JP2014091067A - Water purifier - Google Patents

Water purifier Download PDF

Info

Publication number
JP2014091067A
JP2014091067A JP2012241608A JP2012241608A JP2014091067A JP 2014091067 A JP2014091067 A JP 2014091067A JP 2012241608 A JP2012241608 A JP 2012241608A JP 2012241608 A JP2012241608 A JP 2012241608A JP 2014091067 A JP2014091067 A JP 2014091067A
Authority
JP
Japan
Prior art keywords
water
activated carbon
purification apparatus
water purification
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012241608A
Other languages
Japanese (ja)
Inventor
Daiji Ueno
大司 上野
Masazumi Taura
昌純 田浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
Mitsubishi Heavy Industries Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Institute of National Colleges of Technologies Japan filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012241608A priority Critical patent/JP2014091067A/en
Publication of JP2014091067A publication Critical patent/JP2014091067A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized water purifier capable of purifying water in a simple manner at low cost.SOLUTION: A water purifier 100 for purifying waste water 1 includes: a reaction tank 131 for accommodating the waste water 1 therein; a plurality of laminated meshes of active carbon fibers 133 having oxidizing capability which are arranged in the reaction tank 131 so as to be contacted with the waste water 1 in the reaction tank 131; and a bubbling unit 132 for supplying air 11 in nano-bubble form to the waste water 1 in the reaction tank 131.

Description

本発明は、水浄化装置に関する。   The present invention relates to a water purification apparatus.

下水道等の汚水を浄化する従来の水浄化装置を図3に示す。   A conventional water purification device for purifying sewage such as sewers is shown in FIG.

図3に示すように、下水道等の汚水1を汲み取る汲取ポンプ901の送出口は、汚水1中の大型固形物2を分離するスクリーン912を内装したスクリーニング槽911に連絡している。前記スクリーニング槽911には、前記スクリーン912で前記大型固形物2を分離された前記汚水1を取り込む取水ポンプ902の受入口が連絡している。前記取水ポンプ902の送出口は、前記汚水1中の沈殿性固形物3を沈降させる最初沈殿槽921に連絡している。前記最初沈殿槽921には、前記沈殿性固形物3を沈降させた上層の前記汚水1を送給する送水ポンプ903の受入口が連絡している。   As shown in FIG. 3, the outlet of the pump 901 that draws sewage 1 such as sewers communicates with a screening tank 911 equipped with a screen 912 that separates large solids 2 in the sewage 1. The screening tank 911 communicates with an intake port of a water intake pump 902 that takes in the sewage 1 separated from the large solid material 2 by the screen 912. The outlet of the water intake pump 902 communicates with an initial settling tank 921 for settling the sedimentary solids 3 in the sewage 1. The first settling tank 921 communicates with a receiving port of a water supply pump 903 that supplies the upper sewage 1 in which the settling solid matter 3 is settled.

前記送水ポンプ903の送出口は、前記沈殿性固形物3を分離された前記汚水1中の汚濁物質を活性汚泥により微生物処理する反応槽931に連絡している。前記反応槽931には、当該反応槽931内の前記汚水1中に空気11を供給するバブリング装置932と、当該反応槽931内を攪拌翼933aで攪拌する攪拌装置933と、当該反応槽931内に凝集剤12を添加する添加装置934とが設けられている。   The outlet of the water pump 903 communicates with a reaction tank 931 that performs microorganism treatment of the pollutant in the sewage 1 from which the solid precipitate 3 has been separated with activated sludge. The reaction tank 931 includes a bubbling device 932 that supplies air 11 into the sewage 1 in the reaction tank 931, a stirring device 933 that stirs the reaction tank 931 with a stirring blade 933a, and the reaction tank 931. And an adding device 934 for adding the flocculant 12 to the aggregating agent 12.

前記反応槽931には、当該反応槽931内で微生物処理された処理水4を送給する送給ポンプ904の受入口が連絡している。前記送給ポンプ904の送出口は、前記処理水4中の活性汚泥5を沈降させる最終沈殿槽941に連絡している。前記最終沈殿槽941には、前記活性汚泥を沈降させた上澄みの前記処理水4を送出する送出ポンプ905の受入口が連絡している。前記送出ポンプ905の送出口は、河川や湖沼や海等の系外へ連絡している。   The reaction tank 931 communicates with an inlet of a feed pump 904 that feeds the treated water 4 treated with microorganisms in the reaction tank 931. The delivery port of the feed pump 904 communicates with a final sedimentation tank 941 that settles the activated sludge 5 in the treated water 4. The final sedimentation tank 941 communicates with a receiving port of a delivery pump 905 that delivers the treated water 4 of the supernatant in which the activated sludge has been settled. The delivery port of the delivery pump 905 communicates with the outside of the system such as rivers, lakes and the sea.

このような従来の水浄化装置900においては、下水道等の前記汚水1を前記汲取ポンプ901で前記スクリーニング槽911内に汲み取って、前記スクリーン912で大型固形物2を分離してから、前記取水ポンプ902で当該汚水1を最初沈殿槽921内に取水して、当該汚水1中の前記沈殿性固形物3を沈降させた後、その上層を前記送水ポンプ903で前記反応槽931内に送給する。   In such a conventional water purification apparatus 900, the sewage 1 such as a sewer is pumped into the screening tank 911 by the pump 901, and the large solid 2 is separated by the screen 912, and then the water pump. In 902, the sewage 1 is first taken into the sedimentation tank 921, and the sedimentary solid 3 in the sewage 1 is settled, and then the upper layer is fed into the reaction tank 931 by the water pump 903. .

これに併せて、前記攪拌装置933を作動させて前記攪拌翼933aで攪拌しながら、上記反応槽931内に前記添加装置934で凝集剤12を添加すると共に、前記バブリング装置932で空気11をバブリングすると、前記汚水1中の汚濁物質が活性汚泥により微生物処理される。   At the same time, the agitation agent 933 is operated and the agitation blade 933a is agitated, while the aggregating agent 12 is added to the reaction tank 931 by the addition device 934, and the air 11 is bubbled by the bubbling device 932. Then, the pollutant in the sewage 1 is treated with microorganisms by activated sludge.

このようにして微生物処理された処理水4は、前記送給ポンプ904で前記最終沈殿槽921内に送給され、活性汚泥5を沈降分離された後、上澄みが前記送出ポンプ905で河川や湖沼や海等の系外へ排出される。前記最終沈殿槽921で沈降分離された前記活性汚泥5は、その一部が、前記反応槽931に戻されて微生物処理に再び利用される一方、その残りが、前記スクリーニング槽911で分離された前記大型固形物2及び前記最初沈殿槽921で分離された前記沈殿性固形物3と共に廃棄処理される。   The treated water 4 thus treated with microorganisms is fed into the final sedimentation tank 921 by the feed pump 904, and the activated sludge 5 is settled and separated, and then the supernatant is fed into a river or lake by the feed pump 905. And discharged outside the system such as the sea. Part of the activated sludge 5 settled and separated in the final sedimentation tank 921 is returned to the reaction tank 931 and used again for microbial treatment, while the rest is separated in the screening tank 911. The large solids 2 and the precipitating solids 3 separated in the initial settling tank 921 are discarded.

特公昭60−003873号公報Japanese Patent Publication No. 60-003873 特開2007−075723号公報JP 2007-075723 A 特開2012−012729号公報JP 2012-012729 A

前述したような従来の水処理装置900においては、汚水1中の汚濁物質を活性汚泥により微生物処理するようにしていることから、以下のような問題があった。   The conventional water treatment apparatus 900 as described above has the following problems because the pollutant in the sewage 1 is treated with microorganisms with activated sludge.

(1)微生物処理は、長時間かかってしまうため、必要な処理量を維持するのに装置全体が大型化してしまう。 (1) Since the microbial treatment takes a long time, the entire apparatus is increased in size to maintain a necessary processing amount.

(2)活性汚泥5中の微生物が死滅しないように前記反応槽931内や前記最終沈殿槽941内の環境管理や栄養管理等を継続的に行われなければならず、維持管理に非常に手間がかかってしまうばかりか、万が一、活性汚泥5中の微生物が死滅してしまうと、処理を中断して再稼働させるまでに多大な労力及び時間を要してしまう。 (2) Environmental management and nutrition management in the reaction tank 931 and the final sedimentation tank 941 must be continuously performed so that microorganisms in the activated sludge 5 are not killed, which is very troublesome for maintenance management. In addition, if the microorganisms in the activated sludge 5 are killed, a great deal of labor and time are required until the processing is interrupted and restarted.

(3)微生物処理に伴って、活性汚泥5が徐々に増加して、余剰となる活性汚泥5を廃棄処理しなければならないため、処理コストの上昇を招いてしまう。 (3) The activated sludge 5 gradually increases with the microbial treatment, and the surplus activated sludge 5 must be disposed of, resulting in an increase in processing costs.

このようなことから、本発明は、小型でありながらも低コストで簡単に水を浄化処理することができる水浄化装置を提供することを目的とする。   In view of the above, an object of the present invention is to provide a water purification device that can easily purify water at a low cost while being small in size.

前述した課題を解決するための、本発明に係る水浄化装置は、水を浄化する水浄化装置であって、前記水を内部に入れられる水保持手段と、前記水保持手段の内部の前記水と接触するように当該水保持手段の内部に配設されて酸化能を有する活性炭と、前記水保持手段の内部の前記水中に酸素含有ガスを気泡状に供給するバブリング手段とを備えていることを特徴とする。   In order to solve the above-described problems, a water purification device according to the present invention is a water purification device that purifies water, wherein the water holding means that allows the water to be contained therein, and the water inside the water holding means. Activated carbon disposed inside the water holding means so as to be in contact with the water and having oxidizing ability, and bubbling means for supplying oxygen-containing gas into the water inside the water holding means in the form of bubbles. It is characterized by.

また、本発明に係る水浄化装置は、上述した水浄化装置において、前記活性炭が、活性炭素繊維からなることを特徴とする。   The water purification apparatus according to the present invention is characterized in that, in the water purification apparatus described above, the activated carbon is made of activated carbon fibers.

また、本発明に係る水浄化装置は、上述した水浄化装置において、前記活性炭が、網目状に形成された前記活性炭素繊維を複数積層したものであることを特徴とする。   Moreover, the water purification apparatus according to the present invention is characterized in that, in the above-described water purification apparatus, the activated carbon is a laminate of a plurality of activated carbon fibers formed in a mesh shape.

また、本発明に係る水浄化装置は、上述した水浄化装置において、前記バブリング手段が、前記酸素含有ガスを平均直径50μm以下のマイクロバブルとして前記水中に供給するものであることを特徴とする。   Moreover, the water purification apparatus according to the present invention is characterized in that, in the above-described water purification apparatus, the bubbling means supplies the oxygen-containing gas into the water as microbubbles having an average diameter of 50 μm or less.

また、本発明に係る水浄化装置は、上述した水浄化装置において、前記バブリング手段が、前記酸素含有ガスを平均直径1000nm以下のナノバブルとして前記水中に供給するものであることを特徴とする。   Moreover, the water purification apparatus according to the present invention is characterized in that, in the above-described water purification apparatus, the bubbling means supplies the oxygen-containing gas into the water as nanobubbles having an average diameter of 1000 nm or less.

また、本発明に係る水浄化装置は、上述した水浄化装置において、前記酸素含有ガスが、空気、酸素ガス、オゾンガスのうちの少なくとも一つからなることを特徴とする。   Moreover, the water purification apparatus according to the present invention is characterized in that, in the above-described water purification apparatus, the oxygen-containing gas is composed of at least one of air, oxygen gas, and ozone gas.

本発明に係る水浄化装置によれば、活性汚泥による微生物処理を行うことなく必要量の水中の汚濁物質を短時間で速やかに処理することができるので、小型でありながらも低コストで簡単に水を浄化処理することができる。   According to the water purification apparatus of the present invention, a necessary amount of pollutants in water can be quickly and quickly processed without microbial treatment with activated sludge. Water can be purified.

本発明に係る水浄化装置の主な実施形態の要部の概略構成図である。It is a schematic block diagram of the principal part of main embodiment of the water purification apparatus which concerns on this invention. 本発明に係る水浄化装置の他の実施形態の要部の概略構成図である。It is a schematic block diagram of the principal part of other embodiment of the water purification apparatus which concerns on this invention. 従来の水浄化装置の一例の要部の概略構成図である。It is a schematic block diagram of the principal part of an example of the conventional water purification apparatus.

本発明に係る水浄化装置の実施形態を図面に基づいて説明するが、本発明に係る水浄化装置は、図面に基づいて説明する以下の実施形態のみに限定されるものではない。   Although the embodiment of the water purification apparatus concerning the present invention is described based on a drawing, the water purification apparatus concerning the present invention is not limited only to the following embodiments explained based on a drawing.

〈主な実施形態〉
本発明に係る水浄化装置の主な実施形態を図1に基づいて説明する。
<Main embodiment>
A main embodiment of a water purification apparatus according to the present invention will be described with reference to FIG.

図1に示すように、下水道等の汚水1を汲み取る汲取ポンプ101の送出口は、汚水1中の大型固形物2を分離するスクリーン112を内装したスクリーニング槽111に連絡している。前記スクリーニング槽111には、前記スクリーン112で前記大型固形物2を分離された前記汚水1を取り込む取水ポンプ102の受入口が連絡している。前記取水ポンプ102の送出口は、前記汚水1中の沈殿性固形物3を沈降させる最初沈殿槽121に連絡している。前記最初沈殿槽121には、前記沈殿性固形物3を沈降させた上層の前記汚水1を送給する送水ポンプ103の受入口が連絡している。   As shown in FIG. 1, the outlet of a pumping pump 101 that pumps sewage 1 such as sewers communicates with a screening tank 111 that is equipped with a screen 112 that separates large solids 2 in the sewage 1. The screening tank 111 communicates with an intake port of a water intake pump 102 that takes in the sewage 1 separated from the large solid material 2 by the screen 112. The outlet of the water intake pump 102 communicates with an initial settling tank 121 for settling the sedimentary solids 3 in the sewage 1. The first settling tank 121 communicates with a receiving port of a water supply pump 103 that supplies the upper sewage 1 in which the settling solid matter 3 is settled.

前記送水ポンプ103の送出口は、前記沈殿性固形物3を分離された前記汚水1を内部に入れられる水保持手段である反応槽131に連絡している。前記反応槽131の内部には、網目状に形成されて複数積層された、酸化能を有する活性炭である活性炭素繊維133が当該反応槽131の内部の前記汚水1と接触できるように配設されている。   The outlet of the water pump 103 communicates with a reaction tank 131 which is a water holding means for storing the sewage 1 from which the solid precipitate 3 has been separated. Inside the reaction vessel 131, activated carbon fibers 133, which are activated carbons having an oxidizing ability, which are formed in a mesh and stacked, are arranged so as to come into contact with the sewage 1 inside the reaction vessel 131. ing.

前記反応槽131の内部の、前記送水ポンプ103の送出口と前記活性炭素繊維133との間には、当該反応槽131の内部の前記汚水1中に平均直径1000nm以下(好ましくは平均直径100〜500nm)のナノバブルの空気11を供給するバブリング手段であるバブリング装置132の噴射ノズル132aが配設されており、当該バブリング装置132の当該噴射ノズル132aは、ナノバブルの当該空気11を上記活性炭素繊維133へ向けて噴射するように配向されている。   Between the delivery port of the water pump 103 and the activated carbon fiber 133 inside the reaction tank 131, an average diameter of 1000 nm or less (preferably an average diameter of 100 to 100 nm) in the sewage 1 inside the reaction tank 131. 500 nm) is provided with an injection nozzle 132 a of a bubbling device 132 that is a bubbling means for supplying nanobubble air 11, and the injection nozzle 132 a of the bubbling device 132 supplies the air 11 of nanobubbles to the activated carbon fiber 133. Oriented to spray towards

前記反応槽131の内部の、前記バブリング装置132の前記噴射ノズル132aからナノバブルの前記空気11を噴射される前記活性炭素繊維133の面と対向する面側には、当該活性炭素繊維133を通過した処理水4を送出する送出ポンプ105の受入口が連絡している。前記送出ポンプ105の送出口は、河川や湖沼や海等の系外へ連絡している。   The surface of the reaction tank 131 facing the surface of the activated carbon fiber 133 from which the air 11 of nanobubbles is injected from the injection nozzle 132a of the bubbling device 132 has passed the activated carbon fiber 133. The receiving port of the delivery pump 105 that delivers the treated water 4 is in communication. The delivery port of the delivery pump 105 communicates with the outside of the system such as rivers, lakes and the sea.

このような本実施形態に係る水浄化装置100においては、下水道等の前記汚水1を前記汲取ポンプ101で前記スクリーニング槽111内に汲み取って、前記スクリーン112で大型固形物2を分離してから、前記取水ポンプ102で当該汚水1を最初沈殿槽121内に取水して、当該汚水1中の前記沈殿性固形物3を沈降させた後、その上層を前記送水ポンプ103で前記反応槽131内に送給する。   In such a water purification apparatus 100 according to this embodiment, the sewage 1 such as a sewer is pumped into the screening tank 111 by the pumping pump 101, and the large solid material 2 is separated by the screen 112. The sewage 1 is first taken into the sedimentation tank 121 by the water intake pump 102 and the settling solid matter 3 in the sewage 1 is settled, and then the upper layer is put into the reaction tank 131 by the water pump 103. To send.

これに併せて、前記バブリング装置132を作動させて前記噴射ノズル132aからナノバブルの前記空気11を前記汚水1中で前記活性炭素繊維133へ向けて噴射すると、当該空気11が、当該汚水1中に迅速且つ均一に拡散供給され、ナノバブルの崩壊によって酸素が当該汚水1中に溶解すると共に、OHラジカルや酸素原子を生成して、当該汚水1中に溶解又は浮遊する前記汚濁物質における、微生物の細胞膜や細胞膜内物質、ウィルスのカプシドや核酸等のような、芳香族体や高分子体等の分子量の大きい有機物質と反応して、分子量の小さい有機物質にまで微細に分解する。   At the same time, when the bubbling device 132 is operated to inject the nanobubble air 11 from the injection nozzle 132a toward the activated carbon fiber 133 in the sewage 1, the air 11 enters the sewage 1. A cell membrane of microorganisms in the pollutant that is rapidly and uniformly diffused and dissolved in the sewage 1 by the collapse of nanobubbles, and also generates OH radicals and oxygen atoms and dissolves or floats in the sewage 1 It reacts with organic substances with large molecular weights such as aromatic substances and high molecular weight substances such as substances in cell membranes, virus capsids and nucleic acids, etc., and finely decomposes into organic substances with small molecular weights.

このようにして微細に分解されて前記汚水1中に溶解又は浮遊する分子量の小さい有機物質等の前記汚濁物質は、当該汚水1中に溶存する前記酸素と共に、前記活性炭素繊維133の前記網目を流通することにより、当該活性炭素繊維133の微細構造(ミクロポア)の中にある触媒機能を果たす活性点に容易に到達し、当該活性点の酸化能によって水素結合が開放され、当該水1中に溶存する上記酸素と結合して、炭酸ガス(CO2)や炭酸イオン(CO3 -2)等の無機炭素となる。これにより、上記汚水1は、上記汚濁物質を除去され、処理水4となって前記活性炭素繊維133を通過する。 Thus, the pollutant such as an organic substance having a small molecular weight which is finely decomposed and dissolved or floats in the wastewater 1, together with the oxygen dissolved in the wastewater 1, the mesh of the activated carbon fiber 133. By circulating, the active point that fulfills the catalytic function in the fine structure (micropore) of the activated carbon fiber 133 is easily reached, and the hydrogen bond is released by the oxidizing ability of the active point, The inorganic oxygen such as carbon dioxide (CO 2 ) or carbonate ion (CO 3 -2 ) is combined with the dissolved oxygen. As a result, the polluted water 1 is removed of the pollutant and becomes treated water 4 and passes through the activated carbon fiber 133.

このようにして前記汚濁物質を除去されて前記活性炭素繊維133内を通過した上記処理水4は、前記送出ポンプ105で河川や湖沼や海等の系外へ排出される。   In this way, the treated water 4 from which the pollutant has been removed and passed through the activated carbon fiber 133 is discharged out of the system such as rivers, lakes, and seas by the delivery pump 105.

つまり、本実施形態に係る水浄化装置100では、前記汚水1中にナノバブルの空気11を供給することにより、分子量の大きい有機物質(汚濁物質)を分子量の小さい有機物質(汚濁物質)にまで微細に分解すると共に、当該汚水1中に酸素を迅速且つ均一に拡散溶解させ、前記活性炭素繊維133内を流通させることにより、分子量の小さくなった上記有機物質(汚濁物質)を当該活性炭素繊維133の微細構造(ミクロポア)中の触媒機能の活性点に容易に到達できるようにして上記溶存酸素と反応しやすくし、迅速に無機炭素化させるようにしたのである。   That is, in the water purification apparatus 100 according to the present embodiment, by supplying the nanobubble air 11 into the sewage 1, the organic substance having a high molecular weight (polluting substance) is finely reduced to an organic substance having a low molecular weight (polluting substance). The organic substance (polluted substance) having a small molecular weight is decomposed into the activated carbon fiber 133 by rapidly and uniformly diffusing and dissolving oxygen in the waste water 1 and circulating the activated carbon fiber 133. The active site of the catalyst function in the fine structure (micropore) of the catalyst is easily reached so that it reacts easily with the dissolved oxygen and is rapidly converted to inorganic carbon.

このため、本実施形態に係る水浄化装置100においては、活性汚泥による微生物処理を行うことなく必要量の前記汚水1中の前記汚濁物質を短時間で速やかに処理することができる。   For this reason, in the water purification apparatus 100 which concerns on this embodiment, the said pollutant in the required amount of the said sewage 1 can be rapidly processed in a short time, without performing the microbial treatment by activated sludge.

したがって、本実施形態に係る水浄化装置100によれば、小型でありながらも低コストで簡単に前記汚水1を浄化処理することができる。   Therefore, according to the water purification apparatus 100 which concerns on this embodiment, the said waste water 1 can be easily purified at low cost, although it is small.

また、前記バブリング装置132で前記反応槽131内の前記汚水1中に前記空気11を供給するようにしたことから、当該反応槽131内の当該汚水1中の溶存酸素濃度を常に高くすることができるので、当該汚水1中の前記汚濁物質を連続的に処理することができ、処理効率を向上させることができる。   In addition, since the air 11 is supplied into the sewage 1 in the reaction tank 131 by the bubbling device 132, the dissolved oxygen concentration in the sewage 1 in the reaction tank 131 can be constantly increased. Since it can do, the said pollutant in the said waste water 1 can be processed continuously, and processing efficiency can be improved.

また、前記バブリング装置132の前記噴射ノズル132aを前記反応槽131の内部の、前記送水ポンプ103の送出口と前記活性炭素繊維133との間に配設、すなわち、前記反応槽131の内部の前記活性炭素繊維133よりも前記汚水1の流通方向上流側に前記バブリング装置132の前記噴射ノズル132aを配設しているので、当該噴射ノズル132aから噴射されるナノバブルの前記空気11を上記活性炭素繊維133に効率よく送給することができ、処理効率を高めることができる。   Further, the injection nozzle 132a of the bubbling device 132 is disposed between the feed port of the water pump 103 and the activated carbon fiber 133 inside the reaction tank 131, that is, the inside of the reaction tank 131. Since the injection nozzle 132a of the bubbling device 132 is disposed upstream of the activated carbon fiber 133 in the flow direction of the sewage 1, the nanobubble air 11 injected from the injection nozzle 132a is used as the activated carbon fiber. 133 can be efficiently fed, and the processing efficiency can be increased.

ところで、前記バブリング装置132の前記噴射ノズル132aと前記活性炭素繊維133との間の距離は、前記汚水1の流速や、前記噴射ノズル132aからの前記空気11の噴射量や、前記汚水1中の前記汚濁物質の濃度等の各種条件に応じて、当該汚水1中の前記汚濁物質の分解処理を十分に実施できるように適宜設定されるものである。   By the way, the distance between the injection nozzle 132a of the bubbling device 132 and the activated carbon fiber 133 is the flow rate of the sewage 1, the injection amount of the air 11 from the injection nozzle 132a, the sewage 1 According to various conditions, such as the density | concentration of the said pollutant, it sets suitably so that the decomposition process of the said pollutant in the said waste water 1 can fully be implemented.

また、酸化能を有する活性炭である前記活性炭素繊維133としては、例えば、上記特許文献3に記載されている活性炭素繊維(ゼロ電荷点が8.0以上)や、東洋紡績株式会社製の活性炭素繊維「Kフィルター(商品名)」や、東邦テナックス株式会社製の活性炭素繊維「ファインガード(商品名)」や、富士ケミカル株式会社製の活性炭素繊維等を挙げることができ、特に、上記特許文献3に記載されている活性炭素繊維(ゼロ電荷点が8.0以上)であると、非常に好ましい。   In addition, as the activated carbon fiber 133 which is activated carbon having oxidizing ability, for example, activated carbon fiber described in Patent Document 3 (zero charge point is 8.0 or more), activated by Toyobo Co., Ltd. Examples include carbon fiber “K filter (trade name)”, activated carbon fiber “Fineguard (trade name)” manufactured by Toho Tenax Co., Ltd., and activated carbon fiber manufactured by Fuji Chemical Co., Ltd. The activated carbon fiber described in Patent Document 3 (zero charge point is 8.0 or more) is very preferable.

〈他の実施形態〉
なお、前述した実施形態においては、下水道等の汚水1を浄化処理する下水処理場等に適用した水浄化装置100の場合について説明したが、本発明に係る水浄化装置は、これに限らず、他の実施形態として、例えば、河川水や地下水等の原水を浄化処理して上水とする浄水場において、凝集剤による処理設備や塩素剤による処理設備に代えて適用すれば、凝集剤や塩素剤による処理設備よりも小型の設備でこれら薬剤を使用することなく必要量の原水を短時間で速やかに処理することができ、前述した実施形態の場合と同様に、小型でありながらも低コストで簡単に原水を浄化処理することができるようになる。
<Other embodiments>
In addition, in embodiment mentioned above, although the case of the water purification apparatus 100 applied to the sewage treatment plant etc. which purify the sewage 1 of a sewer etc. was demonstrated, the water purification apparatus which concerns on this invention is not restricted to this, As another embodiment, for example, in a water purification plant that purifies raw water such as river water or groundwater and uses it as water, if applied instead of a treatment facility using a flocculant or a treatment facility using a chlorinating agent, a flocculant or chlorine The required amount of raw water can be quickly processed in a short time without using these chemicals in a facility that is smaller than a treatment facility that uses chemicals. As in the case of the above-described embodiment, it is small in size and low in cost. This makes it easy to purify raw water.

また、他の実施形態として、例えば、図2に示すように、ビルや標高の高い地域等の上水道の水圧を確保する等のために消費地において一旦貯蔵する水保持手段である貯水タンク231の近傍に前記バブリング装置132を配設すると共に当該貯水タンク231の内部に前記活性炭素繊維133及び当該バブリング装置132の前記噴射ノズル132aを配設した水浄化装置200とすれば、当該貯水タンク231内にカルキ等の消毒や殺菌等を目的とした薬剤を投入しなくても、当該貯水タンク231内での藻や黴類等の発生に伴う細菌やウィルス等による上水6の汚染を防止することができるようになるので、当該上水6のカルキ臭をなくすことができ、当該上水6の味の向上を図ることができるようになる。   Further, as another embodiment, for example, as shown in FIG. 2, a water storage tank 231 that is a water holding means for temporarily storing water in a consumption area in order to secure water pressure in a water supply system such as a building or an area with a high altitude. If the water purification device 200 is provided with the bubbling device 132 disposed in the vicinity and the activated carbon fiber 133 and the injection nozzle 132a of the bubbling device 132 disposed in the water storage tank 231, the inside of the water storage tank 231 will be described. To prevent contamination of the water 6 by bacteria, viruses, etc. associated with the generation of algae, moss, etc. in the water storage tank 231 without introducing chemicals for the purpose of disinfecting or sterilizing such as calcite Therefore, it is possible to eliminate the odor of the water 6 and improve the taste of the water 6.

ここで、前記バブリング装置132の前記噴射ノズル132aを前記貯水タンク231内の前記活性炭素繊維133よりも前記上水6の流通方向上流側、すなわち、前記貯水タンク231の給水口231aと送水口231bとの間を仕切るように前記活性炭素繊維133を配設して当該活性炭素繊維133と上記給水口231aとの間に上記噴射ノズル132aを配設することも可能であるが、前記貯水タンク231の内部の任意の位置に前記活性炭素繊維133及び前記バブリング装置132の前記噴射ノズル132aを配設するだけで十分な処理効果を得ることができる。なぜなら、前記貯水タンク231の内部の上水6は、流速がほとんどなく、前記噴射ノズル132aからの前記空気11の噴射により、当該貯水タンク231内を循環流通して前記活性炭素繊維133に送給されるようになるからである。   Here, the jet nozzle 132a of the bubbling device 132 is located upstream of the activated carbon fiber 133 in the water storage tank 231 in the flow direction of the clean water 6, that is, the water supply port 231a and the water supply port 231b of the water storage tank 231. It is possible to dispose the activated carbon fiber 133 so as to divide between the activated carbon fiber 133 and the water supply port 231a, and the spray nozzle 132a may be disposed between the activated carbon fiber 133 and the water storage tank 231. A sufficient treatment effect can be obtained simply by disposing the activated carbon fiber 133 and the injection nozzle 132a of the bubbling device 132 at any position inside the tube. This is because the clean water 6 inside the water storage tank 231 has almost no flow velocity, and is circulated and circulated in the water storage tank 231 by the injection of the air 11 from the injection nozzle 132a to be supplied to the activated carbon fiber 133. Because it will be done.

さらに、他の実施形態として、例えば、水を内部に入れられる水保持手段である水槽及び前記バブリング装置132をトラックの荷台に設置すると共に、当該水槽の内部に前記活性炭素繊維133及び前記バブリング装置132の前記噴射ノズル132aを配設した水浄化装置とすれば、例えば、上水道設備が損壊した被災地に行って、現地で調達可能な汚水や原水等を上水に浄化することができるようになる。   Furthermore, as another embodiment, for example, a water tank that is a water holding means that can contain water and the bubbling device 132 are installed in a truck bed, and the activated carbon fiber 133 and the bubbling device are installed inside the water tank. If the water purification device is provided with the jet nozzle 132a of 132, for example, it is possible to go to a disaster-stricken area where the water supply facility is damaged and purify the sewage or raw water that can be procured locally into the water. Become.

くわえて、他の実施形態として、例えば、水を内部に入れられる水保持手段であるポリタンクに小型の前記バブリング装置132を装着すると共に、当該ポリタンクの内部に前記活性炭素繊維133及び前記バブリング装置132の前記噴射ノズル132aを配設した水浄化装置とすれば、例えば、河川敷や湖沼畔等のキャンプ場等に容易に携行することができ、河川水や湖沼水等を上記ポリタンク内に汲み入れて上記バブリング装置132を作動させることにより、当該ポリタンク内の上記水を浄化して上水を現地で調達することが簡単にできるようになる。   In addition, as another embodiment, for example, the small bubbling device 132 is attached to a plastic tank which is a water holding means that can contain water, and the activated carbon fiber 133 and the bubbling device 132 are installed inside the plastic tank. If the water purification device is provided with the spray nozzle 132a, for example, it can be easily carried to a camping site such as a riverbed or a lakeside, and river water or lake water can be pumped into the poly tank. By operating the bubbling device 132, it becomes easy to purify the water in the plastic tank and procure clean water locally.

また、前述した実施形態においては、平均直径1000nm以下(好ましくは平均直径100〜500nm)のナノバブルの空気11を供給するバブリング装置132をバブリング手段として適用した場合について説明したが、他の実施形態として、例えば、平均直径50μm以下(好ましくは平均直径10〜30μm)のマイクロバブルの空気11を供給するバブリング装置や、平均直径1〜10mmのミリバブルの空気11を供給するバブリング装置をバブリング手段として適用することも可能である。   In the above-described embodiment, the case where the bubbling device 132 that supplies nanobubble air 11 having an average diameter of 1000 nm or less (preferably an average diameter of 100 to 500 nm) is applied as the bubbling means has been described. For example, a bubbling device that supplies microbubble air 11 having an average diameter of 50 μm or less (preferably an average diameter of 10 to 30 μm) or a bubbling device that supplies millibubble air 11 having an average diameter of 1 to 10 mm is applied as the bubbling means. It is also possible.

しかしながら、前述した実施形態のように、平均直径1000nm以下(好ましくは平均直径100〜500nm)のナノバブルの空気11を供給するバブリング装置132をバブリング手段として適用すると、平均直径50μm以下(好ましくは平均直径10〜30μm)のマイクロバブルの空気11を供給するバブリング装置をバブリング手段として適用した場合よりも、分子量の大きい有機物質を分子量の小さい有機物質にまで微細に分解する分解能力や酸素の溶存化能力を高めることができ、特に、平均直径1〜10mmのミリバブルの空気11を供給するバブリング装置をバブリング手段として適用した場合よりも、分子量の大きい有機物質を分子量の小さい有機物質にまで微細に分解する分解能力や酸素の溶存化能力を非常に高めることができるので、極めて好ましい。   However, when the bubbling device 132 that supplies nanobubble air 11 having an average diameter of 1000 nm or less (preferably an average diameter of 100 to 500 nm) is applied as the bubbling means as in the above-described embodiment, the average diameter is 50 μm or less (preferably the average diameter). Compared to the case where a bubbling device that supplies microbubble air 11 of 10 to 30 μm) is applied as a bubbling means, the decomposition ability for finely decomposing an organic substance having a large molecular weight into an organic substance having a small molecular weight and the ability to dissolve oxygen In particular, an organic substance having a high molecular weight is finely decomposed into an organic substance having a low molecular weight, compared to the case where a bubbling device that supplies millibubble air 11 having an average diameter of 1 to 10 mm is applied as a bubbling means. The ability to dissolve and dissolve oxygen This is extremely preferable.

また、前述した実施形態においては、空気11のバブルを生成させる場合について説明したが、他の実施形態として、酸素ガスやオゾンガスのバブルを生成させるようにすれば、前述した実施形態の場合よりも、分子量の大きい有機物質を分子量の小さい有機物質にまで微細に分解する分解能力や酸素の溶存化能力をさらに高めることができるので好ましい。   Further, in the above-described embodiment, the case where the bubbles of the air 11 are generated has been described. However, as another embodiment, if bubbles of oxygen gas or ozone gas are generated, it is more than that of the above-described embodiment. The organic compound having a large molecular weight is preferably decomposed into an organic substance having a small molecular weight, and the ability to dissolve oxygen can be further enhanced.

しかしながら、前述した実施形態のように、空気11のバブルを生成させるようにすると、酸素ガスやオゾンガスのバブルを生成させる場合よりも装置の小型化及び低コスト化を図ることができるので、本発明に係る水浄化装置の適用条件等に応じて、空気、酸素ガス、オゾンガスのうちの少なくとも一つを酸素含有ガスとして適宜選択するとよい。   However, if the bubble of the air 11 is generated as in the above-described embodiment, the apparatus can be reduced in size and cost compared with the case of generating the bubble of oxygen gas or ozone gas. According to the application conditions of the water purification apparatus according to the above, at least one of air, oxygen gas, and ozone gas may be appropriately selected as the oxygen-containing gas.

また、前述した実施形態においては、網目状に形成されて複数積層された活性炭素繊維133を適用するようにしたが、他の実施形態として、例えば、綿状に形成された雲形をなす活性炭素繊維を適用することも可能である。   In the above-described embodiment, the activated carbon fiber 133 formed in a mesh shape and stacked in a plurality is applied. However, as another embodiment, for example, activated carbon having a cloud shape formed in a cotton shape is used. It is also possible to apply fibers.

しかしながら、前述した実施形態のように、網目状に形成されて複数積層された活性炭素繊維133を適用すると、綿状に形成された雲形をなす活性炭素繊維を適用する場合よりも水を流通させる圧力を低減させることができるので、非常に好ましい。   However, as in the above-described embodiment, when the activated carbon fibers 133 formed in a mesh shape and stacked in a plurality are applied, water is circulated as compared with the case where the activated carbon fibers having a cloud shape formed in a cotton shape are applied. This is very preferable because the pressure can be reduced.

また、前述した実施形態においては、活性炭素繊維133を適用した場合について説明したが、他の実施形態として、例えば、球状や円柱状に破砕してメッシュ容器内に充填した酸化能を有する活性炭である竹炭や、粉状に破砕してハニカム状に成形した酸化能を有する活性炭である竹炭等を適用することも可能である。   Moreover, in embodiment mentioned above, although the case where the activated carbon fiber 133 was applied was demonstrated, as another embodiment, for example, it is the activated carbon which has the oxidation ability crushed into the spherical shape or the column shape, and was filled in the mesh container. It is also possible to apply certain bamboo charcoal, bamboo charcoal that is activated carbon having an oxidizing ability that is crushed into a powder and formed into a honeycomb.

しかしながら、前述した実施形態のように、活性炭素繊維133を適用すると、球状や円柱状に破砕してメッシュ容器内に充填した竹炭や、粉状に破砕してハニカム状に成形した竹炭等を適用した場合よりも、微細構造の中にある触媒機能を果たして酸化能を発現する活性点が非常に多くなるので、同等量を使用すれば、非常に高い処理能力を発現することができ、同程度の処理能力を発現できるようにするのであれば、非常に少ない量で済ますことができるようになることから、非常に好ましい。   However, when activated carbon fiber 133 is applied as in the above-described embodiment, bamboo charcoal that is crushed into a spherical shape or a cylindrical shape and filled in a mesh container, bamboo charcoal that is crushed into powder and formed into a honeycomb shape, and the like are applied. As compared to the case where the active sites that perform the catalytic function in the fine structure and express the oxidizing ability are greatly increased, if the same amount is used, a very high processing capacity can be expressed and the same level. It is very preferable to be able to express the processing capacity of the above because it can be done with a very small amount.

本発明に係る水浄化装置は、小型でありながらも低コストで簡単に水を浄化処理することができるので、上下水道設備を始めとした各種産業において、極めて有益に利用することができる。   Since the water purification apparatus according to the present invention can be easily purified at low cost while being small in size, it can be used extremely beneficially in various industries including water and sewage equipment.

1 汚水
2 大型固形物
3 沈殿性固形物
4 処理水
6 上水
11 空気
100 水浄化装置
101 汲取ポンプ
102 取水ポンプ
103 送水ポンプ
105 送出ポンプ
111 スクリーニング槽
112 スクリーン
121 最初沈殿槽
131 反応槽
132 バブリング装置
132a 噴射ノズル
133 活性炭素繊維
200 水浄化装置
231 貯水タンク
231a 給水口
231b 送水口
DESCRIPTION OF SYMBOLS 1 Sewage 2 Large solid matter 3 Precipitated solid matter 4 Processed water 6 Water 11 Air 100 Water purification device 101 Pumping pump 102 Water intake pump 103 Water supply pump 105 Delivery pump 111 Screening tank 112 Screen 121 First sedimentation tank 131 Reaction tank 132 Bubbling device 132a injection nozzle 133 activated carbon fiber 200 water purification device 231 water storage tank 231a water supply port 231b water supply port

Claims (6)

水を浄化する水浄化装置であって、
前記水を内部に入れられる水保持手段と、
前記水保持手段の内部の前記水と接触するように当該水保持手段の内部に配設されて酸化能を有する活性炭と、
前記水保持手段の内部の前記水中に酸素含有ガスを気泡状に供給するバブリング手段と
を備えていることを特徴とする水浄化装置。
A water purification device for purifying water,
Water holding means capable of containing the water;
Activated carbon disposed inside the water holding means so as to come into contact with the water inside the water holding means and having an oxidizing ability;
Bubbling means for supplying oxygen-containing gas into the water inside the water holding means in the form of bubbles.
請求項1に記載の水浄化装置において、
前記活性炭が、活性炭素繊維からなる
ことを特徴とする水処理装置。
The water purification apparatus according to claim 1,
The water treatment apparatus, wherein the activated carbon is made of activated carbon fiber.
請求項2に記載の水浄化装置において、
前記活性炭が、網目状に形成された前記活性炭素繊維を複数積層したものである
ことを特徴とする水処理装置。
The water purification apparatus according to claim 2,
The activated carbon is obtained by laminating a plurality of activated carbon fibers formed in a mesh shape.
請求項1から請求項3のいずれか一項に記載の水浄化装置において、
前記バブリング手段が、前記酸素含有ガスを平均直径50μm以下のマイクロバブルとして前記水中に供給するものである
ことを特徴とする水浄化装置。
In the water purification apparatus as described in any one of Claims 1-3,
The water purifying apparatus, wherein the bubbling means supplies the oxygen-containing gas into the water as microbubbles having an average diameter of 50 μm or less.
請求項4に記載の水浄化装置において、
前記バブリング手段が、前記酸素含有ガスを平均直径1000nm以下のナノバブルとして前記水中に供給するものである
ことを特徴とする水浄化装置。
The water purification apparatus according to claim 4,
The water purifying apparatus, wherein the bubbling means supplies the oxygen-containing gas into the water as nanobubbles having an average diameter of 1000 nm or less.
請求項1から請求項5のいずれか一項に記載の水浄化装置において、
前記酸素含有ガスが、空気、酸素ガス、オゾンガスのうちの少なくとも一つからなる
ことを特徴とする水浄化装置。
In the water purification apparatus as described in any one of Claims 1-5,
The water purification apparatus, wherein the oxygen-containing gas is at least one of air, oxygen gas, and ozone gas.
JP2012241608A 2012-11-01 2012-11-01 Water purifier Pending JP2014091067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012241608A JP2014091067A (en) 2012-11-01 2012-11-01 Water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012241608A JP2014091067A (en) 2012-11-01 2012-11-01 Water purifier

Publications (1)

Publication Number Publication Date
JP2014091067A true JP2014091067A (en) 2014-05-19

Family

ID=50935558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012241608A Pending JP2014091067A (en) 2012-11-01 2012-11-01 Water purifier

Country Status (1)

Country Link
JP (1) JP2014091067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568983A (en) * 1991-09-18 1993-03-23 Ebara Infilco Co Ltd Cod treatment method and apparatus using ozone
JPH0647400A (en) * 1992-07-10 1994-02-22 Ebara Infilco Co Ltd Removal of cod component in water
JP2009279478A (en) * 2008-05-20 2009-12-03 Tokyo Electric Power Co Inc:The Removal method and device for dissolved hydrogen sulfide in water
JP2011031228A (en) * 2009-08-06 2011-02-17 Shimizu Corp Method and apparatus for removing dissolved sulfide
JP2012012729A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Active carbon fiber, drainage treatment apparatus using the same, and method of evaluating the active carbon fiber
JP2012106213A (en) * 2010-11-19 2012-06-07 Reo Laboratory Co Ltd Treatment method of final remaining organic substance in drainage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568983A (en) * 1991-09-18 1993-03-23 Ebara Infilco Co Ltd Cod treatment method and apparatus using ozone
JPH0647400A (en) * 1992-07-10 1994-02-22 Ebara Infilco Co Ltd Removal of cod component in water
JP2009279478A (en) * 2008-05-20 2009-12-03 Tokyo Electric Power Co Inc:The Removal method and device for dissolved hydrogen sulfide in water
JP2011031228A (en) * 2009-08-06 2011-02-17 Shimizu Corp Method and apparatus for removing dissolved sulfide
JP2012012729A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Active carbon fiber, drainage treatment apparatus using the same, and method of evaluating the active carbon fiber
JP2012106213A (en) * 2010-11-19 2012-06-07 Reo Laboratory Co Ltd Treatment method of final remaining organic substance in drainage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles

Similar Documents

Publication Publication Date Title
CN102689978A (en) High-concentration and high-salinity nondegradable organic wastewater treatment system
CN109310958B (en) Ultra-fine bubble generating device for cultivation or drainage treatment
WO2007032104A1 (en) Water disposal apparatus and method of water disposal
JP6750930B6 (en) Sewage purification system
JP2008055291A (en) Water treating device
CN206476860U (en) A kind of oily waste water treatment reclamation set
WO2017056325A1 (en) Wastewater treatment system and wastewater treatment method
JP2009254967A (en) Water treatment system
JP2009262122A (en) Apparatus for water treatment
JP4649529B1 (en) Membrane treatment equipment
CN202643406U (en) Treatment system for high-concentration high-salinity non-degradable organic waste water
CN204958499U (en) Novel advanced oxidation - ozone catalytic oxidation AOP waste water treatment device
JP5808663B2 (en) Method and apparatus for treating 1,4-dioxane in wastewater
KR101171854B1 (en) Apparatus for generating micro bubble
CN106430835A (en) Embedded ozone membrane bioreactor (MBR) device and embedded ozone MBR treatment method
Kaushik et al. Microbubble technology: emerging field for water treatment
JP4073072B2 (en) Raw water desalination method and desalination equipment by membrane method
JP4994265B2 (en) Water treatment apparatus and water treatment method
JP4884737B2 (en) Liquid processing equipment
JP5108226B2 (en) Microbubble supply method and apparatus and system thereof
JP2006088021A (en) Water treatment system
JP5250284B2 (en) Water treatment apparatus and water treatment method
JP4787814B2 (en) Organic wastewater purification method and apparatus
JP4870708B2 (en) Water treatment apparatus and water treatment method
JP2014091067A (en) Water purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206