JP2014084485A - Au-BASED SUPERELASTIC ALLOY - Google Patents

Au-BASED SUPERELASTIC ALLOY Download PDF

Info

Publication number
JP2014084485A
JP2014084485A JP2012232985A JP2012232985A JP2014084485A JP 2014084485 A JP2014084485 A JP 2014084485A JP 2012232985 A JP2012232985 A JP 2012232985A JP 2012232985 A JP2012232985 A JP 2012232985A JP 2014084485 A JP2014084485 A JP 2014084485A
Authority
JP
Japan
Prior art keywords
alloy
concentration
less
superelastic
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012232985A
Other languages
Japanese (ja)
Other versions
JP6022892B2 (en
Inventor
Hideki Hosoda
秀樹 細田
Tomoya Inamura
朋也 稲邑
Masaki Tawara
正樹 田原
Ryosuke Tachi
良介 舘
Hyon Ho Shen
▲ヒョン▼甫 沈
Kenji Goto
研滋 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Tokyo Institute of Technology NUC
Original Assignee
Tanaka Kikinzoku Kogyo KK
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Tokyo Institute of Technology NUC filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2012232985A priority Critical patent/JP6022892B2/en
Publication of JP2014084485A publication Critical patent/JP2014084485A/en
Application granted granted Critical
Publication of JP6022892B2 publication Critical patent/JP6022892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide alloy which can be applied to a medical field from the point of view of constituent elements and can exhibit superelastic phenomenon at an ordinary temperature range to conventional Au-Ti-based alloy.SOLUTION: The invention relates to quaternary or quinary Au-based superelastic alloy obtained by adding Mo and/or Nb to Au-Ti-Co alloy. The quaternary or quinary Au-based superelastic alloy comprises, by molar concentration, Au of 27% to 45%, Ti of 46% to 54%, Co of over 10% and less than 17%, Mo of 0.5% or more and less than 3%, and/or Nb of 1% or more and less than 3%, where the total concentration of Au and Co is 44% to 52% and total of Co concentration, Mo concentration and Nb concentration is 18% or less. Mo and Nb can be both added, total of Mo concentration and Nb concentration is 1% or more and less than 3% in that case.

Description

本発明は、Au(金)系の超弾性合金に関し、詳しくは、常温域で超弾性を発現することができ、加工性に優れた超弾性合金に関する。   The present invention relates to an Au (gold) -based superelastic alloy, and more particularly, to a superelastic alloy that can exhibit superelasticity at room temperature and has excellent workability.

超弾性合金は、逆変態温度(逆変態開始温度(As点)と同義である)以上の温度下においては、変形を受けても直ちに元の形状を回復する性質を有する。このときの変形範囲は、他の金属材料の弾性範囲よりも極めて広く(超弾性)、逆変態点が比較的低温のものを超弾性合金と称している。超弾性合金は、歯列矯正具、カテーテル、ステント、ボーンプレート等の医療用器具への応用が期待される合金材料である。   The superelastic alloy has a property of immediately recovering its original shape even when it is deformed at a temperature equal to or higher than the reverse transformation temperature (synonymous with the reverse transformation start temperature (As point)). The deformation range at this time is extremely wider than the elastic range of other metal materials (superelasticity), and those having a relatively low reverse transformation point are called superelastic alloys. Superelastic alloys are alloy materials that are expected to be applied to medical devices such as orthodontic appliances, catheters, stents, and bone plates.

超弾性合金に関する検討は、形状記憶合金に関する知見を基に、各種の合金系でなされている。ここで、実用性の観点から現在最も知られている超弾性合金としてはNi−Ti系の形状記憶合金が挙げられる。Ni−Ti系形状記憶合金は、逆変態温度が100℃以下であり、人体の体温でも超弾性を発現させることができることから、特性上は医療用器具への応用が可能といえる。   Studies on superelastic alloys have been made in various alloy systems based on knowledge about shape memory alloys. Here, as a superelastic alloy that is most known at present from the viewpoint of practicality, a Ni—Ti-based shape memory alloy can be cited. Since the Ni-Ti shape memory alloy has a reverse transformation temperature of 100 ° C. or less and can exhibit superelasticity even at the body temperature of the human body, it can be said that it can be applied to a medical device in terms of characteristics.

しかし、Ni−Ti系形状記憶合金は、Niを含有するものであることから、医療器具への適用を考慮したとき、金属アレルギーによる生体適合性が懸念されるところであった。また、Ni−Ti系合金は、比較的軽元素から構成されることから、レントゲン撮影の際の造影性に乏しいという問題がある。   However, since the Ni—Ti-based shape memory alloy contains Ni, there is a concern about biocompatibility due to metal allergy when considering application to a medical device. Further, since the Ni—Ti alloy is composed of relatively light elements, there is a problem that the contrast property at the time of X-ray imaging is poor.

そこで、Niフリーでありながら形状記憶特性を発現することができる合金材料として、特許文献1記載のAu−Ti系合金がある。このAu系合金は、Niを含まないことから、金属アレルギーによる生体適合性の問題を解消することができる。また、Auという重い金属を含むことからレントゲン造影性も良好であることから、医療用器具への応用も期待できる。   Therefore, there is an Au—Ti alloy described in Patent Document 1 as an alloy material that can exhibit shape memory characteristics while being Ni-free. Since this Au-based alloy does not contain Ni, the biocompatibility problem due to metal allergy can be solved. In addition, since it contains a heavy metal such as Au, the X-ray contrast is good, so that it can be expected to be applied to a medical instrument.

特開平09−165633号公報JP 09-165633 A

しかしながら、Au−Ti系合金は、その逆変態温度が300℃以上と高温であり、常温域における超弾性発現を期待することはできず、医療用器具への応用に最も必要とされる特性を有しないという問題がある。そのため、Au系合金は、上記のように多くの利点もあるが、その実用化に対しては逆変態温度の低温化という課題が残るところである。   However, Au-Ti alloys have a high reverse transformation temperature of 300 ° C. or higher, and cannot be expected to exhibit superelasticity in the normal temperature range, and have the characteristics most required for application to medical devices. There is a problem of not having. For this reason, the Au-based alloy has many advantages as described above, but the problem of lowering the reverse transformation temperature remains for its practical use.

そこで、本発明は、構成元素の観点から医療分野への適用が可能であり、かつ、常温域における超弾性現象を発現しうる合金を提供することを目的とする。   Therefore, an object of the present invention is to provide an alloy that can be applied to the medical field from the viewpoint of a constituent element and can develop a superelastic phenomenon in a normal temperature range.

本発明者等は、上記課題を解決すべく、上記したAu−Ti系の形状記憶合金を基礎に検討を行った。上記の通り、この合金はNiを含まず、Auを含有するものであり、生体適合性及びレントゲン造影性向上の観点から医療分野への適用が期待できるからである。そして、本発明者等は、Au−Ti系合金について、逆変態温度を低下させて常温での超弾性発現の手段として、Auの一部をCoで置換したAu−Ti−Co合金の適用に想到した。本発明者等によれば、Au−Ti−Co合金は、Coの添加量の増加に伴い逆変態温度が低下し、所定量以上のCo添加により常温での超弾性が発現することが確認されている。   In order to solve the above-mentioned problems, the present inventors have made studies based on the above-described Au—Ti-based shape memory alloy. As described above, this alloy does not contain Ni but contains Au, and can be expected to be applied to the medical field from the viewpoint of biocompatibility and X-ray contrast enhancement. The inventors of the present invention applied Au-Ti-Co alloys in which a part of Au was replaced with Co as a means of developing superelasticity at room temperature by lowering the reverse transformation temperature of Au-Ti alloys. I came up with it. According to the present inventors, it has been confirmed that the Au-Ti-Co alloy has a reverse transformation temperature that decreases with an increase in the amount of Co added, and exhibits superelasticity at room temperature when a predetermined amount or more of Co is added. ing.

もっとも、本発明者等の詳細な検討によると、Coは逆変態温度の低温化という作用と共に、合金の靭性を低下させて加工性を悪化させることが確認されている。加工性は、超弾性合金の有用性に影響を及ぼすといえる。歯列矯正具、カテーテル、ステント等の医療用器具は高精度の加工を経て製造されるものであり、これらの用途に対して加工性の良否は重要だからである。   However, according to detailed studies by the present inventors, it has been confirmed that Co lowers the toughness of the alloy and deteriorates the workability together with the action of lowering the reverse transformation temperature. It can be said that the workability affects the usefulness of the superelastic alloy. This is because medical devices such as orthodontic appliances, catheters, and stents are manufactured through high-precision processing, and the quality of workability is important for these applications.

そこで、本発明者等は、Coによる常温での超弾性発現と引き換えに生じた加工性低下という付随的な問題の抑制手段を検討した。その結果、Au−Ti−Co合金への追加的な添加元素としてMo、Nbの微量添加に想到した。そして、Au−Ti系合金に対するCo添加量と、Mo、Nbの添加量の好適範囲を検討し、常温域での超弾性発現と加工性確保とのバランスが良好な超弾性合金として本発明に想到した。   Therefore, the present inventors examined a means for suppressing an incidental problem of deterioration in workability caused by the occurrence of superelasticity at room temperature due to Co. As a result, the inventors have conceived the addition of trace amounts of Mo and Nb as additional additive elements to the Au—Ti—Co alloy. And the suitable range of Co addition amount with respect to an Au-Ti type alloy and the addition amount of Mo and Nb is examined, and it is made into this invention as a superelastic alloy with a good balance of superelasticity expression and workability ensuring in normal temperature range. I came up with it.

即ち、本発明は、Au−Ti−Co合金に、Mo及び/又はNbを添加してなる4元系又は5元系のAu系超弾性合金であって、モル濃度で27%以上45%以下のAuと、 モル濃度で46%以上54%以下のTiと、モル濃度で10%超17%未満のCoと、モル濃度で0.5%以上3%未満のMo及び/又はモル濃度で1%以上3%未満のNbと、からなり、更に、Au濃度とCo濃度との合計が44%以上52%以下であり、Co濃度とMo濃度とNb濃度との合計が18%以下である、Au系超弾性合金である。   That is, the present invention is a quaternary or quinary Au-based superelastic alloy obtained by adding Mo and / or Nb to an Au-Ti-Co alloy and has a molar concentration of 27% or more and 45% or less. Au, 46% to 54% Ti in molar concentration, Co in excess of 10% to less than 17% in molar concentration, Mo in molar concentration to 0.5% to less than 3% and / or 1 in molar concentration. %, And the total of Au concentration and Co concentration is 44% or more and 52% or less, and the total of Co concentration, Mo concentration and Nb concentration is 18% or less. Au-based superelastic alloy.

以下、本発明についてより詳細に説明する。本発明に係るAu系超弾性合金は、Au−Ti−Co−Mo4元系合金又はAu−Ti−Co−Nb4元系合金、若しくは、Au−Ti−Co−Mo−Nb5元系合金のいずれかよりなり、各構成元素の含有量を適切にし、これらのバランスのもとで常温域での超弾性特性を発現する。以下、各構成元素について説明する。   Hereinafter, the present invention will be described in more detail. The Au-based superelastic alloy according to the present invention is either an Au-Ti-Co-Mo quaternary alloy, an Au-Ti-Co-Nb quaternary alloy, or an Au-Ti-Co-Mo-Nb quaternary alloy. Therefore, the content of each constituent element is made appropriate, and the superelastic property in the normal temperature range is developed under these balances. Hereinafter, each constituent element will be described.

まず、本発明に係るAu系超弾性合金は、従来のAu−Ti系超弾性合金を改良するものであり、AuとTiは主要な構成金属である。本発明では、Auをモル濃度で27%以上45%以下とする。Au濃度を前記範囲とするのは、27%未満では超弾性特性が発現しないからであり、45%を超えると逆変態温度が高く常温での超弾性発現が難しくなる傾向がある。Au濃度は、30%以上40%以下とするのが好ましく、30%以上38%以下とするのがより好ましい。   First, the Au superelastic alloy according to the present invention is an improvement over a conventional Au—Ti superelastic alloy, and Au and Ti are main constituent metals. In the present invention, Au is made 27% to 45% in terms of molar concentration. The reason why the Au concentration falls within the above range is that if it is less than 27%, the superelastic property is not exhibited, and if it exceeds 45%, the reverse transformation temperature is high and it tends to be difficult to achieve superelasticity at room temperature. The Au concentration is preferably 30% or more and 40% or less, and more preferably 30% or more and 38% or less.

一方、Tiについては、モル濃度で46%以上54%以下とする。Tiが46%未満となると、AuTiの第二相が生成しこれが加工性に悪影響を及ぼすこととなる。そして、54%を超えると、変態ヒステリシスが大きくなり超弾性特性に劣る。そこで、Tiを46%以上54%以下とすることで、単相領域とすると共に超弾性特性を発揮させている。尚、Tiについては、48%以上52%以下とするのがより好ましい。 On the other hand, about Ti, it is set as 46% or more and 54% or less by molar concentration. When Ti is less than 46%, a second phase of Au 2 Ti is generated, which adversely affects workability. And if it exceeds 54%, transformation hysteresis will become large and it will be inferior to a superelastic property. Therefore, by making Ti 46% or more and 54% or less, a single-phase region and a superelastic property are exhibited. In addition, about Ti, it is more preferable to set it as 48% or more and 52% or less.

そして、Coは、Auの一部を置換する添加元素であり、逆変態温度を低下させ常温での超弾性発現のための必須の添加元素である。Coはモル濃度で10%超17%未満とする。10%以下では変態温度を十分低くすることができないが、17%以上となると加工性が悪くなる。また、17%以上では変態温度が低くなりすぎ、変態そのものを生じさせ難くなる。Coは、10%超以上16%以下が好ましく、12%以上15%以下がより好ましい。   Co is an additive element for substituting a part of Au, and is an essential additive element for lowering the reverse transformation temperature and developing superelasticity at room temperature. Co is more than 10% and less than 17% in molar concentration. If it is 10% or less, the transformation temperature cannot be sufficiently lowered, but if it is 17% or more, the workability deteriorates. On the other hand, if it is 17% or more, the transformation temperature becomes too low, and transformation itself is difficult to occur. Co is preferably more than 10% and 16% or less, and more preferably 12% or more and 15% or less.

上記の通り、Coは逆変態温度を低下させるものの、合金の加工性を悪化させるため、その添加量が制限される。Co量を制限すると、Au、Ti量を増加させなければならず、逆変態温度の上昇又は超弾性特性の低下が懸念される。そこで、本発明は、更なる添加元素として好適量のMo及び/又はNbを添加する。Mo、Nbは、Au−Ti−Co合金に添加することで、Au及び/又はTiのサイトに置換し、Co量低減による逆変態温度の上昇を抑制する作用を有する。   As described above, Co lowers the reverse transformation temperature, but deteriorates the workability of the alloy, so its addition amount is limited. If the amount of Co is limited, the amounts of Au and Ti must be increased, and there is a concern about an increase in reverse transformation temperature or a decrease in superelastic characteristics. Therefore, the present invention adds a suitable amount of Mo and / or Nb as a further additive element. Mo and Nb have the action of substituting Au and / or Ti sites for addition to the Au—Ti—Co alloy and suppressing the increase of the reverse transformation temperature due to the reduction of the amount of Co.

Mo、Nbの添加量は、モル濃度でMoが0.5%以上3%未満、Nbが1%以上3%未満とする。これらの下限値未満ではその効果は見られず、逆に上限値を超えると合金が脆くなり加工できなくなるからである。Mo、Nbのより好ましい添加量は、Moが0.5%以上2%以下であり、Nbが1%以上2%以下である。尚、MoとNbはいずれか一方のみを添加しても良いし、双方を添加しても良い。但し、双方添加の場合にはMo添加量とNb添加量との合計が1%以上3%未満とするのが好ましい。   The addition amount of Mo and Nb is such that Mo is 0.5% or more and less than 3% and Nb is 1% or more and less than 3% in molar concentration. The effect is not seen below these lower limits, and conversely when the upper limit is exceeded, the alloy becomes brittle and cannot be processed. As for the more preferable addition amount of Mo and Nb, Mo is 0.5% or more and 2% or less, and Nb is 1% or more and 2% or less. Note that only one of Mo and Nb may be added, or both may be added. However, in the case of both additions, it is preferable that the sum of the Mo addition amount and the Nb addition amount be 1% or more and less than 3%.

そして、Au濃度とCo濃度との合計が44%以上52%以下であることを要する。上記の通り、本発明に係るAu系超弾性合金は、Au−Ti系超弾性合金のAuの一部をCoで置換したものであり、それらの合計濃度は、他方の主要元素であるTi濃度を左右する。そして、Au濃度とCo濃度との合計を44%以上52%以下とすることで合金を単相領域に維持して加工性を確保することができる。これらの範囲外では第二相(AuTi、TiAu等)が多量に生成し加工性が悪化する。 And the sum of Au concentration and Co concentration needs to be 44% or more and 52% or less. As described above, the Au-based superelastic alloy according to the present invention is obtained by replacing a part of Au in the Au—Ti-based superelastic alloy with Co, and the total concentration thereof is the concentration of Ti as the other main element. Influences. And by making the sum of Au concentration and Co concentration 44% or more and 52% or less, an alloy can be maintained in a single phase area | region and workability can be ensured. Outside these ranges, a large amount of the second phase (Au 2 Ti, Ti 3 Au, etc.) is generated, and the workability deteriorates.

更に、Co濃度とMo濃度及びNb濃度との関係において、それらの合計濃度が18%未満であることを要する)。これらの元素の合計が18%を超えると、加工性が悪く形状記憶特性も超弾性も発現しないからである。   Furthermore, in the relationship between the Co concentration, the Mo concentration, and the Nb concentration, it is necessary that the total concentration is less than 18%). This is because when the total of these elements exceeds 18%, workability is poor and neither shape memory characteristics nor superelasticity is exhibited.

本発明に係るAu系超弾性合金の製造は、通常の溶解鋳造法によりより製造可能であるが、鋳造後において時効熱処理を行うことが好ましい。時効熱処理を行うことで、より有効に超弾性効果が発現するからである。この時効熱処理は、200〜500℃で5分間〜24時間加熱保持するのが好ましい。   Although the production of the Au-based superelastic alloy according to the present invention can be more produced by a normal melting casting method, it is preferable to perform an aging heat treatment after casting. This is because the superelastic effect is more effectively exhibited by performing the aging heat treatment. This aging heat treatment is preferably held at 200 to 500 ° C. for 5 minutes to 24 hours.

以上説明したように、本発明に係るAu系超弾性合金は、Niフリーとしつつも常温での超弾性発現可能な合金である。そして、加工性も良好である。   As described above, the Au-based superelastic alloy according to the present invention is an alloy that can exhibit superelasticity at room temperature while being Ni-free. And workability is also favorable.

本発明に係るAu系超弾性合金は、Niフリーとしたことにより生体適合性が良好であり、また、Auという重い金属を構成元素とすることからレントゲン造影性も良好である。本発明は、上記特徴を有することから医療用器具への応用が期待でき、具体的には、歯列矯正具、人工歯根、クリップ、ステープル、カテーテル、ステント、ボーンプレート等の医療用器具への応用が可能である。   The Au-based superelastic alloy according to the present invention has good biocompatibility because it is Ni-free, and also has good X-ray contrast properties because it uses a heavy metal such as Au as a constituent element. Since the present invention has the above characteristics, it can be expected to be applied to medical instruments. Specifically, the present invention is applied to orthodontic appliances, artificial roots, clips, staples, catheters, stents, bone plates, and other medical instruments. Application is possible.

以下、本発明の実施形態について説明する。本実施形態では、各構成元素濃度を変化させたAu−Ti−Co−Mo(Nb)合金を製造し、これを試験片に加工しつつ加工性を評価し、常温域での超弾性特性の有無、レントゲン造影性の評価を行った。   Hereinafter, embodiments of the present invention will be described. In the present embodiment, an Au—Ti—Co—Mo (Nb) alloy in which the concentration of each constituent element is changed is manufactured, and the workability is evaluated while processing this into a test piece. The presence / absence and X-ray contrast properties were evaluated.

試料となる各種Au−Ti−Co−Mo(Nb)超弾性合金の作製は、溶解原料として純度99.99%Ti、純度99.9%Co、純度99.95%Au、純度99.99%Mo、純度99.99%Nbを用いた。非消耗W電極型アルゴンアーク溶解炉を用いてこれらの原料をAr−1%H雰囲気において溶解して合金インゴットを製造した。合金の均質性を高めるために、各合金の溶解前にひっくり返すという作業を6回行った。そして、鋳造後の合金インゴットについて偏析を解消するための均質化処理を行った。均質化処理は,ホットプレスで1100℃で3時間、熱間でプレスした後炉冷した。更に、溶体化処理のため、インゴットを内圧4×10−3Pa以下にした不透明石英管の中に封入し,電気炉の中に入れ900℃で30分〜1時間保持後、直ちに水中で石英管を割って水冷した。そして、溶体化処理後のインゴットについて時効熱処理を行った。時効熱処理は、温度300℃とし、真空中で1時間加熱した。 Preparation of various Au—Ti—Co—Mo (Nb) superelastic alloys as samples is as a melting raw material with a purity of 99.99% Ti, a purity of 99.9% Co, a purity of 99.95% Au, and a purity of 99.99%. Mo, purity 99.99% Nb was used. These raw materials using a non-consumable W electrode type argon arc melting furnace to produce an alloy ingot by dissolving in Ar-1% H 2 atmosphere. In order to increase the homogeneity of the alloy, the work of turning it over before melting each alloy was performed six times. And the homogenization process for eliminating segregation about the alloy ingot after casting was performed. The homogenization was performed by hot pressing at 1100 ° C. for 3 hours and then cooling in a furnace. Furthermore, for solution treatment, the ingot was sealed in an opaque quartz tube having an internal pressure of 4 × 10 −3 Pa or less, placed in an electric furnace, held at 900 ° C. for 30 minutes to 1 hour, and immediately washed with quartz in water. The tube was broken and water cooled. And the aging heat processing was performed about the ingot after solution treatment. The aging heat treatment was performed at a temperature of 300 ° C. for 1 hour in a vacuum.

上記製造したインゴットについて、まずレントゲン造影性を確認した。この試験は、2枚のアクリル板でインゴットを上下から挟んでX線血管撮影装置に設置し、実際のX線診断で使われる条件(管電圧:60〜125kV、管電流:400〜800
mA、照射時間:10〜50 msec、Alフィルター(2.5mm)使用)でX線照射を行った。そして、得られた透過像を目視で観察して、試料形状が明瞭に見えた場合は「○」と判断し、TiNiと同等以下の不明瞭さであった場合は「×」と判定した。
First, the X-ray imaging property of the manufactured ingot was confirmed. In this test, an ingot is sandwiched from above and below by two acrylic plates and installed in an X-ray angiography apparatus. Conditions used in actual X-ray diagnosis (tube voltage: 60 to 125 kV, tube current: 400 to 800)
X-ray irradiation was performed with mA, irradiation time: 10 to 50 msec, using an Al filter (2.5 mm). Then, the obtained transmission image was visually observed, and when the sample shape was clearly seen, it was judged as “◯”, and when the opacity was equal to or less than TiNi, it was judged as “x”.

次に、各インゴット(厚さ0.4mm)を圧延加工して試験片(厚さ0.25mm)に加工したが、この加工工程では加工性を評価も行った。加工性評価は、インゴットを圧延加工して圧下率20%を超えて加工できた場合に加工性良好と判断した。この加工性評価において加工性が劣るものについては、超弾性特性の評価試験の対象外とした。そして、加工可能な合金については、ワイヤ放電加工機により切り出し形状を整え、研磨して試料表面の酸化皮膜を取り除いた。これをそのまま、あるいは200℃〜500℃の間で5分〜24時間加熱した後、超弾性の有無を検討した。   Next, each ingot (thickness 0.4 mm) was rolled and processed into a test piece (thickness 0.25 mm). In this processing step, workability was also evaluated. In the processability evaluation, it was judged that the processability was good when the ingot was rolled and processed at a reduction rate exceeding 20%. Those with inferior processability in this processability evaluation were excluded from the superelastic property evaluation test. And about the alloy which can be processed, the cutting shape was prepared with the wire electric discharge machine, it grind | polished, and the oxide film on the sample surface was removed. After heating this as it was or between 200 degreeC and 500 degreeC for 5 minutes-24 hours, the presence or absence of superelasticity was examined.

超弾性発現の確認は、試験片を丸棒(直径7mm)にU字状に巻き付けて加工歪みを導入し、除荷後に形状回復率が50%以上のものを超弾性有り「○」と判定した。   Confirmation of superelasticity is achieved by wrapping a test piece in a U-shape around a round bar (diameter 7 mm), introducing processing strain, and determining that the shape recovery rate is 50% or more after unloading is superelastic. did.

Figure 2014084485
Figure 2014084485

表1から、本発明において好適な組成とするAu−Ti−Co−Mo(Nb)合金は、いずれも加工性が良好であり、常温での超弾性特性を発現し得る。また、各構成元素の添加量についてみると、Mo、Nbは、3%以上の添加で加工性が悪化するのがわかる(比較例2〜7)。また、Coは、過剰添加(比較例9〜14)により加工性は悪化するが、添加量が少ない場合(比較例8)加工は可能である。但し、その場合、超弾性は発現しなかった。   From Table 1, the Au—Ti—Co—Mo (Nb) alloy having a preferred composition in the present invention has good workability and can exhibit superelastic properties at room temperature. Moreover, when it sees about the addition amount of each structural element, it turns out that workability deteriorates by adding 3% or more of Mo and Nb (Comparative Examples 2 to 7). In addition, Co deteriorates workability due to excessive addition (Comparative Examples 9 to 14), but processing is possible when the addition amount is small (Comparative Example 8). However, in that case, superelasticity did not appear.

また、主要構成元素となるAu、Tiについても、所定範囲内に制御することが必要である(比較例15〜17)。Auの添加量は、Co添加量との合計(Au+Co)の数値にも影響を与えるので適正範囲にすることが必要である。   Moreover, it is necessary to control Au and Ti as main constituent elements within a predetermined range (Comparative Examples 15 to 17). The addition amount of Au also affects the numerical value of the sum (Au + Co) with the addition amount of Co, and therefore needs to be in an appropriate range.

本発明に係るAu系の超弾性合金は、Niを含まないことから生体適合性を有すると共に、Auを含むことからレントゲン造影性も良好である。そして、常温での超弾性を発現させることができ各種の医療器具への応用が期待できる。   The Au-based superelastic alloy according to the present invention has biocompatibility because it does not contain Ni, and also has good X-ray contrast properties because it contains Au. In addition, superelasticity at room temperature can be expressed, and application to various medical devices can be expected.

Claims (2)

Au−Ti−Co合金に、Mo及び/又はNbを添加してなる4元系又は5元系のAu系超弾性合金であって、
モル濃度で27%以上45%以下のAuと、
モル濃度で46%以上54%以下のTiと、
モル濃度で10%超17%未満のCoと、
モル濃度で0.5%以上3%未満のMo及び/又はモル濃度で1%以上3%未満のNb(但し、Mo及びNbの双方を含む場合、Mo濃度とNb濃度との合計は1%以上3%未満である)と、からなり、
更に、Au濃度とCo濃度との合計が44%以上52%以下であり、Co濃度とMo濃度とNb濃度との合計が18%以下である、Au系超弾性合金。
A quaternary or quinary Au-based superelastic alloy obtained by adding Mo and / or Nb to an Au-Ti-Co alloy,
Au in a molar concentration of 27% or more and 45% or less;
Ti at a molar concentration of 46% or more and 54% or less,
More than 10% and less than 17% Co in molarity;
Mo in a molar concentration of 0.5% or more and less than 3% and / or Nb in a molar concentration of 1% or more and less than 3% (However, when both Mo and Nb are included, the sum of Mo concentration and Nb concentration is 1%. And less than 3%)
Furthermore, the Au-based superelastic alloy, wherein the sum of the Au concentration and the Co concentration is 44% or more and 52% or less, and the sum of the Co concentration, the Mo concentration, and the Nb concentration is 18% or less.
モル濃度で30%以上40%以下のAuと
モル濃度で46%以上54%以下のTiと、
モル濃度で10%超16%以下のCoと、
モル濃度で0.5%以上2%以下のMo及び/又はモル濃度で1%以上2%以下のNbと、からなる請求項1記載のAu系超弾性合金。
A molar concentration of 30% to 40% Au and a molar concentration of 46% to 54% Ti;
More than 10% and less than 16% Co in molarity;
The Au-based superelastic alloy according to claim 1, comprising Mo in a molar concentration of 0.5% to 2% and / or Nb in a molar concentration of 1% to 2%.
JP2012232985A 2012-10-22 2012-10-22 Au-based superelastic alloy Active JP6022892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232985A JP6022892B2 (en) 2012-10-22 2012-10-22 Au-based superelastic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012232985A JP6022892B2 (en) 2012-10-22 2012-10-22 Au-based superelastic alloy

Publications (2)

Publication Number Publication Date
JP2014084485A true JP2014084485A (en) 2014-05-12
JP6022892B2 JP6022892B2 (en) 2016-11-09

Family

ID=50787851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232985A Active JP6022892B2 (en) 2012-10-22 2012-10-22 Au-based superelastic alloy

Country Status (1)

Country Link
JP (1) JP6022892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039298A1 (en) 2017-08-22 2019-02-28 国立大学法人東京工業大学 Artifact-free superelastic alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348635A (en) * 2000-06-05 2001-12-18 Nikkin Material:Kk Titanium alloy excellent in cold workability and work hardening
JP2005528524A (en) * 2002-05-30 2005-09-22 ライプニッツ−インスティトゥート フュア フェストケルパー− ウント ヴェルクシュトフフォルシュング ドレスデン エー ファオ High-tensile, plastically deformable compact made of titanium alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348635A (en) * 2000-06-05 2001-12-18 Nikkin Material:Kk Titanium alloy excellent in cold workability and work hardening
JP2005528524A (en) * 2002-05-30 2005-09-22 ライプニッツ−インスティトゥート フュア フェストケルパー− ウント ヴェルクシュトフフォルシュング ドレスデン エー ファオ High-tensile, plastically deformable compact made of titanium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039298A1 (en) 2017-08-22 2019-02-28 国立大学法人東京工業大学 Artifact-free superelastic alloy
US11268168B2 (en) 2017-08-22 2022-03-08 Tokyo Institute Of Technology Artifactless superelastic alloy

Also Published As

Publication number Publication date
JP6022892B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
US7083687B2 (en) Super-elastic titanium alloy for medical uses
JP2014029022A (en) Ni-Ti SEMI-FINISHED PRODUCTS AND PRODUCTION METHODS THEREOF
JP4302604B2 (en) Superelastic titanium alloy for living body
JP6156865B2 (en) Super elastic alloy
JP6206872B2 (en) Super elastic alloy
JP2009024223A (en) Dental wire, and method for producing the same
JP6022892B2 (en) Au-based superelastic alloy
JP5578041B2 (en) Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
JP2009531125A (en) Alloys and compositions for root canal treatment
JP5527692B2 (en) Pt-based shape memory alloy
JP5633767B2 (en) Low elastic titanium alloy
JP2006089826A (en) Superelastic titanium alloy for living body
JP6536916B2 (en) Artifact-free superelastic alloy
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JP5605316B2 (en) Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
WO2016063768A1 (en) Superelastic alloy
JP5572794B2 (en) Low elastic titanium alloy
JP2005105404A (en) Method of producing superelastic titanium alloy for living body, and titanium alloy for superelasticity
JPH0645836B2 (en) TiPd type shape memory alloy
JP2005105404A6 (en) Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity
JP2005105388A6 (en) Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161006

R150 Certificate of patent or registration of utility model

Ref document number: 6022892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250