の抵抗体に生じる電位差とをそれぞれ検出する第1電位差検出手段(60、61)と、
前記第1電位差検出手段により検出される前記第1、第2の抵抗体のそれぞれの電位差、および前記第1、第2の抵抗体のそれぞれの温度係数を用いて前記電流および前記温度を算出する電流温度算出手段(50)と、を備え、
前記第1、第2の抵抗体は、互いに相違する温度特性を有しており、
前記電流温度算出手段により算出される電流を前記局所に流れる電流とし、前記電流温度算出手段により算出される温度を前記局所の温度とすることを特徴とする電流計測装置。
The plurality of cells (10a) stacked between the first and second current collecting plates (11, 12) generate electric energy by the electrochemical reaction of the oxidant gas and the fuel gas, respectively, thereby generating the first and second current collector plates (11, 12). One of the first and second current collector plates in the fuel cell (10) configured to allow current to flow between the two current collector plates, and the cell adjacent to the one current collector plate A current measuring device for determining a local current flowing between and a local temperature,
A first electrode portion (110a) in contact with the one current collector plate; a second electrode portion (115) in contact with the cell adjacent to the one current collector plate; and the first and second electrodes A first resistor (Ra) disposed between the electrode portions and having a temperature coefficient of resistance set to a predetermined value; and the first and second electrode portions between the first and second electrode portions. A current measuring body (101) comprising a second resistor (Rb) disposed in series with one resistor and having a temperature coefficient of resistance set to a predetermined value;
First potential difference detection means (60, 61) for respectively detecting a potential difference generated in the first resistor and a potential difference generated in the second resistor;
The current and the temperature are calculated using the potential difference between the first and second resistors detected by the first potential difference detecting means and the temperature coefficient of each of the first and second resistors. Current temperature calculation means (50),
The first and second resistors have different temperature characteristics,
A current measuring device characterized in that the current calculated by the current temperature calculating means is the current flowing locally, and the temperature calculated by the current temperature calculating means is the local temperature.
前記一方の集電板とこの一方の集電板に隣り合う前記セルとの間のうち前記局所以外の他の局所に配置されている他の抵抗体(Rc)と、
前記他の抵抗体に生じる電位差を検出する第2電位差検出手段(62)と、
前記電流温度算出手段により算出される温度を用いて前記他の抵抗体の抵抗値を求め、この求めた抵抗値と前記第2電位差検出手段により検出される電位差とを用いて前記他の抵抗体に流れる電流を算出する電流算出手段(50)と、を備えることを特徴とする請求項5に記載の電流計測装置。
Another resistor (Rc) disposed in a local area other than the local area between the one current collector plate and the cell adjacent to the one current collector board;
Second potential difference detection means (62) for detecting a potential difference generated in the other resistor;
The resistance value of the other resistor is obtained using the temperature calculated by the current temperature calculating means, and the other resistor is obtained using the obtained resistance value and the potential difference detected by the second potential difference detecting means. The current measuring device according to claim 5, further comprising: a current calculating means (50) for calculating a current flowing through the current measuring device.
前記電流測定体が2つ以上設けられており、
前記第1電位差検出手段は、前記第1、第2の抵抗体に生じる電位差を前記電流測定体毎に検出するものであり、
前記電流温度算出手段は、前記第1、第2の抵抗体に流れる電流と前記第1、第2の抵抗体の温度とを前記電流測定体毎に算出するものであり、
前記一方の集電板とこの一方の集電板に隣り合う前記セルとの間のうち前記局所以外の他の局所に配置されている他の抵抗体(Rc)と、
前記他の抵抗体に生じる電位差を検出する第2電位差検出手段(62)と、
前記電流温度算出手段により前記電流測定体毎に算出される温度を用いて前記他の抵抗体の抵抗値を求め、この求めた抵抗値と前記第2電位差検出手段により検出される電位差とを用いて前記他の抵抗体に流れる電流を算出する電流算出手段(50)と、を備えることを特徴とする請求項5に記載の電流計測装置。
Two or more current measuring bodies are provided,
The first potential difference detecting means detects a potential difference generated in the first and second resistors for each current measuring body,
The current temperature calculation means calculates the current flowing through the first and second resistors and the temperature of the first and second resistors for each current measuring body,
Another resistor (Rc) disposed in a local area other than the local area between the one current collector plate and the cell adjacent to the one current collector board;
Second potential difference detection means (62) for detecting a potential difference generated in the other resistor;
The resistance value of the other resistor is obtained using the temperature calculated for each of the current measuring bodies by the current temperature calculating means, and the obtained resistance value and the potential difference detected by the second potential difference detecting means are used. The current measuring device according to claim 5, further comprising: current calculating means (50) for calculating a current flowing through the other resistor.
前記複数のセルを冷却するための冷却水を循環させる冷却水経路(40)内の冷却水の温度を検出する冷却水温度検出手段(46)と、
前記一方の集電板とこの一方の集電板に隣り合う前記セルとの間のうち前記局所以外の他の局所に配置されている他の抵抗体(Rc)と、
前記他の抵抗体に生じる電位差を検出する第2電位差検出手段(62)と、
前記電流温度算出手段により前記電流測定体毎に算出される温度を用いて前記他の抵抗体の抵抗値を求め、この求めた抵抗値と前記第2電位差検出手段により検出される電位差とを用いて前記他の抵抗体に流れる電流を算出する電流算出手段(50)と、
を備えることを特徴とする請求項5に記載の電流計測装置。
Cooling water temperature detecting means (46) for detecting the temperature of the cooling water in the cooling water path (40) for circulating cooling water for cooling the plurality of cells;
Another resistor (Rc) disposed in a local area other than the local area between the one current collector plate and the cell adjacent to the one current collector board;
Second potential difference detection means (62) for detecting a potential difference generated in the other resistor;
The resistance value of the other resistor is obtained using the temperature calculated for each of the current measuring bodies by the current temperature calculating means, and the obtained resistance value and the potential difference detected by the second potential difference detecting means are used. Current calculating means (50) for calculating the current flowing through the other resistor,
The current measuring device according to claim 5, comprising:
第1、第2の集電板(11、12)の間に配置される1つのセル(10a)が酸化剤ガスおよび燃料ガスの電気化学反応により電気エネルギを発生して前記第1、第2の集電板の間に電流が流れるように構成されている燃料電池(10)における前記第1、第2の集電板のうち一方の集電板および前記セルの間の局所に流れる電流と前記局所の温度を求めるための電流計測装置であって、
前記一方の集電板に接触する第1の電極部(110a)と、前記セルに接触する第2の電極部(115)と、前記第1、第2の電極部の間に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第1の抵抗体(Ra)と、前記第1、第2の電極部の間で前記第1抵抗体と直列に配置されて、かつ抵抗値の温度係数が予め定められた値に設定されている第2の抵抗体(Rb)とからなる電流測定体(101)と、
前記第1の抵抗体に生じる電位差と前記第2の抵抗体に生じる電位差とをそれぞれ検出する第1電位差検出手段(60、61)と、
前記第1電位差検出手段により検出される前記第1、第2の抵抗体のそれぞれの電位差、および前記第1、第2の抵抗体のそれぞれの温度係数を用いて前記電流および前記温度を算出する電流温度算出手段(50)と、を備え、
前記第1、第2の抵抗体は、互いに相違する温度特性を有しており、
前記電流温度算出手段により算出される電流を前記局所に流れる電流とし、前記電流温度算出手段により算出される温度を前記局所の温度とすることを特徴とする電流計測装置。
One cell (10a) disposed between the first and second current collector plates (11, 12) generates electric energy by an electrochemical reaction between an oxidant gas and a fuel gas, thereby generating the first and second Current flowing between one of the first and second current collector plates and the cell in the fuel cell (10) configured to allow current to flow between the current collector plates, and the local current A current measuring device for determining the temperature of
The first electrode part (110a) that contacts the one current collector plate, the second electrode part (115) that contacts the cell, and the first and second electrode parts, In addition, the first resistor (Ra) having a temperature coefficient of resistance set to a predetermined value is disposed in series with the first resistor between the first and second electrode portions. And a current measuring body (101) comprising a second resistor (Rb) having a temperature coefficient of resistance set to a predetermined value;
First potential difference detection means (60, 61) for respectively detecting a potential difference generated in the first resistor and a potential difference generated in the second resistor;
The current and the temperature are calculated using the potential difference between the first and second resistors detected by the first potential difference detecting means and the temperature coefficient of each of the first and second resistors. Current temperature calculation means (50),
The first and second resistors have different temperature characteristics,
A current measuring device characterized in that the current calculated by the current temperature calculating means is the current flowing locally, and the temperature calculated by the current temperature calculating means is the local temperature.
前記一方の集電板および前記セルの間のうち前記局所以外の他の局所に配置されている他の抵抗体(Rc)と、
前記他の抵抗体に生じる電位差を検出する第2電位差検出手段(62)と、
前記電流温度算出手段により算出される温度を用いて、前記他の抵抗体の抵抗値を求め、この求めた抵抗値と前記第2電位差検出手段により検出される電位差とを用いて前記他の抵抗体に流れる電流を算出する電流算出手段(50)と、
を備えることを特徴とする請求項9に記載の電流計測装置。
Other resistors (Rc) arranged between the one current collector plate and the cell other than the local region,
Second potential difference detection means (62) for detecting a potential difference generated in the other resistor;
A resistance value of the other resistor is obtained using the temperature calculated by the current temperature calculating means, and the other resistance is obtained using the obtained resistance value and a potential difference detected by the second potential difference detecting means. Current calculating means (50) for calculating the current flowing through the body;
The current measuring device according to claim 9, comprising:
前記電流測定体が2つ以上設けられており、
前記第1電位差検出手段は、前記第1、第2の抵抗体に生じる電位差を前記電流測定体毎に検出するものであり、
前記電流温度算出手段は、前記第1、第2の抵抗体に流れる電流と前記第1、第2の抵抗体の温度とを前記電流測定体毎に算出するものであり、
前記一方の集電板および前記セルの間のうち前記局所以外の他の局所に配置されている他の抵抗体(Rc)と、
前記他の抵抗体に生じる電位差を検出する第2電位差検出手段(62)と、
前記電流温度算出手段により前記電流測定体毎に算出される温度を用いて前記他の抵抗体の抵抗値を求め、この求めた抵抗値と前記第2電位差検出手段により検出される電位差とを用いて前記他の抵抗体に流れる電流を算出する電流算出手段(50)と、を備えることを特徴とする請求項9に記載の電流計測装置。
Two or more current measuring bodies are provided,
The first potential difference detecting means detects a potential difference generated in the first and second resistors for each current measuring body,
The current temperature calculation means calculates the current flowing through the first and second resistors and the temperature of the first and second resistors for each current measuring body,
Other resistors (Rc) arranged between the one current collector plate and the cell other than the local region,
Second potential difference detection means (62) for detecting a potential difference generated in the other resistor;
The resistance value of the other resistor is obtained using the temperature calculated for each of the current measuring bodies by the current temperature calculating means, and the obtained resistance value and the potential difference detected by the second potential difference detecting means are used. The current measuring device according to claim 9, further comprising: current calculating means (50) for calculating a current flowing through the other resistor.
前記複数のセルを冷却するための冷却水を循環させる冷却水経路(40)内の冷却水の温度を検出する冷却水温度検出手段(46)と、
前記一方の集電板および前記セルの間のうち前記局所以外の他の局所に配置されている他の抵抗体(Rc)と、
前記他の抵抗体に生じる電位差を検出する第2電位差検出手段(62)と、
前記電流温度算出手段により算出される温度と前記冷却水温度検出手段の検出温度とを用いて前記他の抵抗体の抵抗値を求め、この求めた抵抗値と前記第2電位差検出手段により検出される電位差とを用いて前記他の抵抗体に流れる電流を算出する電流算出手段(50)と、を備えることを特徴とする請求項9に記載の電流計測装置。
Cooling water temperature detecting means (46) for detecting the temperature of the cooling water in the cooling water path (40) for circulating cooling water for cooling the plurality of cells;
Other resistors (Rc) arranged between the one current collector plate and the cell other than the local region,
Second potential difference detection means (62) for detecting a potential difference generated in the other resistor;
A resistance value of the other resistor is obtained using the temperature calculated by the current temperature calculating means and the detected temperature of the cooling water temperature detecting means, and the obtained resistance value and the second potential difference detecting means are detected. The current measuring device according to claim 9, further comprising: a current calculating unit (50) that calculates a current flowing through the other resistor using a potential difference.
前記第1の抵抗体(Ra)に生じる電位差をVaとし、前記第2の抵抗体(Rb)に生じる電位差をVbとし、前記第1、第2の抵抗体に流れる電流をIとし、
前記第1の抵抗体の既知の温度係数をαとし、前記第2の抵抗体の既知の温度係数をβとし、前記第1、第2の抵抗体の温度をtとし、前記第1の抵抗体の既知の基準温度をtaとし、前記第2の抵抗体の既知の基準温度をtbとし、前記第1の抵抗体において前記既知の基準温度taにおける抵抗値Raoとし、前記第2の抵抗体において前記既知の基準温度tbにおける抵抗値Rboとしたとき、数式1、数式2が成立し、
Va=I・Rao{1+α(t−ta)}・・・・・(数式1)
Vb=I・Rbo{1+β(t−tb)}・・・・・(数式2)
前記電流温度算出手段は、前記数式1および前記数式2を用いて、前記電流および前記温度を算出することを特徴とする請求項1ないし12のいずれか1つに記載の電流計測装置。
The potential difference generated in the first resistor (Ra) is Va, the potential difference generated in the second resistor (Rb) is Vb, and the current flowing through the first and second resistors is I.
The known temperature coefficient of the first resistor is α, the known temperature coefficient of the second resistor is β, the temperature of the first and second resistors is t, and the first resistance The known reference temperature of the body is ta, the known reference temperature of the second resistor is tb, the resistance value Rao at the known reference temperature ta in the first resistor, and the second resistor When the resistance value Rbo at the known reference temperature tb is expressed by Equations 1 and 2,
Va = I · Rao {1 + α (t−ta)} (Formula 1)
Vb = I · Rbo {1 + β (t−tb)} (Formula 2)
13. The current measuring device according to claim 1, wherein the current temperature calculating unit calculates the current and the temperature using the mathematical formula 1 and the mathematical formula 2.
前記第1、2の抵抗体のうち少なくとも一方の抵抗体は、金属箔から構成されることを特徴とする請求項1ないし13のいずれか1つに記載の電流計測装置。   The current measuring device according to any one of claims 1 to 13, wherein at least one of the first and second resistors is made of a metal foil. 前記電流測定体は、複数の配線層を有するプリント基板から構成されており、
前記プリント基板は、前記複数の配線層のうち2つの配線層の間を接続する層間接続部材(140)を用いて前記第1、第2の抵抗体のうち一方の抵抗体を構成していることを特徴とする請求項1ないし14のいずれか1つに記載の電流計測装置。
The current measuring body is composed of a printed circuit board having a plurality of wiring layers,
The printed circuit board constitutes one of the first and second resistors using an interlayer connection member (140) that connects two wiring layers of the plurality of wiring layers. The current measurement device according to claim 1, wherein the current measurement device is a current measurement device.
JP2012241839A 2012-11-01 2012-11-01 Current measuring device Active JP5987639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012241839A JP5987639B2 (en) 2012-11-01 2012-11-01 Current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012241839A JP5987639B2 (en) 2012-11-01 2012-11-01 Current measuring device

Publications (2)

Publication Number Publication Date
JP2014092399A true JP2014092399A (en) 2014-05-19
JP5987639B2 JP5987639B2 (en) 2016-09-07

Family

ID=50936575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012241839A Active JP5987639B2 (en) 2012-11-01 2012-11-01 Current measuring device

Country Status (1)

Country Link
JP (1) JP5987639B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024946A (en) * 2014-07-18 2016-02-08 株式会社日本自動車部品総合研究所 Current measuring device
JP2017033664A (en) * 2015-07-29 2017-02-09 株式会社日本自動車部品総合研究所 Current measurement device
KR20180006178A (en) * 2016-07-08 2018-01-17 주식회사 엘지화학 Apparatus and method for measuring current using fuse

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170827A (en) * 1986-01-23 1987-07-27 Mitsubishi Electric Corp Temperature measuring instrument
JP2002323384A (en) * 2001-04-24 2002-11-08 Sony Corp Temperature detection circuit and integrated circuit
US20040018401A1 (en) * 2002-07-26 2004-01-29 Fly Gerald W. In-situ resistive current and temperature distribution circuit for a fuel cell
JP2007280643A (en) * 2006-04-03 2007-10-25 Denso Corp Current measuring device
JP2008157852A (en) * 2006-12-26 2008-07-10 Shimadzu Corp Noncontact temperature measuring device, sample base, and noncontact temperature measurement method
JP2009016157A (en) * 2007-07-04 2009-01-22 Denso Corp Current measurement device
JP2012163356A (en) * 2011-02-03 2012-08-30 Seiko Epson Corp Temperature detection circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170827A (en) * 1986-01-23 1987-07-27 Mitsubishi Electric Corp Temperature measuring instrument
JP2002323384A (en) * 2001-04-24 2002-11-08 Sony Corp Temperature detection circuit and integrated circuit
US20040018401A1 (en) * 2002-07-26 2004-01-29 Fly Gerald W. In-situ resistive current and temperature distribution circuit for a fuel cell
JP2007280643A (en) * 2006-04-03 2007-10-25 Denso Corp Current measuring device
JP2008157852A (en) * 2006-12-26 2008-07-10 Shimadzu Corp Noncontact temperature measuring device, sample base, and noncontact temperature measurement method
JP2009016157A (en) * 2007-07-04 2009-01-22 Denso Corp Current measurement device
JP2012163356A (en) * 2011-02-03 2012-08-30 Seiko Epson Corp Temperature detection circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024946A (en) * 2014-07-18 2016-02-08 株式会社日本自動車部品総合研究所 Current measuring device
JP2017033664A (en) * 2015-07-29 2017-02-09 株式会社日本自動車部品総合研究所 Current measurement device
KR20180006178A (en) * 2016-07-08 2018-01-17 주식회사 엘지화학 Apparatus and method for measuring current using fuse
KR102154379B1 (en) 2016-07-08 2020-09-09 주식회사 엘지화학 Apparatus and method for measuring current using fuse

Also Published As

Publication number Publication date
JP5987639B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP4967421B2 (en) Current measuring device
JP5146225B2 (en) Current measuring device
JP5186986B2 (en) Fuel cell impedance measurement device
JP5396823B2 (en) Current measuring device
JP5494436B2 (en) Current measuring device
JP5987639B2 (en) Current measuring device
JP6167800B2 (en) Current measuring device
JP5206258B2 (en) Current measuring device
JP5206272B2 (en) Resistance measurement device
JP5090277B2 (en) Temperature distribution measuring device, fuel cell system, and fuel cell evaluation device
JP6421717B2 (en) Current measuring device
JP2009016157A (en) Current measurement device
JP5708219B2 (en) Current measuring device
JP6459873B2 (en) Current measuring device
JP6135478B2 (en) Current measuring device
JP2009193897A (en) Current measurement device
JP6120078B2 (en) Current measuring device
JP6405763B2 (en) Current measuring device
JP6070478B2 (en) Current measuring device and manufacturing method thereof
JP6565784B2 (en) Fuel cell
JP6176081B2 (en) Current measuring device
JP5664435B2 (en) Current measuring device
JP6274065B2 (en) Current measuring device
JP5141286B2 (en) Fuel cell system
JP5655707B2 (en) Impedance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R151 Written notification of patent or utility model registration

Ref document number: 5987639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250