JP2014088548A - Clarifier of oil contaminated soil - Google Patents

Clarifier of oil contaminated soil Download PDF

Info

Publication number
JP2014088548A
JP2014088548A JP2013197581A JP2013197581A JP2014088548A JP 2014088548 A JP2014088548 A JP 2014088548A JP 2013197581 A JP2013197581 A JP 2013197581A JP 2013197581 A JP2013197581 A JP 2013197581A JP 2014088548 A JP2014088548 A JP 2014088548A
Authority
JP
Japan
Prior art keywords
strain
ppm
days
heavy oil
contaminated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013197581A
Other languages
Japanese (ja)
Inventor
Sanro Tachibana
燦郎 橘
Heri Yuli Yanto Dede
ヤント・デデ・ヘリ・ユリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehime University NUC
Original Assignee
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime University NUC filed Critical Ehime University NUC
Priority to JP2013197581A priority Critical patent/JP2014088548A/en
Publication of JP2014088548A publication Critical patent/JP2014088548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a clarifier of oil contaminated soil which can clarify soil polluted by petroleum components efficiently in a short time.SOLUTION: A clarifier of oil contaminated soil contains NG007 strain (NITE P-1233) of Pestalotiopsis genus. It is preferable that the clarifier further contains S133 strain (NITE P-461) belonging to basidiomycete of Polyporus genus and D7 strain (NITE P-01703) of Trametes genus.

Description

本発明は、微生物を用いた石油汚染土壌の浄化剤に関するものである。   The present invention relates to a purification agent for petroleum-contaminated soil using microorganisms.

石油成分による土壌汚染を安全且つ安価に処理する方法として、微生物による処理方法(バイオレメディエーション)の開発が検討されている。   Development of a treatment method (bioremediation) using microorganisms has been studied as a method for safely and inexpensively treating soil contamination caused by petroleum components.

例えば特許文献1および特許文献2には、石油汚染で特に問題となるC重油などの重質油に対して顕著な分解活性あるいは分解促進活性を有する新規な重質油分解性菌が開示されている。このうち特許文献1の実施例1には、新規菌株であるカウロバクターsp.2B−2株と、公知の炭化水素分解微生物であるアルカニボラックス属に属する菌株との培養物0.1mLを、NSW基本培地にC重油5mg/mLを添加した培地5mLに植菌し、30℃で10日間振とう培養したとき、C重油を44.7%分解できたことが記載されている。また、特許文献2の実施例1には、新規菌株であるハロモナスsp.6B株と、公知の炭化水素分解微生物であるアルカニボラックス属に属する菌株との培養物0.1mLを、NSW基本培地にC重油5mg/mLを添加した培地5mLに植菌し、30℃で10日間振とう培養したとき、C重油を44.0%分解できたことが記載されている。   For example, Patent Literature 1 and Patent Literature 2 disclose novel heavy oil-degrading bacteria having remarkable degradation activity or degradation acceleration activity against heavy oil such as C heavy oil, which is particularly problematic in oil pollution. Yes. Among these, in Example 1 of Patent Document 1, a novel strain Kaurobacter sp. Inoculate 0.1 mL of a culture of the strain 2B-2 and a strain belonging to the genus Alcanibolax which is a known hydrocarbon-degrading microorganism, into 5 mL of a medium obtained by adding 5 mg / mL C heavy oil to an NSW basic medium, It is described that C heavy oil could be decomposed by 44.7% when cultured with shaking at 30 ° C. for 10 days. In Example 1 of Patent Document 2, a novel strain, Halomonas sp. Inoculate 0.1 mL of a culture of the 6B strain and a strain belonging to the genus Alcanibolax, a known hydrocarbon-degrading microorganism, into 5 mL of a medium obtained by adding 5 mg / mL C heavy oil to an NSW basic medium, and It is described that C heavy oil was able to be decomposed 44.0% when cultured with shaking for 10 days.

また、本願出願人も、石油成分の分解能に極めて優れた微生物として、Polyporus属の担子菌に属するS133株(NITE P−461)を特許文献3に開示している。特許文献3の実施例4では、高濃度のC重油汚染土壌(C重油濃度15000ppm)を用いたときの分解効率を調べており、S133株にカポックパルプを添加した実験例12では、C重油量(全石油炭化水素TPHの量)を、培養後30日で約76%、培養後60日で約93%まで効率よく分解できたことを開示している(表3)。更に上記実験例12は、C重油を構成する各成分、すなわち、炭化水素(aklane fraction)、芳香族化合物、窒素・硫黄・酸素を含む化合物(NSO)、アスファルト(asphaltene)についても約83〜96%もの高い分解率を有しており(表3〜表6)、分解が特に困難であったNSOおよびアスファルトについても、培養後60日で約83%分解できたことを開示している(表6)。   The applicant of the present application also discloses S133 strain (NITE P-461) belonging to Polyporus basidiomycetes in Patent Document 3 as a microorganism having extremely excellent resolution of petroleum components. In Example 4 of Patent Document 3, the decomposition efficiency when using high-concentration C heavy oil contaminated soil (C heavy oil concentration 15000 ppm) was examined. In Experimental Example 12 in which Kapok pulp was added to the S133 strain, the amount of C heavy oil was It is disclosed that (the amount of total petroleum hydrocarbon TPH) could be efficiently decomposed to about 76% after 30 days of culture and to about 93% after 60 days of culture (Table 3). Further, in Experimental Example 12, about 83 to 96 of each component constituting C heavy oil, that is, hydrocarbon (aklane fraction), aromatic compound, nitrogen-sulfur-oxygen-containing compound (NSO), and asphaltene. % Of NSO and asphalt, which were particularly difficult to decompose, disclosed that about 83% could be decomposed 60 days after culturing (Table 3 to Table 6). 6).

特開2000−83651号公報JP 2000-83651 A 特開2000−139446号公報JP 2000-139446 A 特開2009−166027号公報JP 2009-166027 A

上述したように上記特許文献3に記載のS133株を用いれば、石油成分を高い分解率で分解することが可能であるが、更に一層高い分解能を有する微生物を含む、新規な石油汚染土壌の浄化剤の提供が望まれている。   As described above, if the S133 strain described in Patent Document 3 is used, it is possible to decompose petroleum components at a high decomposition rate, but purification of new petroleum-contaminated soil containing microorganisms having even higher resolution. It is desired to provide an agent.

本発明は上記事情に鑑みてなされたものであり、その目的は、石油成分により汚染された土壌を短時間で効率良く浄化できる石油汚染土壌の浄化剤を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the purification agent of the petroleum contaminated soil which can purify | clean the soil contaminated with the petroleum component efficiently in a short time.

上記課題を解決し得た本発明に係る石油汚染土壌の浄化剤は、Pestalotiopsis属のNG007株(NITE P−1233)を含むところに要旨を有するものである。   The oil-contaminated soil purifier according to the present invention that has solved the above-mentioned problems has a gist in that it includes the NG007 strain (NITE P-1233) belonging to the genus Pestaliopsis.

本発明の好ましい実施形態において、上記石油汚染土壌の浄化剤は、更にPolyporus属の担子菌に属するS133株(NITE P−461)を含むものである。   In a preferred embodiment of the present invention, the oil-contaminated soil purifier further comprises S133 strain (NITE P-461) belonging to Polyporus basidiomycetes.

本発明の好ましい実施形態において、上記石油汚染土壌の浄化剤は、上記NG007株と上記S133株に加え、更にTrametes属のD7株(NITE P−01703)を含むものである。   In a preferred embodiment of the present invention, the oil-contaminated soil purifier contains the D7 strain (NITE P-01703) belonging to the genus Trametes in addition to the NG007 strain and the S133 strain.

本発明によれば、石油成分に汚染された土壌を、短時間で効率よく浄化することができる。本発明に係る石油汚染土壌の浄化剤は、特に高濃度の石油成分に汚染された土壌や、石油成分のなかでも難分解性のアスファルトに汚染された土壌などを効率よく浄化することができるため、極めて有用である。   According to the present invention, soil contaminated with petroleum components can be efficiently purified in a short time. The oil-contaminated soil purifier according to the present invention can efficiently purify soil contaminated with high-concentration petroleum components, soil contaminated with hard-to-decompose asphalt, among other petroleum components. Is extremely useful.

図1は、NG007株とS133株を所定比率で共培養したときの、アスファルト汚染土壌(1000ppm)のアスファルト分解率(左軸)、各種酵素活性(右軸)の結果を示すグラフである(培地への栄養源の添加なし)。図1の上図は、培養後30日の結果を示し、図1の下図は、培養後15日の結果を、それぞれ、示す。FIG. 1 is a graph showing the results of asphalt degradation rate (left axis) and various enzyme activities (right axis) of asphalt-contaminated soil (1000 ppm) when NG007 strain and S133 strain are co-cultured at a predetermined ratio (medium No nutritional sources added to). The upper diagram in FIG. 1 shows the results for 30 days after the culture, and the lower diagram in FIG. 1 shows the results for 15 days after the culture. 図2は、NG007株とS133株を1:1の比率で共培養したときの、アスファルト汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルト分解率(左軸)、各種酵素活性(右軸)の結果を示すグラフである(培養日数は30日、培地への栄養源の添加なし)。FIG. 2 shows the results of asphalt degradation rate (left axis) and various enzyme activities (right axis) of asphalt-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 strain and S133 strain were co-cultured at a ratio of 1: 1. (The number of culture days is 30 days, and no nutrient source is added to the medium). 図3は、NG007株とS133株を1:1の比率で共培養したときの、アスファルト汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルト分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日)。図3の左図は栄養源添加なしの結果を、図3の右図は栄養源添加ありの結果を、それぞれ、示す。FIG. 3 is a graph in which the influence of nutrient sources added to the culture medium is examined for the asphalt degradation rate of asphalt-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain and the S133 strain are co-cultured at a ratio of 1: 1. (The culture days are 15 days and 30 days). The left figure of FIG. 3 shows the result without the addition of the nutrient source, and the right figure of FIG. 3 shows the result with the addition of the nutrient source. 図4は、NG007株とS133株を1:1の比率で共培養したときの、A重油汚染土壌(1000ppm、15000ppm、30000ppm)のA重油分解率(左軸)、各種酵素活性(右軸)の結果を示すグラフである(培地への栄養源の添加なし)。図4の上図は培養日数30日の結果を、図4の下図は培養日数15日の結果を、それぞれ、示す。FIG. 4 shows A heavy oil degradation rate (left axis) and various enzyme activities (right axis) of A heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 strain and S133 strain were co-cultured at a ratio of 1: 1. Is a graph showing the results of (without addition of a nutrient source to the medium). The upper diagram in FIG. 4 shows the results for 30 days of culture, and the lower diagram in FIG. 4 shows the results for 15 days in culture. 図5は、NG007株とS133株を1:1の比率で共培養したときの、C重油汚染土壌(1000ppm、15000ppm、30000ppm)のC重油分解率(左軸)、各種酵素活性(右軸)の結果を示すグラフである(培地への栄養源の添加なし、培養日数15日)。FIG. 5 shows C heavy oil degradation rate (left axis) and various enzyme activities (right axis) of C heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 strain and S133 strain were co-cultured at a ratio of 1: 1. Is a graph showing the results (no addition of nutrients to the medium, 15 days of culture). 図6は、NG007株とS133株を1:1の比率で共培養したときの、A重油汚染土壌(1000ppm、15000ppm、30000ppm)のA重油分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日、一部について更に60日、120日)。図6の左図は栄養源添加なしの結果を、図6の右図は栄養源添加ありの結果を、それぞれ、示す。Fig. 6 shows the effects of adding nutrient sources to the medium for the A heavy oil degradation rate of A heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 and S133 were co-cultured at a ratio of 1: 1. (The culture days are 15 days and 30 days, and some are further 60 days and 120 days). The left figure of FIG. 6 shows the result without the addition of the nutrient source, and the right figure of FIG. 6 shows the result with the addition of the nutrient source. 図7は、NG007株とS133株を1:1の比率で共培養したときの、C重油汚染土壌(1000ppm、15000ppm、30000ppm)のC重油分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日)。図7の左図は栄養源添加なしの結果を、図7の右図は栄養源添加ありの結果を、それぞれ、示す。Fig. 7 shows the effect of nutrient source addition to the medium on the C heavy oil degradation rate of C heavy oil contaminated soil (1000ppm, 15000ppm, 30000ppm) when NG007 and S133 were co-cultured at a ratio of 1: 1. (The culture days are 15 days and 30 days). The left diagram of FIG. 7 shows the results without the addition of the nutrient source, and the right diagram of FIG. 7 shows the results with the addition of the nutrient source. 図8は、NG007株とS133株を1:1の比率で共培養したときの、C重油汚染土壌(1000ppm)のC重油を構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO]の分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日)。FIG. 8 shows components constituting C heavy oil of C heavy oil contaminated soil (1000 ppm) [aliphatic hydrocarbon part (aliphatic), aromatic carbonization when NG007 strain and S133 strain are co-cultured at a ratio of 1: 1]. It is the graph which investigated the influence of the nutrient source addition to a culture medium about the decomposition | disassembly rate of a hydrogen part (Aromatic), an asphaltene part (Asphaltene), and NSO] (the culture | cultivation days are 15 days and 30 days). 図9は、NG007株とS133株を1:1の比率で共培養したときの、C重油汚染土壌(15000ppm)のC重油を構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO]の分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日)。FIG. 9 shows components constituting C heavy oil of C heavy oil-contaminated soil (15000 ppm) [aliphatic hydrocarbon part (Aliphatic), aromatic carbonization when NG007 strain and S133 strain are co-cultured at a ratio of 1: 1]. It is the graph which investigated the influence of the nutrient source addition to a culture medium about the decomposition | disassembly rate of a hydrogen part (Aromatic), an asphaltene part (Asphaltene), and NSO] (the culture | cultivation days are 15 days and 30 days). 図10は、NG007株とS133株を1:1の比率で共培養したときの、C重油汚染土壌(30000ppm)のC重油を構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO]の分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日)。FIG. 10 shows the components constituting the C heavy oil in the C heavy oil contaminated soil (30000 ppm) [aliphatic hydrocarbon part (aliphatic), aromatic carbonization when the NG007 strain and the S133 strain were co-cultured at a ratio of 1: 1. It is the graph which investigated the influence of the nutrient source addition to a culture medium about the decomposition | disassembly rate of a hydrogen part (Aromatic), an asphaltene part (Asphaltene), and NSO] (the culture | cultivation days are 15 days and 30 days). 図11は、NG007株とS133株を1:1の比率で共培養したときの、アスファルト汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルト分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日、60日、120日)。図11の左図は栄養源添加なしの結果を、図11の右図は栄養源添加ありの結果を、それぞれ、示す。FIG. 11 is a graph in which the influence of nutrient sources added to the culture medium is examined for the asphalt degradation rate of asphalt-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain and the S133 strain are co-cultured at a ratio of 1: 1. (The culture days are 15, 30, 60, and 120 days). The left diagram in FIG. 11 shows the result without the addition of the nutrient source, and the right diagram in FIG. 11 shows the result with the addition of the nutrient source. 図12Aは、NG007株とS133株を1:1の比率で共培養したときの、アスファルト汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルトを構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、NSO部、アスファルテン部(Asphaltene)]の分解率を調べたグラフである。培養日数は15日、30日、60日、120日であり、培地中に栄養源は添加しなかった。FIG. 12A shows the components constituting the asphalt of asphalt-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain and the S133 strain are co-cultured at a ratio of 1: 1 [aliphatic hydrocarbon part (Aliphatic), aroma It is the graph which investigated the decomposition rate of the aromatic hydrocarbon part (Aromatic), the NSO part, and the asphaltene part (Asphaltene)]. The culture days were 15, 30, 60, and 120 days, and no nutrient source was added to the medium. 図12Bは、NG007株とS133株を1:1の比率で共培養したときの、アスファルト汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルトを構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、NSO部、アスファルテン部(Asphaltene)]の分解率を調べたグラフである。培養日数は15日、30日、60日、120日であり、培地中に栄養源を添加した。FIG. 12B shows the components constituting the asphalt of asphalt-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain and the S133 strain are co-cultured at a ratio of 1: 1 [aliphatic hydrocarbon part (aliphatic), aroma It is the graph which investigated the decomposition rate of the aromatic hydrocarbon part (Aromatic), the NSO part, and the asphaltene part (Asphaltene)]. The culture days were 15, 30, 60, and 120 days, and a nutrient source was added to the medium. 図13は、NG007株とS133株を1:1の比率で共培養したときの、C重油汚染土壌(1000ppm、15000ppm、30000ppm)のC重油分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日、60日、120日)。図13の左図は栄養源添加なしの結果を、図13の右図は栄養源添加ありの結果を、それぞれ、示す。Fig. 13 shows the effect of nutrient addition to the medium on the C heavy oil degradation rate of C heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 and S133 were co-cultured at a ratio of 1: 1. (The culture days are 15, 30, 60, and 120 days). The left figure of FIG. 13 shows the result without the addition of the nutrient source, and the right figure of FIG. 13 shows the result with the addition of the nutrient source. 図14Aは、NG007株とS133株を1:1の比率で共培養したときの、C重油汚染土壌(1000ppm)のC重油を構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部]の分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日、60日、120日)。FIG. 14A shows components constituting C heavy oil in C heavy oil contaminated soil (1000 ppm) [aliphatic hydrocarbon part (Aliphetic), aromatic carbonization when NG007 strain and S133 strain are co-cultured at a ratio of 1: 1]. It is the graph which investigated the influence of the nutrient source addition to a culture medium about the decomposition rate of a hydrogen part (Aromatic), an asphaltene part (Asphaltene part, NSO part)] (the culture days are 15, 30, 60, 120 days) . 図14Bは、NG007株とS133株を1:1の比率で共培養したときの、C重油汚染土壌(15000ppm)のC重油を構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部]の分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日、60日、120日)。FIG. 14B shows components constituting C heavy oil of C heavy oil-contaminated soil (15000 ppm) [aliphatic hydrocarbon part (Aliphatic), aromatic carbonization when NG007 strain and S133 strain are co-cultured at a ratio of 1: 1]. It is the graph which investigated the influence of the nutrient source addition to a culture medium about the decomposition rate of a hydrogen part (Aromatic), an asphaltene part (Asphaltene part, NSO part)] (the culture days are 15, 30, 60, 120 days) . 図14Cは、NG007株とS133株を1:1の比率で共培養したときの、C重油汚染土壌(30000ppm)のC重油を構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部]の分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日、60日、120日)。FIG. 14C shows the components constituting C heavy oil in C heavy oil contaminated soil (30000 ppm) [aliphatic hydrocarbon part (Aliphatic), aromatic carbonization when NG007 strain and S133 strain were co-cultured at a ratio of 1: 1]. It is the graph which investigated the influence of the nutrient source addition to a culture medium about the decomposition rate of a hydrogen part (Aromatic), an asphaltene part (Asphaltene part, NSO part)] (the culture days are 15, 30, 60, 120 days) . 図15は、NG007株とS133株を1:1の比率で共培養したときの、A重油汚染土壌(1000ppm、15000ppm、30000ppm)のA重油分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日、60日、120日)。図15の上図は栄養源添加なしの結果を、図15の下図は栄養源添加ありの結果を、それぞれ、示す。FIG. 15 shows the influence of nutrient source addition to the medium on the degradation rate of A heavy oil in soil contaminated with heavy oil A (1000 ppm, 15000 ppm, 30000 ppm) when NG007 and S133 were co-cultured at a ratio of 1: 1. (The culture days are 15, 30, 60, and 120 days). The upper diagram of FIG. 15 shows the results without the addition of nutrient sources, and the lower diagram of FIG. 15 shows the results with the addition of nutrient sources. 図16Aは、NG007株とS133株を1:1の比率で共培養したときの、A重油汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルトを構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部]の分解率を調べたグラフである。培養日数は15日、30日、60日、120日であり、培地中に栄養源は添加しなかった。FIG. 16A shows the components constituting the asphalt of A heavy oil-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain and the S133 strain are co-cultured at a ratio of 1: 1 (aliphatic hydrocarbon part (Aliphatic), It is the graph which investigated the decomposition rate of an aromatic hydrocarbon part (Aromatic), asphaltene part (Asphaltene), and NSO part]. The culture days were 15, 30, 60, and 120 days, and no nutrient source was added to the medium. 図16Bは、NG007株とS133株を1:1の比率で共培養したときの、重油汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルトを構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部]の分解率を調べたグラフである。培養日数は15日、30日、60日、120日であり、培地中に栄養源を添加した。FIG. 16B shows the components constituting the asphalt of heavy oil-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) [aliphatic hydrocarbon part, aroma, fragrance, when NG007 strain and S133 strain were co-cultured at a ratio of 1: 1. It is the graph which investigated the decomposition rate of an aromatic hydrocarbon part (Aromatic), asphaltene part (Asphaltene), and NSO part]. The culture days were 15, 30, 60, and 120 days, and a nutrient source was added to the medium. 図17Aは、NG007株とS133株とD7株を1:1:1の比率で共培養したときの、A重油汚染土壌(1000ppm、15000ppm、30000ppm)のA重油を構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部]の分解率について、培地への栄養源添加なしのときの結果を示すグラフである(培養日数は15日、30日、60日)。FIG. 17A shows the components constituting the A heavy oil of the A heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain, the S133 strain, and the D7 strain are co-cultured at a ratio of 1: 1: 1. It is a graph which shows the result at the time of no nutrient source addition to a culture medium about the decomposition rate of a hydrogen part (Aliphatic), an aromatic hydrocarbon part (Aromatic), an asphaltene part (Asphaltene), and NSO part (the number of culture days is 15) Day, 30th, 60th). 図17Bは、NG007株とS133株とD7株を1:1:1の比率で共培養したときの、A重油汚染土壌(1000ppm、15000ppm、30000ppm)のA重油を構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部]の分解率について、培地への栄養源添加ありのときの結果を示すグラフである(培養日数は15日、30日、60日)。FIG. 17B shows the components constituting the A heavy oil of the A heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain, the S133 strain, and the D7 strain are co-cultured at a ratio of 1: 1: 1. It is a graph which shows the result at the time of a nutrient source addition to a culture medium about the decomposition | disassembly rate of a hydrogen part (Aliphatic), an aromatic hydrocarbon part (Aromatic), an asphaltene part (Asphaltene), an NSO part] (culture days are 15) Day, 30th, 60th). 図18Aは、NG007株とS133株とD7株を1:1:1の比率で共培養したときの、C重油汚染土壌(1000ppm、15000ppm、30000ppm)のC重油を構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部]の分解率について、培地への栄養源添加なしのときの結果を示すグラフである(培養日数は15日、30日、60日)。FIG. 18A shows components constituting C heavy oil of C heavy oil-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 strain, S133 strain and D7 strain are co-cultured at a ratio of 1: 1: 1. It is a graph which shows the result at the time of no nutrient source addition to a culture medium about the decomposition rate of a hydrogen part (Aliphatic), an aromatic hydrocarbon part (Aromatic), an asphaltene part (Asphaltene), and NSO part (the number of culture days is 15) Day, 30th, 60th). 図18Bは、NG007株とS133株とD7株を1:1:1の比率で共培養したときの、C重油汚染土壌(1000ppm、15000ppm、30000ppm)のC重油を構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部]の分解率について、培地への栄養源添加ありのときの結果を示すグラフである(培養日数は15日、30日、60日)。FIG. 18B shows components constituting C heavy oil of C heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 strain, S133 strain, and D7 strain are co-cultured at a ratio of 1: 1: 1. It is a graph which shows the result at the time of a nutrient source addition to a culture medium about the decomposition | disassembly rate of a hydrogen part (Aliphatic), an aromatic hydrocarbon part (Aromatic), an asphaltene part (Asphaltene), an NSO part] (the number of culture days is 15) Day, 30th, 60th). 図19Aは、NG007株とS133株とD7株を1:1:1の比率で共培養したときの、アスファルト汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルトを構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部]の分解率について、培地への栄養源添加なしのときの結果を示すグラフである(培養日数は15日、30日、60日)。FIG. 19A shows components constituting the asphalt of asphalt-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain, the S133 strain, and the D7 strain are co-cultured at a ratio of 1: 1: 1 [aliphatic hydrocarbon part. (Aliphatic), aromatic hydrocarbon part (Aromatic), asphaltene part (Asphaltene), NSO part] is a graph showing the results when no nutrient source is added to the medium (the number of culture days is 15 days, 30th, 60th). 図19Bは、NG007株とS133株とD7株を1:1:1の比率で共培養したときの、アスファルト汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルトを構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部]の分解率について、培地への栄養源添加ありのときの結果を示すグラフである(培養日数は15日、30日、60日)。FIG. 19B shows components constituting the asphalt of asphalt-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain, the S133 strain, and the D7 strain are co-cultured at a ratio of 1: 1: 1. (Aliphatic), aromatic hydrocarbon part (Aromatic), asphaltene part (Asphaltene), NSO part] is a graph showing the results when the nutrient source is added to the medium (culture days are 15 days, 30th, 60th). 図20は、NG007株とS133株とD7株を1:1:1の比率で共培養したときの、A重油汚染土壌(1000ppm、15000ppm、30000ppm)のA重油分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日、60日)。図20の左図は栄養源添加なしの結果を、図20の右図は栄養源添加ありの結果を、それぞれ、示す。FIG. 20 shows the nutrient sources for the medium for the A heavy oil degradation rate of A heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain, S133 strain, and D7 strain were co-cultured at a ratio of 1: 1: 1. It is the graph which investigated the influence of addition (the culture | cultivation days are 15 days, 30 days, 60 days). The left figure of FIG. 20 shows the result without the addition of the nutrient source, and the right figure of FIG. 20 shows the result with the addition of the nutrient source. 図21は、NG007株とS133株とD7株を1:1:1の比率で共培養したときの、C重油汚染土壌(1000ppm、15000ppm、30000ppm)のC重油分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日、60日)。図21の左図は栄養源添加なしの結果を、図21の右図は栄養源添加ありの結果を、それぞれ、示す。FIG. 21 shows the nutrient source for the medium for the C heavy oil degradation rate of C heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 strain, S133 strain and D7 strain were co-cultured at a ratio of 1: 1: 1. It is the graph which investigated the influence of addition (the culture | cultivation days are 15 days, 30 days, 60 days). The left figure of FIG. 21 shows the result without the addition of the nutrient source, and the right figure of FIG. 21 shows the result with the addition of the nutrient source. 図22は、NG007株とS133株とD7株を1:1:1の比率で共培養したときの、アスファルト汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルト分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日、60日)。図22の左図は栄養源添加なしの結果を、図22の右図は栄養源添加ありの結果を、それぞれ、示す(培養日数は15日、30日、60日)。FIG. 22 shows the asphalt degradation rate of asphalt-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 strain, S133 strain, and D7 strain were co-cultured at a ratio of 1: 1: 1. It is the graph which investigated the influence (the culture | cultivation days are the 15th, 30th, 60th). The left diagram of FIG. 22 shows the results without the addition of the nutrient source, and the right diagram of FIG. 22 shows the results with the addition of the nutrient source (culture days are 15, 30, and 60 days), respectively.

本発明者らは、石油成分分解能に優れた微生物として上記S133株を開示した後も、特に高濃度の石油成分に汚染された土壌や、石油成分のなかでも難分解性のアスファルトなどを、より一層効率よく浄化できる微生物について検討を重ねてきた。   The present inventors have disclosed the above-mentioned S133 strain as a microorganism excellent in petroleum component resolution, and in particular, soil contaminated with a high concentration of petroleum components, asphalt that is hardly decomposable among petroleum components, and the like. We have been studying microorganisms that can be purified more efficiently.

その結果、Pestalotiopsis属のNG007株(NITE P−1233)を用いれば所期の目的が達成されることを見出した。更には、NG007株と、前述したS133菌株との二種類を組合わせて用いれば、高濃度の石油成分に汚染された土壌の浄化効率が高まり、種々の石油成分を、より一層、効率的に浄化できることを見出し、本発明を完成した。更には、これらのNG007株とS133菌株と、新規に見出されたD7株(詳細は後述する。)との三種類を組合わせて用いれば、高濃度の石油成分汚染土壌の浄化効率が一層高まり、種々の石油成分を、更に一層、効率的に浄化できることを見出し、本発明を完成した。   As a result, it was found that the intended purpose can be achieved by using the NG007 strain (NITE P-1233) belonging to the genus Pestalotiopsis. Furthermore, if two types of the NG007 strain and the aforementioned S133 strain are used in combination, the purification efficiency of soil contaminated with high-concentration petroleum components is increased, and various petroleum components can be more efficiently and efficiently removed. The present invention was completed by finding that it can be purified. Furthermore, if these three types of NG007 strain and S133 strain and the newly discovered D7 strain (details will be described later) are used in combination, the purification efficiency of highly concentrated petroleum component-contaminated soil is further increased. As a result, it has been found that various petroleum components can be purified even more efficiently, and the present invention has been completed.

本明細書において石油成分とは、原油や石油に含まれ得るものであれば良く、原油由来のものや石油由来のものに限定されない。なお、一般的に精製前の石油を特に原油というが、本発明では石油と原油を特に区別しないものとする。また、上記石油成分には、原油を用いた石油製品(例えば、重油、ガソリン、灯油、軽油など)も含まれる。   In the present specification, the petroleum component is not limited to those derived from crude oil or petroleum as long as it can be contained in crude oil or petroleum. In general, oil before refining is particularly called crude oil, but in the present invention, oil and crude oil are not particularly distinguished. The petroleum component also includes petroleum products using crude oil (for example, heavy oil, gasoline, kerosene, light oil, etc.).

(1)NG007株を含む石油汚染土壌の浄化剤および浄化方法について
上述したとおり、本発明に係る石油汚染土壌の浄化剤は、Pestalotiopsis属のNG007株(NITE P−1233)を含むところに特徴がある。
(1) About the purification agent and the purification method of the oil-contaminated soil containing the NG007 strain As described above, the purification agent of the oil-contaminated soil according to the present invention is characterized in that it contains the NG007 strain (NITE P-1233) of the genus Pestaliopsis. is there.

NG007株は、以下に詳述するように、本発明者らによって見出された新規菌株である。NG007株については、上記菌株由来の粗酵素に強いアゾ染料分解能を有することを見出し、特願2012−053269(以下、先願と呼ぶ。)に、上記菌株を含むアゾ染料分解剤を開示している。しかしながら、上記先願の出願時において、NG007株が高い石油成分分解能を有することまでは認識されていなかった。   The NG007 strain is a novel strain found by the present inventors as described in detail below. Regarding the NG007 strain, it was found that the crude enzyme derived from the strain has a strong azo dye resolution, and Japanese Patent Application No. 2012-053269 (hereinafter referred to as the prior application) discloses an azo dye-degrading agent containing the strain. Yes. However, at the time of filing of the previous application, it was not recognized that the NG007 strain had a high petroleum component resolution.

NG007株は、日本国愛媛県松山市内の枯れ木材より分離した新規な糸状菌であり、非白色腐朽菌である。NG007株は、以下の特徴から、ペスタロツチア(Pestalotiopsis)属に分類された。   The NG007 strain is a novel filamentous fungus isolated from dead wood in Matsuyama City, Ehime Prefecture, Japan, and is a non-white rot fungus. The NG007 strain was classified into the genus Pestalotipsis based on the following characteristics.

気生菌糸は、白色で各壁を有し、その表面は滑らかで、直径約1〜3μmである。分生子柄は、褐色から暗黒色で気生菌糸上に直立して形成され、その表面は平滑で棍棒状をしている。分生胞子は、紡錘形または楕円形であり、分生胞子の構成細胞数5細胞(内、有色細胞3)であり、3本の付属糸を有する糸状菌である。付属糸を除いた大きさは、長さ:約10〜25μm、幅:5μm〜10μmであり、先端細胞の付属糸の大きさは約5μm〜15μm、後部細胞の小柄の大きさは約2μm〜6μmである。   The aerial mycelium is white and has each wall, its surface is smooth and has a diameter of about 1 to 3 μm. The conidial pattern is brown to dark black and is formed upright on the aerial hyphae, and its surface is smooth and has a stick-like shape. The conidia are spindle-shaped or oval-shaped, the number of cells constituting the conidia is 5 cells (including 3 colored cells), and are filamentous fungi having three attached yarns. The size excluding the attached thread is length: about 10 to 25 μm, width: 5 μm to 10 μm, the size of the attached thread of the tip cell is about 5 μm to 15 μm, and the size of the petite of the rear cell is about 2 μm to 6 μm.

NG007株は、培地上で白色の菌糸として生育し、約2〜3週間後に褐色から暗黒色の分生胞子を形成する。NG007株を下記の麦芽エキス寒天培地で培養した場合、培地にカテコール1,2−ジオキシゲナーゼ活性が見られた。   The NG007 strain grows as a white mycelium on the medium, and forms brown to dark conidia after about 2-3 weeks. When the NG007 strain was cultured on the following malt extract agar medium, catechol 1,2-dioxygenase activity was observed in the medium.

麦芽エキス寒天培地(1L)
麦芽抽出物 20g
グルコース 20g
ペプトン 1g
寒天 20g
滅菌水 1L
pH 4.5
Malt extract agar medium (1L)
Malt extract 20g
Glucose 20g
1g peptone
Agar 20g
Sterile water 1L
pH 4.5

NG007株は、千葉県木更津市かずさ鎌足2−5−8、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、2012年2月14日付で寄託され(受領番号NITE AP−1233)、2012年3月23日に受託された(受託番号NITE P−1233)。   NG007 strain was deposited on February 14, 2012 at 2-5-8, Kazusa Kamashichi, Kisarazu City, Chiba Prefecture, and the Japan Patent Evaluation Microorganism Depositary, National Institute of Technology and Evaluation (Reception number NITE AP-1233). It was entrusted on March 23, 1983 (Accession number NITE P-1233).

後記する実施例に示すように、NG007株は、原油のなかでも難分解性物質であるアスファルト(原油蒸留残渣の一つであり、原油に類似した組成を有するもの)を、特許文献3に記載のS133株よりも、短時間で効率よく分解できることが分かった。よって、上記菌株を用いることにより、高濃度のアスファルト汚染土壌を浄化することができる。   As shown in the examples described later, NG007 strain is an asphalt (one of crude oil distillation residue having a composition similar to that of crude oil) described in Patent Document 3 which is a hardly decomposable substance in crude oil. It was found that it can be decomposed more efficiently in a shorter time than S133 strain. Therefore, high concentration asphalt contaminated soil can be purified by using the above strain.

このように本発明に係るNG007株は極めて優れた石油成分分解能を有することから、石油汚染土壌をスラリー化したり汚染土壌中の石油成分を抽出しなくても、石油汚染土壌へNG007株を添加してNG007株と石油汚染土壌を接触させるのみで石油成分を分解することができる。   As described above, the NG007 strain according to the present invention has an extremely excellent petroleum component resolution, so that the NG007 strain is added to the petroleum-contaminated soil without slurrying the petroleum-contaminated soil or extracting the petroleum components in the contaminated soil. Thus, petroleum components can be decomposed only by bringing the NG007 strain into contact with petroleum-contaminated soil.

しかも本発明によれば、上述した種々の石油成分を高濃度に含む汚染土壌を効率よく分解し、浄化することができる。本発明によって処理可能な石油汚染土壌の好ましい濃度は、おおむね、20,000〜50,000ppm程度である。上記濃度は、例えば、NG007株を、好ましくは後記する栄養源や界面活性剤などと併用して培養したり、当該菌株の培養期間を長くするなどして、更に高めることができる。   And according to this invention, the contaminated soil which contains the various petroleum components mentioned above in high concentration can be decomposed | disassembled efficiently and can be purified. The preferred concentration of petroleum-contaminated soil that can be treated according to the present invention is about 20,000 to 50,000 ppm. The concentration can be further increased, for example, by culturing the NG007 strain preferably in combination with a nutrient source or surfactant described later, or by extending the culture period of the strain.

本発明に係る石油汚染土壌の浄化剤には、NG007株を含む全ての態様のものが包含される。具体的には、以下に詳述する通り、本発明の浄化剤はNG007株を含む液体培地であってもよいし、NG007株を生育させた木屑などの菌床であってもよい。また、栄養源や界面活性剤などを含むものであってもよい。   The oil-contaminated soil purifier according to the present invention includes all forms including the NG007 strain. Specifically, as described in detail below, the purification agent of the present invention may be a liquid medium containing the NG007 strain, or a fungus bed such as wood chips on which the NG007 strain is grown. Moreover, a nutrient source, surfactant, etc. may be included.

また、本発明に係る石油汚染土壌の浄化剤は、液体培地や菌床上などでNG007株を十分に生育させたものであってもよいし、或いは生育させたものを冷蔵保存したものであってもよい。   Further, the oil-contaminated soil purifier according to the present invention may be one in which the NG007 strain is sufficiently grown on a liquid medium or a fungus bed, or the one that has been grown is refrigerated and stored. Also good.

次に、上記NG007株を含む浄化剤を用いて石油汚染土壌を浄化する方法について説明する。上記浄化方法は、常法に従い、NG007株を石油汚染土壌と接触させれば良い。   Next, a method for purifying petroleum-contaminated soil using a purifier containing the NG007 strain will be described. The said purification | cleaning method should just contact NG007 stock with petroleum contaminated soil according to a conventional method.

具体的には、例えば、NG007株を液体培地などで培養したNG007株の培養物を石油汚染土壌に散布するなどして接触させる方法が挙げられる。用いられる培地としては、例えば、前述した麦芽エキス寒天培地のほか、Czapek−Dox寒天培地、馬鈴薯−デキストロース寒天(PDA)培地などが挙げられる。石油汚染土壌に散布されるNG007株の液体培地は、NG007株の至適pHに合わせて4.0〜8.5程度に調整することが好ましい。また、上記液体培地は、上記pHになるように、適宜、希釈することが推奨される。   Specifically, for example, a method of bringing a culture of the NG007 strain obtained by culturing the NG007 strain in a liquid medium or the like into contact with the oil-contaminated soil is mentioned. Examples of the medium used include Czapek-Dox agar medium, potato-dextrose agar (PDA) medium, and the like in addition to the aforementioned malt extract agar medium. It is preferable to adjust the liquid medium of NG007 strain sprayed on petroleum-contaminated soil to about 4.0 to 8.5 according to the optimum pH of NG007 strain. In addition, it is recommended that the liquid medium be appropriately diluted so that the pH is reached.

或いは、NG007株は糸状菌であるので、菌床となり得る植物残渣を用いて培養したNG007株の培養物を石油汚染土壌に散布してもよい。使用可能な植物残渣としては、例えば、木屑、おが屑、鋸屑、米糠、おから、酒粕、大豆粕、製紙用パルプ、スラッジなどが挙げられる。上記植物残渣には、前述した培地成分(例えば麦芽エキスなど)が含まれていても良い。   Alternatively, since the NG007 strain is a filamentous fungus, a culture of the NG007 strain cultured using a plant residue that can become a fungal bed may be sprayed on petroleum-contaminated soil. Examples of plant residues that can be used include wood chips, sawdust, sawdust, rice bran, okara, sake lees, soybean meal, paper pulp, sludge, and the like. The plant residue may contain the above-mentioned medium components (for example, malt extract).

上述したNG007株の培養物を得るための培地または菌床には、NG007株の栄養源や界面活性剤を添加することが好ましい。栄養源はNG007株の生育を活発化し、ひいては石油成分の分解能を活性化することができる。また、界面活性剤は、脂溶性が高く親水性の低い石油成分を固体状の土壌から脱離させてNG007株の生育環境に存在し易くし、分解を促進する作用を有する。   It is preferable to add a nutrient source or a surfactant for the NG007 strain to the medium or fungus bed for obtaining the culture of the NG007 strain described above. Nutrient sources can activate the growth of the NG007 strain and thus activate the resolution of petroleum components. In addition, the surfactant has an action of accelerating the decomposition by detaching petroleum components having high fat solubility and low hydrophilicity from the solid soil to make them easily present in the growth environment of the NG007 strain.

NG007株の栄養源としては、例えば、グルコース等の炭素源;ポリペプトン等の窒素源;マグネシウム塩、又はマンガン塩等の微量元素塩、又はマンガン塩等の微量元素源;植物繊維の破砕物(パルプ)等の植物材料などが挙げられる。栄養源は、糸状菌の栄養源として市販されているものを用いても良く、例えば、昭和産業社製の「しいたけの里」などが挙げられる。   Examples of nutrient sources for the NG007 strain include: carbon sources such as glucose; nitrogen sources such as polypeptone; trace element salts such as magnesium salt or manganese salt; or trace element sources such as manganese salt; ) And other plant materials. What is marketed as a nutrient source of a filamentous fungus may be used as a nutrient source, for example, “Shitake no Sato” manufactured by Showa Sangyo Co., Ltd. and the like.

栄養源の添加量は、NG007株の量などに応じて適宜調整すればよいが、一般的には栄養源の量は多いほどNG007株の生育は良好であり、石油成分の分解効率は向上する。その一方で、植物材料の天然素材を除く炭素源や窒素源などの栄養源が多過ぎると環境への悪影響が懸念される。以上を考慮して、培地の全質量に対して、おおむね、5〜30質量%であることが好ましい。   The addition amount of the nutrient source may be appropriately adjusted according to the amount of the NG007 strain, etc. In general, the greater the amount of the nutrient source, the better the growth of the NG007 strain and the higher the decomposition efficiency of the petroleum components. . On the other hand, if there are too many nutrient sources such as a carbon source and a nitrogen source excluding natural materials of plant materials, there is a concern about an adverse effect on the environment. Considering the above, it is preferable that the content is approximately 5 to 30% by mass with respect to the total mass of the medium.

使用する界面活性剤としては、陽イオン界面活性剤、陰イオン界面活性剤、両イオン界面活性剤、非イオン界面活性剤など特に制限されないが、NG007株への悪影響が少ないことから非イオン界面活性剤が好適である。非イオン界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルグルコシド、ポリオキシエチレン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステルなどを挙げることができる。より具体的には、Tween20、Tween60、Tween80を用いることができる。   The surfactant to be used is not particularly limited, such as a cationic surfactant, an anionic surfactant, a zwitterionic surfactant, and a nonionic surfactant. However, since there is little adverse effect on the NG007 strain, it is a nonionic surfactant. Agents are preferred. Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, alkyl glucoside, polyoxyethylene fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester and the like. More specifically, Tween20, Tween60, and Tween80 can be used.

界面活性剤は、NG007株の生育環境に対する石油成分の分散性を向上させることができる他、炭素源となるなどNG007株の生育を促進する可能性もある。しかし、界面活性剤の量が多過ぎるとかえってNG007株の生育に悪影響を与え得る。そこで、界面活性剤の添加量は、培地の全重量に対して、おおむね、0.05質量%以上、1.0質量%以下程度にすることが好ましく、0.1質量%以上、0.75質量%以下程度にすることがより好ましい。   The surfactant can improve the dispersibility of petroleum components in the growth environment of the NG007 strain, and can also promote the growth of the NG007 strain, for example, as a carbon source. However, if the amount of the surfactant is too large, the growth of the NG007 strain may be adversely affected. Therefore, the addition amount of the surfactant is preferably about 0.05% by mass or more and 1.0% by mass or less with respect to the total weight of the medium, preferably 0.1% by mass or more and 0.75%. It is more preferable to make it about mass% or less.

上記培地には、クエン酸等のpH調整剤等を添加してもよい。上記培地の好ましいpHは、NG007株の生育などの観点から、おおむね、4.0〜8.5である。   You may add pH adjusters, such as a citric acid, to the said culture medium. The preferable pH of the medium is generally 4.0 to 8.5 from the viewpoint of growth of the NG007 strain.

培養工程では、上記培地にNG007株を接種し、菌糸蔓延した状態まで培養する。NG007株の培地への接種量や培養条件は、処理対象である汚染土壌の汚染状態(石油成分の種類や含有量など)に応じて、適宜適切に調整すればよい。例えば、好ましい培養温度は、おおむね、15〜40℃である。   In the culturing step, the above medium is inoculated with NG007 strain and cultured until the mycelium has spread. The inoculation amount and culture conditions of the NG007 strain in the culture medium may be appropriately adjusted according to the contamination state of the contaminated soil to be treated (such as the type and content of petroleum components). For example, the preferable culture temperature is about 15 to 40 ° C.

処理対象である石油汚染土壌は、採掘した上で容器に挿入し、NG007株や栄養源などを添加し、NG007株が良好に生育できるように温度や湿度を調整してもよい。しかし、土壌汚染は広範囲に及ぶことが多く、処理すべき土壌を逐一採掘するとかえって処理効率が低下し得る。よって、石油汚染土壌にそのままNG007株を添加してもよい。なお、NG007株は25℃で十分に生育することから、日本国内であれば、NG007株は温度調節せずとも常温で石油成分を分解できると考えられる。但し、湿度は比較的高く保つべきであるので、適時水などを散布することが好ましい。   Oil-contaminated soil to be treated may be mined and inserted into a container, and NG007 strain or nutrient source may be added to adjust the temperature and humidity so that the NG007 strain can grow well. However, soil contamination is often widespread, and if the soil to be treated is mined one by one, the treatment efficiency can be lowered. Therefore, you may add NG007 stock | strain as it is to petroleum contaminated soil. In addition, since the NG007 strain grows sufficiently at 25 ° C., it is considered that the NG007 strain can decompose petroleum components at room temperature without adjusting the temperature in Japan. However, since the humidity should be kept relatively high, it is preferable to spray water or the like in a timely manner.

本発明者らによる知見によれば、NG007株による石油汚染土壌の処理中は、好ましくは、遮光した方が効率的である。よって、石油汚染土壌にNG007株を添加した後は、ブルーシート等で被覆するなどして照射光量を抑えることが好ましい。   According to the findings by the present inventors, during the treatment of petroleum-contaminated soil with the NG007 strain, it is more efficient to shield it from light. Therefore, after adding the NG007 strain to petroleum-contaminated soil, it is preferable to suppress the amount of irradiation light by covering with a blue sheet or the like.

(2)更にS133株を含む石油汚染土壌の浄化剤および浄化方法について
本発明に係る石油汚染土壌の浄化剤は、更にPolyporus属の担子菌に属するS133株(NITE P−461)を含むことが好ましい。S133株と、前述したNG007株とを組合わせて用いることにより、それぞれの菌株を単独で用いた場合に比べ、石油成分の分解能が格段に向上する(後記する実施例を参照)。
(2) About the purification agent and purification method of the oil-contaminated soil further containing the S133 strain The oil-contaminated soil purification agent according to the present invention may further include the S133 strain (NITE P-461) belonging to the basidiomycetes of the genus Polyporus. preferable. By using the S133 strain in combination with the above-described NG007 strain, the resolution of the petroleum component is significantly improved as compared with the case where each strain is used alone (see Examples described later).

S133株は、本発明者らによって見出された新規菌株であり、その詳細は、特許文献3に詳述している。S133株も、優れた石油分解能を有しており、例えば、15000ppmもの高濃度のC重油で汚染された石油汚染土壌を約2ヶ月間の比較的短期間で効率よく分解することができる。また、C重油を構成する成分のなかでも特に分解が困難であったNSOおよびアスファルトについても、効率よく分解することができる。   The S133 strain is a novel strain found by the present inventors, and details thereof are described in detail in Patent Document 3. The S133 strain also has an excellent oil resolving power. For example, oil-contaminated soil contaminated with 15000 ppm of C heavy oil can be efficiently decomposed in a relatively short period of about two months. Further, among the components constituting C heavy oil, NSO and asphalt, which were particularly difficult to decompose, can be decomposed efficiently.

しかしながら、驚くべきことに、S133株を上記NG007株と併用することにより、S133株による高い石油成分分解能が一層促進されることが分かった。詳細は後記する実施例に示しているが、例えば、より高濃度の30000ppmのC重油で汚染された石油汚染土壌を約1ヶ月間の比較的短期間で、58%まで、効率よく分解することができた。   Surprisingly, however, it has been found that the use of the S133 strain in combination with the NG007 strain further promotes the high petroleum component resolution of the S133 strain. The details are shown in the examples described later. For example, oil-contaminated soil contaminated with a higher concentration of 30000 ppm C heavy oil can be efficiently decomposed to 58% in a relatively short period of about one month. I was able to.

S133株の培養方法などの詳細は、特許文献3に記載されているので、特許文献3を参照すれば良い。   Details such as the method for culturing the S133 strain are described in Patent Document 3, so Patent Document 3 may be referred to.

NG007株とS133株の混合比率[各菌を、それぞれの適切な培地で一定期間(7日間)培養した後、培養液全体をホモジナイズした菌糸懸濁液の混合比率]は、分解対象である石油成分の種類や濃度などによっても相違し得、適宜適切に定めれば良いが、体積比率(容量比)にて、おおむね、NG007株:S133株=10〜90:90〜10の範囲内であることが好ましく、NG007株:S133株=75〜25:25〜75の範囲内であることがより好ましい。   The mixing ratio of the NG007 strain and the S133 strain [the mixing ratio of the mycelium suspension obtained by culturing each bacterium in an appropriate medium for a certain period (7 days) and then homogenizing the whole culture solution] It may differ depending on the type and concentration of the component, and may be appropriately determined. However, the volume ratio (capacity ratio) is generally in the range of NG007 strain: S133 strain = 10-90: 90-10. The NG007 strain: S133 strain is more preferably within the range of 75-25: 25-75.

上記の混合物を含む浄化剤を用いて石油汚染土壌を浄化する方法については、前述したNG007株を含む浄化剤を用いて浄化する方法と同様に行なえば良い。NG007株もS133株も、好ましく用いられる培地や菌床の種類、好ましく添加される栄養源や界面活性剤の種類などが重複するからである。具体的には、例えば、それぞれの適切な培地で所定期間培養したNG007株の培養液とS133株の培養液とを、上記の好ましい混合比率で混合したものを、前述した方法で、石油汚染土壌に添加すれば良い。或いは、いずれの菌株も、共に麦芽エキス寒天培地で好ましく培養されるため、それぞれの菌を、麦芽エキスなどを含む植物残渣で成育させた菌床を適切な割合で混合したもの[石油汚染土壌に対して、おおむね、5〜30%程度(乾燥土壌に対する質量比率)]を石油汚染土壌に添加してもよい。このときの好ましい培養温度は、おおむね、15〜40℃である。   The method for purifying petroleum-contaminated soil using the purification agent containing the above mixture may be performed in the same manner as the method for purification using the purification agent containing the NG007 strain described above. This is because both the NG007 strain and the S133 strain overlap with the types of culture media and fungi that are preferably used, and the types of nutrients and surfactants that are preferably added. Specifically, for example, a mixture of a culture solution of NG007 strain and a culture solution of S133 strain cultured in each appropriate medium for a predetermined period at the above-mentioned preferable mixing ratio is obtained by the above-described method. It may be added to. Alternatively, since both strains are preferably cultured on a malt extract agar medium, each fungus is mixed at an appropriate ratio with a fungus bed grown with a plant residue containing malt extract etc. On the other hand, about 5 to 30% (mass ratio with respect to dry soil)] may be added to petroleum-contaminated soil. A preferable culture temperature at this time is approximately 15 to 40 ° C.

(3)上記NG007株とS133株と、D7株とを含む石油汚染土壌の浄化剤および浄化方法について
本発明に係る石油汚染土壌の浄化剤は、上記(2)に、更にTrametes属のhirsutus菌に属するD7株(NITE P−01703)を加えた合計三種類の菌株を含むことが好ましい。上述したS133株とNG007株に、更にD7株を組合わせて用いることにより、それぞれの菌株を単独で用いた場合、またはS133株とNG007株の二種類を用いた場合に比べ、石油成分の分解能が向上する(後記する実施例を参照)。
(3) About the purification agent and the purification method of the oil-contaminated soil containing the NG007 strain, the S133 strain, and the D7 strain The oil-contaminated soil purification agent according to the present invention is the above-mentioned (2), and further, It is preferable to include a total of three strains including the D7 strain (NITE P-01703) belonging to the above. By combining the S133 strain and the NG007 strain with the D7 strain as described above, the resolution of the petroleum components is greater than when using each strain alone or when using the two types of the S133 strain and the NG007 strain. (See the examples below).

ここで、D7株は、本発明者らによって見出された新規菌株であり、その詳細は以下のとおりである。   Here, the D7 strain is a novel strain found by the present inventors, and details thereof are as follows.

D7株は、日本国愛媛県伊予市郊外の枯れ木材より分離した新規な担子菌であり、白色腐朽菌である。D7株は、以下の特徴から、トラメテス(Trametes)属に分類された。   The D7 strain is a new basidiomycete isolated from dead wood in the suburbs of Iyo City, Ehime Prefecture, Japan, and is a white rot fungus. The D7 strain was classified into the genus Trametes based on the following characteristics.

表面は灰白色の半円形の傘を持ち、その幅は2〜7cm、厚さ2〜5mmで、多数重生する。胞子の色は白色で、その大きさは、長さ:5〜7μm、幅:2〜3μmである。D7株は培地上で白色の菌糸として成育し、この菌糸にはクランプコネクションが見られる。   The surface has a grayish white semicircular umbrella, the width is 2-7 cm, the thickness is 2-5 mm, and a large number of it grows. The color of the spore is white, and the size is 5-7 μm in length and 2-3 μm in width. The D7 strain grows as a white mycelium on the medium, and a clamp connection is seen in this mycelium.

D7株を下記の麦芽エキス寒天培地で培養した場合、培地にマンガンペルオキシダーゼ活性、ラッカーゼ活性が見られた。   When the D7 strain was cultured on the following malt extract agar medium, manganese peroxidase activity and laccase activity were observed in the medium.

麦芽エキス寒天培地(1L)
麦芽抽出物 20g
グルコース 20g
ペプトン 1g
寒天 20g
滅菌水 1L
pH 4.5
Malt extract agar medium (1L)
Malt extract 20g
Glucose 20g
1g peptone
Agar 20g
Sterile water 1L
pH 4.5

D7株は、千葉県木更津市かずさ鎌足2−5−8、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、2013年9月6日付で寄託され(受領番号NITE AP−01703、受領日2013年9月6日)、受託された(受託番号NITE P−01703、受託日2013年9月6日)。   The D7 strain was deposited on 2-6-8, Kazusa Kamashishi, Kisarazu City, Chiba Prefecture, on September 6, 2013 at the National Institute of Technology and Evaluation of Microorganisms (Receipt number NITE AP-01703, date of receipt) (September 6, 2013), and was entrusted (accession number NITE P-01703, entrustment date September 6, 2013).

D7株は、石油汚染土壌の浄化剤として有用である。特に、D7株と、前述したNG007株とS133株とを組み合わせて用いることにより、NG007株とS133株を併用したときに比べ、高濃度のアスファルト汚染土壌などを、より短時間で、一層効率よく分解できることが分かった。例えば後記する表9に示すように、上記三種類の混合物を用いることにより、30000ppmの高濃度で汚染されたA重油、C重油、アスファルトの各石油汚染土壌を約1ヶ月間の比較的短期間で、84%(A重油)、82%(C重油)、69%(アスファルト)まで、効率よく分解することができた(いずれも栄養源添加ありの結果)。更に培養後約2ヶ月目には上記の各分解率は一層向上する傾向が見られ、91%(A重油)、89%(C重油)、76%(アスファルト)であった。   The D7 strain is useful as a purification agent for petroleum-contaminated soil. In particular, by using the D7 strain in combination with the NG007 strain and the S133 strain described above, it is possible to more efficiently remove high-concentration asphalt-contaminated soil in a shorter time than when the NG007 strain and the S133 strain are used in combination. It turns out that it can be decomposed. For example, as shown in Table 9 to be described later, by using the above-mentioned three kinds of mixtures, each of oil-contaminated soils of heavy oil A, heavy oil C and asphalt contaminated at a high concentration of 30000 ppm can be obtained for a relatively short period of time of about one month. Thus, it was possible to efficiently decompose to 84% (A heavy oil), 82% (C heavy oil), and 69% (asphalt) (all results with the addition of nutrients). Furthermore, about 2 months after the culture, the above-mentioned decomposition rates tended to be further improved, and were 91% (A heavy oil), 89% (C heavy oil), and 76% (asphalt).

D7株は、前述したS133株と同様、石油汚染土壌に添加してD7株と石油汚染土壌を接触させるのみで、石油成分を分解することができる。上記D7株によって処理可能な石油汚染土壌の濃度は、D7株を、好ましくは後記する栄養源や界面活性剤などと併用したり、当該菌株式の培養期間を長くするなどして高めることができ、おおむね、20,000〜50,000ppm程度の汚染土壌を処理することができる。   Similar to the S133 strain described above, the D7 strain can be decomposed by simply adding it to the petroleum-contaminated soil and bringing the D7 strain into contact with the petroleum-contaminated soil. The concentration of petroleum-contaminated soil that can be treated by the strain D7 can be increased by using the strain D7, preferably in combination with nutrients or surfactants described later, or by increasing the culture period of the strain. In general, about 20,000 to 50,000 ppm of contaminated soil can be treated.

D7株と石油汚染土壌を接触させる方法は常法に従えばよい。例えば、D7株を液体培地で培養した場合には、その培養液を石油汚染土壌に散布すればよい。或いは、D7株は担子菌であるので、菌床となり得る植物残渣を用いて培養したD7株を石油汚染土壌に散布してもよい。   The method of bringing the D7 strain into contact with the oil-contaminated soil may follow a conventional method. For example, when the D7 strain is cultured in a liquid medium, the culture solution may be sprayed on petroleum-contaminated soil. Alternatively, since the D7 strain is a basidiomycete, the D7 strain cultured using a plant residue that can become a fungal bed may be sprayed on petroleum-contaminated soil.

石油汚染土壌に散布すべきD7株の液体培地は、希釈してもよい。また、当該液体培地のpHは、D7株の至適pHに合わせて4.5〜6程度に調整することが好ましい。   The liquid medium of D7 strain to be sprayed on the oil-contaminated soil may be diluted. The pH of the liquid medium is preferably adjusted to about 4.5 to 6 in accordance with the optimum pH of the D7 strain.

D7株を培養するために用いる植物残渣としては、木屑、おが屑、鋸屑、米糠、おから、油粕、大豆粕などを挙げることができる。   Examples of plant residues used for culturing the D7 strain include wood chips, sawdust, sawdust, rice bran, okara, oil cake, soybean meal, and the like.

D7株を石油汚染土壌に添加する場合には、D7株の栄養源や界面活性剤も添加することが好ましい。栄養源はD7株の生育を活発化し、ひいては石油成分の分解能を活性化することができる。また、界面活性剤は、脂溶性が高く親水性の低い石油成分を固体状の土壌から脱離させてD7株の生育環境に存在し易くし、分解を促進する作用を有する。   When the D7 strain is added to petroleum-contaminated soil, it is preferable to add the nutrient source and surfactant of the D7 strain. Nutrient sources can activate the growth of the D7 strain, which in turn can activate the resolution of petroleum components. In addition, the surfactant has an action of accelerating the decomposition by detaching petroleum components having high fat solubility and low hydrophilicity from the solid soil to make them easily present in the growth environment of the D7 strain.

D7株の栄養源としては、昭和産業社製の「しいたけの里」など担子菌の栄養源として市販されているものを用いてもよいし、グルコースなどの炭素源;ポリペプトンなどの窒素源;マグネシウム塩やマンガン塩などの微量元素源;クエン酸などのpH調整剤などを適宜選択して用いてもよい。また、S133株の栄養源として、植物材料も好ましく用いられ、代表的には、植物繊維の破砕物(パルプ)が挙げられる。D7株は、白色腐朽菌に属するTrametes属の一種であり、植物などの木材中のリグニン分解能力を有しているからである。パルプの原料としては、白色腐朽菌が利用できるものであれば特に限定されないが、針葉樹や広葉樹などの木材、綿、麻、ケナフ、バガスなどが挙げられる。具体的には、例えば、カポックの木を用いたカポックパルプ、綿の実に付着する短毛(綿クズ)を用いたリンターパルプ、綿の紡績から出る繊維(綿ボロ)を利用したラグパルプ、麻を原料としたリネンパルプなどが代表的に例示される。また、古紙パルプ(再生紙)を利用しても良い。   As a nutrient source for the D7 strain, commercially available ones such as “Shiitake no Sato” manufactured by Showa Sangyo Co., Ltd. may be used, a carbon source such as glucose; a nitrogen source such as polypeptone; magnesium Trace element sources such as salts and manganese salts; pH adjusting agents such as citric acid may be appropriately selected and used. In addition, plant materials are also preferably used as a nutrient source for the S133 strain, and representative examples thereof include plant fiber crushed material (pulp). This is because the D7 strain is a member of the genus Trametes belonging to white rot fungi and has the ability to decompose lignin in wood such as plants. The raw material of the pulp is not particularly limited as long as white rot fungi can be used, and examples thereof include wood such as conifers and hardwoods, cotton, hemp, kenaf, bagasse and the like. Specifically, for example, kapok pulp using kapok trees, linter pulp using short hair (cotton litter) attached to cotton seeds, rug pulp using fibers from cotton spinning (cotton boro), hemp A typical example is linen pulp as a raw material. In addition, waste paper pulp (recycled paper) may be used.

栄養源の添加量は、D7株の量などに応じて適宜調整すればよいが、一般的には栄養源の量は多いほどD7株の生育は良好であり、石油成分の分解効率は向上する。その一方で、植物材料の天然素材を除く炭素源や窒素源などの栄養源が多過ぎると環境への悪影響が懸念される。以上を考慮して、添加する栄養源の量は、処理対象である石油汚染土壌に対して5〜30質量%程度にすることが好ましい。   The addition amount of the nutrient source may be adjusted as appropriate according to the amount of the D7 strain, etc. In general, the greater the amount of the nutrient source, the better the growth of the D7 strain and the higher the decomposition efficiency of the petroleum components. . On the other hand, if there are too many nutrient sources such as a carbon source and a nitrogen source excluding natural materials of plant materials, there is a concern about an adverse effect on the environment. Considering the above, it is preferable that the amount of the nutrient source to be added is about 5 to 30% by mass with respect to the petroleum-contaminated soil to be treated.

使用する界面活性剤としては、陽イオン界面活性剤、陰イオン界面活性剤、両イオン界面活性剤、非イオン界面活性剤など特に制限されないが、D7株への悪影響が少ないことから非イオン界面活性剤が好適である。非イオン界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルグルコシド、ポリオキシエチレン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステルなどを挙げることができる。より具体的には、Tween20、Tween60、Tween80を用いることができる。   The surfactant to be used is not particularly limited, such as a cationic surfactant, an anionic surfactant, a zwitterionic surfactant, and a nonionic surfactant. However, since the adverse effect on the D7 strain is small, the nonionic surfactant is used. Agents are preferred. Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, alkyl glucoside, polyoxyethylene fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester and the like. More specifically, Tween20, Tween60, and Tween80 can be used.

界面活性剤は、D7株の生育環境に対する石油成分の分散性を向上させることの他、炭素源となるなどD7株の生育を促進する可能性もある。しかし、界面活性剤の量が多過ぎるとかえってD7株の生育に悪影響を与え得る。そこで、界面活性剤の添加量は、処理すべき石油汚染土壌に対して0.05質量%以上、1.0質量%以下程度にすることが好ましく、0.1質量%以上、0.75質量%以下程度にすることがより好ましい。   In addition to improving the dispersibility of petroleum components in the growth environment of the D7 strain, the surfactant may promote the growth of the D7 strain, for example, as a carbon source. However, if the amount of the surfactant is too large, it can adversely affect the growth of the D7 strain. Therefore, the addition amount of the surfactant is preferably about 0.05% by mass or more and 1.0% by mass or less with respect to petroleum-contaminated soil to be treated, and is 0.1% by mass or more and 0.75% by mass. It is more preferable to make it about% or less.

処理対象である石油汚染土壌は、採掘した上で容器に挿入し、D7株や栄養源などを添加し、D7株が良好に生育できるように温度や湿度を調整してもよい。しかし、土壌汚染は広範囲に及ぶことが多く、処理すべき土壌を逐一採掘するとかえって処理効率が低下し得る。よって、石油汚染土壌にそのままS133株を添加してもよい。なお、D7株は25℃で十分に生育することから、日本国内であれば、D7株は温度調節せずとも常温で石油成分を分解できると考えられる。但し、湿度は比較的高く保つべきであるので、適時水を散布するなどすべきである。   Oil-contaminated soil to be treated may be mined and inserted into a container, and D7 strain or nutrient source may be added to adjust the temperature and humidity so that the D7 strain can grow well. However, soil contamination is often widespread, and if the soil to be treated is mined one by one, the treatment efficiency can be lowered. Therefore, you may add S133 stock | strain as it is to petroleum contaminated soil. In addition, since D7 strain | stump | stock grows sufficiently at 25 degreeC, if it is in Japan, D7 strain | stump | stock is considered to be able to decompose | disassemble a petroleum component at normal temperature, without adjusting temperature. However, the humidity should be kept relatively high, so water should be sprayed in a timely manner.

D7株の添加量は、汚染土壌の汚染状態などに応じて適宜調整すればよい。   What is necessary is just to adjust the addition amount of D7 stock | strain suitably according to the contamination state of contaminated soil, etc.

本発明者らによる知見によれば、D7株による石油汚染土壌の処理中は、遮光した方が効率が良い。よって、石油汚染土壌にD7株を添加した後は、ブルーシート等で被覆するなどして照射光量を抑えることが好ましい。   According to the knowledge of the present inventors, it is more efficient to shield the light during the treatment of the oil-contaminated soil with the D7 strain. Therefore, after adding strain D7 to petroleum-contaminated soil, it is preferable to suppress the amount of irradiation light by covering with a blue sheet or the like.

本発明では、このD7株を、前述したNG007株とS133株と組み合わせて使用する。具体的には、これら三種類の菌株の混合比率[各菌を、それぞれの適切な培地で一定期間(7日間)培養した後、培養液全体をホモジナイズした菌糸懸濁液の混合比率]は、分解対象である石油成分の種類や濃度などによっても相違し得、適宜適切に定めれば良いが、体積比率(容量比)にて、おおむね、NG007株:S133株:D7株=1〜6:1〜3:1〜3の範囲内であることが好ましく、NG007株:S133株:D7株=1〜2:1〜2:1〜2の範囲内であることがより好ましい。   In the present invention, this D7 strain is used in combination with the aforementioned NG007 strain and S133 strain. Specifically, the mixing ratio of these three strains [the mixing ratio of the mycelial suspension obtained by homogenizing the entire culture after culturing each bacterium in a suitable medium for a certain period (7 days)] is: It may differ depending on the type and concentration of the petroleum component to be decomposed, and may be determined appropriately. However, in terms of volume ratio (capacity ratio), NG007 shares: S133 shares: D7 shares = 1-6: It is preferable to be within the range of 1 to 3: 1 to 3, more preferably within the range of NG007 strain: S133 strain: D7 strain = 1-2: 1-2: 1-2.

上記の混合物を含む浄化剤を用いて石油汚染土壌を浄化する方法については、前述したNG007株を含む浄化剤を用いて浄化する方法と同様に行なえば良い。NG007株もS133株も、好ましく用いられる培地や菌床の種類、好ましく添加される栄養源や界面活性剤の種類などが重複するからである。具体的には、例えば、それぞれの適切な培地で所定期間培養したNG007株の培養液とS133株の培養液とD7株の培養液を、上記の好ましい混合比率で混合したものを、前述した方法で、石油汚染土壌に添加すれば良い。或いは、いずれの菌株も、共に麦芽エキス寒天培地で好ましく培養されるため、それぞれの菌を、麦芽エキスなどを含む植物残渣で成育させた菌床を適切な割合で混合したもの[石油汚染土壌に対して、おおむね、5〜30%程度(乾燥土壌に対する質量比率)]を石油汚染土壌に添加してもよい。このときの好ましい培養温度は、おおむね、15〜40℃である。   The method for purifying petroleum-contaminated soil using the purification agent containing the above mixture may be performed in the same manner as the method for purification using the purification agent containing the NG007 strain described above. This is because both the NG007 strain and the S133 strain overlap with the types of culture media and fungi that are preferably used, and the types of nutrients and surfactants that are preferably added. Specifically, for example, the above-described method in which the culture solution of the NG007 strain, the culture solution of the S133 strain, and the culture solution of the D7 strain, which have been cultured in each appropriate medium for a predetermined period, are mixed at the above-mentioned preferable mixing ratio. Therefore, it can be added to oil-contaminated soil. Alternatively, since both strains are preferably cultured in a malt extract agar medium, each fungus is mixed with an appropriate ratio of a fungus bed grown with a plant residue containing malt extract etc. On the other hand, about 5 to 30% (mass ratio with respect to dry soil)] may be added to petroleum-contaminated soil. A preferable culture temperature at this time is approximately 15 to 40 ° C.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the purpose described above and below. They are all included in the technical scope of the present invention.

なお、以下における「%」は、特に断りのない限り、全て「質量%」である。   In the following, “%” is “% by mass” unless otherwise specified.

実施例1
本実施例では、NG007株およびS133株を単独または併用して用い、アスファルトで汚染された土壌に対する浄化能を調べた。
Example 1
In this example, the NG007 strain and the S133 strain were used alone or in combination, and the purification ability for the soil contaminated with asphalt was examined.

まず、実験に用いたNG007株およびS133株は、以下のようにして単離した。   First, the NG007 strain and the S133 strain used in the experiment were isolated as follows.

(1)NG007株の単離
愛媛大学農学部構内およびその近縁から採取した82種のキノコおよび腐朽木材を試料として用いた。キノコの場合は、約5mm角に切り、前述した麦芽エキス寒天培地に添加し、暗所にて25℃で2週間培養した。また、腐朽木材の場合は、約1.2g(乾燥重量で約1g)を滅菌水(9mL)に懸濁し、攪拌した後に10分間静置した後、各上澄液(1mL)を、前述した麦芽エキス寒天培地に添加し、暗所にて25℃で2週間培養した。麦芽エキス寒天培地上に生育してきた72種の菌をそれぞれ採取し、アスファルト1000ppmを上層した麦芽エキス寒天培地(具体的には、麦芽エキス寒天培地の上に、ジクロロメタンに溶解したアスファルト1000ppmを塗布した後、ジクロロメタンを蒸発させることにより、麦芽エキス寒天培地の上にアスファルトを載せたもの)にて25℃で7日間培養した。これらのうち、生育速度の速い菌を10種採取し、アスファルト15000ppmを上層した麦芽エキス寒天培地にて、更に25℃で7日間培養することによって、特に生育が活発であった糸状菌であるNG007株を単離した。
(1) Isolation of NG007 strains 82 types of mushrooms and decayed wood collected from the campus of the Faculty of Agriculture, Ehime University, and their relatives were used as samples. In the case of mushrooms, they were cut into approximately 5 mm squares, added to the aforementioned malt extract agar medium, and cultured at 25 ° C. for 2 weeks in the dark. In the case of decayed wood, about 1.2 g (about 1 g in dry weight) was suspended in sterilized water (9 mL), stirred, allowed to stand for 10 minutes, and then each supernatant (1 mL) was described above. It was added to a malt extract agar medium and cultured at 25 ° C. for 2 weeks in the dark. 72 types of bacteria that had grown on the malt extract agar medium were collected, and the malt extract agar medium (specifically, 1000 ppm of asphalt dissolved in dichloromethane was applied on the malt extract agar medium). Thereafter, dichloromethane was evaporated, and the mixture was cultured at 25 ° C. for 7 days in a malt extract agar medium on which asphalt was placed. Among these, NG007, a filamentous fungus that was particularly active, was obtained by collecting 10 species of fast-growing bacteria and culturing them on a malt extract agar medium overlaid with asphalt 15000 ppm for 7 days at 25 ° C. The strain was isolated.

得られたNG007株を顕微鏡により観察したところ、白色で各壁を有し、その表面は滑らかで、直径約1〜3μmであった。分生子柄は、褐色から暗黒色で気生菌糸上に直立して形成され、その表面は平滑で棍棒状をしていた。分生胞子は、紡錘形または楕円形であり、分生胞子の構成細胞数5細胞(内、有色細胞3)であり、3本の付属糸を有する糸状菌であった。付属糸を除いた大きさは、長さ:約10〜25μm、幅:5μm〜10μmであり、先端細胞の付属糸の大きさは約5μm〜15μm、後部細胞の小柄の大きさは約2μm〜6μmであった。これらはPestalotiopsis属菌の形態学的特徴であることから、NG007株はPestalotiopsis属菌と同定した。   When the obtained NG007 strain was observed with a microscope, it was white and had respective walls, the surface was smooth, and the diameter was about 1 to 3 μm. The conidial pattern was brown to dark black and formed upright on the aerial hyphae, and its surface was smooth and pin-shaped. The conidia were spindle-shaped or elliptical, the number of cells constituting the conidia was 5 cells (including 3 colored cells), and were filamentous fungi having 3 attached threads. The size excluding the attached thread is length: about 10 to 25 μm, width: 5 μm to 10 μm, the size of the attached thread of the tip cell is about 5 μm to 15 μm, and the size of the petite of the rear cell is about 2 μm to It was 6 μm. Since these are the morphological characteristics of the genus Pestaliopsis, the NG007 strain was identified as the genus Pestalotiopsis.

(2)S133株の単離
蒸留水(100mL)に麦芽(20g/L)、グルコース(20g/L)、ポリペプトン(1g/L)および寒天(20g/L)を添加した。さらに、当該混合物(20ml)に、雑細菌や酵母などの繁殖を抑制するためにクロラムフェニコール(6mg)またはベニミル(6mg)を加え、麦芽エキス寒天培地を調製した。別途、1%のTween80を含むジメチルホルムアミドの1%クリセン溶液を調製した。上記麦芽エキス寒天培地(20ml)上に、上記クリセン溶液(1ml)を添加して均一になるように広げた。
(2) Isolation of S133 strain Malt (20 g / L), glucose (20 g / L), polypeptone (1 g / L) and agar (20 g / L) were added to distilled water (100 mL). Furthermore, chloramphenicol (6 mg) or benimil (6 mg) was added to the mixture (20 ml) in order to suppress the propagation of miscellaneous bacteria and yeasts to prepare a malt extract agar medium. Separately, a 1% chrysene solution of dimethylformamide containing 1% Tween 80 was prepared. On the malt extract agar medium (20 ml), the chrysene solution (1 ml) was added and spread uniformly.

愛媛大学農学部構内およびその近縁から採取した124種の土壌(乾燥重量で1g)を滅菌水(9mL)に懸濁し、攪拌した後に10分間静置した。次いで、各上澄液(1mL)を上記麦芽エキス寒天培地に添加し、暗所にて25℃で2週間培養した。培地上に生育してきた87種の菌をそれぞれ採取し、同様の麦芽エキス寒天培地にて25℃で7日間培養した。生育速度の速い菌を7種採取し、同様の操作をもう一度繰り返すことによって、特にクリセン存在下における生育が活発であった担子菌であるS133株を単離した。   124 kinds of soils (1 g in dry weight) collected from the campus of the Faculty of Agriculture, Ehime University and its immediate vicinity were suspended in sterilized water (9 mL), stirred and allowed to stand for 10 minutes. Next, each supernatant (1 mL) was added to the malt extract agar medium and cultured at 25 ° C. for 2 weeks in the dark. 87 types of bacteria grown on the medium were collected and cultured at 25 ° C. for 7 days on the same malt extract agar medium. Seven species of fast-growing bacteria were collected, and the same operation was repeated once more to isolate the S133 strain, a basidiomycete that was particularly active in the presence of chrysene.

得られたS133株を顕微鏡により観察したところ、中央に窪みがある平らで白色のカサを有し、その表面には褐色の鱗片が存在するものであった。柄は中心生であり、胞子は白色で長楕円形であった。これらはPolyporus属菌の形態学的特徴であることから(今関六也ら編、「日本のキノコ」山と渓谷社、第450〜451頁(1988年);およびTomas Laessoe著,「DORLIG KINDERSLEY−HANDBOOKS−MUSHROOMS」,Dorling Kindersley Ltd.,LONDON,204,pp.202〜210(1998年)を参照)、S133株はPolyporus属菌と同定した。   When the obtained S133 strain was observed with a microscope, it had a flat, white umbrella with a dent in the center, and brown scales on the surface. The handle was central, and the spores were white and oblong. Since these are morphological characteristics of Polyporus spp. (Ikuseki Rokuya et al., “Japanese Mushrooms” Mountain and Valley Company, pages 450-451 (1988); and Thomas Laessoe, “DORLIG KINDERSLEY- HANDBOOKS-MUSHROMS ”, Dorling Kindersley Ltd., LONDON, 204, pp. 202-210 (1998)), and the S133 strain was identified as a Polyporus genus.

(3)アスファルト石油汚染土壌の調製
本実施例では、原油蒸留残渣であるアスファルトに汚染された土壌を用い、土壌中のアスファルト濃度が、1000ppm、15000ppm、および30000ppmのものを用意した。
(3) Preparation of Asphalt Petroleum-Contaminated Soil In this example, soil contaminated with asphalt, which is a crude oil distillation residue, was prepared with asphalt concentrations in the soil of 1000 ppm, 15000 ppm, and 30000 ppm.

まず、愛媛大学農学部附属農場から採取した土壌を3mmのメッシュで篩い分けし、120℃で2時間滅菌した。別途、下記組成のアスファルト(3g)をジクロロメタン(100mL)に溶解し、3%のアスファルト溶液を調製した。上記滅菌土壌(乾燥重量で30g)に上記アスファルト溶液(1mL)を加え、土壌中のアスファルト濃度を1000ppmに調整した。
(アスファルトの組成)
脂肪族炭化水素部(aliphatic fr.)(32%)
芳香族炭化水素部(aromatic fr.)(44%)
アスファルテン部(asphaltene fr.)(14%)
窒素、硫黄および酸素を含む化合物(NSO部、NSO fr.)(10%)
First, the soil collected from the farm attached to the Faculty of Agriculture, Ehime University was sieved with a 3 mm mesh and sterilized at 120 ° C. for 2 hours. Separately, asphalt (3 g) having the following composition was dissolved in dichloromethane (100 mL) to prepare a 3% asphalt solution. The asphalt solution (1 mL) was added to the sterilized soil (30 g in dry weight) to adjust the asphalt concentration in the soil to 1000 ppm.
(Asphalt composition)
Aliphatic hydrocarbon (aliphatic fr.) (32%)
Aromatic hydrocarbons (aromatic fr.) (44%)
Asphaltene part (asphaltene fr.) (14%)
Compound containing nitrogen, sulfur and oxygen (NSO part, NSO fr.) (10%)

更に上記アスファルト溶液の添加量を調整することにより、土壌中のアスファルト濃度が15000ppm、30000ppmのものを用意した。   Furthermore, the asphalt density | concentration in soil prepared 15000 ppm and 30000 ppm by adjusting the addition amount of the said asphalt solution.

(4)アスファルト石油汚染土壌の浄化処理
NG007株およびS133株の各菌株をそれぞれ、前述した麦芽エキス寒天培地にて、室温(25℃)で7日間培養し、その培養液をホモジナイザーで5000rpm、10分間ホモジナイズした菌糸懸濁液を用意した。このようにして得られた各菌株の菌糸懸濁液を、容量比にて、NG007株:S133株=0:100、25:75、50:50、75:25、100:0)となるように調整した。
(4) Purification treatment of asphalt petroleum-contaminated soil Each of the strains NG007 and S133 was cultured on the above-described malt extract agar medium at room temperature (25 ° C.) for 7 days, and the culture solution was homogenized at 5000 rpm, 10 A mycelium suspension homogenized for a minute was prepared. The mycelial suspension of each strain thus obtained is NG007 strain: S133 strain = 0: 100, 25:75, 50:50, 75:25, 100: 0) in volume ratio. Adjusted.

(4−1)培地中への栄養源の添加なしの場合
上記のようにして得られた各容量比の培養物を、上記(3)で調製した石油汚染土壌に対して、13.3%となるように加え、よく混合した後、暗所にて25℃で培養した。
(4-1) When no nutrient source is added to the medium The culture of each volume ratio obtained as described above is 13.3% with respect to the petroleum-contaminated soil prepared in (3) above. After mixing well, the mixture was cultured at 25 ° C. in the dark.

(4−2)培地中への栄養源の添加ありの場合
上記(3)で調製した石油汚染土壌に対して、栄養源として、グルコース、シイタケの里をそれぞれ10%、15%(乾燥土壌に対する質量比率)の比率で添加した。次いで、上記のようにして得られた各容量比の培養物を、石油汚染土壌に対して13.3%(乾燥土壌に対する質量比率)となるように加え、よく混合した後、暗所にて25℃で培養した。
(4-2) When nutrient sources are added to the medium For the petroleum-contaminated soil prepared in (3) above, glucose and shiitake villages are 10% and 15% (for dry soil) as nutrient sources, respectively. (Mass ratio). Next, each volume ratio culture obtained as described above was added to the oil-contaminated soil at 13.3% (mass ratio with respect to dry soil), mixed well, and then in the dark. Cultured at 25 ° C.

(5)アスファルト分解率の測定
アスファルトの分解率(浄化率)を、Mishraらの方法(In Situ Bioremediation otential f an Oily Sludge−Degrading Bacterial Consortium,Sanjeet Mishra,Jeevan Jyot,Ramesh Chander Kuhad,Banwari,Lai,Current Microbiology,Vol.43,328−335(2001))を参考にして測定した。
(5) Measurement of Asphalt Degradation Rate Asphalt degradation rate (purification rate) was measured according to the method of Misra et al. Current Microbiology, Vol. 43, 328-335 (2001)).

測定方法の概要は以下のとおりである。まず、培養開始から15日間および30日間経過後に土壌の一部を採取し、ヘキサン、ジクロロメタン、およびクロロホルムで順次抽出した。それぞれの抽出液を合わせて濃縮し、抽出物を得た。一方、アスファルト汚染土壌(菌株の添加なし)の一部を採取し、上記と同様にして、ヘキサン、ジクロロメタン、およびクロロホルムで順次抽出した各抽出液を合わせて濃縮し、抽出物を得た。   The outline of the measurement method is as follows. First, a part of the soil was collected after 15 days and 30 days from the start of culture, and extracted sequentially with hexane, dichloromethane, and chloroform. Each extract was combined and concentrated to obtain an extract. On the other hand, a part of the asphalt-contaminated soil (without addition of strain) was collected, and in the same manner as described above, the extracts extracted sequentially with hexane, dichloromethane, and chloroform were combined and concentrated to obtain an extract.

上記の抽出物にヘキサンを加え、ヘキサン可溶部と不溶部に分けた。このうちヘキサン可溶部をシリカゲルカラムクロマトグラフィーにかけ、ヘキサン、トルエン、クロロホルム:メタノール(1:1)で順次溶出し、各溶出部の重量を測定した。ヘキサン溶出部は脂肪族炭化水素部を、トルエン溶出部は芳香族炭化水素部を、クロロホルム:メタノール(1:1)溶出部はNSO部を、ヘキサン不溶部はアスファルテン部を、それぞれ、含んでいる。各溶出部の重量を測定し、石油汚染土壌の浄化処理前と浄化処理後の重量を比較することにより、脂肪族炭化水素部、芳香族炭化水素部、NSO部、アスファルテン部の分解率(浄化率)をそれぞれ、算出した。本実施例では、このようにして得られた各成分の分解率の合計をA重油またはC重油の分解率とした。   Hexane was added to the above extract to separate it into a hexane soluble part and an insoluble part. Of these, the hexane-soluble part was subjected to silica gel column chromatography, and eluted sequentially with hexane, toluene, chloroform: methanol (1: 1), and the weight of each elution part was measured. The hexane elution part contains an aliphatic hydrocarbon part, the toluene elution part contains an aromatic hydrocarbon part, the chloroform: methanol (1: 1) elution part contains an NSO part, and the hexane insoluble part contains an asphaltene part. . By measuring the weight of each elution part and comparing the weight of oil-contaminated soil before and after purification treatment, the decomposition rate of aliphatic hydrocarbon part, aromatic hydrocarbon part, NSO part and asphaltene part (purification Rate) was calculated respectively. In this example, the sum of the decomposition rates of the components thus obtained was defined as the decomposition rate of A heavy oil or C heavy oil.

(6)酵素活性の測定
本実施例では、参考のため、前述した先願と同様、下記(ア)〜(オ)の酵素(粗酵素)の酵素活性を測定した。先願に記載したように、これらの酵素は、アゾ染料分解作用に寄与していると考えられるが、本実施例でも、参考のため、各種酵素の酵素活性を測定した。
(6) Measurement of enzyme activity In this example, the enzyme activities of the following enzymes (a) to (e) (crude enzyme) were measured for reference, as in the previous application. As described in the prior application, these enzymes are thought to contribute to the azo dye decomposing action. In this example, the enzyme activities of various enzymes were measured for reference.

具体的には、上記(3)で調製した石油汚染土壌の一部(5g)を採取し、蒸留水(30mL)を加え、室温(25℃)でホモジナイズ(5000rpm、10分間)した後、その上澄み液を採取した。   Specifically, a part (5 g) of the petroleum-contaminated soil prepared in (3) above was collected, distilled water (30 mL) was added, and the mixture was homogenized (5000 rpm, 10 minutes) at room temperature (25 ° C.). The supernatant was collected.

このようにして得られた上澄み液中の各酵素の活性(U/LまたはU/l)を、以下の方法で測定した。   The activity (U / L or U / l) of each enzyme in the supernatant thus obtained was measured by the following method.

(ア)マンガンペルオキシダーゼ(MnP)活性は、Brownらの方法(J.Bacteriology,vol.172(6),pp.3125−3130(1990))により求めた(モル吸光度係数ε:49600mol-1cm-1)。
(イ)リグニンペルオキシダーゼ(LiP)活性は、TienとKirkの方法(Methods in Enzymology,Vo1.161,pp.238−249(1988))により求めた(モル吸光度係数ε:9300mol-1cm-1
(ウ)ラッカーゼ(Laccase,Lac)活性は、LeonoWiczとGrzywnouiczの方法(Enzyme and Microbial Technology,Vol.3,pp,55−58(1981))により求めた(モル吸光度係数ε:6500mol-1cm-1
(エ)カテコール1,2−ジオキシゲナーゼ(C120)活性は、NakazawaとNakazawaの方法(Methods in Enzymology,Vo1.17,pp,5181522(1970))により求めた(モル吸光度係数ε:16000mol-1cm-1
(オ)カテコール2,3−ジオキシゲナーゼ(C230)活性は、NakazawaとNakazawaの方法(Methods in Enzymology,Vol.17,pp,518−522(1970))により求めた(モル吸光度係数ε:44000mol-1cm-1)。
(A) Manganese peroxidase (MnP) activity was determined by the method of Brown et al. (J. Bacteriology, vol. 172 (6), pp. 3125-3130 (1990)) (molar absorbance coefficient ε: 49600 mol −1 cm − 1 ).
(I) Lignin peroxidase (LiP) activity was determined by the method of Tien and Kirk (Methods in Enzymology, Vo 1.161, pp. 238-249 (1988)) (molar absorbance coefficient ε: 9300 mol −1 cm −1 ).
(C) laccase (Laccase, Lac) activity, LeonoWicz and Grzywnouicz method (Enzyme and Microbial Technology, Vol.3, pp, 55-58 (1981)) by the determined (molar extinction coefficient ε: 6500mol -1 cm - 1 )
(D) The catechol 1,2-dioxygenase (C120) activity was determined by the method of Nakazawa and Nakazawa (Methods in Enzymology, Vo 1.17, pp, 5181522 (1970)) (molar absorbance coefficient ε: 16000 mol −1 cm -1 )
(E) Catechol 2,3-dioxygenase (C230) activity was determined by the method of Nakazawa and Nakazawa (Methods in Enzymology, Vol. 17, pp, 518-522 (1970)) (molar absorbance coefficient ε: 44000 mol − 1 cm -1 ).

これらの結果を図1〜図3に示す。   These results are shown in FIGS.

まず、図1を参照する。図1は、NG007株とS133株を図1に示す比率で共培養したときの、アスファルト汚染土壌(1000ppm)のアスファルト分解率(左軸)、各種酵素活性(右軸)の結果を示すグラフである(培地への栄養源の添加なし)。図1の上図は、培養後30日の結果を示し、図1の下図は、培養後15日の結果を、それぞれ、示す。   First, refer to FIG. FIG. 1 is a graph showing the results of asphalt degradation rate (left axis) and various enzyme activities (right axis) of asphalt-contaminated soil (1000 ppm) when NG007 strain and S133 strain were co-cultured at the ratio shown in FIG. Yes (no nutrient source added to the medium). The upper diagram in FIG. 1 shows the results for 30 days after the culture, and the lower diagram in FIG. 1 shows the results for 15 days after the culture.

図1より、NG007株とS133株を組合わせて用いることにより、それぞれを単独で用いた場合に比べ、アスファルトの浄化率が増加することが分かる。例えば培養後30日(図1の上図)の浄化率を比較すると、NG007株単独のアスファルト浄化率は67%、S133菌単独のアスファルト浄化率は59%であったのに対し、これらを1:1の比率で組合わせたときのアスファルト浄化率は、89%まで増加した。   From FIG. 1, it can be seen that the combination of the NG007 strain and the S133 strain increases the asphalt purification rate compared to the case where each of them is used alone. For example, when the purification rates on the 30th day after cultivation (upper figure in FIG. 1) were compared, the asphalt purification rate of the NG007 strain alone was 67%, and the asphalt purification rate of the S133 bacterium alone was 59%. The asphalt cleanup rate when combined at a ratio of 1 increased to 89%.

次に図2を参照する。図2は、NG007株とS133株を1:1の比率で共培養したときの、アスファルト汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルト分解率(左軸)、各種酵素活性(右軸)の結果を示すグラフである(培養日数は30日、培地への栄養源の添加なし)。   Reference is now made to FIG. FIG. 2 shows the results of asphalt degradation rate (left axis) and various enzyme activities (right axis) of asphalt-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 strain and S133 strain were co-cultured at a ratio of 1: 1. (The number of culture days is 30 days, and no nutrient source is added to the medium).

図2より、アスファルト濃度が高濃度の汚染土壌であっても、1ヶ月の処理で、68%(アスファルト濃度15000ppm)、63%(アスファルト濃度30000ppm)まで浄化できることが分かった。   From FIG. 2, it was found that even contaminated soil with a high asphalt concentration can be purified to 68% (asphalt concentration of 15000 ppm) and 63% (asphalt concentration of 30000 ppm) by treatment for one month.

次に図3を参照する。図3は、NG007株とS133株を1:1の比率で共培養したときの、アスファルト汚染土壌(1000ppm、15000ppm、30000ppm)のアスファルト分解率について、培地への栄養源添加の影響を調べたグラフである(培養日数は15日、30日)。図3の左図は栄養源添加なしの結果を、図3の右図は栄養源添加ありの結果を、それぞれ、示す。   Reference is now made to FIG. FIG. 3 is a graph in which the influence of nutrient sources added to the culture medium is examined for the asphalt degradation rate of asphalt-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain and the S133 strain are co-cultured at a ratio of 1: 1. (The culture days are 15 days and 30 days). The left figure of FIG. 3 shows the result without the addition of the nutrient source, and the right figure of FIG. 3 shows the result with the addition of the nutrient source.

図3より、共培養時に栄養源を添加することにより、アスファルトの浄化率が促進されることが分かる。   FIG. 3 shows that the purification rate of asphalt is promoted by adding a nutrient source during co-culture.

以上の実験結果より、本発明によれば、原油中の難分解性物質であるアスファルトを、短時間で効率よく浄化できることが分かった。   From the above experimental results, it was found that according to the present invention, asphalt, which is a hardly decomposable substance in crude oil, can be efficiently purified in a short time.

実施例2
本実施例では、NG007株およびS133株を単独または併用して用いたときの、A重油汚染土壌およびC重油汚染土壌に対する浄化能を調べた。重油は、動粘度によって1種(A重油)、2種(B重油)、3種(C重油)に分類される。C重油は、軽油のほか90%以上が残渣油であり、A重油は、軽油90%に少量の残渣油を混合したものである。
Example 2
In this example, the purifying ability for A heavy oil contaminated soil and C heavy oil contaminated soil when NG007 strain and S133 strain were used alone or in combination was examined. Heavy oil is classified into 1 type (A heavy oil), 2 types (B heavy oil), and 3 types (C heavy oil) according to kinematic viscosity. In addition to light oil, 90% or more of C heavy oil is residual oil, and A heavy oil is a mixture of 90% of light oil and a small amount of residual oil.

まず、愛媛大学農学部附属農場から採取した土壌を3mmのメッシュで篩い分けし、120℃で2時間滅菌した。別途、下記組成のA重油またはC重油(3g)をジクロロメタン(100mL)に溶解し、3%のA重油溶液またはC重油溶液を調製した。上記滅菌土壌(乾燥重量で30g)に上記の各重油溶液(1mL)を加え、土壌中の各重油濃度を1000ppmに調整した。
(A重油組成)
脂肪族炭化水素部(aliphatic fr.)(75%)
芳香族炭化水素部(aromatic fr.)(9%)
アスファルテン部(asphaltene fr.)(13%)
NSO部( NSO fr.)(3%)
(C重油組成)
脂肪族炭化水素部(aliphatic fr.)(44%)
芳香族炭化水素部(aromatic fr.)(31%)
アスファルテン部 (asphaltene fr.)(17%)
NSO部(NSO fr.)(8%)
First, the soil collected from the farm attached to the Faculty of Agriculture, Ehime University was sieved with a 3 mm mesh and sterilized at 120 ° C. for 2 hours. Separately, A heavy oil or C heavy oil (3 g) having the following composition was dissolved in dichloromethane (100 mL) to prepare a 3% A heavy oil solution or C heavy oil solution. Each said heavy oil solution (1 mL) was added to the said sterilized soil (30 g by dry weight), and each heavy oil concentration in soil was adjusted to 1000 ppm.
(A heavy oil composition)
Aliphatic hydrocarbon (aliphatic fr.) (75%)
Aromatic hydrocarbons (aromatic fr.) (9%)
Asphaltene part (asphaltene fr.) (13%)
NSO part (NSO fr.) (3%)
(C heavy oil composition)
Aliphatic hydrocarbon (aliphatic fr.) (44%)
Aromatic hydrocarbon (aromatic fr.) (31%)
Asphaltene part (asphaltene fr.) (17%)
NSO part (NSO fr.) (8%)

更に上記の各重油溶液の添加量を調整することにより、土壌中の各重油濃度が15000ppm、30000ppmのものを用意した。   Further, by adjusting the amount of each heavy oil solution added, those having a concentration of 15000 ppm and 30000 ppm of each heavy oil in the soil were prepared.

次いで、前述した実施例1と同様にして、各汚染土壌を浄化処理し、前述したMishraらの方法を参考にして、A重油の分解率およびC重油の分解率を測定した。   Subsequently, in the same manner as in Example 1 described above, each contaminated soil was purified, and the decomposition rate of A heavy oil and the decomposition rate of C heavy oil were measured with reference to the method of Misra et al.

具体的には、まず、培養開始から15日間および30日間経過後に土壌の一部を採取し、ヘキサン、ジクロロメタン、およびクロロホルムで順次抽出した。それぞれの抽出液を合わせて濃縮し、抽出物を得た。一方、A重油汚染土壌またはC重油汚染土壌(菌株の添加なし)の一部を採取し、上記と同様にして、ヘキサン、ジクロロメタン、およびクロロホルムで順次抽出した各抽出液を合わせて濃縮し、抽出物を得た。得られた抽出物にヘキサンを加え、ヘキサン可溶部と不溶部に分けた後、ヘキサン可溶部をシリカゲルカラムクロマトグラフィーにかけ、ヘキサン、トルエン、クロロホルム:メタノール(1:1)で順次溶出した。各溶出部の重量を測定し、処理前後の重量を比較することにより、脂肪族炭化水素部、芳香族炭化水素部、NSO部、アスファルテン部の各分解率を算出した。本実施例では、このようにして得られた各成分の分解率の合計をA重油またはC重油の分解率とした。   Specifically, first, a part of the soil was collected after 15 days and 30 days from the start of the culture, and extracted sequentially with hexane, dichloromethane, and chloroform. Each extract was combined and concentrated to obtain an extract. On the other hand, a portion of A heavy oil contaminated soil or C heavy oil contaminated soil (without addition of strain) is collected, and in the same manner as above, extracts extracted sequentially with hexane, dichloromethane, and chloroform are combined and concentrated for extraction. I got a thing. Hexane was added to the resulting extract to separate it into a hexane-soluble part and an insoluble part, and the hexane-soluble part was subjected to silica gel column chromatography and eluted sequentially with hexane, toluene, chloroform: methanol (1: 1). By measuring the weight of each elution part and comparing the weights before and after the treatment, the respective decomposition rates of the aliphatic hydrocarbon part, aromatic hydrocarbon part, NSO part and asphaltene part were calculated. In this example, the sum of the decomposition rates of the components thus obtained was defined as the decomposition rate of A heavy oil or C heavy oil.

これらの結果を図4〜図10、並びに表1〜表5に示す。表1は、図4に対応するものであり、各酵素活性の結果を示している。表2は、図5に対応するものであり、各酵素活性の結果を示している。なお、表2には、更に処理開始後30日目の結果も併記している。表3〜表5は、図7に対応するものであり、各酵素活性の結果を示している。このうち、表3はC重油汚染土壌1000ppmのときの結果を、表4はC重油汚染土壌15000ppmのときの結果を、表5はC重油汚染土壌30000ppmのときの結果を、それぞれ、示す。   These results are shown in FIGS. 4 to 10 and Tables 1 to 5. Table 1 corresponds to FIG. 4 and shows the result of each enzyme activity. Table 2 corresponds to FIG. 5 and shows the results of each enzyme activity. Table 2 also shows the results on the 30th day after the start of processing. Tables 3 to 5 correspond to FIG. 7 and show the results of the respective enzyme activities. Among these, Table 3 shows the results when the C heavy oil contaminated soil is 1000 ppm, Table 4 shows the results when the C heavy oil contaminated soil is 15000 ppm, and Table 5 shows the results when the C heavy oil contaminated soil is 30000 ppm.

まず、図4を参照する。図4は、NG007株とS133株を1:1の比率で共培養したときの、A重油汚染土壌(1000ppm、15000ppm、30000ppm)のA重油分解率(左軸)、各種酵素活性(右軸)の結果を示すグラフである(培地への栄養源の添加なし)。図4の上図は培養日数30日の結果を、図4の下図は培養日数15日の結果を、それぞれ、示す。図4中、HOAは、A重油汚染土壌を意味する。   First, referring to FIG. FIG. 4 shows A heavy oil degradation rate (left axis) and various enzyme activities (right axis) of A heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 strain and S133 strain were co-cultured at a ratio of 1: 1. Is a graph showing the results of (without addition of a nutrient source to the medium). The upper diagram in FIG. 4 shows the results for 30 days of culture, and the lower diagram in FIG. 4 shows the results for 15 days in culture. In FIG. 4, HOA means A heavy oil contaminated soil.

その結果、A重油濃度が高濃度の汚染土壌であっても、15日の処理で、67%(A重油濃度15000ppm)、49%(A重油濃度30000ppm)まで浄化できること;更に1ヶ月の処理では、78%(A重油濃度15000ppm)、68%(A重油濃度30000ppm)まで浄化できることが分かった。   As a result, even if it is contaminated soil with a high concentration of A heavy oil, it can be purified to 67% (A heavy oil concentration 15000 ppm) and 49% (A heavy oil concentration 30000 ppm) by treatment for 15 days; , 78% (A heavy oil concentration 15000 ppm), 68% (A heavy oil concentration 30000 ppm) was found to be purified.

次に、図5を参照する。図5は、NG007株とS133株を1:1の比率で共培養したときの、C重油汚染土壌(1000ppm、15000ppm、30000ppm)のC重油分解率(左軸)、各種酵素活性(右軸)の結果を示すグラフである(培地への栄養源の添加なし、培養日数15日)。図5中、HOCは、C重油汚染土壌を意味する。   Reference is now made to FIG. FIG. 5 shows C heavy oil degradation rate (left axis) and various enzyme activities (right axis) of C heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 strain and S133 strain were co-cultured at a ratio of 1: 1. Is a graph showing the results (no addition of nutrients to the medium, 15 days of culture). In FIG. 5, HOC means C heavy oil contaminated soil.

その結果、C重油濃度が高濃度の汚染土壌であっても、15日間の処理で、64%(C重油濃度15000ppm)、58%(C重油濃度30000ppm)まで浄化できることが分かった。   As a result, it was found that even contaminated soil with a high C heavy oil concentration can be purified to 64% (C heavy oil concentration 15000 ppm) and 58% (C heavy oil concentration 30000 ppm) after 15 days of treatment.

次に、図6を参照する。図6は、NG007株とS133株を1:1の比率で共培養したときの、A重油汚染土壌(1000ppm、15000ppm、30000ppm)のA重油分解率について、培地への栄養源添加の影響を調べたグラフである。図6の左図は栄養源添加なしの結果を、図6の右図は栄養源添加ありの結果を、それぞれ、示す。   Reference is now made to FIG. Fig. 6 shows the effects of adding nutrient sources to the medium for the A heavy oil degradation rate of A heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when NG007 and S133 were co-cultured at a ratio of 1: 1. It is a graph. The left figure of FIG. 6 shows the result without the addition of the nutrient source, and the right figure of FIG. 6 shows the result with the addition of the nutrient source.

その結果、共培養時に栄養源を添加することにより、A重油の浄化率が促進されることが分かる。   As a result, it turns out that the purification rate of A heavy oil is accelerated | stimulated by adding a nutrient source at the time of co-culture.

次に、図7〜図10を参照する。これらの図は、NG007株とS133株を1:1の比率で共培養したときの、C重油汚染土壌(1000ppm、15000ppm、30000ppm)のC重油の分解率(図7)およびC重油を構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、アスファルテン部(Asphaltene)、NSO部の分解率(図8〜図10)の結果を、それぞれ、示している。図8〜図10のうち、図8はC重油汚染土壌(1000ppm)のときの結果を、図9はC重油汚染土壌(15000ppm)のときの結果を、図10はC重油汚染土壌(30000ppm)のときの結果を、それぞれ、示している。図8〜図10において、□は栄養源添加なしの結果を、■は栄養源添加ありの結果を、それぞれ、示す。   Reference is now made to FIGS. These figures constitute the C heavy oil decomposition rate (FIG. 7) and C heavy oil of C heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain and S133 strain are co-cultured at a ratio of 1: 1. The result of the decomposition rate (FIGS. 8-10) of each component [aliphatic hydrocarbon part (Aliphetic), aromatic hydrocarbon part (Aromatic), asphaltene part (Asphaltene), NSO part is shown, respectively. 8 to 10, FIG. 8 shows the result when C heavy oil contaminated soil (1000 ppm), FIG. 9 shows the result when C heavy oil contaminated soil (15000 ppm), and FIG. 10 shows C heavy oil contaminated soil (30000 ppm). The results are shown respectively. 8 to 10, □ indicates the result without addition of the nutrient source, and ■ indicates the result with addition of the nutrient source.

その結果、共培養時に栄養源を添加することにより、C重油の浄化率が促進されることが分かる(図7を参照)。   As a result, it is understood that the purification rate of C heavy oil is promoted by adding a nutrient source during co-culture (see FIG. 7).

以上の実験結果より、本発明によれば、原油中のアスファルトだけでなく、C重油やA重油に汚染された土壌も、効率よく浄化できることが分かった。   From the above experimental results, it was found that according to the present invention, not only asphalt in crude oil but also soil contaminated with C heavy oil or A heavy oil can be efficiently purified.

実施例3
本実施例では、NG007株とS133株を1:1の比率で共培養したときの、アスファルト汚染土壌(1000ppm、15000ppm、30000ppm)に対する浄化能をより詳しく調べるため、前述した実施例1(培養日数15日、30日)において培養日数を60日、120日まで延長し、実施例1と同様にしてアスファルトの浄化率を測定した。その結果を図11に示す。図11の左図は栄養源添加なしの結果を、図11の右図は栄養源添加ありの結果を、それぞれ、示す。
Example 3
In this example, in order to investigate in more detail the purification ability against asphalt-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) when the NG007 strain and the S133 strain were co-cultured at a ratio of 1: 1, the above-mentioned Example 1 (culture days) 15 days and 30 days), the culture days were extended to 60 days and 120 days, and the purification rate of asphalt was measured in the same manner as in Example 1. The result is shown in FIG. The left diagram in FIG. 11 shows the result without the addition of the nutrient source, and the right diagram in FIG. 11 shows the result with the addition of the nutrient source.

図11より、栄養源無添加の場合は、アスファルトの濃度にかかわらず、培養日数を60日、120日に延長してもアスファルトの浄化率は、培養日数30日のときと殆ど変化しなかった(図11の左図を参照)のに対し、栄養源を添加すると、アスファルトが高濃度の場合(15000ppm、30000ppm)にアスファルトの浄化率が一層向上し、約90%近傍の極めて高い浄化率を達成することができた。   From FIG. 11, when no nutrient source was added, the purification rate of asphalt was hardly changed from the case of 30 days of culture, even if the culture days were extended to 60 days and 120 days, regardless of the concentration of asphalt. (See the left figure in Fig. 11) On the other hand, when nutrient sources are added, the asphalt purification rate is further improved when the asphalt concentration is high (15000 ppm, 30000 ppm), and an extremely high purification rate of about 90% is obtained. Could be achieved.

参考のため、各濃度のアスファルト汚染土壌を用いたときの各酵素活性(U/l)を表6A(1000ppm)、表6B(15000ppm)、表6C(30000ppm)に示す。これらの酵素活性は、前述した実施例2と同様にして調べたものであり、各表における括弧書の太字部分は、栄養源を添加した後の酵素活性を示す。栄養源は培養後、15日目、30日目、60日目、90日目に添加した。例えば表6AのC12Oにおいて、30日間培養の欄に記載の括弧書の数値(920U/l)は培養後15日目に栄養源を加えて更に15日間(合計30日間)培養したときの値であり;60日間培養の欄に記載の数値(9525U/l)は培養後15日目および30日目に栄養源を加えて更に30日間(合計60日間)培養したときの値であり;120日間培養の欄に記載の数値(10425U/l)は培養後15日目、30日目、60日目、90日目に栄養源を加えて更に30日間(合計120日間)培養したときの値である。   For reference, Table 6A (1000 ppm), Table 6B (15000 ppm), and Table 6C (30000 ppm) show enzyme activities (U / l) when using asphalt-contaminated soils of various concentrations. These enzyme activities were examined in the same manner as in Example 2 described above, and the bold portions in parentheses in each table indicate enzyme activities after addition of a nutrient source. Nutrient sources were added on the 15th, 30th, 60th, and 90th days after culture. For example, in C12O of Table 6A, the numerical value in parentheses (920 U / l) described in the column of 30-day culture is the value when the nutrient source is added on the 15th day after cultivation and further cultured for 15 days (total 30 days). Yes; the value (9525 U / l) described in the column for 60-day culture is the value when the nutrient source is added on the 15th and 30th days after the cultivation and further cultured for 30 days (60 days in total); 120 days The numerical value (10425 U / l) described in the column of culture is a value when the nutrient source is added on the 15th, 30th, 60th, and 90th days after the cultivation and further cultured for 30 days (120 days in total). is there.

更に前述した実施例2と同様にして、アスファルトを構成する各成分[脂肪族炭化水素部(Aliphatic)、芳香族炭化水素部(Aromatic)、NSO部、アスファルテン部(Asphaltene)]の分解率を調べた。その結果を図12に示す。図12Aは栄養源添加なしの結果を、図12Bは栄養源添加ありの結果を、それぞれ、示す。図12Aおよび図12Bにおける、各成分の各濃度(1000ppm、15000ppm、30000ppm)のそれぞれについて、左から順に、培養後15日、30日、60日、120日の結果を示している。その結果、いずれの成分においても、共培養時に栄養源を添加することにより浄化率が促進され、特に高濃度の場合(15000ppm、30000ppm)に浄化率が一層向上する傾向が見られた。   Further, in the same manner as in Example 2 described above, the decomposition rate of each component constituting the asphalt [aliphatic hydrocarbon part (Aliphatic), aromatic hydrocarbon part (Aromatic), NSO part, asphaltene part (Asphaltene)] was examined. It was. The result is shown in FIG. FIG. 12A shows the result without the addition of the nutrient source, and FIG. 12B shows the result with the addition of the nutrient source. The results of 15 days, 30 days, 60 days, and 120 days after culturing are shown in order from the left for each concentration (1000 ppm, 15000 ppm, 30000 ppm) of each component in FIGS. 12A and 12B. As a result, in any of the components, the purification rate was promoted by adding a nutrient source at the time of co-culture, and the purification rate tended to be further improved particularly at high concentrations (15000 ppm, 30000 ppm).

実施例4
本実施例では、汚染土壌としてC重油汚染土壌(1000ppm、15000ppm、30000ppm)を用いたこと以外は前述した実施例3と同様にして、培養日数を60日、120日まで延長したときのC重油の浄化率(図13)、C重油を構成する各成分の浄化率(図14A〜図14C)、各酵素活性(表7A〜表7C)を測定した。その結果、図13、図14A〜図14Cに示すように、栄養源の添加によりC重油の浄化率は増加する傾向が見られ、特にC重油が高濃度の場合(15000ppm、30000ppm)、栄養源添加培地で培養後120日には30000ppmで約80%、150000ppmで約100%に近い浄化率を達成することができた。
Example 4
In this example, C heavy oil obtained by extending the culture days to 60 days and 120 days in the same manner as in Example 3 described above, except that C heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) was used as the contaminated soil. Purification rate (FIG. 13), purification rate of each component constituting C heavy oil (FIGS. 14A to 14C), and enzyme activity (Tables 7A to 7C). As a result, as shown in FIG. 13 and FIG. 14A to FIG. 14C, the purification rate of C heavy oil tends to increase with the addition of nutrient sources, and particularly when C heavy oil is at a high concentration (15000 ppm, 30000 ppm) A purification rate of about 80% at 30000 ppm and about 100% at 150,000 ppm could be achieved 120 days after culturing in the supplemented medium.

実施例5
本実施例では、汚染土壌としてA重油汚染土壌(1000ppm、15000ppm、30000ppm)を用いたこと以外は前述した実施例3と同様にして、培養日数を60日、120日まで延長したときのA重油の浄化率(図15)、A重油を構成する各成分の浄化率(図16A〜図16C)、各酵素活性(表8A〜表8C)を測定した。その結果、図15、図16A〜図16Cに示すように、栄養源の添加によりA重油の浄化率は増加する傾向が見られ、特にA重油が高濃度の場合(15000ppm、30000ppm)、栄養源添加培地で培養後120日には、いずれの濃度も約100%に近い浄化率を達成することができた。
Example 5
In this example, A heavy oil when the number of culture days was extended to 60 days and 120 days in the same manner as in Example 3 except that A heavy oil contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) was used as the contaminated soil. The purification rate (FIG. 15), the purification rate of each component constituting the A heavy oil (FIGS. 16A to 16C), and the enzyme activity (Tables 8A to 8C) were measured. As a result, as shown in FIG. 15 and FIG. 16A to FIG. 16C, the purification rate of heavy fuel oil A tends to increase with the addition of nutrient sources, especially when the heavy fuel oil A has a high concentration (15000 ppm, 30000 ppm). On the 120th day after culturing in the supplemented medium, all concentrations were able to achieve a purification rate close to about 100%.

実施例6
本実施例では、NG007株とS133株とD7株を1:1:1の比率で共培養したときの、石油汚染土壌(1000ppm、15000ppm、30000ppm)に対する浄化能を調べた。具体的には、前述した実施例1および実施例2と同様にして、培地中に栄養源添加あり・添加なしの場合における、A重油、C重油、およびアスファルトの浄化率(培養日数15日、30日、60日)、これらを構成する各成分の浄化率(培養日数15日、30日、60日)を調べた。また、参考のため、前述した実施例2と同様にして、A重油、C重油、およびアスファルトのそれぞれについて、各酵素活性を調べた(培養日数15日、30日、60日)。
Example 6
In this example, the purifying ability for petroleum-contaminated soil (1000 ppm, 15000 ppm, 30000 ppm) was examined when the NG007 strain, the S133 strain, and the D7 strain were co-cultured at a ratio of 1: 1: 1. Specifically, in the same manner as in Example 1 and Example 2 described above, the purification rate of heavy oil A, heavy fuel oil C, and asphalt in the medium with and without the addition of nutrients (culture days 15 days, (30 days, 60 days), the purification rate of each component constituting these (culture days 15 days, 30 days, 60 days) was examined. For reference, the enzyme activities of each of A heavy oil, C heavy oil, and asphalt were examined in the same manner as in Example 2 described above (culture days 15 days, 30 days, and 60 days).

本実施例に用いた三種類の菌株のうち、NG007株およびS133株は、前述した実施例1と同様にして単離した。   Of the three strains used in this example, the NG007 strain and the S133 strain were isolated in the same manner as in Example 1 described above.

また、D7株の単離方法は以下のとおりである。   Moreover, the isolation method of D7 stock | strain is as follows.

愛媛県伊予市郊外の腐った木から採取した12種のキノコを採取した。これらを約5mm角に切り、色素RBBR(レマゾ-ルブリリアントブルーR)(100ppm)を含む前述した麦芽エキス寒天培地に添加し、暗所にて25℃で2週間培養した。その麦芽エキス寒天培地上に生育してきた12種の菌をそれぞれ採取し、C重油1000ppmを上層した麦芽エキス寒天培地(具体的には、麦芽エキス寒天培地の上に、ジクロロメタンに溶解したC重油1000ppmを塗布した後、ジクロロメタンを蒸発させることにより、麦芽エキス寒天培地の上にC重油を載せたもの)にて25℃で7日間培養した。これらのうち、生育速度の速い菌を3種採取し、C重油15000ppmを上層した麦芽エキス寒天培地にて、更に25℃で7日間培養することによって、特に生育が活発であった担子菌であるD7株を単離した。   Twelve kinds of mushrooms were collected from rotten trees in the suburbs of Iyo City, Ehime Prefecture. These were cut into approximately 5 mm squares, added to the aforementioned malt extract agar medium containing the pigment RBBR (Remazo-Brilliant Blue R) (100 ppm), and cultured at 25 ° C. in the dark for 2 weeks. Twelve types of bacteria that have grown on the malt extract agar medium were collected, and a malt extract agar medium overlaid with 1000 ppm C heavy oil (specifically, 1000 ppm C heavy oil dissolved in dichloromethane on the malt extract agar medium) Then, dichloromethane was evaporated, and the mixture was cultured at 25 ° C. for 7 days in a malt extract agar medium with C heavy oil placed thereon. Among these, basidiomycetes that were particularly vigorously grown by collecting three species of fast-growing bacteria and further culturing them at 25 ° C. for 7 days in a malt extract agar medium overlaid with 15,000 ppm C heavy oil. D7 strain was isolated.

得られたD7株を顕微鏡により観察したところ、表面は灰白色の半円形の傘を持ち、その表面は粗毛で覆われ、環紋をあらわす。その幅は2〜7cm、厚さ2〜5mmで、多数重生する。胞子は白色で、その大きさは長さ5〜7μm×幅2〜3μmである。これらはTrametes属菌の形態学的特徴であることから、D7株はTrametes属菌と同定した。   When the obtained D7 strain was observed with a microscope, the surface had a grayish white semi-circular umbrella, and the surface was covered with coarse hairs, representing a ring pattern. Its width is 2 to 7 cm and thickness is 2 to 5 mm. The spores are white, and the size is 5-7 μm long × 2-3 μm wide. Since these are morphological features of the genus Trametes, the D7 strain was identified as the genus Trametes.

上述した三種類の各菌株をそれぞれ、前述した麦芽エキス寒天培地にて、室温(25℃)で7日間培養し、その培養液をホモジナイザーで5000rpm、10分間ホモジナイズした菌糸懸濁液を用意した。このようにして得られた各菌株の菌糸懸濁液を、容量比にて、NG007株:S133株:D7株=1:1:1となるように調整し、上記の実験を行なった。   Each of the three strains described above was cultured on the aforementioned malt extract agar medium at room temperature (25 ° C.) for 7 days, and a hyphae suspension was prepared by homogenizing the culture with a homogenizer at 5000 rpm for 10 minutes. The mycelial suspension of each strain thus obtained was adjusted so that the volume ratio was NG007 strain: S133 strain: D7 strain = 1: 1: 1, and the above experiment was performed.

A重油を用いたときの結果を図17、図20、および表10に示す。詳細には、A重油を構成する各成分の浄化率を図17A、図17Bに示すと共に、A重油の浄化率を図20に示した。また、表10には、各酵素活性の結果を示した。   The results when using heavy oil A are shown in FIGS. In detail, while the purification rate of each component which comprises A heavy oil was shown to FIG. 17A and FIG. 17B, the purification rate of A heavy oil was shown in FIG. Table 10 shows the result of each enzyme activity.

C重油を用いたときの結果を図18、図21、および表11に示す。詳細には、C重油を構成する各成分の浄化率を図18A、図18Bに示すと共に、C重油の浄化率を図21に示した。また、表11には、各酵素活性の結果を示した。   The results when C heavy oil is used are shown in FIGS. In detail, while the purification rate of each component which comprises C heavy oil was shown to FIG. 18A and FIG. 18B, the purification rate of C heavy oil was shown in FIG. Table 11 shows the result of each enzyme activity.

アスファルトを用いたときの結果を図19、図22、および表12に示す。詳細には、アスファルトを構成する各成分の浄化率を図19A、図19Bに示すと共に、アスファルトの浄化率を図22に示した。また、表12には、各酵素活性の結果を示した。   The results when using asphalt are shown in FIG. 19, FIG. 22, and Table 12. Specifically, the purification rate of each component constituting the asphalt is shown in FIGS. 19A and 19B, and the purification rate of asphalt is shown in FIG. Table 12 shows the result of each enzyme activity.

更に、A重油、C重油、アスファルトを用いたときの浄化率の結果を表9にまとめて示す。   Furthermore, Table 9 summarizes the results of the purification rate when using A heavy oil, C heavy oil, and asphalt.

三種類の混合物(NG007株+S133株+D7株)を用いたときの結果を、前述した二種類の混合物((NG007株+S133株)を用いたときの結果と対比すると、三種類の混合物を用いることにより、石油汚染土壌の浄化率が向上する傾向が見られた。この傾向は。特にA重油およびC重油を用いたときに顕著に見られた。例えば、A重油の場合、図20(三種類の混合物)と図15(二種類の混合物)を対比すると、栄養源添加の有無やA重油の濃度に関わらず、培養後15日、30日、60日のいずれにおいても、三種類の混合物を用いたときの方が、A重油の浄化率が向上した。同様の傾向はC重油を用いたときにも見られ、図21(三種類の混合物)と図13(二種類の混合物)を対比すると、栄養源添加の有無やC重油の濃度に関わらず、培養後15日、30日、60日のいずれにおいても、三種類の混合物を用いたときの方が、C重油の浄化率が向上した。   When the results obtained using the three types of mixture (NG007 strain + S133 strain + D7 strain) are compared with the results obtained using the above-mentioned two types of mixture ((NG007 strain + S133 strain)), three types of mixtures are used. As a result, the tendency of improving the purification rate of oil-contaminated soil was observed, particularly when using heavy oil A and heavy oil C. For example, in the case of heavy oil A, the three types of 15) and FIG. 15 (two kinds of mixtures), the three kinds of mixtures can be obtained on the 15th, 30th, and 60th days after culturing regardless of the presence or absence of the nutrient source and the concentration of heavy oil A. When used, the purification rate of heavy oil A was improved, and the same tendency was observed when heavy oil C was used, comparing Fig. 21 (three types of mixtures) and Fig. 13 (two types of mixtures). Then, the presence or absence of nutrient sources and C heavy oil Regardless of the concentration, 15 days after culture, 30 days, in any of the 60 days, who when using three kinds of mixture, with improved purification rate of C heavy oil.

上記実施例1〜実施例6の結果より、本発明の石油汚染土壌浄化剤は、従来法では短時間の高い分解処理が困難であった高濃度石油汚染土壌を十分に浄化できる技術として極めて有用であることが十分実証された。   From the results of Examples 1 to 6, the oil-contaminated soil purifier of the present invention is extremely useful as a technology that can sufficiently purify high-concentration oil-contaminated soil, which was difficult to be decomposed in a short time by the conventional method. It was proved sufficiently.

Claims (3)

Pestalotiopsis属のNG007株(NITE P−1233)を含むことを特徴とする石油汚染土壌の浄化剤。   A cleansing agent for oil-contaminated soil, comprising NG007 strain (NITE P-1233) of the genus Pestalotiopsis. 更にPolyporus属の担子菌に属するS133株(NITE P−461)を含むものである請求項1に記載の石油汚染土壌の浄化剤。   The oil-contaminated soil purifier according to claim 1, further comprising S133 strain (NITE P-461) belonging to basidiomycetes of the genus Polyporus. 更にTrametes属のD7株(NITE P−01703)を含むものである請求項2に記載の石油汚染土壌の浄化剤。   Furthermore, the purification | cleaning agent of the petroleum contaminated soil of Claim 2 which contains D7 strain | stump | stock (NITE P-01703) of Trametes genus.
JP2013197581A 2012-10-05 2013-09-24 Clarifier of oil contaminated soil Pending JP2014088548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013197581A JP2014088548A (en) 2012-10-05 2013-09-24 Clarifier of oil contaminated soil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012223505 2012-10-05
JP2012223505 2012-10-05
JP2013197581A JP2014088548A (en) 2012-10-05 2013-09-24 Clarifier of oil contaminated soil

Publications (1)

Publication Number Publication Date
JP2014088548A true JP2014088548A (en) 2014-05-15

Family

ID=50790705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013197581A Pending JP2014088548A (en) 2012-10-05 2013-09-24 Clarifier of oil contaminated soil

Country Status (1)

Country Link
JP (1) JP2014088548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372170A (en) * 2020-03-03 2021-09-10 和协环保科技股份有限公司 Nutrient medium (carbon-based biological compound culture agent and carbon-based biological compound culture enhancer) for enhancing bioremediation of TPH (thermoplastic vulcanizate) polluted soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372170A (en) * 2020-03-03 2021-09-10 和协环保科技股份有限公司 Nutrient medium (carbon-based biological compound culture agent and carbon-based biological compound culture enhancer) for enhancing bioremediation of TPH (thermoplastic vulcanizate) polluted soil

Similar Documents

Publication Publication Date Title
Babu et al. Penicillium menonorum: a novel fungus to promote growth and nutrient management in cucumber plants
Desai et al. Isolation of laccase producing fungi and partial characterization of laccase
Abdel-Azeem et al. Biodiversity of laccase producing fungi in Egypt
Larsen et al. Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus
Dickson et al. Mycoremediation of petroleum contaminated soils: Progress, prospects and perspectives
Guadarrama-Mendoza et al. Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region
JP6346982B1 (en) Method for isolating Raulterra microorganisms, method for producing plant waste treatment agent, and method for treating plant waste
Kocyigit et al. Production of laccase from Trametes trogii TEM H2: a newly isolated white‐rot fungus by air sampling
JPWO2020009097A1 (en) Decontamination methods and materials used for environments contaminated by petroleum-related substances
Dubey et al. Mycorrhizosphere development and management: The role of nutrients, micro-organisms and bio-chemical activities
Suarez et al. Isolation of bacteria at different points of Pleurotus ostreatus cultivation and their influence in mycelial growth
JP5030066B2 (en) Purification method for oil-contaminated soil
Agrawal et al. Decolorization of textile dye by laccase from newly isolated endophytic fungus Daldinia sp
JP2014088548A (en) Clarifier of oil contaminated soil
Chaijak et al. Decolorization and phenol removal of palm oil mill effluent by termite-associated yeast
KR20200073532A (en) Production of microorganism composition with activity of garbage degradation and reduction of malodor gas and manufacturing method thereof
JP6210560B2 (en) Method for inhibiting the growth of phytopathogenic fungi using Trichoderma spp.
RU2487933C1 (en) STRAIN Penicillium sp, HAVING POLYFUNCTIONAL PROPERTIES AND REALISING TRANSFORMATIONS OF ORGANIC REMAINS OF NATURAL ORIGIN
US8445252B2 (en) Method for producing functional compost, functional compost and compost for proliferation of filamentous fungus
WO2016151656A1 (en) Aromatic chlorine compound degradation agent, and method for degrading aromatic chlorine compound using same
JP4227861B2 (en) A novel microorganism with polycyclic aromatic compound resolution
JP5648838B2 (en) Novel microorganisms with petroleum resolution
JP5598646B2 (en) Cyclic diene compound decomposing bacteria and cyclic diene compound decomposing agent, contaminated environment purification apparatus, cyclic diene compound decomposing method, and pollutant purifying method
Pandey et al. Polycyclic aromatic hydrocarbons (PAHs) metabolism by white rot fungi Agaricomycetes sp AGAT and its microcosm study
Nirmalasari et al. Characterization of lignocellulolytic fungi isolated from cocoa rhizosphere under different cropping patterns