JP2014090643A - Controller of permanent magnet synchronous motor - Google Patents

Controller of permanent magnet synchronous motor Download PDF

Info

Publication number
JP2014090643A
JP2014090643A JP2012240679A JP2012240679A JP2014090643A JP 2014090643 A JP2014090643 A JP 2014090643A JP 2012240679 A JP2012240679 A JP 2012240679A JP 2012240679 A JP2012240679 A JP 2012240679A JP 2014090643 A JP2014090643 A JP 2014090643A
Authority
JP
Japan
Prior art keywords
axis
value
command value
current
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012240679A
Other languages
Japanese (ja)
Inventor
Naofumi Nomura
尚史 野村
Loud Samit
ラウド サミット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012240679A priority Critical patent/JP2014090643A/en
Publication of JP2014090643A publication Critical patent/JP2014090643A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the need for amplitude adjustment of high frequency voltage superposed on a synchronous motor for magnetic pole position detection.SOLUTION: A controller for controlling with a power converter by estimating the magnetic pole position of a permanent magnet synchronous motor includes: an adder-subtracter 22 for generating a γ-axis voltage command value by adding a γ-axis high frequency voltage command value to a γ-axis basic wave voltage command value; bandpass filters 33a, 33b for detecting a γ-axis high frequency current amplitude and a δ-axis high frequency current amplitude, respectively, from a γ-axis current detection value and a δ-axis current detection value: a current adjuster 31 for operating a γ-axis high frequency voltage amplitude command value so as to match the γ-axis high frequency current amplitude with a γ-axis high frequency current amplitude command value: a rectangular wave oscillator 32 for operating a γ-axis high frequency current voltage command value from a γ-axis high frequency voltage amplitude command value; an angular difference computing unit 34 for computing a magnetic pole position from the δ-axis high frequency current amplitude; a speed computing unit 35; and an integrator 36.

Description

本発明は、永久磁石形同期電動機の回転子の磁極位置を演算して電力変換器により同期電動機を駆動するための制御装置に関するものである。   The present invention relates to a control device for calculating a magnetic pole position of a rotor of a permanent magnet type synchronous motor and driving the synchronous motor by a power converter.

従来より、埋込磁石構造の永久磁石形同期電動機(以下、IPMSM)の回転子の突極性を利用して磁極位置を演算し、この磁極位置演算値に基づいて制御を行う、いわゆるセンサレス制御技術が開発されている。
例えば、特許文献1には、電動機に高周波交番電圧を印加したときに流れる高周波電流を検出して磁極位置を演算する技術が開示されている。
Conventionally, a so-called sensorless control technique for calculating a magnetic pole position using the saliency of a rotor of a permanent magnet type synchronous motor (hereinafter referred to as IPMSM) having an embedded magnet structure and performing control based on the calculated value of the magnetic pole position Has been developed.
For example, Patent Document 1 discloses a technique for calculating a magnetic pole position by detecting a high-frequency current that flows when a high-frequency alternating voltage is applied to an electric motor.

特許文献1を始めとする回転子の突極性を利用した磁極位置演算方法では、原理的に回転子磁極のN極とS極とを判別できないため、磁極位置演算値に180°の誤差を持つことがある。そこで、この演算誤差を電動機鉄芯の磁気飽和特性を利用して補正し、回転子磁極のN極、S極を正確に判別する技術(以下、この技術を「NS判別」という)が提案されている。   In the magnetic pole position calculation method using the saliency of the rotor such as Patent Document 1, since the N pole and the S pole of the rotor magnetic pole cannot be distinguished in principle, the magnetic pole position calculation value has an error of 180 °. Sometimes. Therefore, a technique for correcting the calculation error using the magnetic saturation characteristics of the motor core and accurately discriminating the N pole and the S pole of the rotor magnetic pole (hereinafter, this technique is referred to as “NS discrimination”) has been proposed. ing.

例えば、特許文献2には、図6に示すように、直軸(d軸と同義)方向に高周波の方形波電圧を重畳した上で、直軸電流指令値i により直軸電流の極性を正負に制御したときの直軸高周波電流idhをスイッチ409、メモリ410を介して磁極判別器411に取り込み、その振幅idhp,idhnの大小関係を比較してプリセット信号を生成し、速度推定器412及び積分器413により求めた磁極位置演算値を補正する技術が記載されている。
なお、図6において、50は三相交流電源、70はインバータ等の電力変換器、81は永久磁石形同期電動機、401は直軸電流調節器、402は横軸電流調節器、403は加算器、404,407は座標変換器、405はPWM回路、406は電流検出器、408は高周波分離フィルタであり、前記スイッチ409はi が正または負の時にオンするように構成されている。
For example, in Patent Document 2, as shown in FIG. 6, a high-frequency square wave voltage is superimposed in the direction of the straight axis (synonymous with the d axis), and the polarity of the direct current is determined by the direct current command value i d *. the direct axis when controlled positive and negative high frequency current i dh switch 409, via the memory 410 incorporated into the pole discriminator 411 generates a preset signal by comparing the amplitude of i DHP, magnitude relation of i dhn, speed A technique for correcting the magnetic pole position calculation value obtained by the estimator 412 and the integrator 413 is described.
In FIG. 6, 50 is a three-phase AC power source, 70 is a power converter such as an inverter, 81 is a permanent magnet synchronous motor, 401 is a direct-axis current regulator, 402 is a horizontal-axis current regulator, and 403 is an adder. , 404 and 407 are coordinate converters, 405 is a PWM circuit, 406 is a current detector, 408 is a high-frequency separation filter, and the switch 409 is configured to be turned on when i d * is positive or negative.

また、特許文献3には、図7に示すように、観測指令印加部501によりd軸電流指令値i に所定の高周波成分Isinω・tを観測指令として印加すると共に、d軸電流指令値i に対して所定の期間に亘り一定値であってモータが磁気飽和する大きさの直流バイアス成分Iを観測指令として正負対称に印加し、観測電流指令値に応じたフィードバック電流iに基づいて演算されるd軸応答電圧Vの高周波成分の振幅に基づいて、回転検出部508内の極性判定部507がNS判別を行う技術が記載されている。
なお、図7において、502は電流制御部、503,505は座標変換部、504は変調部、506は位置判定部、509はバンドパスフィルタである。
Further, in Patent Document 3, as shown in FIG. 7, a predetermined high-frequency component I h sin ω h · t is applied as an observation command to the d-axis current command value i d * by the observation command application unit 501, and the d-axis current command value i d * It is applied to the positive-negative symmetrical DC bias component I b sized to the motor a constant value to the current command value i d * for a predetermined period of time has magnetic saturation as the observation command, feedback corresponding to the observed current command value based on the amplitude of the high frequency component of the d-axis response voltage V d which is calculated on the basis of the current i d, the polarity judging unit 507 in the rotation detecting section 508 is described a technique of performing NS discrimination.
In FIG. 7, 502 is a current control unit, 503 and 505 are coordinate conversion units, 504 is a modulation unit, 506 is a position determination unit, and 509 is a bandpass filter.

特許第3312472号公報(段落[0014]〜[0040]、図1等)Japanese Patent No. 331472 (paragraphs [0014] to [0040], FIG. 1 etc.) 特開2002-171798号公報(請求項4、段落[0033]〜[0036]、図4等)JP 2002-171798 A (claim 4, paragraphs [0033] to [0036], FIG. 4 etc.) 特開2011−205832号公報(段落[0020]〜[0038]、図2等)JP 2011-205832 A (paragraphs [0020] to [0038], FIG. 2 etc.)

特許文献1、特許文献2に記載された磁極位置演算を実現するには、高周波電流を適切な大きさに調整する必要がある。このためには、電圧指令値に重畳される高周波電圧を適切な大きさに調整する必要があり、この調整作業は一般に煩雑である。また、重負荷時やNS判別時のように電動機鉄芯が磁気飽和する場合には、インダクタンスが低下するため、高周波電流が過大になるおそれがある。
また、特許文献3に記載された従来技術では、電流制御系の遅れによる制御誤差に起因して、観測指令としての高周波成分Isinω・tの周波数ωを高くするのが困難であり、この周波数が低い場合には、磁極位置演算の遅れや演算精度の低下が問題となる。
In order to realize the magnetic pole position calculation described in Patent Document 1 and Patent Document 2, it is necessary to adjust the high-frequency current to an appropriate magnitude. For this purpose, it is necessary to adjust the high-frequency voltage superimposed on the voltage command value to an appropriate magnitude, and this adjustment work is generally complicated. In addition, when the motor core is magnetically saturated, such as during heavy load or NS determination, the inductance is reduced and the high-frequency current may be excessive.
Also, have been in the prior art described in Patent Document 3, due to control error due to the delay of the current control system, it is difficult to increase the frequency omega h of the high frequency component I h sinω h · t as the observation command When this frequency is low, a delay in the magnetic pole position calculation and a decrease in calculation accuracy become a problem.

そこで、本発明の解決課題は、同期電動機に重畳される高周波電圧の振幅を調整する作業を不要とし、また、電動機鉄芯の磁気飽和によってインダクタンスが低下する場合でも高周波電流を一定値に制御可能として過大になるのを防止した制御装置を提供することにある。更に、本発明の別の解決課題は、磁極位置を高精度に演算可能とした制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is that it is not necessary to adjust the amplitude of the high-frequency voltage superimposed on the synchronous motor, and the high-frequency current can be controlled to a constant value even when the inductance decreases due to the magnetic saturation of the motor core. It is an object of the present invention to provide a control device that prevents an excessive increase. Furthermore, another problem to be solved by the present invention is to provide a control device capable of calculating the magnetic pole position with high accuracy.

上記課題を解決するため、請求項1に係る発明は、永久磁石形同期電動機の回転子の突極性を利用して求めた磁極位置演算値を用いて電力変換器により前記電動機を駆動するための制御装置であって、
電流及び電圧をベクトルとしてとらえ、前記回転子の磁束軸方向のd軸とこれに直交するq軸とからなるd−q軸に対して制御上の直交回転座標軸としてのγ−δ軸を内部に推定すると共に、γ軸電圧指令値及びδ軸電圧指令値から求めた各相電圧指令値を前記電力変換器に与えて前記電動機を駆動する制御装置において、
γ軸高周波電圧指令値をγ軸基本波電圧指令値に加算して前記γ軸電圧指令値を生成する手段と、γ軸電流検出値からγ軸高周波電流振幅を検出する手段と、δ軸電流検出値からδ軸高周波電流振幅を検出する手段と、γ軸高周波電流振幅指令値に前記γ軸高周波電流振幅が一致するようにγ軸高周波電圧振幅指令値を演算する手段と、前記γ軸高周波電圧振幅指令値から前記γ軸高周波電圧指令値を演算する手段と、前記δ軸高周波電流振幅から前記磁極位置を演算する磁極位置演算手段と、を備えたものである。
ここで、磁極位置演算手段は、請求項2に記載するように、前記δ軸高周波電流振幅から、前記γ軸と前記d軸との角度差を求める角度差演算手段と、前記角度差としての磁極位置演算誤差から前記γ−δ軸の角速度を求める速度演算手段と、前記角速度から磁極位置を求める積分手段と、を備えている。
これにより、同期電動機に印加されるγ軸高周波電圧の周波数が高い場合にも、γ軸高周波電流を指令値通りに制御することができるようになり、γ軸高周波電圧の振幅の調整作業が不要になる。更に、同期電動機のインダクタンスが変動してもγ軸高周波電流を一定値に制御できるので、同期電動機を流れる電流が過大になるのを防ぐことができる。
In order to solve the above problems, an invention according to claim 1 is directed to driving the electric motor by a power converter using a magnetic pole position calculation value obtained by utilizing the saliency of a rotor of a permanent magnet type synchronous motor. A control device,
The current and voltage are regarded as vectors, and the γ-δ axis as the orthogonal rotational coordinate axis for control is set inside with respect to the dq axis composed of the d axis in the magnetic flux axis direction of the rotor and the q axis orthogonal thereto. In the control device for driving the electric motor by giving each phase voltage command value obtained from the γ-axis voltage command value and the δ-axis voltage command value to the power converter,
means for adding the γ-axis high-frequency voltage command value to the γ-axis fundamental wave voltage command value to generate the γ-axis voltage command value; means for detecting the γ-axis high-frequency current amplitude from the γ-axis current detection value; Means for detecting the δ-axis high-frequency current amplitude from the detected value; means for calculating the γ-axis high-frequency voltage amplitude command value so that the γ-axis high-frequency current amplitude matches the γ-axis high-frequency current amplitude command value; Means for calculating the γ-axis high-frequency voltage command value from the voltage amplitude command value, and magnetic pole position calculating means for calculating the magnetic pole position from the δ-axis high-frequency current amplitude.
Here, as described in claim 2, the magnetic pole position calculation means includes an angle difference calculation means for obtaining an angle difference between the γ-axis and the d-axis from the δ-axis high frequency current amplitude, Speed calculating means for obtaining an angular velocity of the γ-δ axis from a magnetic pole position calculating error; and integrating means for obtaining a magnetic pole position from the angular velocity.
As a result, even when the frequency of the γ-axis high-frequency voltage applied to the synchronous motor is high, the γ-axis high-frequency current can be controlled according to the command value, and the adjustment work of the amplitude of the γ-axis high-frequency voltage is unnecessary. become. Further, since the γ-axis high-frequency current can be controlled to a constant value even if the inductance of the synchronous motor varies, it is possible to prevent the current flowing through the synchronous motor from becoming excessive.

請求項3に係る発明は、請求項1または2に記載した永久磁石形同期電動機の制御装置において、前記γ軸高周波電圧振幅指令値を演算する手段は、前記γ軸高周波電流振幅指令値と前記γ軸高周波電流振幅との偏差が零になるように調節動作する積分調節手段を備えたことを特徴とする。
これにより、比較的簡単な演算によってγ軸高周波電流を指令値に制御することができる。
According to a third aspect of the present invention, in the control device for the permanent magnet type synchronous motor according to the first or second aspect, the means for calculating the γ-axis high-frequency voltage amplitude command value includes the γ-axis high-frequency current amplitude command value and the Integral adjusting means for adjusting the deviation from the γ-axis high-frequency current amplitude to be zero is provided.
Thereby, the γ-axis high-frequency current can be controlled to the command value by a relatively simple calculation.

請求項4に係る発明は、請求項1または2に記載した永久磁石形同期電動機の制御装置において、前記γ軸高周波電圧振幅指令値を演算する手段は、前記γ軸高周波電圧振幅指令値とパラメータ推定値とからγ軸高周波電流振幅推定値を演算する手段と、前記γ軸高周波電流振幅推定値と前記γ軸高周波電流振幅との偏差を増幅して前記パラメータ推定値を演算する手段と、前記γ軸高周波電流振幅指令値と前記パラメータ推定値とから前記γ軸高周波電圧振幅指令値を演算する手段と、を備えたことを特徴とする。
これにより、同期電動機のインダクタンスが変化した場合でも、γ軸高周波電流を高応答に制御することができる。
According to a fourth aspect of the present invention, in the control device for the permanent magnet type synchronous motor according to the first or second aspect, the means for calculating the γ-axis high-frequency voltage amplitude command value includes the γ-axis high-frequency voltage amplitude command value and the parameter. Means for calculating a γ-axis high-frequency current amplitude estimated value from the estimated value, means for amplifying a deviation between the γ-axis high-frequency current amplitude estimated value and the γ-axis high-frequency current amplitude, and calculating the parameter estimated value; means for calculating the γ-axis high-frequency voltage amplitude command value from the γ-axis high-frequency current amplitude command value and the parameter estimation value.
Thereby, even when the inductance of the synchronous motor changes, the γ-axis high-frequency current can be controlled with high response.

請求項5に係る発明は、請求項1〜4の何れか1項に記載した制御装置において、γ軸電流の値を正及び負に制御する手段と、γ軸電流の値が正であるときの前記γ軸高周波電圧振幅とγ軸電流の値が負であるときの前記γ軸高周波電圧振幅とから、前記磁極位置を演算する手段と、を備えたものである。
例えば、請求項6に記載するように、γ軸電流指令値を正及び負に制御する手段と、γ軸電流指令値を正に制御したときの前記γ軸高周波電圧振幅指令値とγ軸電流指令値を負に制御したときの前記γ軸高周波電圧振幅指令値とを比較した結果に応じて、前回演算タイミングにおける磁極位置演算値、または、前回演算タイミングにおける磁極位置演算値に電気角180°を加算した値により、今回演算タイミングにおける磁極位置演算値を補正する手段と、を備えたことを特徴とする。
The invention according to claim 5 is the control device according to any one of claims 1 to 4, wherein the means for controlling the value of the γ-axis current to be positive and negative, and the value of the γ-axis current are positive Means for calculating the magnetic pole position from the γ-axis high-frequency voltage amplitude and the γ-axis high-frequency voltage amplitude when the value of the γ-axis current is negative.
For example, as described in claim 6, means for controlling the γ-axis current command value to be positive and negative, and the γ-axis high-frequency voltage amplitude command value and the γ-axis current when the γ-axis current command value is controlled to be positive According to the result of comparing the γ-axis high-frequency voltage amplitude command value when the command value is controlled to be negative, the magnetic angle position calculation value at the previous calculation timing or the magnetic angle position calculation value at the previous calculation timing is 180 ° And means for correcting the magnetic pole position calculation value at the current calculation timing based on the value obtained by adding.

請求項7に係る発明は、請求項4に記載した制御装置において、γ軸電流の値を正及び負に制御する手段と、γ軸電流の値が正であるときの前記パラメータ推定値とγ軸電流の値が負であるときの前記パラメータ推定値とから、前記磁極位置を演算する手段と、を備えたものである。
例えば、請求項8に記載するように、γ軸電流指令値を正及び負に制御する手段と、γ軸電流指令値を正に制御したときの前記パラメータ推定値とγ軸電流指令値を負に制御したときの前記パラメータ推定値とを比較した結果に応じて、前回演算タイミングにおける磁極位置演算値、または、前回演算タイミングにおける磁極位置演算値に電気角180°を加算した値により、今回演算タイミングにおける磁極位置演算値を補正する手段と、を備えたことを特徴とする。
これらの請求項5〜8に記載した発明によれば、電動機鉄芯の磁気飽和特性を利用してNS判別を高精度に実現することができる。
The invention according to claim 7 is the control device according to claim 4, wherein means for controlling the value of the γ-axis current to be positive and negative, the parameter estimated value when the value of the γ-axis current is positive, and γ Means for calculating the magnetic pole position from the parameter estimated value when the value of the axial current is negative.
For example, as described in claim 8, the means for controlling the γ-axis current command value to be positive and negative, and the parameter estimated value and the γ-axis current command value when the γ-axis current command value is controlled to be negative Depending on the result of comparison with the parameter estimation value when the current control is performed, the current calculation is performed using the magnetic pole position calculation value at the previous calculation timing or the value obtained by adding the electrical angle 180 ° to the magnetic pole position calculation value at the previous calculation timing. And means for correcting the magnetic pole position calculation value at the timing.
According to these inventions described in claims 5 to 8, NS discrimination can be realized with high accuracy by utilizing the magnetic saturation characteristics of the motor iron core.

本発明によれば、同期電動機に印加する高周波電圧の調整作業を不要とし、また、同期電動機のインダクタンスが変化した場合でも高周波電流を一定値に制御して電動機電流が過大になるのを防止すると共に、磁極位置を高精度に演算することが可能である。   According to the present invention, it is not necessary to adjust the high frequency voltage applied to the synchronous motor, and even if the inductance of the synchronous motor changes, the high frequency current is controlled to a constant value to prevent the motor current from becoming excessive. At the same time, the magnetic pole position can be calculated with high accuracy.

本発明の実施形態に係る制御装置を主回路と共に示したブロック図である。It is the block diagram which showed the control apparatus which concerns on embodiment of this invention with the main circuit. d−q軸座標及びγ−δ軸座標の説明図である。It is explanatory drawing of a dq axis coordinate and a (gamma) -delta axis coordinate. 図1におけるγ軸高周波電流調節器の第1実施例を示す構成図である。It is a block diagram which shows 1st Example of the (gamma) -axis high frequency current regulator in FIG. 図1におけるγ軸高周波電流調節器の第2実施例を示す構成図である。It is a block diagram which shows 2nd Example of the (gamma) -axis high frequency current regulator in FIG. 本発明の実施形態におけるNS判別の原理の説明図である。It is explanatory drawing of the principle of NS discrimination | determination in embodiment of this invention. 特許文献2に記載された従来技術の構成図である。It is a block diagram of the prior art described in patent document 2. FIG. 特許文献3に記載された従来技術の構成図である。It is a block diagram of the prior art described in patent document 3. FIG.

以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態に係る制御装置を主回路と共に示したブロック図である。まず、主回路において、50は三相交流電源、60は整流回路、70は三相電圧形インバータ等の電力変換器、80は埋込磁石構造の永久磁石形同期電動機(IPMSM)である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a control device according to this embodiment together with a main circuit. First, in the main circuit, 50 is a three-phase AC power source, 60 is a rectifier circuit, 70 is a power converter such as a three-phase voltage source inverter, and 80 is a permanent magnet type synchronous motor (IPMSM) having an embedded magnet structure.

一方、制御装置において、11u,11wは電流検出器、12は電圧検出器であり、同期電動機80のu相電流検出値i及びw相電流検出値iは座標変換器14に入力され、電力変換器70の直流電圧検出値EdcはPWM回路13に入力されている。
また、加減算器16により角速度指令値ω と角速度演算値ωとの偏差が求められ、この偏差が零になるように速度調節器17によりトルク指令値τが演算される。電流指令演算器18では、トルク指令値τに従ったトルクを発生させるためのγ軸電流指令値iγ 及びδ軸電流指令値iδ が演算される。
On the other hand, in the control device, 11u and 11w are current detectors, 12 is a voltage detector, and the u-phase current detection value i u and the w-phase current detection value i w of the synchronous motor 80 are input to the coordinate converter 14, The detected DC voltage value E dc of the power converter 70 is input to the PWM circuit 13.
Further, a deviation between the angular velocity command value ω r * and the angular velocity calculation value ω 1 is obtained by the adder / subtractor 16, and the torque command value τ * is calculated by the speed regulator 17 so that this deviation becomes zero. The current command calculator 18 calculates a γ-axis current command value i γ * and a δ-axis current command value i δ * for generating torque according to the torque command value τ * .

γ軸電流調節器20aは、加減算器19aにより求めたγ軸電流指令値iγ とγ軸基本波電流検出値iγfとの偏差が零になるように調節動作してγ軸基本波電圧指令値vγf を演算し、δ軸電流調節器20bは、加減算器19bにより求めたδ軸電流指令値iδ とδ軸基本波電流検出値iδfとの偏差が零になるように調節動作してδ軸基本波電圧指令値vδf を演算する。
ここで、γ軸基本波電流検出値iγf,δ軸基本波電流検出値iδfは、ノッチフィルタ21a,21bにより、γ軸電流検出値iγ,δ軸電流検出値iδから高周波成分をそれぞれ除去して求められる。なお、γ軸電流検出値iγ,δ軸電流検出値iδは、u相,w相の電流検出値i,iを座標変換器14に入力し、磁極位置演算値θを用いて座標変換することにより求められる。
The γ-axis current regulator 20a performs an adjustment operation so that the deviation between the γ-axis current command value i γ * obtained by the adder / subtractor 19a and the detected γ-axis fundamental wave current value i γf becomes zero, and the γ-axis fundamental wave voltage is adjusted. The command value v γf * is calculated, and the δ-axis current controller 20b is set so that the deviation between the δ-axis current command value i δ * obtained by the adder / subtractor 19b and the detected δ-axis fundamental wave current value i δf becomes zero. The adjustment operation is performed to calculate the δ-axis fundamental wave voltage command value v δf * .
Here, the γ-axis fundamental wave current detection value i γf and the δ-axis fundamental wave current detection value i δf are converted from the γ-axis current detection value i γ and the δ-axis current detection value i δ by the notch filters 21a and 21b. Each is required to be removed. The γ-axis current detection value i γ and the δ-axis current detection value i δ are obtained by inputting the u-phase and w-phase current detection values i u and i w to the coordinate converter 14 and using the magnetic pole position calculation value θ 1 . Obtained by coordinate conversion.

バンドパスフィルタ33aは、γ軸電流検出値iγからγ軸高周波電圧と同じ周波数成分のγ軸高周波電流振幅Iγhを演算し、同様に、バンドパスフィルタ33bは、δ軸電流検出値iδからγ軸高周波電圧と同じ周波数成分のδ軸高周波電流振幅Iδhを演算する。
γ軸高周波電流調節器31は、γ軸高周波電流振幅指令値Iγh にγ軸高周波電流振幅Iγhが一致するように、γ軸高周波電圧振幅指令値Vγh を制御する。このγ軸高周波電流調節器31の具体的構成については後述する。
矩形波発振器32は、γ軸高周波電圧振幅指令値Vγh により振幅が制御された矩形波のγ軸高周波電圧指令値vγh を生成して出力する。
The band pass filter 33a calculates the γ-axis high-frequency current amplitude I γh having the same frequency component as the γ-axis high-frequency voltage from the γ-axis current detection value i γ , and similarly, the band-pass filter 33b calculates the δ-axis current detection value i δ. To δ-axis high-frequency current amplitude I δh having the same frequency component as the γ-axis high-frequency voltage.
The γ-axis high-frequency current regulator 31 controls the γ-axis high-frequency voltage amplitude command value V γh * so that the γ-axis high-frequency current amplitude I γh matches the γ-axis high-frequency current amplitude command value I γh * . A specific configuration of the γ-axis high-frequency current regulator 31 will be described later.
The rectangular wave oscillator 32 generates and outputs a rectangular wave γ-axis high-frequency voltage command value v γh * whose amplitude is controlled by the γ-axis high-frequency voltage amplitude command value V γh * .

更に、加減算器22により、γ軸基本波電圧指令値vγf に矩形波発振器32の出力であるγ軸高周波電圧指令値vγh を重畳してγ軸電圧指令値vγ が演算され、このγ軸電圧指令値vγ は座標変換器15に入力される。一方、δ軸電流調節器20bから出力されたδ軸基本波電圧指令値vδf は、そのままδ軸電圧指令値vδ として座標変換器15に入力される。 Further, the adder / subtracter 22 calculates the γ-axis voltage command value v γ * by superimposing the γ-axis high-frequency voltage command value v γh * output from the rectangular wave oscillator 32 on the γ-axis fundamental wave voltage command value v γf *. The γ-axis voltage command value v γ * is input to the coordinate converter 15. On the other hand, the δ-axis fundamental wave voltage command value v δf * output from the δ-axis current regulator 20b is directly input to the coordinate converter 15 as the δ-axis voltage command value v δ * .

座標変換器15では、磁極位置演算値θを用いてγ軸電圧指令値vγ 及びδ軸電圧指令値vδ が座標変換され、三相の相電圧指令値v ,v ,v が演算される。
これらの相電圧指令値v ,v ,v 及び直流電圧検出値Edcが入力されるPWM回路13では、電力変換器70の出力電圧を相電圧指令値v ,v ,v に制御するためのゲート信号が生成され、このゲート信号を用いて電力変換器70の半導体スイッチング素子を制御することで、同期電動機80の端子電圧が相電圧指令値v ,v ,v に制御される。
以上の動作により、同期電動機80の回転子速度を角速度指令値ω に制御すると共に、回転子の磁極位置及び速度を演算するためのγ軸高周波電流振幅Iγhを振幅指令値Iγh に制御することが可能である。
In the coordinate converter 15, the γ-axis voltage command value v γ * and the δ-axis voltage command value v δ * are coordinate-converted using the magnetic pole position calculation value θ 1 , and the three-phase phase voltage command values v u * and v v are converted. * And vw * are calculated.
In the PWM circuit 13 to which the phase voltage command values v u * , v v * , v w * and the DC voltage detection value E dc are input, the output voltage of the power converter 70 is used as the phase voltage command values v u * , v. v *, v w * gate signal for controlling the is generated, the gate signal using by controlling the semiconductor switching elements of the power converter 70, the synchronous motor terminal voltage is the phase voltage command values 80 v u * , V v * , and v w * are controlled.
With the above operation, the rotor speed of the synchronous motor 80 is controlled to the angular speed command value ω r * , and the γ-axis high-frequency current amplitude I γh for calculating the magnetic pole position and speed of the rotor is set to the amplitude command value I γh *. It is possible to control.

さて、IPMSM等の同期電動機では、回転子に同期した直交回転座標(d−q軸座標)に基づいて制御することにより、高性能なトルク制御や速度制御を実現することができる。ここで、d−q軸は、回転子の磁束軸方向をd軸と定義し、このd軸に直交する90°進み方向の軸をq軸と定義する。
しかしながら、磁極位置検出器を用いずに同期電動機を運転するセンサレス制御の場合、d−q軸の位置を直接検出することができない。そこで、d−q軸の推定軸であるγ−δ軸を定義し、このγ−δ軸座標上で制御演算を行う手法が知られている。
Now, in a synchronous motor such as IPMSM, high-performance torque control and speed control can be realized by controlling based on orthogonal rotation coordinates (dq axis coordinates) synchronized with a rotor. Here, for the dq axis, the direction of the magnetic flux axis of the rotor is defined as the d axis, and the axis in the 90 ° advance direction perpendicular to the d axis is defined as the q axis.
However, in the case of sensorless control in which the synchronous motor is operated without using the magnetic pole position detector, the position of the dq axis cannot be directly detected. Therefore, a method is known in which a γ-δ axis that is an estimated axis of the dq axis is defined, and a control calculation is performed on the γ-δ axis coordinates.

図2は、d−q軸座標及びγ−δ軸座標の説明図であり、同期電動機のu相巻線を基準としたγ軸の角度(磁極位置演算値)θとu相巻線を基準としたd軸の角度(磁極位置)θとの角度差(磁極位置演算誤差)θerrを、数式1により定義する。
[数1]
θerr=θ−θ
また、d−q軸の角速度をω(回転子速度)、γ−δ軸の角速度(速度演算値)をωと定義する。
FIG. 2 is an explanatory diagram of the dq axis coordinates and the γ-δ axis coordinates, and shows the angle of the γ axis (magnetic pole position calculation value) θ 1 and the u phase winding with respect to the u phase winding of the synchronous motor. An angle difference (magnetic pole position calculation error) θ err with respect to the reference d-axis angle (magnetic pole position) θ r is defined by Equation 1.
[Equation 1]
θ err = θ 1 −θ r
Further, the angular velocity of the dq axis is defined as ω r (rotor speed), and the angular velocity (speed calculation value) of the γ-δ axis is defined as ω 1 .

次に、この実施形態における位置・速度演算の原理について説明する。
同期電動機の高周波成分に対する状態方程式は、電機子抵抗を零に近似し、速度を零に近似すると、数式2となる。

Figure 2014090643
Next, the principle of position / velocity calculation in this embodiment will be described.
The equation of state for the high-frequency component of the synchronous motor is expressed by Equation 2 when the armature resistance is approximated to zero and the speed is approximated to zero.
Figure 2014090643

いま、γ軸に矩形波の高周波交番電圧を重畳した場合のγ軸,δ軸高周波電流振幅Iγh,Iδhは、数式2の状態方程式を高周波交番電圧の1/2周期にわたって積分することで、数式3のように導出される。

Figure 2014090643
Now, the γ-axis and δ-axis high-frequency current amplitudes I γh and I δh when the rectangular high-frequency alternating voltage is superimposed on the γ-axis are obtained by integrating the state equation of Equation 2 over ½ period of the high-frequency alternating voltage. , Is derived as in Equation 3.
Figure 2014090643

数式3によれば、γ,δ軸高周波電流振幅Iγh,Iδhは磁極位置演算誤差θerrの関数である。ここで、磁極位置演算誤差θerrが零近傍である場合、δ軸高周波電流振幅Iδhは、数式4のように近似することができる。

Figure 2014090643
According to Equation 3, γ and δ-axis high-frequency current amplitudes I γh and I δh are functions of the magnetic pole position calculation error θ err . Here, when the magnetic pole position calculation error θ err is close to zero, the δ-axis high-frequency current amplitude I δh can be approximated as Equation 4.
Figure 2014090643

数式4によれば、δ軸高周波電流振幅Iδhは磁極位置演算誤差θerrに比例する。このため、δ軸高周波電流振幅Iδhから磁極位置演算誤差θerrを求め、この磁極位置演算誤差θerrを用いて磁極位置演算値を補正することが可能である。 According to Equation 4, the δ-axis high frequency current amplitude I δh is proportional to the magnetic pole position calculation error θ err . Therefore, it is possible to obtain the magnetic pole position calculation error θ err from the δ-axis high-frequency current amplitude I δh and correct the magnetic pole position calculation value using the magnetic pole position calculation error θ err .

上記原理に従った位置・速度演算方法を、図1に基づいて説明する。
図1における角度差演算器34は、数式4のδ軸高周波電流振幅Iδhを用いて、数式5により位置演算誤差演算値(−θerrest)を求める。

Figure 2014090643
A position / speed calculation method according to the above principle will be described with reference to FIG.
The angle difference calculator 34 in FIG. 1 uses the δ-axis high-frequency current amplitude I δh of Equation 4 to obtain the position calculation error calculation value (−θ errest ) according to Equation 5.
Figure 2014090643

また、速度演算器35は、位置演算誤差演算値(−θerrest)から速度演算値ωを求め、積分器36は、速度演算値ωを積分して磁極位置演算値θを求める。
これらの演算により、磁極位置演算誤差θerrが零になるように速度演算値ω及び磁極位置演算値θが求められ、これらの値を真値に収束させることができる。
The speed calculator 35 calculates the velocity calculation value omega 1 from the position calculation error calculation value (-θ errest), the integrator 36 calculates the magnetic pole position calculation value theta 1 by integrating the velocity calculation value omega 1.
By these calculations, the speed calculation value ω 1 and the magnetic pole position calculation value θ 1 are obtained so that the magnetic pole position calculation error θ err becomes zero, and these values can be converged to true values.

次いで、図1におけるγ軸高周波電流調節器31の実施例について説明する。図3は第1実施例に係るγ軸高周波電流調節器311を示し、図4は第2実施例に係るγ軸高周波電流調節器312を示している。   Next, an embodiment of the γ-axis high frequency current regulator 31 in FIG. 1 will be described. FIG. 3 shows a γ-axis high-frequency current regulator 311 according to the first embodiment, and FIG. 4 shows a γ-axis high-frequency current regulator 312 according to the second embodiment.

図3のγ軸高周波電流調節器311において、γ軸高周波電流振幅指令値Iγh とγ軸高周波電流振幅Iγhとの偏差が加減算器101により求められ、この偏差を零にするように積分調節器102が動作してγ軸高周波電圧振幅指令値Vγh が演算される。このγ軸高周波電圧振幅指令値Vγh が図1の矩形波発振器32及び加減算器22等を介しγ軸電圧指令値vγ として電力変換器70に与えられ、同期電動機80が駆動されると共に、同期電動機80の電流から検出したγ軸高周波電流振幅Iγhが加減算器101にフィードバックされることになり、これら一連の動作によってγ軸高周波電流振幅Iγhはγ軸高周波電圧振幅指令値Vγh に比例して制御される。
このように、γ軸高周波電流調節器311によってγ軸高周波電流振幅Iγhのフィードバック制御系が構成されるので、γ軸高周波電流振幅Iγhをその指令値Iγh に制御することができる。なお、γ軸高周波電流振幅指令値Iγh は直流量であるため、重畳する高周波電圧の周波数が高く、電流制御系の応答が遅い場合でも、γ軸高周波電流振幅Iγhは指令値Iγh に収束する。
In the γ-axis high-frequency current regulator 311 shown in FIG. 3, a deviation between the γ-axis high-frequency current amplitude command value I γh * and the γ-axis high-frequency current amplitude I γh is obtained by the adder / subtractor 101 and is integrated so as to make this deviation zero. The regulator 102 operates to calculate the γ-axis high-frequency voltage amplitude command value V γh * . The γ-axis high-frequency voltage amplitude command value V γh * is given to the power converter 70 as the γ-axis voltage command value v γ * via the rectangular wave oscillator 32 and the adder / subtractor 22 shown in FIG. 1, and the synchronous motor 80 is driven. together, the synchronous motor 80 current frequency gamma-axis detected from the current amplitude I y H in is to be fed back to the adder-subtracter 101, the axis RF current amplitude I y H gamma by these series of operations are gamma-axis high frequency voltage amplitude command value V It is controlled in proportion to γh * .
Thus, gamma since feedback control system gamma-axis high frequency current amplitude I y H by axial high frequency current regulator 311 is configured, it is possible to control the gamma-axis high frequency current amplitude I y H to the command value I y H *. Since the γ-axis high-frequency current amplitude command value I γh * is a DC amount, the γ-axis high-frequency current amplitude I γh is the command value I γh even when the frequency of the superimposed high-frequency voltage is high and the response of the current control system is slow . Converge to * .

ここで、図3のγ軸高周波電流調節器311において、γ軸高周波電流振幅Iγhの応答性を高めるには、積分調節器102を最適調整する必要があり、これを実現するためには、同期電動機80のインダクタンス値が必要になる。このため、インダクタンス値が未知である場合や、電動機鉄芯の磁気飽和によってインダクタンス値が変動する場合には、γ軸高周波電流振幅Iγhの応答が遅くなったり、制御系が不安定になったりする懸念がある。 Here, in the γ-axis high-frequency current regulator 311 in FIG. 3, in order to increase the responsiveness of the γ-axis high-frequency current amplitude I γh , the integral regulator 102 needs to be optimally adjusted. The inductance value of the synchronous motor 80 is required. For this reason, when the inductance value is unknown or when the inductance value fluctuates due to magnetic saturation of the motor core, the response of the γ-axis high-frequency current amplitude I γh becomes slow, or the control system becomes unstable. There are concerns.

そこで、図4に示す第2実施例のγ軸高周波電流調節器312では、適応制御を応用することにより、同期電動機80のインダクタンス値が未知の場合にもγ軸高周波電流振幅Iγhの応答性を向上させるようにしたものである。
図4において、γ軸高周波電流振幅指令値Iγh は除算器201に入力されており、γ軸高周波電流振幅指令値Iγh をパラメータ推定値Θ1estにより除算してγ軸高周波電圧振幅指令値Vγh が求められる。このγ軸高周波電圧振幅指令値Vγh (=ζ)は乗算器202によりパラメータ推定値Θ1estと乗算され、γ軸高周波電流振幅推定値Iγhestが求められる。
Therefore, in the γ-axis high-frequency current regulator 312 of the second embodiment shown in FIG. 4, by applying adaptive control, the response of the γ-axis high-frequency current amplitude I γh even when the inductance value of the synchronous motor 80 is unknown. It is intended to improve.
In FIG. 4, gamma-axis high frequency current amplitude command value I y H * is input to the divider 201, gamma-axis high frequency current amplitude command value I y H * parameters division to gamma-axis high-frequency voltage amplitude command by the estimation value theta 1Est The value V γh * is determined. This γ-axis high-frequency voltage amplitude command value V γh * (= ζ 1 ) is multiplied by the parameter estimated value Θ 1est by the multiplier 202 to obtain a γ-axis high-frequency current amplitude estimated value I γhest .

γ軸高周波電流振幅推定値Iγhestとγ軸高周波電流振幅Iγhとの偏差εが加減算器203により算出され、この偏差εは、γ軸高周波電圧振幅指令値Vγh (=ζ)と共にパラメータ推定器204に入力される。
パラメータ推定器204は、数式6に従って偏差εを増幅し、パラメータ推定値Θ1estを演算する。

Figure 2014090643
γ-axis high frequency current deviation between the estimated amplitude value I Ganmahest and γ-axis high frequency current amplitude I y H epsilon is calculated by the adder-subtracter 203, the deviation epsilon, together with γ-axis high frequency voltage amplitude command value V γh * (= ζ 1) Input to the parameter estimator 204.
The parameter estimator 204 amplifies the deviation ε according to Equation 6 and calculates the parameter estimated value Θ 1est .
Figure 2014090643

以上の演算の結果、パラメータ推定値Θ1estは、偏差εが零になるように演算することにより真値に収束する。このパラメータ推定値Θ1estを用いることにより、γ軸高周波電流振幅Iγhを指令値Iγh に制御するためのγ軸高周波電圧振幅指令値Vγh を出力することが可能になる。 As a result of the above calculation, the parameter estimated value Θ 1est converges to a true value by calculating so that the deviation ε becomes zero. By using this parameter estimated value Θ 1est , it becomes possible to output the γ-axis high-frequency voltage amplitude command value V γh * for controlling the γ-axis high-frequency current amplitude I γh to the command value I γh * .

次に、本実施形態におけるNS判別方法について説明する。
数式3より、δ軸高周波電流振幅Iδhは位置演算誤差θerrの2倍の関数であるため、図1のブロック図における位置・速度演算の結果、位置演算値θが180°の誤差を持ち、γ軸が回転子のN極方向ではなくS極方向を向いてしまうことがある。そこで、電動機鉄芯の磁気飽和特性を用いてN極とS極とを判別する。
Next, the NS discrimination method in this embodiment will be described.
From Equation 3, since the δ-axis high-frequency current amplitude I δh is a function that is twice the position calculation error θ err , the position calculation value θ 1 in the block diagram of FIG. And the γ-axis may face the S-pole direction instead of the N-pole direction of the rotor. Therefore, the N pole and the S pole are discriminated using the magnetic saturation characteristics of the motor iron core.

図5は、NS判別の原理を示す図である。d軸電流を「正」に制御すると、永久磁石による磁束と電流が作る磁束とが合成され、鎖交磁束が増加する。この結果、電動機鉄芯の磁気飽和特性によってd軸インダクタンスが減少する。一方、d軸電流を「負」に制御すると、永久磁石による磁束と電流が作る磁束とが互いに相殺するので、鎖交磁束が減少する。この結果、d軸インダクタンスが増加する。
このことを利用して、位置演算値θの収束後に、図1のγ軸高周波電流調節器31を用いてγ軸電流指令値iγ を「正」に制御したときのγ軸高周波電圧振幅指令値VγhP と、γ軸電流指令値iγ を「負」に制御したときのγ軸高周波電圧振幅指令値VγhN とを用いて、回転子磁極のN極、S極を判別する。具体的には、数式7の演算を行うことにより、磁極位置演算誤差θerrを補正した磁極位置演算値θを得る(NS判別を行う)。
FIG. 5 is a diagram showing the principle of NS discrimination. When the d-axis current is controlled to be “positive”, the magnetic flux generated by the permanent magnet and the magnetic flux generated by the current are combined to increase the flux linkage. As a result, the d-axis inductance decreases due to the magnetic saturation characteristics of the electric motor iron core. On the other hand, when the d-axis current is controlled to be “negative”, the magnetic flux generated by the permanent magnet and the magnetic flux generated by the current cancel each other, so the interlinkage magnetic flux decreases. As a result, the d-axis inductance increases.
Using this, after the position calculation value θ 1 converges, the γ-axis high-frequency voltage when the γ-axis current command value i γ * is controlled to be “positive” using the γ-axis high-frequency current regulator 31 of FIG. Using the amplitude command value V γhP * and the γ-axis high-frequency voltage amplitude command value V γhN * when the γ-axis current command value i γ * is controlled to be “negative”, the N pole and S pole of the rotor magnetic pole are Determine. Specifically, a magnetic pole position calculation value θ 1 in which the magnetic pole position calculation error θ err is corrected is obtained by performing the calculation of Expression 7. (NS discrimination is performed).

[数7]
i)VγhP ≦VγhN のとき
θ=θ1(前回値)
ii)VγhP >VγhN のとき
θ=θ1(前回値)+π
[Equation 7]
i) When VγhP *VγhN *
θ 1 = θ 1 (previous value)
ii) When VγhP * > VγhN *
θ 1 = θ 1 (previous value) + π

次いで、本実施形態における他のNS判別方法について説明する。
この方法では、図4に示したγ軸高周波電流調節器312におけるパラメータ推定値Θ1estを用いてNS判別を行う。
磁極位置演算誤差θerrが零または180°のとき、パラメータ推定値Θ1estは数式8によって表される。

Figure 2014090643
数式8より、パラメータ推定値Θ1estはd軸インダクタンスLに反比例する。 Next, another NS determination method in the present embodiment will be described.
In this method, NS discrimination is performed using the parameter estimated value Θ 1est in the γ-axis high-frequency current regulator 312 shown in FIG.
When the magnetic pole position calculation error θ err is zero or 180 °, the parameter estimated value Θ 1est is expressed by Equation 8.
Figure 2014090643
From Equation 8, the parameter estimated value Θ 1est is inversely proportional to the d-axis inductance L d .

そこで、電動機鉄芯の磁気飽和特性を利用し、位置演算値θの収束後に、図4のγ軸高周波電流調節器312を用いて、γ軸電流指令値iγ を「正」に制御したときのパラメータ推定値Θ1estPと、γ軸電流指令値iγ を「負」に制御したときのパラメータ推定値Θ1estNとを用いて、回転子磁極のN極、S極を判別する。具体的には数式9の演算を行うことにより、磁極位置演算誤差θerrを補正した磁極位置演算値θを得る(NS判別を行う)。
[数9]
i)Θ1estN≦Θ1estPのとき
θ=θ1(前回値)
ii)Θ1estN>Θ1estPのとき
θ=θ1(前回値)+π
Therefore, using the magnetic saturation characteristics of the motor iron core, after the position calculation value θ 1 converges, the γ-axis current command value i γ * is controlled to be “positive” using the γ-axis high-frequency current regulator 312 of FIG. and parameter estimates theta 1EstP upon the gamma-axis current value i gamma * using the parameter estimates theta 1EstN when controlled to "negative", N pole of the rotor poles, to determine the S pole. Specifically, the calculation of Formula 9 is performed to obtain a magnetic pole position calculation value θ 1 in which the magnetic pole position calculation error θ err is corrected (NS discrimination is performed).
[Equation 9]
i) When Θ 1estN ≦ Θ 1estP
θ 1 = θ 1 (previous value)
ii) When Θ 1estN > Θ 1estP
θ 1 = θ 1 (previous value) + π

上述した本実施形態によれば、磁極位置検出器を用いなくても同期電動機の磁極位置及び速度を正確に推定することができ、これらの推定した磁極位置及び速度に基づいて電流制御を行うことで、同期電動機の速度及びトルクを高精度に制御することができる。
なお、本発明の実施形態では、γ軸高周波電圧指令値vγh を矩形波とした場合について説明したが、正弦波を用いてもよい。
According to the present embodiment described above, the magnetic pole position and speed of the synchronous motor can be accurately estimated without using the magnetic pole position detector, and current control is performed based on these estimated magnetic pole position and speed. Thus, the speed and torque of the synchronous motor can be controlled with high accuracy.
In the embodiment of the present invention, the case where the γ-axis high-frequency voltage command value v γh * is a rectangular wave has been described, but a sine wave may be used.

50 三相交流電源
60 整流回路
70 電力変換器
80 IPMSM
11u u相電流検出器
11w w相電流検出器
12 電圧検出器
13 PWM回路
14,15 座標変換器
16,19a,19b,22 加減算器
17 速度調節器
18 電流指令演算器
20a γ軸電流調節器
20b δ軸電流調節器
21a,21b ノッチフィルタ
31,311,312 γ軸高周波電流調節器
32 矩形波発振器
33a,33b バンドパスフィルタ
34 角度差演算器
35 速度演算器
36 積分器
101,203 加減算器
102 積分調節器
201 除算器
202 乗算器
204 パラメータ推定器
50 Three-phase AC power supply 60 Rectifier circuit 70 Power converter 80 IPMSM
11u u phase current detector 11w w phase current detector 12 voltage detector 13 PWM circuit 14, 15 coordinate converters 16, 19a, 19b, 22 adder / subtractor 17 speed regulator 18 current command calculator 20a γ-axis current regulator 20b δ-axis current regulator 21a, 21b Notch filter 31, 311, 312 γ-axis high-frequency current regulator 32 Rectangular wave oscillator 33a, 33b Bandpass filter 34 Angle difference calculator 35 Speed calculator 36 Integrator 101, 203 Adder / subtractor 102 Integral Controller 201 Divider 202 Multiplier 204 Parameter estimator

Claims (8)

永久磁石形同期電動機の回転子の突極性を利用して求めた磁極位置演算値を用いて電力変換器により前記電動機を駆動するための制御装置であって、
電流及び電圧をベクトルとしてとらえ、前記回転子の磁束軸方向のd軸とこれに直交するq軸とからなるd−q軸に対して制御上の直交回転座標軸としてのγ−δ軸を内部に推定すると共に、γ軸電圧指令値及びδ軸電圧指令値から求めた各相電圧指令値を前記電力変換器に与えて前記電動機を駆動する制御装置において、
γ軸高周波電圧指令値をγ軸基本波電圧指令値に加算して前記γ軸電圧指令値を生成する手段と、
γ軸電流検出値からγ軸高周波電流振幅を検出する手段と、
δ軸電流検出値からδ軸高周波電流振幅を検出する手段と、
γ軸高周波電流振幅指令値に前記γ軸高周波電流振幅が一致するようにγ軸高周波電圧振幅指令値を演算する手段と、
前記γ軸高周波電圧振幅指令値から前記γ軸高周波電圧指令値を演算する手段と、
前記δ軸高周波電流振幅から前記磁極位置を演算する磁極位置演算手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
A control device for driving the electric motor by a power converter using a magnetic pole position calculation value obtained by using the saliency of the rotor of the permanent magnet type synchronous motor,
The current and voltage are regarded as vectors, and the γ-δ axis as the orthogonal rotational coordinate axis for control is set inside with respect to the dq axis composed of the d axis in the magnetic flux axis direction of the rotor and the q axis orthogonal thereto. In the control device for driving the electric motor by giving each phase voltage command value obtained from the γ-axis voltage command value and the δ-axis voltage command value to the power converter,
means for adding the γ-axis high-frequency voltage command value to the γ-axis fundamental voltage command value to generate the γ-axis voltage command value;
means for detecting the γ-axis high-frequency current amplitude from the γ-axis current detection value;
means for detecting the δ-axis high-frequency current amplitude from the δ-axis current detection value;
means for calculating a γ-axis high-frequency voltage amplitude command value so that the γ-axis high-frequency current amplitude matches the γ-axis high-frequency current amplitude command value;
Means for calculating the γ-axis high-frequency voltage command value from the γ-axis high-frequency voltage amplitude command value;
Magnetic pole position calculating means for calculating the magnetic pole position from the δ-axis high-frequency current amplitude;
A control device for a permanent magnet type synchronous motor.
請求項1に記載した永久磁石形同期電動機の制御装置において、
前記磁極位置演算手段は、
前記δ軸高周波電流振幅から、前記γ軸と前記d軸との角度差を求める角度差演算手段と、前記角度差としての磁極位置演算誤差から前記γ−δ軸の角速度を求める速度演算手段と、前記角速度から磁極位置を求める積分手段と、を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 1,
The magnetic pole position calculation means includes
An angle difference calculating means for obtaining an angle difference between the γ-axis and the d-axis from the δ-axis high-frequency current amplitude, and a speed calculating means for obtaining an angular velocity of the γ-δ axis from a magnetic pole position calculation error as the angle difference; And a control unit for the permanent magnet type synchronous motor, comprising: integrating means for obtaining a magnetic pole position from the angular velocity.
請求項1または2に記載した永久磁石形同期電動機の制御装置において、
前記γ軸高周波電圧振幅指令値を演算する手段は、
前記γ軸高周波電流振幅指令値と前記γ軸高周波電流振幅との偏差が零になるように調節動作する積分調節手段を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for a permanent magnet type synchronous motor according to claim 1 or 2,
The means for calculating the γ-axis high-frequency voltage amplitude command value is:
A control device for a permanent magnet type synchronous motor, characterized by comprising integral adjusting means for adjusting so that a deviation between the γ-axis high-frequency current amplitude command value and the γ-axis high-frequency current amplitude becomes zero.
請求項1または2に記載した永久磁石形同期電動機の制御装置において、
前記γ軸高周波電圧振幅指令値を演算する手段は、
前記γ軸高周波電圧振幅指令値とパラメータ推定値とからγ軸高周波電流振幅推定値を演算する手段と、
前記γ軸高周波電流振幅推定値と前記γ軸高周波電流振幅との偏差を増幅して前記パラメータ推定値を演算する手段と、
前記γ軸高周波電流振幅指令値と前記パラメータ推定値とから前記γ軸高周波電圧振幅指令値を演算する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for a permanent magnet type synchronous motor according to claim 1 or 2,
The means for calculating the γ-axis high-frequency voltage amplitude command value is:
Means for calculating a γ-axis high-frequency current amplitude estimated value from the γ-axis high-frequency voltage amplitude command value and the parameter estimated value;
Means for amplifying a deviation between the γ-axis high-frequency current amplitude estimated value and the γ-axis high-frequency current amplitude to calculate the parameter estimated value;
Means for calculating the γ-axis high-frequency voltage amplitude command value from the γ-axis high-frequency current amplitude command value and the parameter estimation value;
A control device for a permanent magnet type synchronous motor.
請求項1〜4の何れか1項に記載した永久磁石形同期電動機の制御装置において、
γ軸電流の値を正及び負に制御する手段と、
γ軸電流の値が正であるときの前記γ軸高周波電圧振幅とγ軸電流の値が負であるときの前記γ軸高周波電圧振幅とから、前記磁極位置を演算する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to any one of claims 1 to 4,
means for controlling the value of the γ-axis current to be positive and negative;
means for calculating the magnetic pole position from the γ-axis high-frequency voltage amplitude when the value of the γ-axis current is positive and the γ-axis high-frequency voltage amplitude when the value of the γ-axis current is negative;
A control device for a permanent magnet type synchronous motor.
請求項5に記載した永久磁石形同期電動機の制御装置において、
γ軸電流指令値を正及び負に制御する手段と、
γ軸電流指令値を正に制御したときの前記γ軸高周波電圧振幅指令値とγ軸電流指令値を負に制御したときの前記γ軸高周波電圧振幅指令値とを比較した結果に応じて、前回演算タイミングにおける磁極位置演算値、または、前回演算タイミングにおける磁極位置演算値に電気角180°を加算した値により、今回演算タイミングにおける磁極位置演算値を補正する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 5,
means for positively and negatively controlling the γ-axis current command value;
According to the result of comparing the γ-axis high-frequency voltage amplitude command value when the γ-axis current command value is controlled positively and the γ-axis high-frequency voltage amplitude command value when the γ-axis current command value is controlled negatively, Means for correcting the magnetic pole position calculation value at the current calculation timing by a magnetic pole position calculation value at the previous calculation timing or a value obtained by adding an electrical angle of 180 ° to the magnetic pole position calculation value at the previous calculation timing;
A control device for a permanent magnet type synchronous motor.
請求項4に記載した永久磁石形同期電動機の制御装置において、
γ軸電流の値を正及び負に制御する手段と、
γ軸電流の値が正であるときの前記パラメータ推定値とγ軸電流の値が負であるときの前記パラメータ推定値とから、前記磁極位置を演算する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control apparatus for the permanent magnet type synchronous motor according to claim 4,
means for controlling the value of the γ-axis current to be positive and negative;
means for calculating the magnetic pole position from the parameter estimated value when the value of the γ-axis current is positive and the parameter estimated value when the value of the γ-axis current is negative;
A control device for a permanent magnet type synchronous motor.
請求項7に記載した永久磁石形同期電動機の制御装置において、
γ軸電流指令値を正及び負に制御する手段と、
γ軸電流指令値を正に制御したときの前記パラメータ推定値とγ軸電流指令値を負に制御したときの前記パラメータ推定値とを比較した結果に応じて、前回演算タイミングにおける磁極位置演算値、または、前回演算タイミングにおける磁極位置演算値に電気角180°を加算した値により、今回演算タイミングにおける磁極位置演算値を補正する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 7,
means for positively and negatively controlling the γ-axis current command value;
According to the result of comparing the parameter estimated value when the γ-axis current command value is controlled positively and the parameter estimated value when the γ-axis current command value is controlled negatively, the magnetic pole position calculated value at the previous calculation timing Or means for correcting the magnetic pole position calculation value at the current calculation timing with a value obtained by adding an electrical angle of 180 ° to the magnetic pole position calculation value at the previous calculation timing;
A control device for a permanent magnet type synchronous motor.
JP2012240679A 2012-10-31 2012-10-31 Controller of permanent magnet synchronous motor Pending JP2014090643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240679A JP2014090643A (en) 2012-10-31 2012-10-31 Controller of permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240679A JP2014090643A (en) 2012-10-31 2012-10-31 Controller of permanent magnet synchronous motor

Publications (1)

Publication Number Publication Date
JP2014090643A true JP2014090643A (en) 2014-05-15

Family

ID=50792072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240679A Pending JP2014090643A (en) 2012-10-31 2012-10-31 Controller of permanent magnet synchronous motor

Country Status (1)

Country Link
JP (1) JP2014090643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9948220B2 (en) 2016-07-22 2018-04-17 Denso Corporation Rotation angle estimation apparatus for rotating electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273255A (en) * 2008-05-08 2009-11-19 Fuji Electric Systems Co Ltd Controller of permanent magnet type synchronization electric motor
JP2009273254A (en) * 2008-05-08 2009-11-19 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor
JP2009290980A (en) * 2008-05-29 2009-12-10 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor
JP2010035363A (en) * 2008-07-30 2010-02-12 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273255A (en) * 2008-05-08 2009-11-19 Fuji Electric Systems Co Ltd Controller of permanent magnet type synchronization electric motor
JP2009273254A (en) * 2008-05-08 2009-11-19 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor
JP2009290980A (en) * 2008-05-29 2009-12-10 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor
JP2010035363A (en) * 2008-07-30 2010-02-12 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9948220B2 (en) 2016-07-22 2018-04-17 Denso Corporation Rotation angle estimation apparatus for rotating electric machine

Similar Documents

Publication Publication Date Title
JP5761243B2 (en) Motor control device and magnetic pole position estimation method
JP5861819B2 (en) Control device for permanent magnet type synchronous motor
JP3860031B2 (en) Synchronous motor control device and control method of synchronous motor
US20170264227A1 (en) Inverter control device and motor drive system
JP5321792B2 (en) Control device for permanent magnet type synchronous motor
JP5428202B2 (en) Control device for permanent magnet type synchronous motor
JP2010063208A (en) Drive system for synchronous motor, and controller used for this
JP5109790B2 (en) Control device for permanent magnet type synchronous motor
JP5757205B2 (en) Control device for permanent magnet type synchronous motor
JP2016163501A (en) Power conversion apparatus and control method therefor
US11722082B2 (en) Method and device for controlling a synchronous machine without a position sensor by means of unique assignment of the flux linkage to the rotor position
JP2015180130A (en) Control device of permanent magnet synchronous motor
JP5396741B2 (en) Control device for permanent magnet type synchronous motor
JP5104219B2 (en) Control device for permanent magnet type synchronous motor
JP6248847B2 (en) Control device for permanent magnet type synchronous motor
JP6128330B2 (en) Control device for permanent magnet type synchronous motor
JP6135713B2 (en) Motor control device, magnetic flux command generation device, and magnetic flux command generation method
JP2008206330A (en) Device and method for estimating magnetic pole position of synchronous electric motor
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
KR102409792B1 (en) Control device of permanent magnet synchronization electric motor, microcomputer, electric motor system, and driving method of permanent magnet synchronization electric motor
JP5104213B2 (en) Control device for permanent magnet type synchronous motor
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP5744151B2 (en) Electric motor driving apparatus and electric motor driving method
JP2014090643A (en) Controller of permanent magnet synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161228