JP2014085383A - Resin film and manufacturing method therefor - Google Patents

Resin film and manufacturing method therefor Download PDF

Info

Publication number
JP2014085383A
JP2014085383A JP2012231715A JP2012231715A JP2014085383A JP 2014085383 A JP2014085383 A JP 2014085383A JP 2012231715 A JP2012231715 A JP 2012231715A JP 2012231715 A JP2012231715 A JP 2012231715A JP 2014085383 A JP2014085383 A JP 2014085383A
Authority
JP
Japan
Prior art keywords
fluoropolymer
photopolymerizable
hollow silica
refractive index
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012231715A
Other languages
Japanese (ja)
Inventor
Shigeto Kobori
重人 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cheil Industries Inc
Original Assignee
Cheil Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheil Industries Inc filed Critical Cheil Industries Inc
Priority to JP2012231715A priority Critical patent/JP2014085383A/en
Priority to KR1020130116957A priority patent/KR20140050538A/en
Publication of JP2014085383A publication Critical patent/JP2014085383A/en
Priority to KR1020160075943A priority patent/KR101665297B1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel and improved resin film which offers enhanced stain resistance, slidability, and film strength, and to provide a manufacturing method for the same.SOLUTION: According to a viewpoint of the present invention, a resin film comprises; a low refractive index layer which contains a plurality of hollow silica particles and a binder resin that binds the hollow silica particles together and has convex portions and concave potions having different layer thickness with a level difference therebetween of 30 to 65 nm; and a photopolymerizable fluorine polymer which bonds with the hollow silica particles distributed on a surface of the low refractive index layer and has lower surface tension than that of the binder resin.

Description

本発明は、樹脂膜及び樹脂膜の製造方法に関する。   The present invention relates to a resin film and a method for producing the resin film.

例えば特許文献1、2に開示されるように、液晶ディスプレイやプラズマディスプレイ等の表面には、反射防止フィルムが貼り付けられることが多い。反射防止フィルムは、ディスプレイ表面での光の反射を防止することで、ディスプレイの視認性を向上させる。従来の反射防止フィルムは、屈折率が低い低屈折率層と、低屈折率層よりも屈折率が高い高屈折率層とを備える。低屈折率層は、中空シリカ粒子と、アクリル樹脂と、フッ素化アクリル樹脂と、添加剤とを含む。   For example, as disclosed in Patent Documents 1 and 2, an antireflection film is often attached to the surface of a liquid crystal display or a plasma display. The antireflection film improves the visibility of the display by preventing the reflection of light on the display surface. The conventional antireflection film includes a low refractive index layer having a low refractive index and a high refractive index layer having a higher refractive index than the low refractive index layer. The low refractive index layer includes hollow silica particles, an acrylic resin, a fluorinated acrylic resin, and an additive.

中空シリカ粒子は、中空構造のシリカ粒子であり、低屈折率層の屈折率を低下させる役割を有する。中空シリカ粒子は、少なくとも光重合性官能基を有する。ここで、光重合性官能基としては、アクリロイル基及びメタクリロイル基が知られている。光重合性官能基は、電離放射線硬化性基とも称される。   The hollow silica particles are silica particles having a hollow structure and have a role of reducing the refractive index of the low refractive index layer. The hollow silica particles have at least a photopolymerizable functional group. Here, acryloyl group and methacryloyl group are known as photopolymerizable functional groups. The photopolymerizable functional group is also referred to as an ionizing radiation curable group.

アクリル樹脂は、中空シリカ粒子同士を結合させるバインダの役割を有する。フッ素化アクリル樹脂は、中空シリカ粒子同士を結合させるとともに、低屈折率層の屈折率を低下させる役割を有する。添加剤は、低屈折率層の表面に分布した中空シリカ粒子の官能基と結合することで、低屈折率層、すなわち反射防止フィルムに防汚性及び滑り性を付与するものである。添加剤としては、シリコーン及びフッ素ポリマーが知られている。   The acrylic resin has a role of a binder for bonding the hollow silica particles. The fluorinated acrylic resin has a role of reducing the refractive index of the low refractive index layer while bonding the hollow silica particles together. The additive imparts antifouling properties and slipperiness to the low refractive index layer, that is, the antireflection film, by binding to the functional groups of the hollow silica particles distributed on the surface of the low refractive index layer. Silicone and fluoropolymers are known as additives.

特開2004−109966号公報JP 2004-109966 A 特開2006−336008号公報JP 2006-336008 A

ところで、添加剤は、低屈折率層の表面に存在する場合に、その機能が発揮される。しかし、従来の低屈折率層は、添加剤が表面だけでなく内部にも分布していた。添加剤が低屈折率層の内部に分布する理由としては、中空シリカ粒子及びフッ素化アクリル樹脂が添加剤のブリードアウト(表面への移動)を阻害することが挙げられる。すなわち、添加剤は、中空シリカ粒子が障壁となるため、表面へ効果的に移動することができない。また、添加剤はフッ素化アクリル樹脂と親和する。例えば、フッ素ポリマー及びフッ素化アクリル樹脂は、いずれもフッ素を含むので、親和しやすい。すなわち、添加剤は、フッ素化アクリル樹脂の近傍にとどまってしまう。   By the way, when the additive is present on the surface of the low refractive index layer, its function is exhibited. However, in the conventional low refractive index layer, the additive is distributed not only on the surface but also inside. The reason why the additive is distributed inside the low refractive index layer is that the hollow silica particles and the fluorinated acrylic resin inhibit the additive bleed out (transfer to the surface). That is, the additive cannot effectively move to the surface because the hollow silica particles serve as a barrier. In addition, the additive is compatible with the fluorinated acrylic resin. For example, since the fluoropolymer and the fluorinated acrylic resin both contain fluorine, they are easily compatible. That is, the additive remains in the vicinity of the fluorinated acrylic resin.

したがって、従来の低屈折率層は、添加剤を低屈折率層の表面に効果的に偏在させることができなかった。このため、従来の低屈折率層は、初期の防汚性及び滑り性はある程度良好となるが、表面拭き取り等を繰り返すことで、これらの特性が顕著に低下するという問題があった。   Therefore, the conventional low refractive index layer cannot effectively distribute the additive on the surface of the low refractive index layer. For this reason, the conventional low refractive index layer has good initial antifouling properties and slipperiness to some extent, but there has been a problem that these characteristics are remarkably lowered by repeated surface wiping.

また、従来の低屈折率層は、低屈折率層の内部に分布した添加剤がバインダ樹脂(すなわち、アクリル樹脂及びフッ素化アクリル樹脂)の架橋密度を低下させるため、膜強度も下がってしまうという問題もあった。具体的には、添加剤(特にフッ素ポリマー)は、アクリル樹脂と反発する。このため、添加剤の周辺にはアクリル樹脂が分布しにくくなり、結果として、アクリル樹脂の架橋密度が低下する。   In addition, in the conventional low refractive index layer, the additive distributed inside the low refractive index layer reduces the crosslink density of the binder resin (that is, acrylic resin and fluorinated acrylic resin), so that the film strength also decreases. There was also a problem. Specifically, the additive (particularly fluoropolymer) repels acrylic resin. For this reason, the acrylic resin is less likely to be distributed around the additive, and as a result, the crosslink density of the acrylic resin is lowered.

一方、特許文献1は、ハードコート層の表面を凹凸形状とし、ハードコート層の表面に低屈折率層を形成することで、低屈折率層の表面を凸凹形状にする技術を開示する。この技術によれば、低屈折率層の凹凸形状により、低屈折率層の防汚性等の多少の改善が期待される。しかし、この技術によっても、添加剤を低屈折率層の表面に効果的に偏在させることができなかった。さらに、この技術では、低屈折率層を形成する前提として、ハードコート層の表面を凹凸形状にする必要があるので、低屈折率層の表面を凹凸形状とするのに非常に手間がかかるという別の問題もあった。   On the other hand, Patent Document 1 discloses a technique for making the surface of the low refractive index layer uneven by forming the surface of the hard coat layer with an uneven shape and forming a low refractive index layer on the surface of the hard coat layer. According to this technique, the uneven shape of the low refractive index layer is expected to improve the antifouling property of the low refractive index layer. However, even with this technique, the additive cannot be effectively unevenly distributed on the surface of the low refractive index layer. Furthermore, in this technique, as a premise for forming the low refractive index layer, it is necessary to make the surface of the hard coat layer uneven, so that it takes much time to make the surface of the low refractive index layer uneven. There was another problem.

特許文献2は、シリカ粒子を有しない相とシリカ粒子を有する相とで海島構造が形成される反射防止膜を開示するが、この技術によっても、添加剤を低屈折率層の表面に効果的に偏在させることができなかった。さらに、この技術では、反射防止膜の耐久性が非常に悪いという別の問題もあった。したがって、特許文献1、2に開示された技術では、上記の問題を何ら解決することができなかった。   Patent Document 2 discloses an antireflection film in which a sea-island structure is formed by a phase having no silica particles and a phase having silica particles. However, even with this technique, the additive is effectively applied to the surface of the low refractive index layer. Could not be unevenly distributed. Furthermore, this technique has another problem that the durability of the antireflection film is very poor. Therefore, the techniques disclosed in Patent Documents 1 and 2 cannot solve the above problems.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、防汚性及び滑り性を向上し、かつ、膜強度を向上することが可能な、新規かつ改良された樹脂膜及び樹脂膜の製造方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and the object of the present invention is to improve the antifouling property and slipperiness, and improve the film strength. An object of the present invention is to provide an improved resin film and a method for producing the resin film.

上記課題を解決するために、本発明のある観点によれば、複数の中空シリカ粒子と、中空シリカ粒子同士を結合するバインダ樹脂とを含み、層厚が互いに異なる凹部及び凸部が形成され、凹部と凸部との高低差が30nm〜65nmとなる低屈折率層と、低屈折率層の表面に分布した中空シリカ粒子に結合し、かつ、バインダ樹脂よりも表面張力が低い光重合性フッ素ポリマーと、を備えることを特徴とする、樹脂膜が提供される。   In order to solve the above problems, according to one aspect of the present invention, a plurality of hollow silica particles and a binder resin that binds the hollow silica particles are formed, and concave portions and convex portions having different layer thicknesses are formed, A photopolymerizable fluorine which binds to a low refractive index layer in which the height difference between the concave and convex portions is 30 nm to 65 nm and hollow silica particles distributed on the surface of the low refractive index layer and has a lower surface tension than the binder resin And a polymer. A resin film is provided.

この観点によれば、樹脂膜は、低屈折率層の表面に分布した中空シリカ粒子に結合し、かつ、バインダ樹脂と反発する光重合性フッ素ポリマーを備える。したがって、光重合性フッ素ポリマーがバインダ樹脂による反発力により効果的にブリードアウトするので、樹脂膜は、光重合性フッ素ポリマーを低屈折率層の表面に偏在させることができる。これにより、本観点では、樹脂膜の防汚性、滑り性、耐擦傷性、及び膜強度を向上させることができる。   According to this aspect, the resin film includes a photopolymerizable fluoropolymer that binds to the hollow silica particles distributed on the surface of the low refractive index layer and repels the binder resin. Accordingly, since the photopolymerizable fluoropolymer effectively bleeds out due to the repulsive force of the binder resin, the photopolymerizable fluoropolymer can be unevenly distributed on the surface of the low refractive index layer. Thereby, in this viewpoint, the antifouling property, slipperiness, scratch resistance, and film strength of the resin film can be improved.

さらに、本観点によれば、低屈折率層の表面に凹凸形状、すなわち海島構造が形成されるので、この海島構造によって樹脂膜の表面と他の物体との摩擦力を低減させることができ、ひいては、樹脂膜の防汚性、滑り性、及び耐擦傷性を向上させることができる。   Furthermore, according to this aspect, since the irregular shape, that is, the sea-island structure is formed on the surface of the low refractive index layer, this sea-island structure can reduce the frictional force between the surface of the resin film and other objects, As a result, the antifouling property, slipperiness, and scratch resistance of the resin film can be improved.

ここで、低屈折率層の表面に分布した中空シリカ粒子に結合し、かつ、バインダ樹脂よりも表面張力が低い熱重合性フッ素ポリマー及び光重合性フッ素ポリマーのうち、少なくとも光重合性フッ素ポリマーを備え、中空シリカ粒子の含有率は5質量%より大きく50質量%より小さく、光重合性フッ素ポリマー及び熱重合性フッ素ポリマーの含有率の合計は1.5質量%以上7質量%以下であり、光重合性フッ素ポリマーの含有率は1.5質量%以上であり、熱重合性フッ素ポリマーの含有率と光重合性フッ素ポリマーの含有率との比は0.43より小さくてもよい。   Here, at least the photopolymerizable fluoropolymer is bonded to the hollow silica particles distributed on the surface of the low refractive index layer, and the photopolymerizable fluoropolymer has a surface tension lower than that of the binder resin. Provided, the content of the hollow silica particles is larger than 5% by mass and smaller than 50% by mass, and the total content of the photopolymerizable fluoropolymer and the thermopolymerizable fluoropolymer is 1.5% by mass or more and 7% by mass or less, The content of the photopolymerizable fluoropolymer is 1.5% by mass or more, and the ratio between the content of the thermopolymerizable fluoropolymer and the content of the photopolymerizable fluoropolymer may be smaller than 0.43.

この観点によれば、低屈折率層に高低差が30nm〜65nmとなる凹部及び凸部をより確実に形成することができる。   According to this viewpoint, the concave and convex portions having a height difference of 30 nm to 65 nm can be more reliably formed in the low refractive index layer.

また、バインダ樹脂は、他の官能基と水素結合を形成可能な水素結合形成基を有していてもよい。   Further, the binder resin may have a hydrogen bond forming group capable of forming a hydrogen bond with another functional group.

この観点によれば、バインダ樹脂は、水素結合形成基を有するので、光重合性フッ素ポリマー及び熱重合性フッ素ポリマーを効果的にブリードアウトさせることができる。   According to this aspect, since the binder resin has a hydrogen bond forming group, the photopolymerizable fluoropolymer and the thermopolymerizable fluoropolymer can be effectively bleed out.

また、バインダ樹脂は、水素結合形成基として水酸基を有していてもよい。   The binder resin may have a hydroxyl group as a hydrogen bond forming group.

この観点によれば、バインダ樹脂は、水素結合形成基として水酸基を有するので、光重合性フッ素ポリマー及び熱重合性フッ素ポリマーを効果的にブリードアウトさせることができる。   According to this viewpoint, since the binder resin has a hydroxyl group as a hydrogen bond forming group, the photopolymerizable fluoropolymer and the thermopolymerizable fluoropolymer can be effectively bleed out.

また、熱重合性フッ素ポリマーの重量平均分子量は、光重合性フッ素ポリマーの重量平均分子量よりも大きくてもよい。   Further, the weight average molecular weight of the thermally polymerizable fluoropolymer may be larger than the weight average molecular weight of the photopolymerizable fluoropolymer.

この観点によれば、熱重合性フッ素ポリマーの重量平均分子量は、光重合性フッ素ポリマー41の重量平均分子量よりも大きい。したがって、光重合性フッ素ポリマー及び熱重合性フッ素ポリマーは、効果的にブリードアウトすることができる。また、光重合性フッ素ポリマーが相溶化剤として機能するので、光重合性フッ素ポリマー及び熱重合性フッ素ポリマーの溶媒への溶解性が向上する。   According to this viewpoint, the weight average molecular weight of the thermally polymerizable fluoropolymer is larger than the weight average molecular weight of the photopolymerizable fluoropolymer 41. Therefore, the photopolymerizable fluoropolymer and the thermopolymerizable fluoropolymer can effectively bleed out. Moreover, since the photopolymerizable fluoropolymer functions as a compatibilizing agent, the solubility of the photopolymerizable fluoropolymer and the thermopolymerizable fluoropolymer in the solvent is improved.

また、熱重合性フッ素ポリマーの重量平均分子量は10000以上であり、光重合性フッ素ポリマーの重量平均分子量は10000未満であってもよい。   Further, the weight average molecular weight of the thermally polymerizable fluoropolymer may be 10,000 or more, and the weight average molecular weight of the photopolymerizable fluoropolymer may be less than 10,000.

この観点によれば、熱重合性フッ素ポリマーの重量平均分子量は10000以上であり、光重合性フッ素ポリマーの重量平均分子量は10000未満であるので、光重合性フッ素ポリマー及び熱重合性フッ素ポリマーは、効果的にブリードアウトすることができる。また、光重合性フッ素ポリマーが相溶化剤として機能するので、光重合性フッ素ポリマー及び熱重合性フッ素ポリマーの溶媒への溶解性が向上する。   According to this aspect, since the weight average molecular weight of the thermopolymerizable fluoropolymer is 10,000 or more and the weight average molecular weight of the photopolymerizable fluoropolymer is less than 10,000, the photopolymerizable fluoropolymer and the thermopolymerizable fluoropolymer are Bleed out effectively. Moreover, since the photopolymerizable fluoropolymer functions as a compatibilizing agent, the solubility of the photopolymerizable fluoropolymer and the thermopolymerizable fluoropolymer in the solvent is improved.

本発明の他の観点によれば、中空シリカ粒子と、中空シリカ粒子同士を結合可能なバインダ用モノマーと、中空シリカ粒子に結合可能であり、かつ、バインダ用モノマーよりも表面張力が低い光重合性フッ素ポリマー及び熱重合性フッ素ポリマーのうち、少なくとも光重合性フッ素ポリマーと、を含むコート液を生成するステップと、コート液を基板に塗布するステップと、重合反応を開始させるステップと、を含み、中空シリカ粒子の含有率は5質量%より大きく50質量%より小さく、光重合性フッ素ポリマー及び熱重合性フッ素ポリマーの含有率の合計は1.5質量%以上7質量%以下であり、光重合性フッ素ポリマーの含有率は1.5質量%以上であり、熱重合性フッ素ポリマーの含有率と光重合性フッ素ポリマーの含有率との比は0.43より小さいことを特徴とする、樹脂膜の製造方法が提供される。   According to another aspect of the present invention, a hollow silica particle, a binder monomer capable of binding the hollow silica particles, and a photopolymerization capable of binding to the hollow silica particle and having a lower surface tension than the binder monomer. A coating liquid containing at least a photopolymerizable fluoropolymer of the polymerizable fluoropolymer and the thermopolymerizable fluoropolymer, a step of applying the coating liquid to a substrate, and a step of initiating a polymerization reaction. The content of the hollow silica particles is larger than 5% by mass and smaller than 50% by mass, and the total content of the photopolymerizable fluoropolymer and the thermopolymerizable fluoropolymer is 1.5% by mass or more and 7% by mass or less. The content of the polymerizable fluoropolymer is 1.5% by mass or more, and the ratio between the content of the thermopolymerizable fluoropolymer and the content of the photopolymerizable fluoropolymer is And it is smaller than .43, the production method of the resin film is provided.

この観点によれば、樹脂膜は、各材料が溶解したコート液を塗布し、重合反応を開始させるだけで作成可能であるので、容易に作成される。   According to this aspect, the resin film can be easily created because it can be created simply by applying a coating solution in which each material is dissolved and starting the polymerization reaction.

以上説明したように本発明によれば、光重合性フッ素ポリマーがバインダ樹脂による反発力により効果的にブリードアウトし、かつ、低屈折率層の表面に海島構造が形成される。したがって、本発明によれば、樹脂膜の防汚性、滑り性、耐擦傷性、及び膜強度を向上させることができる。   As described above, according to the present invention, the photopolymerizable fluoropolymer is effectively bleed out by the repulsive force of the binder resin, and the sea-island structure is formed on the surface of the low refractive index layer. Therefore, according to the present invention, the antifouling property, slipperiness, scratch resistance and film strength of the resin film can be improved.

本発明の実施形態に係る樹脂膜の構成を模式的に示す側断面図である。It is a sectional side view showing typically the composition of the resin film concerning the embodiment of the present invention. 樹脂膜の形状測定レーザマイクロスコープによる表面写真である。It is the surface photograph by the shape measurement laser microscope of a resin film.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

<1.樹脂膜の構成>
まず、図1に基づいて、本実施形態に係る樹脂膜10の構成について説明する。樹脂膜10は、低屈折率層10aと、添加剤40とを含む。低屈折率層10aは、中空シリカ粒子(中空シリカ微粒子)20と、バインダ樹脂30と、光開始剤とを有する。本実施形態の樹脂膜10は、例えば反射防止フィルムに使用されるが、他の分野、例えば低屈折率の膜を使用する分野等に好適に適用される。
<1. Configuration of resin film>
First, based on FIG. 1, the structure of the resin film 10 which concerns on this embodiment is demonstrated. The resin film 10 includes a low refractive index layer 10 a and an additive 40. The low refractive index layer 10a includes hollow silica particles (hollow silica fine particles) 20, a binder resin 30, and a photoinitiator. The resin film 10 of the present embodiment is used for, for example, an antireflection film, but is suitably applied to other fields, for example, a field using a low refractive index film.

中空シリカ粒子20は、低屈折率層10a内に分散しており、少なくとも光重合性官能基を有するナノスケールの粒子である。具体的には、中空シリカ粒子20は、外殻層を有し、外殻層の内部は中空または多孔質体となっている。外殻層及び多孔質体は、主に酸化ケイ素で構成される。また、外殻層には、光重合性官能基が多数結合している。光重合性官能基と外殻層とは、Si−O−Si結合及び水素結合のうち、少なくとも一方の結合を介して結合されている。光重合性官能基としては、アクリロイル基及びメタクリロイル基が挙げられる。すなわち、中空シリカ粒子20は、光重合性官能基として、アクリロイル基及びメタクリロイル基のうち少なくとも一方を含む。光重合性官能基は、電離放射線硬化性基とも称される。中空シリカ粒子20は少なくとも光重合性官能基を有していればよく、これらの官能基の数、種類は特に限定されない。また、中空シリカ粒子20は、他の官能基、例えば熱重合性官能基を有していてもよい。熱重合性官能基としては、例えば水酸基、シラノール基、アルコキシ基、ハロゲン、水素、イソシアネート基などが挙げられる。熱重合性官能基は、光重合性官能基と同様の形態で中空シリカ粒子20に結合している。   The hollow silica particles 20 are nanoscale particles dispersed in the low refractive index layer 10a and having at least a photopolymerizable functional group. Specifically, the hollow silica particle 20 has an outer shell layer, and the inside of the outer shell layer is hollow or porous. The outer shell layer and the porous body are mainly composed of silicon oxide. A large number of photopolymerizable functional groups are bonded to the outer shell layer. The photopolymerizable functional group and the outer shell layer are bonded through at least one of a Si—O—Si bond and a hydrogen bond. Examples of the photopolymerizable functional group include an acryloyl group and a methacryloyl group. That is, the hollow silica particle 20 includes at least one of an acryloyl group and a methacryloyl group as a photopolymerizable functional group. The photopolymerizable functional group is also referred to as an ionizing radiation curable group. The hollow silica particle 20 should just have a photopolymerizable functional group at least, and the number and kind of these functional groups are not specifically limited. Moreover, the hollow silica particle 20 may have another functional group, for example, a thermally polymerizable functional group. Examples of the thermally polymerizable functional group include a hydroxyl group, a silanol group, an alkoxy group, a halogen, hydrogen, and an isocyanate group. The thermally polymerizable functional group is bonded to the hollow silica particle 20 in the same form as the photopolymerizable functional group.

中空シリカ粒子20の平均粒径は特に限定されないが、10〜100nmであることが好ましく、40〜60nmであることがより好ましい。平均粒径が10nm未満の場合、中空シリカ粒子20が凝集しやすくなるので、中空シリカ粒子20の均一な分散が容易でない場合がある。また、平均粒径が100nmを超える場合、低屈折率層10aの透明性が落ちる場合がある。   The average particle diameter of the hollow silica particles 20 is not particularly limited, but is preferably 10 to 100 nm, and more preferably 40 to 60 nm. When the average particle diameter is less than 10 nm, the hollow silica particles 20 are likely to aggregate, and thus the uniform dispersion of the hollow silica particles 20 may not be easy. Further, when the average particle diameter exceeds 100 nm, the transparency of the low refractive index layer 10a may be lowered.

ここで、平均粒径は、中空シリカ粒子20の粒径(中空シリカ粒子20を球と仮定したときの直径)の算術平均値である。中空シリカ粒子20の粒径は、例えば、レーザ回折・散乱粒度分布計(具体的には、HORIBA LA−920)によって測定される。なお、レーザ回折・散乱粒度分布計は、HORIBA LA−920に限られない。また、中空シリカ粒子20の屈折率は、低屈折率層10aに要求される屈折率に応じて変動するが、例えば1.10〜1.40、好ましくは1.15〜1.25となる。中空シリカ粒子20の屈折率は、例えば、シミュレーションソフト(Lambda Reserch社TracePro)によって測定される。   Here, the average particle diameter is an arithmetic average value of the particle diameter of the hollow silica particles 20 (the diameter when the hollow silica particles 20 are assumed to be spheres). The particle size of the hollow silica particles 20 is measured by, for example, a laser diffraction / scattering particle size distribution meter (specifically, HORIBA LA-920). The laser diffraction / scattering particle size distribution meter is not limited to HORIBA LA-920. Moreover, although the refractive index of the hollow silica particle 20 changes according to the refractive index requested | required of the low refractive index layer 10a, it will be 1.10-1.40, for example, Preferably it will be 1.15-1.25. The refractive index of the hollow silica particles 20 is measured by, for example, simulation software (Lambda Research TracePro).

中空シリカ粒子20の含有率(中空シリカ粒子20、バインダ樹脂30、添加剤40、及び光開始剤の総質量に対する質量%)は、5質量%より大きく50質量%未満となるとなる。後述するように、中空シリカ粒子20の含有率がこの範囲となる場合に、30nm〜65nmの高低差hを有する海島構造が形成され、ひいては、樹脂膜10の特性が良好となる。また、中空シリカ粒子20は、低屈折率層10aの屈折率を下げる役割を有するので、含有率が低すぎる(5質量%以下となる)と、低屈折率層10aの屈折率が十分に低下しない。より好ましい含有率は、20質量%以上40質量%以下となる。中空シリカ粒子の含有率がこの範囲となる場合、樹脂膜10の特性がさらに良好になる。なお、中空シリカ粒子20の含有率が大きいほど、高低差hが大きくなりやすい傾向がある。   The content of the hollow silica particles 20 (mass% with respect to the total mass of the hollow silica particles 20, the binder resin 30, the additive 40, and the photoinitiator) is greater than 5 mass% and less than 50 mass%. As will be described later, when the content of the hollow silica particles 20 falls within this range, a sea-island structure having a height difference h of 30 nm to 65 nm is formed, and the characteristics of the resin film 10 are improved. Further, since the hollow silica particles 20 have a role of lowering the refractive index of the low refractive index layer 10a, if the content is too low (below 5% by mass), the refractive index of the low refractive index layer 10a is sufficiently lowered. do not do. A more preferable content rate is 20% by mass or more and 40% by mass or less. When the content of the hollow silica particles falls within this range, the characteristics of the resin film 10 are further improved. In addition, there exists a tendency for the height difference h to become large, so that the content rate of the hollow silica particle 20 is large.

バインダ樹脂30は、網目構造となっており、中空シリカ粒子20同士を連結する。バインダ樹脂30を構成するモノマー、すなわちバインダ用モノマーは、水素結合形成基と、2以上の光重合性官能基とを有する。水素結合形成基は、他の官能基と水素結合を形成可能な官能基であり、例えば水酸基である。なお、水素結合形成基は、この例に限られず、水素結合(すなわち、共有結合で他の原子と結びついた水素原子が、水素原子の近傍に位置する窒素、酸素、硫黄、フッ素、π電子系などの孤立電子対とつくる非共有結合性の引力的相互作用)を形成するものであれば、どのような官能基であってもよい。光重合性官能基は、上述したように、例えばアクリロイル基及びメタクリロイル基となる。したがって、バインダ用モノマーは、多官能アクリレートモノマーである。   The binder resin 30 has a network structure and connects the hollow silica particles 20 to each other. The monomer constituting the binder resin 30, that is, the binder monomer has a hydrogen bond forming group and two or more photopolymerizable functional groups. The hydrogen bond forming group is a functional group capable of forming a hydrogen bond with another functional group, and is, for example, a hydroxyl group. The hydrogen bond forming group is not limited to this example, but a hydrogen bond (that is, a nitrogen atom in which a hydrogen atom bonded to another atom by a covalent bond is located in the vicinity of the hydrogen atom, oxygen, sulfur, fluorine, π electron system) Any functional group may be used as long as it forms a non-covalent attractive interaction with a lone electron pair. As described above, the photopolymerizable functional group is, for example, an acryloyl group or a methacryloyl group. Therefore, the binder monomer is a polyfunctional acrylate monomer.

ここで、バインダ樹脂30は、水素結合形成基を有するバインダ用モノマーを重合したものなので、後述する添加剤40を効果的にブリードアウトさせることができる。すなわち、バインダ樹脂30は水素結合形成基を有するため、表面張力が大きくなる。一方、添加剤40は、フッ素ポリマーであるので、表面張力が低い。したがって、添加剤40は、バインダ樹脂30と反発することで、効果的にブリードアウトする。なお、バインダ用モノマーの表面張力、好ましくは36以上45以下となる。表面張力がこの範囲となる場合に、添加剤40は効果的にブリードアウトする。表面張力は、例えば、自動表面張力計(具体的には、協和界面科学 DY−300)によって測定される。なお、自動表面張力計は、協和界面科学 DY−300に限られない。なお、本発明者がバインダ樹脂30についてさらに検討したところ、バインダ用モノマーに水素結合形成基がない場合、低屈折率層10aに海島構造が形成されないことが判明した。したがって、水素結合形成基は、低屈折率層10aに海島構造を形成するという点でも重要な構成となる。   Here, since the binder resin 30 is obtained by polymerizing a binder monomer having a hydrogen bond-forming group, the additive 40 described later can be effectively bleed out. That is, since the binder resin 30 has a hydrogen bond forming group, the surface tension is increased. On the other hand, since the additive 40 is a fluoropolymer, the surface tension is low. Therefore, the additive 40 effectively bleeds out by repelling the binder resin 30. The surface tension of the binder monomer is preferably 36 or more and 45 or less. When the surface tension falls within this range, the additive 40 effectively bleeds out. The surface tension is measured by, for example, an automatic surface tension meter (specifically, Kyowa Interface Science DY-300). The automatic surface tension meter is not limited to Kyowa Interface Science DY-300. In addition, when this inventor examined further about the binder resin 30, when the monomer for binders did not have a hydrogen bond formation group, it became clear that a sea island structure was not formed in the low refractive index layer 10a. Therefore, the hydrogen bond forming group is an important configuration in that it forms a sea-island structure in the low refractive index layer 10a.

バインダ用モノマーとしては、グリセリンジ(メタ)アクリレート、2−ヒドロキシ−3−アクリロイロキシプロピル(メタ)アクリレート、イソシアヌレートアクリレート等のジアクリレート、ペンタエリスリトール(メタ)アクリレート等のトリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート誘導体、ジペンタエリスリトール(メタ)アクリレート等のペンタ(メタ)アクリレート等が挙げられる。もちろん、バインダ用モノマーは、これら以外のものであってもよい。すなわち、バインダ用モノマーは、水素結合形成基と、2以上の光重合性官能基とを有するものであれば、どのようなものであってもよい。   Binder monomers include diacrylates such as glycerin di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, isocyanurate acrylate, tri (meth) acrylates such as pentaerythritol (meth) acrylate, Examples thereof include penta (meth) acrylate such as pentaerythritol (meth) acrylate derivative and dipentaerythritol (meth) acrylate. Of course, the monomer for binder may be other than these. That is, the binder monomer may be any as long as it has a hydrogen bond forming group and two or more photopolymerizable functional groups.

バインダ用モノマーは、合計で3つ以上の官能基を有するので、互いに重合することで複雑な3次元構造(網目構造)のバインダ樹脂30を形成する。すなわち、バインダ用モノマーの水素結合形成基は、中空シリカ粒子20の熱重合性官能基または他のバインダ用モノマーの水素結合形成基と熱重合(縮重合)する。また、バインダ用モノマーの光重合性官能基は、中空シリカ粒子20の光重合性官能基または他のバインダ用モノマーの光重合性官能基と光重合する。これにより、複雑な3次元構造(網目構造)のバインダ樹脂30が形成される。また、バインダ用モノマーは添加剤40をブリードアウトするので、低屈折率層10a内に残留する添加剤40を少なくすることができる。したがって、バインダ樹脂30の架橋密度が向上し、ひいては、低屈折率層10aの機械強度が向上する。   Since the binder monomers have a total of three or more functional groups, the binder resin 30 having a complicated three-dimensional structure (network structure) is formed by polymerizing each other. That is, the hydrogen bond-forming group of the binder monomer is thermally polymerized (condensation polymerization) with the thermally polymerizable functional group of the hollow silica particle 20 or the hydrogen bond-forming group of another binder monomer. Further, the photopolymerizable functional group of the binder monomer is photopolymerized with the photopolymerizable functional group of the hollow silica particle 20 or the photopolymerizable functional group of another binder monomer. Thereby, the binder resin 30 having a complicated three-dimensional structure (network structure) is formed. Moreover, since the binder monomer bleeds out the additive 40, the additive 40 remaining in the low refractive index layer 10a can be reduced. Therefore, the crosslinking density of the binder resin 30 is improved, and consequently the mechanical strength of the low refractive index layer 10a is improved.

なお、中空シリカ粒子20同士が直接結合する場合もある。すなわち、中空シリカ粒子20の熱重合性官能基は、他の中空シリカ粒子20の熱重合性官能基と結合し、中空シリカ粒子20の光重合性官能基は、他の中空シリカ粒子20の光重合性官能基と結合する。このような結合が可能になるのは、樹脂膜10の製造時に中空シリカ粒子20を事前に修飾しないからである。   In some cases, the hollow silica particles 20 are directly bonded to each other. That is, the thermally polymerizable functional group of the hollow silica particle 20 is bonded to the thermally polymerizable functional group of the other hollow silica particle 20, and the photopolymerizable functional group of the hollow silica particle 20 is the light of the other hollow silica particle 20. Bonds with a polymerizable functional group. Such bonding is possible because the hollow silica particles 20 are not modified in advance when the resin film 10 is manufactured.

添加剤40は、低屈折率層10aに防汚性、滑り性、及び耐擦傷性を付与するために添加されるものである。添加剤40は、少なくとも光重合性フッ素ポリマー41で構成される。添加剤40には、熱重合性フッ素ポリマー42が含まれていても良い。   The additive 40 is added to impart antifouling property, slipperiness and scratch resistance to the low refractive index layer 10a. The additive 40 is composed of at least a photopolymerizable fluoropolymer 41. The additive 40 may contain a thermally polymerizable fluoropolymer 42.

光重合性フッ素ポリマーは、光重合性官能基を有するフッ素ポリマーであり、以下の化学式(1)で表される。   The photopolymerizable fluoropolymer is a fluoropolymer having a photopolymerizable functional group, and is represented by the following chemical formula (1).

化学式(1)中、Rf1は(パー)フルオロアルキル基又は(パー)フルオロポリエーテル基、W1は連結基、RA1は重合性不飽和基を有する官能基、すなわち光重合性官能基を表す。nは1〜3、mは1〜3の整数を表す)。   In chemical formula (1), Rf1 represents a (per) fluoroalkyl group or (per) fluoropolyether group, W1 represents a linking group, and RA1 represents a functional group having a polymerizable unsaturated group, that is, a photopolymerizable functional group. n represents an integer of 1 to 3, and m represents an integer of 1 to 3.

(パー)フルオロアルキル基の構造は、特に限定されない。すなわち、(パー)フルオロアルキル基は、直鎖(例えば−CFCF,−CH(CFH,−CH(CFCF,−CHCH(CFH等)であっても、分岐構造(例えばCH(CF,CHCF(CF,CH(CH)CFCF,CH(CH)(CFCFH等)であっても、脂環式構造(好ましくは5員環又は6員環、例えばパーフルオロシクロへキシル基、パーフルオロシクロペンチル基又はこれらで置換されたアルキル基等)であっても良い。 The structure of the (per) fluoroalkyl group is not particularly limited. That is, the (per) fluoroalkyl group is a straight chain (for example, —CF 2 CF 3 , —CH 2 (CF 2 ) 4 H, —CH 2 (CF 2 ) 8 CF 3 , —CH 2 CH 2 (CF 2 ). 4 H, etc.) even in a branched structure (eg, CH (CF 3 ) 2 , CH 2 CF (CF 3 ) 2 , CH (CH 3 ) CF 2 CF 3 , CH (CH 3 ) (CF 2 ) 5 CF 2 H) or an alicyclic structure (preferably a 5-membered or 6-membered ring such as a perfluorocyclohexyl group, a perfluorocyclopentyl group, or an alkyl group substituted with these). good.

(パー)フルオロポリエーテル基は、エーテル結合を有する(パー)フルオロアルキル基であり、その構造は特に限定されない。すなわち、(パー)フルオロポリエーテル基としては、例えば、−CHOCHCFCF、−CHCHOCHH、−CHCHOCHCH17、−CHCHOCFCFOCFCFH、フッ素原子を5個以上有する炭素数4〜20のフルオロシクロアルキル基等があげられる。また、パーフルオロポリエーテル基としては、例えば、−(CFO(CFCFO)、−[CF(CF)CFO]―[CF(CF)]、(CFCFCFO)、(CFCFO)などが挙げられる。ここで、x、yは任意の自然数である。 The (per) fluoropolyether group is a (per) fluoroalkyl group having an ether bond, and the structure thereof is not particularly limited. That is, as the (per) fluoropolyether group, for example, —CH 2 OCH 2 CF 2 CF 3 , —CH 2 CH 2 OCH 2 C 4 F 8 H, —CH 2 CH 2 OCH 2 CH 2 C 8 F 17 , -CH 2 CH 2 OCF 2 CF 2 OCF 2 CF 2 H, fluorocycloalkyl group having 4 to 20 carbon atoms such as a fluorine atom 5 or more can be mentioned. As the perfluoropolyether group, for example, - (CF 2) x O (CF 2 CF 2 O) y, - [CF (CF 3) CF 2 O] x - [CF 2 (CF 3)], (CF 2 CF 2 CF 2 O ) x, and the like (CF 2 CF 2 O) x . Here, x and y are arbitrary natural numbers.

連結基は特に限定されるものではないが、例えば、メチレン基、フェニレン基、アルキレン基、アリーレン基、ヘテロアルキレン基、又はこれらの組み合わさった連結基が挙げられる。これらの連結基は、更に、カルボニル基、カルボニルオキシ基、カルボニルイミノ基、スルホンアミド基等やこれらの組み合わさった官能基を有しても良い。光重合性官能基としては、アクリロイル基及びメタクリロイル基等が挙げられる。   The linking group is not particularly limited, and examples thereof include a methylene group, a phenylene group, an alkylene group, an arylene group, a heteroalkylene group, or a combination group in which these are combined. These linking groups may further have a carbonyl group, a carbonyloxy group, a carbonylimino group, a sulfonamide group, or the like, or a functional group obtained by combining these. Examples of the photopolymerizable functional group include an acryloyl group and a methacryloyl group.

光重合性フッ素ポリマー41の重量平均分子量Mwは、後述する熱重合性フッ素ポリマー42の重量平均分子量Mwよりも小さく、好ましくは10000未満である。なお、光重合性フッ素ポリマーの重量平均分子量Mwの下限値は特に限定されないが、例えば3000以上となる。また、光重合性フッ素ポリマー41のオレイン酸転落角は、樹脂膜10に要求される防汚性、滑り性に応じて選択されるが、例えば10度以下となる。オレイン酸転落角は、例えば、全自動接触角計DM700(協和界面科学株式会社製)によって測定される。   The weight average molecular weight Mw of the photopolymerizable fluoropolymer 41 is smaller than the weight average molecular weight Mw of the thermopolymerizable fluoropolymer 42 described later, preferably less than 10,000. The lower limit of the weight average molecular weight Mw of the photopolymerizable fluoropolymer is not particularly limited, but is, for example, 3000 or more. In addition, the oleic acid falling angle of the photopolymerizable fluoropolymer 41 is selected according to the antifouling property and slipperiness required for the resin film 10 and is, for example, 10 degrees or less. The oleic acid falling angle is measured by, for example, a fully automatic contact angle meter DM700 (manufactured by Kyowa Interface Science Co., Ltd.).

熱重合性フッ素ポリマー42は、熱重合性官能基を有するフッ素ポリマーであり、以下の化学式(2)で表される。   The thermopolymerizable fluoropolymer 42 is a fluoropolymer having a thermopolymerizable functional group, and is represented by the following chemical formula (2).

化学式(2)中、Rf2は(パー)フルオロアルキル基又は(パー)フルオロポリエーテル基、W2は連結基、Xは熱重合性官能基であり、例えば炭素数1〜4のアルコキシ基、シラノール基、ハロゲンまたは水素である。nは1〜3を表す。熱重合性官能基は、上述した水素結合形成基を含む概念である。   In chemical formula (2), Rf2 is a (per) fluoroalkyl group or (per) fluoropolyether group, W2 is a linking group, and X is a thermally polymerizable functional group, such as an alkoxy group having 1 to 4 carbon atoms or a silanol group. , Halogen or hydrogen. n represents 1-3. The thermally polymerizable functional group is a concept including the above-described hydrogen bond forming group.

(パー)フルオロアルキル基、(パー)フルオロポリエーテル基、及び連結基の構造は光重合性フッ素ポリマーと同様である。熱重合性フッ素ポリマーの重量平均分子量Mwは、光重合性フッ素ポリマーの重量平均分子量Mwよりも大きく、好ましくは10000以上である。なお、熱重合性フッ素ポリマーの重量平均分子量Mwの上限値は特に限定されないが、例えば50000以下となる。また、光重合性フッ素ポリマー41のオレイン酸転落角は、樹脂膜10に要求される防汚性、滑り性に応じて選択されるが、例えば10度以下となる。   The structures of (per) fluoroalkyl group, (per) fluoropolyether group, and linking group are the same as those of the photopolymerizable fluoropolymer. The weight average molecular weight Mw of the thermopolymerizable fluoropolymer is larger than the weight average molecular weight Mw of the photopolymerizable fluoropolymer, preferably 10,000 or more. In addition, although the upper limit of the weight average molecular weight Mw of a thermopolymerizable fluoropolymer is not specifically limited, For example, it will be 50000 or less. In addition, the oleic acid falling angle of the photopolymerizable fluoropolymer 41 is selected according to the antifouling property and slipperiness required for the resin film 10 and is, for example, 10 degrees or less.

このように、光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42は、基本骨格としてフッ素ポリマー部分を有するので、このフッ素ポリマー部分とバインダ樹脂30の水素結合形成基とが反発しあう。これにより、光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42は、効果的にブリードアウトする(すなわち、低屈折率層10aの表面に偏在する)。   Thus, since the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42 have a fluoropolymer portion as a basic skeleton, the fluoropolymer portion and the hydrogen bond forming group of the binder resin 30 repel each other. Thereby, the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42 effectively bleed out (that is, unevenly distributed on the surface of the low refractive index layer 10a).

そして、光重合性フッ素ポリマー41は、低屈折率層10aの表面に分布した中空シリカ粒子20及びバインダ樹脂30の光重合性官能基と結合し、熱重合性フッ素ポリマー42は、低屈折率層10aの表面に分布した中空シリカ粒子20及びバインダ樹脂30の熱重合性官能基と結合する。このように、本実施形態では、低屈折率層10aの表面に配置された中空シリカ粒子20及びバインダ樹脂30は、光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42で保護される。   The photopolymerizable fluoropolymer 41 is bonded to the photopolymerizable functional groups of the hollow silica particles 20 and the binder resin 30 distributed on the surface of the low refractive index layer 10a, and the thermopolymerizable fluoropolymer 42 is combined with the low refractive index layer. The hollow silica particles 20 distributed on the surface of 10a and the thermally polymerizable functional groups of the binder resin 30 are bonded. Thus, in this embodiment, the hollow silica particles 20 and the binder resin 30 arranged on the surface of the low refractive index layer 10a are protected by the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42.

一方、従来は、添加剤として光重合性ポリマーのみが使用されていた。したがって、従来の低屈折率層では、表面に配置された中空シリカ粒子の水酸基部分が露出していた。このため、低屈折率層の防汚性、滑り性が顕著に低下するという問題があった。   On the other hand, conventionally, only a photopolymerizable polymer has been used as an additive. Therefore, in the conventional low refractive index layer, the hydroxyl portion of the hollow silica particles arranged on the surface was exposed. For this reason, there existed a problem that the antifouling property and slipperiness of a low refractive index layer fell remarkably.

これに対し、本実施形態では、低屈折率層10aの表面に配置された中空シリカ粒子20は、光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42で保護される。すなわち、中空シリカ粒子20の水酸基も熱重合性フッ素ポリマー42で保護される。したがって、本実施形態では、低屈折率層10aの表面を光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42で均一に保護することができるので、防汚性、滑り性が向上する。   On the other hand, in this embodiment, the hollow silica particles 20 disposed on the surface of the low refractive index layer 10a are protected by the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42. That is, the hydroxyl group of the hollow silica particle 20 is also protected by the thermally polymerizable fluoropolymer 42. Therefore, in this embodiment, since the surface of the low refractive index layer 10a can be uniformly protected by the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42, antifouling properties and slipperiness are improved.

また、熱重合性フッ素ポリマー42の重量平均分子量Mwは、光重合性フッ素ポリマー41の重量平均分子量Mwよりも大きい。光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42の重量平均分子量Mwがこのように設定されるのは以下の理由による。すなわち、光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42は、重量平均分子量Mwが大きいほど表面張力が小さくなる(すなわち、防汚性、滑り性、ブリードアウト性が向上する)ので好ましい。   Further, the weight average molecular weight Mw of the thermopolymerizable fluoropolymer 42 is larger than the weight average molecular weight Mw of the photopolymerizable fluoropolymer 41. The reason why the weight average molecular weight Mw of the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42 is set in this way is as follows. That is, the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42 are preferable because the surface tension decreases as the weight average molecular weight Mw increases (that is, the antifouling property, the slip property, and the bleed out property are improved).

しかし、アクリロイル基及びメタクリロイル基は極性が大きいので、フッ素ポリマーの重量平均分子量Mwが大きすぎると、フッ素ポリマーにこれらの官能基を導入しにくくなる。すなわち、光重合性フッ素ポリマー41が製造されにくくなる。また、光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42は、重量平均分子量Mwが大きすぎると、樹脂膜10の製造時に溶媒に溶解しにくくなる(詳細には、バインダ用モノマーとの相溶性が低下する)。   However, since the acryloyl group and the methacryloyl group have a large polarity, if the weight average molecular weight Mw of the fluoropolymer is too large, it becomes difficult to introduce these functional groups into the fluoropolymer. That is, it becomes difficult to produce the photopolymerizable fluoropolymer 41. Further, when the weight average molecular weight Mw is too large, the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42 are difficult to dissolve in a solvent during the production of the resin film 10 (specifically, compatibility with the binder monomer). Decreases).

そこで、光重合性フッ素ポリマー41の重量平均分子量Mwを上記のように設定した。これにより、アクリロイル基及びメタクリロイル基が導入されるフッ素ポリマーの重量平均分子量Mwを小さくすることができるので、アクリロイル基及びメタクリロイル基をフッ素ポリマーに容易に導入することができる。   Therefore, the weight average molecular weight Mw of the photopolymerizable fluoropolymer 41 was set as described above. Thereby, since the weight average molecular weight Mw of the fluoropolymer in which an acryloyl group and a methacryloyl group are introduced can be reduced, the acryloyl group and the methacryloyl group can be easily introduced into the fluoropolymer.

また、光重合性フッ素ポリマー41は、熱重合性フッ素ポリマー42に対して相溶化剤の役割を果たすようになる。すなわち、熱重合性フッ素ポリマー42は、重量平均分子量Mwの小さい光重合性フッ素ポリマー41と共に溶媒に投入されることで、溶媒に容易に溶解されるようになる。すなわち、本実施形態では、熱重合性フッ素ポリマー42の重量平均分子量Mwを大きくすることで、添加剤40全体の重量平均分子量Mwを大きくする一方、光重合性フッ素ポリマー41の重量平均分子量Mwを小さくすることで、添加剤40を溶媒に溶かしやすくしている。   Further, the photopolymerizable fluoropolymer 41 plays a role of a compatibilizer with respect to the thermopolymerizable fluoropolymer 42. That is, the thermopolymerizable fluoropolymer 42 is easily dissolved in the solvent by being charged into the solvent together with the photopolymerizable fluoropolymer 41 having a small weight average molecular weight Mw. That is, in this embodiment, by increasing the weight average molecular weight Mw of the thermopolymerizable fluoropolymer 42, the weight average molecular weight Mw of the entire additive 40 is increased, while the weight average molecular weight Mw of the photopolymerizable fluoropolymer 41 is increased. By making it small, the additive 40 is easily dissolved in the solvent.

なお、添加剤40の含有率(中空シリカ粒子20、バインダ樹脂30、添加剤40、及び光開始剤の総質量に対する質量%)は1.5質量%以上7質量%以下となる。好ましくは2.0質量%以上5.0質量%以下となる。ここで、添加剤40の含有率は、光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42の含有率の合計値となる。   In addition, the content rate (mass% with respect to the total mass of the hollow silica particle 20, binder resin 30, additive 40, and photoinitiator) of the additive 40 is 1.5 mass% or more and 7 mass% or less. Preferably, it becomes 2.0 mass% or more and 5.0 mass% or less. Here, the content rate of the additive 40 is a total value of the content rates of the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42.

また、光重合性フッ素ポリマー41の含有率(中空シリカ粒子20、バインダ樹脂30、添加剤40、及び光開始剤の総質量に対する質量%)は、1.5質量%以上となる。好ましくは1.8質量%以上4.0質量%以下となる。熱重合性フッ素ポリマー42は、任意の成分であり、添加剤40には熱重合性フッ素ポリマー42を含んでいなくてもよい。一方、光重合性フッ素ポリマー41は、添加剤40の必須の構成となる。本発明者が添加剤40について検討したところ、光重合性フッ素ポリマー41が添加剤40に含まれない場合、30nm〜65nmの高低差を有する海島構造が形成されないことが判明した。したがって、光重合性フッ素ポリマー41は、添加剤40の必須の構成となる。   Moreover, the content rate (mass% with respect to the total mass of the hollow silica particle 20, the binder resin 30, the additive 40, and a photoinitiator) of the photopolymerizable fluoropolymer 41 will be 1.5 mass% or more. Preferably, it becomes 1.8 mass% or more and 4.0 mass% or less. The thermopolymerizable fluoropolymer 42 is an optional component, and the additive 40 may not include the thermopolymerizable fluoropolymer 42. On the other hand, the photopolymerizable fluoropolymer 41 is an essential component of the additive 40. When the inventor examined the additive 40, when the photopolymerizable fluoropolymer 41 was not included in the additive 40, it was found that a sea-island structure having a height difference of 30 nm to 65 nm was not formed. Therefore, the photopolymerizable fluoropolymer 41 is an essential component of the additive 40.

また、熱重合性フッ素ポリマー42の含有率と光重合性フッ素ポリマー41の含有率との比は0.43未満となる。好ましくは0.25未満となる。後述するように、これらの条件が満たされる場合に、30nm〜65nmの高低差を有する海島構造が形成され、ひいては、樹脂膜10の特性が良好となる。なお、本発明者が添加剤40について検討したところ、添加剤40がフッ素ポリマーではない場合(例えばシリコン系のポリマーとなる場合)、低屈折率層10aに海島構造が形成されないことが判明した。したがって、添加剤40がフッ素ポリマーであることは、低屈折率層10aに海島構造を形成するという点でも重要な構成となる。   Moreover, the ratio of the content rate of the thermopolymerizable fluoropolymer 42 and the content rate of the photopolymerizable fluoropolymer 41 is less than 0.43. Preferably it is less than 0.25. As will be described later, when these conditions are satisfied, a sea-island structure having a height difference of 30 nm to 65 nm is formed, and the characteristics of the resin film 10 are improved. In addition, when this inventor examined the additive 40, when the additive 40 was not a fluoropolymer (for example, when it becomes a silicon-type polymer), it became clear that a sea island structure was not formed in the low refractive index layer 10a. Therefore, the fact that the additive 40 is a fluoropolymer is an important configuration in that it forms a sea-island structure in the low refractive index layer 10a.

光開始剤は、光重合を開始させるための材料であり、その種類は問われない。すなわち、本実施形態では、あらゆる光開始剤を使用することができる。ただし、光開始剤は、酸素阻害を受けにくく、表面硬化性が良いものが好ましい。   The photoinitiator is a material for initiating photopolymerization, and the type thereof is not limited. That is, in this embodiment, any photoinitiator can be used. However, it is preferable that the photoinitiator is less susceptible to oxygen inhibition and has good surface curability.

本実施形態では、樹脂膜10の材料が上述した各材料となり、かつ、各材料の含有比が上述した範囲となることで、低屈折率層10aの表面に海島構造が形成されている。具体的には、低屈折率層10aには、層厚が互いに異なる凸部10b及び凹部10cが形成されている。凸部10bの層厚は、凹部10cの層厚よりも大きい。ここで、凸部10bの層厚は、凸部10bの表面(海島構造が形成される面)から裏面(樹脂膜10がコートされる基板等に接する面)までの距離である。同様に、凹部10cの層厚は、凹部10cの表面(海島構造が形成される面)から裏面(樹脂膜10がコートされる基板等に接する面)までの距離である。   In this embodiment, the material of the resin film 10 becomes each material mentioned above, and the content ratio of each material becomes the range mentioned above, The sea island structure is formed in the surface of the low-refractive-index layer 10a. Specifically, convex portions 10b and concave portions 10c having different layer thicknesses are formed in the low refractive index layer 10a. The layer thickness of the convex part 10b is larger than the layer thickness of the concave part 10c. Here, the layer thickness of the convex portion 10b is a distance from the front surface (surface on which the sea-island structure is formed) of the convex portion 10b to the back surface (surface that is in contact with the substrate on which the resin film 10 is coated). Similarly, the layer thickness of the recess 10c is the distance from the surface of the recess 10c (the surface on which the sea-island structure is formed) to the back surface (the surface in contact with the substrate on which the resin film 10 is coated).

そして、例えば凸部10bが島部分、凹部10cが海部分となる。もちろん、凸部10bが海部分、凹部10cが島部分であってもよい。したがって、本実施形態では、低屈折率層10aがコートされる基板が水平であっても、低屈折率層10aの表面には海島構造が形成される。凸部10b及び凹部10cの層厚の違いによって、低屈折率層10aの表面に凹凸、すなわち海島構造が形成されるからである。   For example, the convex portion 10b is an island portion and the concave portion 10c is a sea portion. Of course, the convex portion 10b may be the sea portion and the concave portion 10c may be the island portion. Therefore, in this embodiment, even if the substrate on which the low refractive index layer 10a is coated is horizontal, a sea island structure is formed on the surface of the low refractive index layer 10a. This is because irregularities, that is, sea-island structures are formed on the surface of the low refractive index layer 10a due to the difference in the layer thickness between the convex portions 10b and the concave portions 10c.

凸部10bと凹部10cとの高低差h、すなわち凸部10bの上端部10b’から凹部10cの下端部10c’までの距離は、30nm〜65nmとなる。さらに、低屈折率層10aの表面上の各点の傾きと、面方向(低屈折率層10aの厚さ方向に垂直な方向)とのなす角度は、所定範囲内(例えば±30度以内)の値となる。ここで、面方向から低屈折率層10aの表面に向かう方向を正方向とする。したがって、低屈折率層10aの凹凸形状はなだらかな形状となっている。さらに、添加剤40は、凸部10b及び凹部10cの表面に配置されている。   The height difference h between the convex portion 10b and the concave portion 10c, that is, the distance from the upper end portion 10b 'of the convex portion 10b to the lower end portion 10c' of the concave portion 10c is 30 nm to 65 nm. Furthermore, the angle formed by the inclination of each point on the surface of the low refractive index layer 10a and the plane direction (direction perpendicular to the thickness direction of the low refractive index layer 10a) is within a predetermined range (for example, within ± 30 degrees). It becomes the value of. Here, the direction from the surface direction toward the surface of the low refractive index layer 10a is defined as a positive direction. Therefore, the concavo-convex shape of the low refractive index layer 10a is a gentle shape. Furthermore, the additive 40 is arrange | positioned at the surface of the convex part 10b and the recessed part 10c.

ここで、高低差hが30nmより小さいと、低屈折率層10aの表面が平面に近くなるので、後述する効果が発揮されにくくなる。一方、高低差hが65nmより大きいと、凹凸形状が急峻になるので、樹脂膜10の表面に付着した他の物体(例えば指紋)が拭き取りにくくなる。なお、凹凸形状の急峻さと他の物体の拭き取りやすさとの相関関係については後述する。   Here, when the height difference h is smaller than 30 nm, the surface of the low refractive index layer 10a is close to a flat surface, so that the effects described later are hardly exhibited. On the other hand, when the height difference h is larger than 65 nm, the uneven shape becomes steep, and other objects (for example, fingerprints) attached to the surface of the resin film 10 are difficult to wipe off. The correlation between the sharpness of the uneven shape and the ease of wiping off other objects will be described later.

なお、低屈折率層10aの表面に海島構造が形成されていることは、例えば走査型電子顕微鏡(SEM)または形状測定レーザマイクロスコープによる観察により確認することができる。図2は本実施形態に係る樹脂膜10の形状測定レーザマイクロスコープによる表面写真である(倍率×50)。ここで、形状測定レーザマイクロスコープは、レーザを用いて対象物の非接触3次元測定を行うことで、観察視野全域の3次元データを取得するものである。形状測定レーザマイクロスコープとしては、KEYENCE JAPAN社製のVK−9500が挙げられる。もちろん、形状測定レーザマイクロスコープはこの例に限られない。   The formation of the sea-island structure on the surface of the low refractive index layer 10a can be confirmed by observation with a scanning electron microscope (SEM) or a shape measurement laser microscope, for example. FIG. 2 is a photograph of the surface of the resin film 10 according to the present embodiment using a shape measurement laser microscope (magnification x50). Here, the shape measurement laser microscope obtains three-dimensional data of the entire observation visual field by performing non-contact three-dimensional measurement of an object using a laser. Examples of the shape measuring laser microscope include VK-9500 manufactured by KEYENCE JAPAN. Of course, the shape measuring laser microscope is not limited to this example.

また、高低差hは、形状測定レーザマイクロスコープによって測定することができる。具体的には、互いに隣接する凸部10bと凹部10cとの組(測定ポイント)を3次元データから所定数(例えば5)取得し、これらの高低差を算出する。そして、算出された高低差の算術平均を低屈折率層10aの高低差hとする。なお、低屈折率層10aの表面には添加剤40である光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42がブリードアウトされているので、形状測定レーザマイクロスコープは、実質的には、添加剤40からなる層(以下、保護層とも称する)50の凹凸形状を測定することになる。すなわち、形状測定レーザマイクロスコープは、保護層50の凸部51と凹部52との高低差を測定することとなる。ここで、保護層50の凸部51は、低屈折率層10aの凸部10b上に形成され、保護層50の凹部52は、低屈折率層10aの凹部10c上に形成される。   The height difference h can be measured by a shape measuring laser microscope. Specifically, a predetermined number (for example, 5) of sets (measurement points) of the convex portions 10b and the concave portions 10c adjacent to each other is obtained from the three-dimensional data, and the height difference between them is calculated. Then, the arithmetic average of the calculated height difference is defined as a height difference h of the low refractive index layer 10a. In addition, since the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42 as the additive 40 are bleed out on the surface of the low refractive index layer 10a, the shape measuring laser microscope is substantially added. The uneven shape of the layer 50 (hereinafter also referred to as a protective layer) made of the agent 40 is measured. That is, the shape measuring laser microscope measures the height difference between the convex portion 51 and the concave portion 52 of the protective layer 50. Here, the convex portion 51 of the protective layer 50 is formed on the convex portion 10b of the low refractive index layer 10a, and the concave portion 52 of the protective layer 50 is formed on the concave portion 10c of the low refractive index layer 10a.

しかし、保護層50は、低屈折率層10aの凹凸形状に沿って形成されるので、保護層50の凹凸形状は低屈折率層10aの凹凸形状と略同一となる。すなわち、保護層50の高低差は、低屈折率層10aの高低差hと略同一となる。したがって、形状測定マイクロスコープは、低屈折率層10aの高低差hを測定することができる。   However, since the protective layer 50 is formed along the uneven shape of the low refractive index layer 10a, the uneven shape of the protective layer 50 is substantially the same as the uneven shape of the low refractive index layer 10a. That is, the height difference of the protective layer 50 is substantially the same as the height difference h of the low refractive index layer 10a. Therefore, the shape measuring microscope can measure the height difference h of the low refractive index layer 10a.

また、低屈折率層10aの表面上の各点の傾きと、面方向とのなす角度も、同様に形状測定マイクロスコープによって測定することができる。具体的には、上述した3次元データから当該角度を測定することができる。   In addition, the angle formed between each point on the surface of the low refractive index layer 10a and the plane direction can be similarly measured by the shape measuring microscope. Specifically, the angle can be measured from the above-described three-dimensional data.

樹脂膜10は、上記の構成、特に海島構造を有することにより、以下の特徴を有する。第1に、他の物体(例えば指紋等の油汚れ、布、鋭利な物体等)は、保護層50の凸部51にしか接触することができないので、他の物体と保護層50との接触面積が低下する。さらに、保護層50はフッ素ポリマーで形成されている。したがって、他の物体と保護層50との間の摩擦力が顕著に低下する。これにより、樹脂膜10に他の物体が付着しにくくなる。さらに、樹脂膜10に他の物体が付着しても、他の物体を容易に拭きとることができる。さらに、他の物体が保護層50の表面で滑りやすくなるので、他の物体が保護層50に傷をつけにくくなる。したがって、樹脂膜10の滑り性、防汚性、及び耐擦傷性が向上する。なお、摩擦力が低下すると、接触角が増大するので、接触角を測定することで、実質的に摩擦力を測定することができる。   The resin film 10 has the following characteristics due to the above-described configuration, particularly the sea-island structure. First, since other objects (for example, oil stains such as fingerprints, cloths, sharp objects, etc.) can only come into contact with the convex portions 51 of the protective layer 50, contact between the other objects and the protective layer 50 is possible. The area is reduced. Further, the protective layer 50 is made of a fluoropolymer. Therefore, the frictional force between other objects and the protective layer 50 is significantly reduced. This makes it difficult for other objects to adhere to the resin film 10. Furthermore, even if other objects adhere to the resin film 10, the other objects can be easily wiped off. Furthermore, since other objects are easily slipped on the surface of the protective layer 50, it is difficult for other objects to damage the protective layer 50. Accordingly, the slipping property, antifouling property, and scratch resistance of the resin film 10 are improved. In addition, since a contact angle will increase if a frictional force falls, a frictional force can be measured substantially by measuring a contact angle.

第2に、低屈折率層10aの表面積が増大するので、ブリードアウトする添加剤40の量も多くなる。この結果、樹脂膜10の摩擦力が低下するので、樹脂膜10の防汚性、滑り性、耐擦傷性が向上する。   Second, since the surface area of the low refractive index layer 10a increases, the amount of additive 40 that bleeds out also increases. As a result, the frictional force of the resin film 10 is reduced, so that the antifouling property, slipperiness and scratch resistance of the resin film 10 are improved.

第3に、他の物体と保護層50の凹部52との間には空隙が形成される。すなわち、他の物体は、凹部52上で浮いた状態となる。そして、この空隙には空気が存在し、空気の表面張力は理論上0となる。したがって、この点でも、他の物体と樹脂膜10との間の摩擦力が低下する。   Third, a gap is formed between another object and the recess 52 of the protective layer 50. That is, another object is in a state of floating on the recess 52. And air exists in this space | gap and the surface tension of air becomes zero theoretically. Therefore, also in this point, the frictional force between the other object and the resin film 10 is reduced.

さらに、保護層50の凹凸形状はなだらかな形状となっているので、他の物体を容易かつ確実に拭きとることができる。すなわち、保護層50の凸部51に付着した他の物体(例えば指紋)を拭きとった際に、他の物体が凹部52に入り込む可能性がある。しかし、保護層50の凹凸形状はなだらかなので、拭き取り用の布の繊毛が容易に凹部52内に入り込むことができ、ひいては、凹部52内の他の物体も容易に拭きとることができる。   Furthermore, since the uneven shape of the protective layer 50 is a gentle shape, other objects can be easily and reliably wiped off. That is, when other objects (for example, fingerprints) attached to the convex portions 51 of the protective layer 50 are wiped off, the other objects may enter the concave portions 52. However, since the concavo-convex shape of the protective layer 50 is gentle, the cilia of the wiping cloth can easily enter the recess 52, and thus other objects in the recess 52 can be easily wiped off.

これに対し、光レジスト等の分野では、例えばモスアイ型フィルムのように、凹凸形状が急峻な形状となっているフィルムが知られている。モスアイ型フィルムでは、接触角を向上させるために、凸部が面方向に対してほぼ垂直に切り立っており、かつ、凸部と凹部との高低差も大きくなっている(例えば数百nm)。このため、他の物体が一旦凹部に入り込んでしまうと、拭き取り用の布の繊毛は凹部に入りにくいので、凹部内の他の物体を拭き取ることができない。   On the other hand, in the field of photoresists and the like, a film having a concavo-convex shape such as a moth-eye type film is known. In the moth-eye type film, in order to improve the contact angle, the convex portion stands up substantially perpendicular to the surface direction, and the height difference between the convex portion and the concave portion is large (for example, several hundred nm). For this reason, once another object enters the recess, the cilia of the cloth for wiping are difficult to enter the recess, and therefore, the other object in the recess cannot be wiped off.

<2.樹脂膜10の製造方法>
次に、樹脂膜10の製造方法について説明する。まず、中空シリカ粒子20と、光開始剤と、バインダ用モノマーと、添加剤40とを溶媒に投入、攪拌することで、コート液を生成する。溶媒の種類は特に限定されないが、沸点110℃以上のケトン系溶媒が好適に使用される。この溶媒は、各材料を安定して溶解することができ、かつ、光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42を容易にブリードアウトさせることができるからである。ついで、コート液を任意の基板に塗布(塗工)、乾燥することで、塗工層を形成する。なお、塗布の方法は特に問われず、公知の方法が任意に適用される。このとき、光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42は、バインダ用モノマーからの反発力によってブリードアウトし、塗工層の表面に偏在する。ついで、各重合反応を開始させる。これにより、バインダ樹脂30が形成される一方、光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42は、塗工層の表面に配置された中空シリカ粒子20及びバインダ樹脂30に結合する。これにより、樹脂膜10が形成される。
<2. Manufacturing Method of Resin Film 10>
Next, a method for manufacturing the resin film 10 will be described. First, the hollow silica particles 20, the photoinitiator, the binder monomer, and the additive 40 are charged into a solvent and stirred to generate a coating solution. The type of the solvent is not particularly limited, but a ketone solvent having a boiling point of 110 ° C. or higher is preferably used. This is because this solvent can dissolve each material stably and can easily bleed out the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42. Next, the coating layer is formed by applying (coating) the coating liquid to an arbitrary substrate and drying. In addition, the application method is not particularly limited, and a known method is arbitrarily applied. At this time, the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42 bleed out due to the repulsive force from the binder monomer and are unevenly distributed on the surface of the coating layer. Subsequently, each polymerization reaction is started. Thereby, while the binder resin 30 is formed, the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42 are bonded to the hollow silica particles 20 and the binder resin 30 arranged on the surface of the coating layer. Thereby, the resin film 10 is formed.

このように、バインダ用モノマーが光重合性フッ素ポリマー41及び熱重合性フッ素ポリマー42を効果的にブリードアウトさせることができるので、本実施形態に係る樹脂膜10は、非常に簡単なプロセスで製造される。また、低屈折率層10aの表面に添加剤40が偏在するため、低屈折率層10aの表面に別途防汚シート等を貼り付ける必要がない。   Thus, since the binder monomer can effectively bleed out the photopolymerizable fluoropolymer 41 and the thermopolymerizable fluoropolymer 42, the resin film 10 according to this embodiment is manufactured by a very simple process. Is done. Further, since the additive 40 is unevenly distributed on the surface of the low refractive index layer 10a, it is not necessary to separately attach an antifouling sheet or the like to the surface of the low refractive index layer 10a.

(実施例1)
次に、本実施形態の実施例について説明する。実施例1では、以下の製法により樹脂膜10を製造した。
Example 1
Next, examples of the present embodiment will be described. In Example 1, the resin film 10 was manufactured by the following manufacturing method.

バインダ用モノマーとして55質量%(質量部)のペンタエリスリトールトリアクリレート(新中村化学社 A−TMM−3LMN)、40質量%の中空シリカ粒子(日揮触媒化成 スルーリア4320)、添加剤として1.8質量%の光重合性パーフルオロポリエーテル(PFPE)(信越化学工業 KY−1203)及び0.2質量%の熱重合性PFPE(信越化学工業 KY−108)、3質量%の光開始剤(BASF JAPAN イルガキュア184)を用意した。そして、これらの材料を8000質量%のメチルイソブチルケトン(MIBK)に投入、攪拌することで、コート液を作成した。   55% by mass (parts by weight) of pentaerythritol triacrylate (Shin-Nakamura Chemical Co., Ltd. A-TMM-3LMN) as binder monomer, 40% by mass of hollow silica particles (JGC Catalysts & Chemicals Thruria 4320), and 1.8% by mass as additives. % Photopolymerizable perfluoropolyether (PFPE) (Shin-Etsu Chemical KY-1203) and 0.2% by mass thermopolymerizable PFPE (Shin-Etsu Chemical KY-108), 3% by mass photo-initiator (BASF JAPAN) Irgacure 184) was prepared. Then, these materials were put into 8000% by mass of methyl isobutyl ketone (MIBK) and stirred to prepare a coating solution.

ここで、中空シリカ粒子の粒度は50nm〜60nmの範囲内の値であった。したがって、平均粒径も当該範囲内の値となる。また、中空シリカ粒子の屈折率は1.25であった。また、ペンタエリスリトールトリアクリレートの表面張力は39.8であった。また、光重合性PFPEの重量平均分子量Mwは8000であり、表面張力は16.7であった。また、熱重合性PFPEの重量平均分子量Mwは17000であり、表面張力は16.5であった。なお、測定は上述した装置またはシミュレーションソフトにより行われた。   Here, the particle size of the hollow silica particles was a value in the range of 50 nm to 60 nm. Therefore, the average particle diameter is also a value within the range. The refractive index of the hollow silica particles was 1.25. The surface tension of pentaerythritol triacrylate was 39.8. Moreover, the weight average molecular weight Mw of photopolymerizable PFPE was 8000, and the surface tension was 16.7. Moreover, the weight average molecular weight Mw of thermopolymerizable PFPE was 17000, and the surface tension was 16.5. Note that the measurement was performed by the above-described apparatus or simulation software.

ついで、コート液をPMMAからなる基板上に塗布し、90℃で約1分間乾燥処理することで、塗工層を形成した。ついで、塗工層に窒素雰囲気化(酸素濃度1000ppm以下)で紫外線を5秒間照射(メタルハライドランプ:光量1000mJ/cm)することにより塗工層を硬化させた。これにより、樹脂膜を作成した。樹脂膜の平均厚さは約110nmとなった。膜厚測定方法としては、たとえばHORIBA社の可視分光エリプソメータSMART SEなどが挙げられる。ここで、平均厚さは、測定値の最大値と最小値との算術平均値とした。 Next, the coating liquid was applied on a substrate made of PMMA, and dried at 90 ° C. for about 1 minute to form a coating layer. Next, the coating layer was cured by irradiating the coating layer with ultraviolet rays for 5 seconds (metal halide lamp: light quantity 1000 mJ / cm 2 ) in a nitrogen atmosphere (oxygen concentration of 1000 ppm or less). Thereby, a resin film was prepared. The average thickness of the resin film was about 110 nm. Examples of the film thickness measuring method include a visible spectroscopic ellipsometer SMART SE manufactured by HORIBA. Here, the average thickness was an arithmetic average value of the maximum value and the minimum value of the measured values.

(実施例2〜12、比較例1〜13)
各材料の含有率、添加剤の種類、及びバインダ用モノマーの種類を変更したほかは、実施例1と同様の処理を行うことで、実施例2〜12、及び比較例1〜13に係る樹脂膜を作成した。ここで、各材料の含有率、添加剤の種類及びバインダ用モノマーの種類を表1にまとめて示す。
(Examples 2-12, Comparative Examples 1-13)
Resins according to Examples 2 to 12 and Comparative Examples 1 to 13 except that the content of each material, the type of additive, and the type of binder monomer were changed. A membrane was created. Here, the content of each material, the kind of additive, and the kind of binder monomer are shown together in Table 1.

表1中、※1は水素結合形成基(具体的には水酸基)を有しないバインダ用モノマー、すなわちペンタエリスリトールテトラアクリレート(表面張力38.9)を示す。※2は、水酸基を有しないバインダ用モノマー、すなわちイソシアヌレートトリアクリレート(表面張力38.8)を示す。※3は、水酸基を有しないバインダ用モノマー、すなわちジペンタエリスリトールヘキサアクリレート(表面張力40.1)を示す。※4は、水酸基を有するバインダ用モノマー、すなわちイソシアヌレートジアクリレート(表面張力40.2)を示す。   In Table 1, * 1 represents a binder monomer having no hydrogen bond forming group (specifically, a hydroxyl group), that is, pentaerythritol tetraacrylate (surface tension 38.9). * 2 indicates a binder monomer having no hydroxyl group, that is, isocyanurate triacrylate (surface tension 38.8). * 3 represents a binder monomer having no hydroxyl group, that is, dipentaerythritol hexaacrylate (surface tension 40.1). * 4 represents a binder monomer having a hydroxyl group, that is, isocyanurate diacrylate (surface tension 40.2).

※5は、光重合性シリコーンポリマー(信越化学工業 X−22−164E 表面張力19.1 MWは約12000)を示す。※6は、光重合性フッ素ポリマー(ダイキン工業 オプツールDAC 表面張力16.9 MWは約8000)を示す。※7は、熱重合性フッ素ポリマー(信越化学工業 KY−164 表面張力16.1 MWは約18000)を示す。   * 5 indicates a photopolymerizable silicone polymer (Shin-Etsu Chemical X-22-164E, surface tension 19.1 MW is about 12000). * 6 indicates a photopolymerizable fluoropolymer (Daikin Industries Optool DAC, surface tension of 16.9 MW is about 8000). * 7 indicates a heat-polymerizable fluoropolymer (Shin-Etsu Chemical KY-164, surface tension 16.1 MW is about 18000).

※8は、エトキシ化(n=6)トリメチロールプロパントリアクリレート(表面張力38.9)を示し、※9は、プロポキシ化(n=6)トリメチロールプロパントリアクリレート(表面張力34.1)を示す。また、無印は実施例1と同じ材料を示す。   * 8 represents ethoxylated (n = 6) trimethylolpropane triacrylate (surface tension 38.9), * 9 represents propoxylated (n = 6) trimethylolpropane triacrylate (surface tension 34.1). Show. No symbol indicates the same material as in Example 1.

(試験)
つぎに、各実施例及び比較例に係る樹脂膜について、以下の試験を行った。
(test)
Next, the following tests were performed on the resin films according to the respective examples and comparative examples.

(消しゴム擦り試験)
樹脂膜をコートした基板の表面を垂直方向(上下方向)に500g/cmの荷重をかけながら消しゴムにて100往復の摩耗を行った。消しゴムは、株式会社トンボ鉛筆社製のMONOPE−04Aを使用した。
(Eraser abrasion test)
The surface of the substrate coated with the resin film was subjected to 100 reciprocating wears with an eraser while applying a load of 500 g / cm 2 in the vertical direction (vertical direction). As the eraser, MONOPE-04A manufactured by Dragonfly Pencil Co., Ltd. was used.

(評価)
各樹脂膜について、以下の評価を行った。
(Evaluation)
Each resin film was evaluated as follows.

(海島構造の有無評価)
初期(消しゴム擦り試験を行う前)の樹脂膜に海島構造が形成されているかを、上述した形状測定マイクロスコープを用いて判定した。なお、本評価では、測定ポイントの数を5として高低差hを測定し、高低差hが20nm以上となる場合に、海島構造が形成されていると判定した。
(Evaluation of sea-island structure)
Whether the sea-island structure was formed in the initial resin film (before the eraser rubbing test) was determined using the shape measurement microscope described above. In this evaluation, the height difference h was measured with 5 measurement points, and when the height difference h was 20 nm or more, it was determined that the sea-island structure was formed.

(高低差評価)
海島構造が確認された樹脂膜について、高低差hを測定した。測定には、上述した形状測定マイクロスコープを用いた。また、測定ポイントの数は5とした。
(Elevation difference evaluation)
The height difference h was measured for the resin film in which the sea-island structure was confirmed. The shape measurement microscope described above was used for the measurement. The number of measurement points was 5.

(なだらかさ評価)
樹脂膜の表面上の各点の傾きと、面方向とがなす角度を測定した。測定には、上述した形状測定マイクロスコープを用いた。すなわち、樹脂膜の表面から任意の領域を観察視野として選択肢、観察視野全域の3次元データを取得した。そして、3次元データに基づいて、樹脂膜の表面上の各点の傾きと、面方向とがなす角度を測定した。
(Smoothness evaluation)
The angle formed by the inclination of each point on the surface of the resin film and the surface direction was measured. The shape measurement microscope described above was used for the measurement. That is, an arbitrary region from the surface of the resin film was selected as an observation field, and three-dimensional data of the entire observation field was acquired. Based on the three-dimensional data, the angle formed by the inclination of each point on the surface of the resin film and the surface direction was measured.

(接触角評価)
全自動接触角計DM700(協和界面科学株式会社製)を使用し、樹脂膜をコートした基板上に2μlの純水を滴下し接触角を測定した。なお、この評価は、初期(消しゴム擦り試験を行う前)の樹脂膜、消しゴム擦り試験後の樹脂膜の両方に対して行われた。
(Contact angle evaluation)
Using a fully automatic contact angle meter DM700 (manufactured by Kyowa Interface Science Co., Ltd.), 2 μl of pure water was dropped onto a substrate coated with a resin film, and the contact angle was measured. This evaluation was performed on both the initial resin film (before the eraser rubbing test) and the resin film after the eraser rubbing test.

(マジック拭き取り評価)
樹脂膜をコートした基板の表面(すなわち、樹脂膜の表面)にマジックペンにて約3cm線を描き、1分間放置した。その後、キムワイプにて円を描くようにふき取った。マジックペンは、ZEBRA社製マッキー黒の細を使用し、キムワイプは、日本製紙クレシア社製のキムワイプワイパーS−200を使用した。その後、目視にて拭き残りの有無を確認した。拭き残りなしをOKとし、拭き残りありをNGとした。
(Magic wiping evaluation)
An approximately 3 cm line was drawn with a magic pen on the surface of the substrate coated with the resin film (that is, the surface of the resin film) and left for 1 minute. After that, I wiped like a circle with Kimwipe. The magic pen used was a Mackie black thin made by ZEBRA, and the Kimwipe used was a Kimwipe wiper S-200 made by Nippon Paper Crecia. Then, the presence or absence of wiping residue was confirmed visually. No wiping residue was OK, and wiping residue was NG.

(指紋付着性及び拭き取り評価)
樹脂膜をコートした基板の表面(すなわち、樹脂膜の表面)に指先の指紋を約200g荷重になるように押しつけた。その後、キムワイプにて円を20回描くようにふき取った。キムワイプは、日本製紙クレシア社製のキムワイプワイパーS−200を使用した。その後、指紋の有無を目指で確認した。その後、目視にて拭き残りの有無を確認した。拭き残りなしをOKとし、拭き残りありをNGとした。評価結果を表2に示す。
(Fingerprint adhesion and wiping evaluation)
The fingerprint of the fingertip was pressed against the surface of the substrate coated with the resin film (that is, the surface of the resin film) so that the load was about 200 g. Then, it wiped off so that a circle might be drawn 20 times with Kimwipe. Kimwipe used was Kimwiper Wiper S-200 manufactured by Nippon Paper Crecia. Then, the presence or absence of the fingerprint was confirmed with the finger. Then, the presence or absence of wiping residue was confirmed visually. No wiping residue was OK, and wiping residue was NG. The evaluation results are shown in Table 2.

なお、実施例に係る樹脂膜では、凹凸形状がなだらかであることが確認された。すなわち上述した角度が形状測定マイクロスコープの観察視野全域で±30度以下であった。   In addition, in the resin film which concerns on an Example, it was confirmed that uneven | corrugated shape is gentle. That is, the angle described above was ± 30 degrees or less over the entire observation visual field of the shape measurement microscope.

実施例と比較例とを比較すると、比較例は、比較例6を除き、そもそも海島構造が確認されなかった。さらに、実施例は、初期特性のみならず、消しゴム擦り試験後の特性も良好な結果が得られた。一方、比較例では、接触角の初期特性は良好であるものの、消しゴム擦り試験後の結果は良くなかった。したがって、少なくとも光重合性フッ素ポリマーを添加剤とし、光重合性フッ素ポリマー等と反発するバインダ用モノマーを用いてバインダ樹脂を形成し、かつ、各材料の含有率を上述した範囲とすることで、良好な特性が得られることがわかった。また、実施例9、比較例7によれば、光重合性フッ素ポリマーは本実施形態の必須の構成となるが、熱重合性フッ素ポリマーは任意の構成であることもわかった。   When comparing the example and the comparative example, the comparative example showed no sea-island structure in the first place except for the comparative example 6. Further, in the Examples, not only the initial characteristics but also the characteristics after the eraser rubbing test were good. On the other hand, in the comparative example, although the initial characteristics of the contact angle were good, the results after the eraser rub test were not good. Therefore, at least using a photopolymerizable fluoropolymer as an additive, forming a binder resin using a binder monomer that repels the photopolymerizable fluoropolymer and the like, and setting the content of each material in the above-described range, It was found that good characteristics can be obtained. Further, according to Example 9 and Comparative Example 7, the photopolymerizable fluoropolymer is an essential component of the present embodiment, but it was also found that the thermally polymerizable fluoropolymer has an arbitrary configuration.

以上により、本実施形態によれば、樹脂膜10は、低屈折率層10aの表面に分布した中空シリカ粒子に結合し、かつ、バインダ樹脂30と反発する添加剤40を備える。したがって、添加剤40がバインダ樹脂30による反発力により効果的にブリードアウトするので、樹脂膜10は、添加剤40を低屈折率層10aの表面に偏在させることができる。これにより、本実施形態では、樹脂膜10の防汚性、滑り性、耐擦傷性、及び膜強度を向上させることができる。   As described above, according to the present embodiment, the resin film 10 includes the additive 40 that binds to the hollow silica particles distributed on the surface of the low refractive index layer 10 a and repels the binder resin 30. Therefore, the additive 40 effectively bleeds out due to the repulsive force of the binder resin 30, so that the resin film 10 can cause the additive 40 to be unevenly distributed on the surface of the low refractive index layer 10 a. Thereby, in this embodiment, the antifouling property, slipperiness, scratch resistance, and film strength of the resin film 10 can be improved.

さらに、本実施形態では、低屈折率層10aの表面に海島構造が形成されるので、この海島構造によって樹脂膜10の表面と他の物体との摩擦力を低減させることができ、ひいては、樹脂膜10の防汚性、滑り性、及び耐擦傷性を向上させることができる。   Furthermore, in this embodiment, since the sea island structure is formed on the surface of the low refractive index layer 10a, the sea island structure can reduce the frictional force between the surface of the resin film 10 and other objects, and as a result, the resin The antifouling property, slipperiness and scratch resistance of the film 10 can be improved.

さらに、本実施形態では、各材料の含有率を所定範囲内の値としているので、低屈折率層に高低差が30nm〜65nmとなる凹部及び凸部をより確実に形成することができる。   Furthermore, in this embodiment, since the content rate of each material is set to a value within a predetermined range, it is possible to more reliably form the concave and convex portions having a height difference of 30 nm to 65 nm in the low refractive index layer.

さらに、バインダ樹脂30は、水素結合形成基を有するので、添加剤40を効果的にブリードアウトさせることができる。   Furthermore, since the binder resin 30 has a hydrogen bond forming group, the additive 40 can be effectively bleed out.

また、バインダ樹脂30は、水素結合形成基として水酸基を有するので、添加剤40を効果的にブリードアウトさせることができる。   Moreover, since the binder resin 30 has a hydroxyl group as a hydrogen bond forming group, the additive 40 can be effectively bleed out.

さらに、熱重合性フッ素ポリマー42の重量平均分子量は、光重合性フッ素ポリマー41の重量平均分子量よりも大きい。したがって、添加剤40は、効果的にブリードアウトすることができる。また、光重合性フッ素ポリマー41が相溶化剤として機能するので、添加剤40の溶媒への溶解性が向上する。   Further, the weight average molecular weight of the thermally polymerizable fluoropolymer 42 is larger than the weight average molecular weight of the photopolymerizable fluoropolymer 41. Therefore, the additive 40 can effectively bleed out. Moreover, since the photopolymerizable fluoropolymer 41 functions as a compatibilizing agent, the solubility of the additive 40 in the solvent is improved.

さらに、熱重合性フッ素ポリマーの重量平均分子量は10000以上であり、光重合性フッ素ポリマーの重量平均分子量は10000未満であるので、添加剤40は、効果的にブリードアウトすることができる。また、光重合性フッ素ポリマー41が相溶化剤として機能するので、添加剤40の溶媒への溶解性が向上する。   Furthermore, since the weight average molecular weight of the thermopolymerizable fluoropolymer is 10,000 or more and the weight average molecular weight of the photopolymerizable fluoropolymer is less than 10,000, the additive 40 can effectively bleed out. Moreover, since the photopolymerizable fluoropolymer 41 functions as a compatibilizing agent, the solubility of the additive 40 in the solvent is improved.

また、樹脂膜10は、各材料が溶解したコート液を塗布し、重合反応を開始させるだけで作成可能であるので、容易に作成される。   The resin film 10 can be easily formed because it can be formed simply by applying a coating solution in which each material is dissolved and starting a polymerization reaction.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

10 樹脂膜
10a 低屈折率層
10b 凸部
10c 凹部
20 中空シリカ粒子
30 バインダ樹脂
40 添加剤
41 光重合性フッ素ポリマー
42 熱重合性フッ素ポリマー
DESCRIPTION OF SYMBOLS 10 Resin film 10a Low refractive index layer 10b Convex part 10c Concave part 20 Hollow silica particle 30 Binder resin 40 Additive 41 Photopolymerizable fluoropolymer 42 Thermopolymerizable fluoropolymer

Claims (7)

複数の中空シリカ粒子と、前記中空シリカ粒子同士を結合するバインダ樹脂とを含み、層厚が互いに異なる凹部及び凸部が形成され、前記凹部と前記凸部との高低差が30nm〜65nmとなる低屈折率層と、
前記低屈折率層の表面に分布した中空シリカ粒子に結合し、かつ、前記バインダ樹脂よりも表面張力が低い光重合性フッ素ポリマーと、を備えることを特徴とする、樹脂膜。
Concave portions and convex portions having a plurality of hollow silica particles and a binder resin for bonding the hollow silica particles and having different layer thicknesses are formed, and the height difference between the concave portions and the convex portions is 30 nm to 65 nm. A low refractive index layer;
A resin film comprising: a photopolymerizable fluoropolymer that binds to hollow silica particles distributed on the surface of the low refractive index layer and has a surface tension lower than that of the binder resin.
前記低屈折率層の表面に分布した中空シリカ粒子に結合し、かつ、前記バインダ樹脂よりも表面張力が低い熱重合性フッ素ポリマー及び前記光重合性フッ素ポリマーのうち、少なくとも前記光重合性フッ素ポリマーを備え、
前記中空シリカ粒子の含有率は5質量%より大きく50質量%より小さく、
前記光重合性フッ素ポリマー及び前記熱重合性フッ素ポリマーの含有率の合計は1.5質量%以上7質量%以下であり、
前記光重合性フッ素ポリマーの含有率は1.5質量%以上であり、
前記熱重合性フッ素ポリマーの含有率と前記光重合性フッ素ポリマーの含有率との比は0.43より小さいことを特徴とする、請求項1記載の樹脂膜。
At least the photopolymerizable fluoropolymer of the thermopolymerizable fluoropolymer and the photopolymerizable fluoropolymer that binds to the hollow silica particles distributed on the surface of the low refractive index layer and has a lower surface tension than the binder resin. With
The content of the hollow silica particles is larger than 5% by mass and smaller than 50% by mass,
The total content of the photopolymerizable fluoropolymer and the thermopolymerizable fluoropolymer is 1.5% by mass or more and 7% by mass or less,
The content of the photopolymerizable fluoropolymer is 1.5% by mass or more,
2. The resin film according to claim 1, wherein the ratio of the content of the thermopolymerizable fluoropolymer and the content of the photopolymerizable fluoropolymer is less than 0.43.
前記バインダ樹脂は、他の官能基と水素結合を形成可能な水素結合形成基を有することを特徴とする、請求項1または2記載の樹脂膜。   3. The resin film according to claim 1, wherein the binder resin has a hydrogen bond forming group capable of forming a hydrogen bond with another functional group. 前記バインダ樹脂は、前記水素結合形成基として水酸基を有することを特徴とする、請求項3記載の樹脂膜。   The resin film according to claim 3, wherein the binder resin has a hydroxyl group as the hydrogen bond forming group. 前記熱重合性フッ素ポリマーの重量平均分子量は、前記光重合性フッ素ポリマーの重量平均分子量よりも大きいことを特徴とする、請求項2〜4のいずれか1項に記載の樹脂膜。   The resin film according to any one of claims 2 to 4, wherein a weight average molecular weight of the thermopolymerizable fluoropolymer is larger than a weight average molecular weight of the photopolymerizable fluoropolymer. 前記熱重合性フッ素ポリマーの重量平均分子量は10000以上であり、前記光重合性フッ素ポリマーの重量平均分子量は10000未満であることを特徴とする、請求項5記載の樹脂膜。   6. The resin film according to claim 5, wherein the thermopolymerizable fluoropolymer has a weight average molecular weight of 10,000 or more, and the photopolymerizable fluoropolymer has a weight average molecular weight of less than 10,000. 中空シリカ粒子と、前記中空シリカ粒子同士を結合可能なバインダ用モノマーと、前記中空シリカ粒子に結合可能であり、かつ、前記バインダ用モノマーと反発する光重合性フッ素ポリマー及び熱重合性フッ素ポリマーのうち、少なくとも光重合性フッ素ポリマーと、を含むコート液を生成するステップと、
前記コート液を基板に塗布するステップと、
重合反応を開始させるステップと、を含み、
前記中空シリカ粒子の含有率は5質量%より大きく50質量%より小さく、
前記光重合性フッ素ポリマー及び前記熱重合性フッ素ポリマーの含有率の合計は1.5質量%以上7質量%以下であり、
前記光重合性フッ素ポリマーの含有率は1.5質量%以上であり、
前記熱重合性フッ素ポリマーの含有率と前記光重合性フッ素ポリマーの含有率との比は0.43より小さいことを特徴とする、樹脂膜の製造方法。
A hollow silica particle, a binder monomer capable of binding the hollow silica particles, a photopolymerizable fluoropolymer and a thermopolymerizable fluoropolymer capable of binding to the hollow silica particle and repelling the binder monomer. Among them, a step of generating a coating liquid containing at least a photopolymerizable fluoropolymer,
Applying the coating solution to a substrate;
Initiating a polymerization reaction, and
The content of the hollow silica particles is larger than 5% by mass and smaller than 50% by mass,
The total content of the photopolymerizable fluoropolymer and the thermopolymerizable fluoropolymer is 1.5% by mass or more and 7% by mass or less,
The content of the photopolymerizable fluoropolymer is 1.5% by mass or more,
The method for producing a resin film, wherein the ratio of the content of the thermopolymerizable fluoropolymer and the content of the photopolymerizable fluoropolymer is less than 0.43.
JP2012231715A 2012-10-19 2012-10-19 Resin film and manufacturing method therefor Pending JP2014085383A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012231715A JP2014085383A (en) 2012-10-19 2012-10-19 Resin film and manufacturing method therefor
KR1020130116957A KR20140050538A (en) 2012-10-19 2013-09-30 Resin film, polarizing plate comprising the same, method of producing the same and display apparatus comprising the same
KR1020160075943A KR101665297B1 (en) 2012-10-19 2016-06-17 Resin film, polarizing plate comprising the same, method of producing the same and display apparatus comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012231715A JP2014085383A (en) 2012-10-19 2012-10-19 Resin film and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2014085383A true JP2014085383A (en) 2014-05-12

Family

ID=50655689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012231715A Pending JP2014085383A (en) 2012-10-19 2012-10-19 Resin film and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2014085383A (en)
KR (2) KR20140050538A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147878A (en) * 2014-02-07 2015-08-20 大倉工業株式会社 Method for manufacturing optical film
JP2018535440A (en) * 2015-11-04 2018-11-29 エルジー・ケム・リミテッド Antireflection film and method for producing the same
KR20220009870A (en) 2020-07-16 2022-01-25 아라까와 가가꾸 고교 가부시끼가이샤 Active energy ray-curable coating agent, cured product and laminate
KR20220069838A (en) 2020-11-20 2022-05-27 아라까와 가가꾸 고교 가부시끼가이샤 Low-reflection coating agent, coating agent kit, cured product and laminate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6571403B2 (en) * 2014-06-30 2019-09-04 三星電子株式会社Samsung Electronics Co.,Ltd. Silica film, optical member and polarizing member
JP6661286B2 (en) * 2014-06-30 2020-03-11 三星電子株式会社Samsung Electronics Co.,Ltd. Resin film, optical member and polarizing member
WO2017078428A1 (en) * 2015-11-04 2017-05-11 주식회사 엘지화학 Anti-reflective film and manufacturing method therefor
JP6359003B2 (en) * 2015-12-18 2018-07-18 住友化学株式会社 Polarizing film manufacturing apparatus and manufacturing method, and polarizing film
TWI663063B (en) 2016-03-09 2019-06-21 Lg化學股份有限公司 Anti-reflective film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313593A (en) * 2004-03-31 2005-11-10 Dainippon Printing Co Ltd Anti-reflective laminated body
JP2010085983A (en) * 2008-09-05 2010-04-15 Dainippon Printing Co Ltd Optical layered body, polarizer and image display
JP2010152311A (en) * 2008-07-22 2010-07-08 Fujifilm Corp Antireflective film, polarizing plate, and image display
WO2011046149A1 (en) * 2009-10-16 2011-04-21 大日本印刷株式会社 Optical film and display panel
WO2012096400A1 (en) * 2011-01-14 2012-07-19 大日本印刷株式会社 Anti-reflective film, anti-reflective film production method, polarization plate and image display device
JP2012185493A (en) * 2011-02-15 2012-09-27 Fujifilm Corp Method for manufacturing antireflection film, antireflection film, and coating composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265316B2 (en) * 2010-09-22 2018-01-24 日東電工株式会社 Manufacturing method of optical film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313593A (en) * 2004-03-31 2005-11-10 Dainippon Printing Co Ltd Anti-reflective laminated body
JP2010152311A (en) * 2008-07-22 2010-07-08 Fujifilm Corp Antireflective film, polarizing plate, and image display
JP2010085983A (en) * 2008-09-05 2010-04-15 Dainippon Printing Co Ltd Optical layered body, polarizer and image display
WO2011046149A1 (en) * 2009-10-16 2011-04-21 大日本印刷株式会社 Optical film and display panel
WO2012096400A1 (en) * 2011-01-14 2012-07-19 大日本印刷株式会社 Anti-reflective film, anti-reflective film production method, polarization plate and image display device
JP2012185493A (en) * 2011-02-15 2012-09-27 Fujifilm Corp Method for manufacturing antireflection film, antireflection film, and coating composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147878A (en) * 2014-02-07 2015-08-20 大倉工業株式会社 Method for manufacturing optical film
JP2018535440A (en) * 2015-11-04 2018-11-29 エルジー・ケム・リミテッド Antireflection film and method for producing the same
JP2019035991A (en) * 2015-11-04 2019-03-07 エルジー・ケム・リミテッド Anti-reflective film and manufacturing method thereof
US10627548B2 (en) 2015-11-04 2020-04-21 Lg Chem, Ltd. Anti-reflective film and manufacturing method thereof
US11415726B2 (en) 2015-11-04 2022-08-16 Lg Chem, Ltd. Anti-reflective film and manufacturing method thereof
KR20220009870A (en) 2020-07-16 2022-01-25 아라까와 가가꾸 고교 가부시끼가이샤 Active energy ray-curable coating agent, cured product and laminate
KR20220069838A (en) 2020-11-20 2022-05-27 아라까와 가가꾸 고교 가부시끼가이샤 Low-reflection coating agent, coating agent kit, cured product and laminate
JP2022082442A (en) * 2020-11-20 2022-06-01 荒川化学工業株式会社 Low-reflection coating agent, coating agent kit, cured product and laminate
JP7314982B2 (en) 2020-11-20 2023-07-26 荒川化学工業株式会社 Low-reflection coating agents, coating agent kits, cured products and laminates

Also Published As

Publication number Publication date
KR101665297B1 (en) 2016-10-11
KR20160076504A (en) 2016-06-30
KR20140050538A (en) 2014-04-29

Similar Documents

Publication Publication Date Title
JP6494654B2 (en) Resin film and method for producing resin film
JP2014085383A (en) Resin film and manufacturing method therefor
JP6864451B2 (en) Resin film, optical member and polarizing member
JP6661286B2 (en) Resin film, optical member and polarizing member
TWI627195B (en) Curable composition containing fluorine-containing highly branched polymer and siloxane oligomer
JP4938840B2 (en) Curable composition containing fluoroalkylhydrosilicone
JP5880871B2 (en) Curable composition for coating containing fluorine-containing hyperbranched polymer
JP5199237B2 (en) Curable fluoroalkyl silicone composition
JPWO2008038714A1 (en) Optical function film
JP2009533533A (en) Compositions containing fluoroalkyl silicones and hydrosilicones
JP2009114248A (en) Curable composition and resin plate having cured coating film
JP2018530007A (en) Antireflection film
TW200808927A (en) Optical article having an antistatic fluorochemical surface layer
JP4375335B2 (en) Curable surface modifier and curable surface modifying composition using the same
KR101748075B1 (en) Resin film and method of prodcing resin film
JP6243598B2 (en) Resin film and method for producing resin film
JP6990521B2 (en) Coating liquid for forming a transparent film and a base material with a transparent film
JP6965582B2 (en) A hard coat film, a touch panel provided with the hard coat film, and an image display device provided with the touch panel.
JP2011053455A (en) Glare-proof hard coat film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404