JP2014084483A - Sputtering apparatus - Google Patents

Sputtering apparatus Download PDF

Info

Publication number
JP2014084483A
JP2014084483A JP2012232719A JP2012232719A JP2014084483A JP 2014084483 A JP2014084483 A JP 2014084483A JP 2012232719 A JP2012232719 A JP 2012232719A JP 2012232719 A JP2012232719 A JP 2012232719A JP 2014084483 A JP2014084483 A JP 2014084483A
Authority
JP
Japan
Prior art keywords
target
vacuum chamber
plate
adhesion
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012232719A
Other languages
Japanese (ja)
Other versions
JP6030404B2 (en
Inventor
Shinya Nakamura
真也 中村
Hiroaki Iwasawa
宏明 岩澤
Arinori Miyaguchi
有典 宮口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012232719A priority Critical patent/JP6030404B2/en
Publication of JP2014084483A publication Critical patent/JP2014084483A/en
Application granted granted Critical
Publication of JP6030404B2 publication Critical patent/JP6030404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-frequency sputtering apparatus which can effectively suppress discharge leakage from a gap between deposition preventing plates even if partial pressure of sputtering gas is increased when high-frequency power is input to a target for performing sputtering.SOLUTION: A high-frequency sputtering apparatus SM according to the invention includes: a vacuum chamber 1 to which a target 2 is freely installed and removed; a stage 5 which is disposed facing the target in the vacuum chamber, and holds a processing object; and deposition preventing means 9 which prevents sputtered particles from being deposited on the internal wall surface of the vacuum chamber by surrounding space between the target and the stage. The deposition preventing means is constructed of a plurality of deposition preventing plates 91 to 93 arranged vertically. The adjacent deposition preventing plates are arranged by overlapping one another over a predetermined length with a gap of 3 mm or less in the plate thickness direction.

Description

本発明は、スパッタリング装置に関し、より詳しくは、ターゲットとステージとの間の空間を囲繞して真空チャンバの内壁面へのスパッタ粒子の付着を防止する防着手段を有するものに関する。   The present invention relates to a sputtering apparatus, and more particularly to an apparatus having an adhesion preventing means for preventing adhesion of sputtered particles to an inner wall surface of a vacuum chamber by surrounding a space between a target and a stage.

従来、例えばアルミナ等の酸化物や窒化シリコン等の窒化物で構成される絶縁物をターゲットとし、これをスパッタリングして処理すべき基板のターゲットとの対向面に酸化物や窒化物等の絶縁膜を成膜する場合、ターゲットに、アースとの間で高周波(交流)電力を投入する高周波電源を備える高周波スパッタリング装置を用いることが広く知られている(例えば、特許文献1参照)。このような高周波スパッタリング装置で成膜する場合、より高い成膜レートを得るために、ターゲットに投入する交流電力を高めたり、または、スパッタリング時に真空チャンバ内のアルゴンガス等のスパッタガスの分圧(例えば、真空チャンバ内の全圧が10Pa)を高めたりして成膜することが一般に知られている。   Conventionally, for example, an insulator made of an oxide such as alumina or a nitride such as silicon nitride is used as a target, and an insulating film such as an oxide or nitride is formed on the surface facing the target of the substrate to be processed by sputtering. When forming a film, it is widely known to use a high-frequency sputtering apparatus having a high-frequency power source for supplying high-frequency (alternating current) power to and from the ground (see, for example, Patent Document 1). In the case of film formation with such a high-frequency sputtering apparatus, in order to obtain a higher film formation rate, the AC power input to the target is increased, or the partial pressure of sputtering gas such as argon gas in the vacuum chamber during sputtering ( For example, it is generally known to form a film by increasing the total pressure in the vacuum chamber to 10 Pa).

ところで、一般の高周波スパッタリング装置では、真空チャンバ内で互いに対向配置されるターゲットと処理対象物を保持するステージとの間の空間を囲繞して真空チャンバの内壁面へのスパッタ粒子の付着を防止する防着手段が備えられている。この場合、防着手段は、メンテナンス性やステージへの基板の受渡し/受取り等を考慮して、上下方向に複数枚の防着板を並設して構成することが一般であり、このとき、例えば上記空間からのガスの通過を許容するために、防着板相互の間に隙間が設けられる。   By the way, in a general high-frequency sputtering apparatus, a space between a target arranged opposite to each other in a vacuum chamber and a stage holding a processing object is surrounded to prevent adhesion of sputtered particles to the inner wall surface of the vacuum chamber. An adhesion prevention means is provided. In this case, the adhesion prevention means is generally configured by arranging a plurality of adhesion prevention plates in the vertical direction in consideration of maintainability and delivery / reception of the substrate to the stage. For example, in order to allow the passage of gas from the space, a gap is provided between the adhesion preventing plates.

然しながら、スパッタガスの分圧を高めた状態でスパッタリングしたとき、却ってスパッタリングレートが低下して生産性が損なわれることが判明した。これは、防着板相互の間に設けられる隙間が適切に管理されていないことで、アース接地の真空チャンバの内壁面へと当該隙間を通してプラズマが漏れ出して防着板と真空チャンバとの間の空間でも放電し、相対的にターゲットに投入される電力が低下することに起因していると考えられる。また、プラズマが漏れ出て放電したのではパーティクルの発生源ともなり得る。   However, it has been found that when sputtering is performed with the partial pressure of the sputtering gas increased, the sputtering rate is lowered and the productivity is impaired. This is because the gap provided between the protective plates is not properly managed, and the plasma leaks through the gap to the inner wall surface of the earth-grounded vacuum chamber. This is considered to be due to the fact that the electric power discharged to the target is relatively reduced and the electric power supplied to the target is relatively lowered. Further, if the plasma leaks and is discharged, it can be a source of particles.

特開2002−4042号公報JP 2002-4042 A

本発明は、以上の点に鑑み、ターゲットに高周波電力を投入してスパッタリングする際にスパッタガスの分圧を高めても、防着板相互の隙間からの放電漏れを効果的に抑制することができる高周波スパッタリング装置を提供することをその課題とするものである。   In view of the above points, the present invention effectively suppresses discharge leakage from the gap between the deposition preventing plates even when the partial pressure of the sputtering gas is increased when sputtering is performed by applying high-frequency power to the target. An object of the present invention is to provide a high-frequency sputtering apparatus that can be used.

上記課題を解決するために、本発明の高周波スパッタリング装置は、ターゲットが着脱自在に取り付けられる真空チャンバと、この真空チャンバ内でターゲットに対向配置されて処理対象物を保持するステージと、ターゲットとステージとの間の空間を囲繞して真空チャンバの内壁面へのスパッタ粒子の付着を防止する防着手段とを備え、ステージからターゲットに向かう方向を上とし、防着手段は上下方向に並設される複数枚の防着板で構成され、互いに隣接する防着板の各々は、所定長さに亘って、かつ、板厚方向に3mm以下の隙間を存してオーバーラップさせて配置されることを特徴とする。   In order to solve the above-described problems, a high-frequency sputtering device according to the present invention includes a vacuum chamber in which a target is detachably attached, a stage that is disposed facing the target in the vacuum chamber and holds a processing object, and a target and a stage. And an adhesion preventing means for preventing the adhesion of sputtered particles to the inner wall surface of the vacuum chamber, with the direction from the stage toward the target facing up, and the adhesion preventing means being arranged in parallel in the vertical direction. Each of the adhering plates adjacent to each other is arranged to overlap with each other over a predetermined length with a gap of 3 mm or less in the plate thickness direction. It is characterized by.

本発明によれば、互いに隣接する防着板の各々は、所定長さに亘って、かつ、板厚方向に3mm以下の隙間を存してオーバーラップさせているため、例えば、真空チャンバ内の全圧が10Pa以上となるようにスパッタガスの分圧を高めた状態でターゲットに高周波電力を投入してスパッタリングしても、防着板相互の隙間からの放電漏れを効果的に抑制されることが確認された。これにより、ターゲットに印加される高周波の交流成分の振幅電圧Vppの低下が抑制され、スパッタリングレートを高めて生産性を向上することができる。なお、防着板の各々をオーバーラップさせる長さは10mm以上とすれば、放電漏れを確実に抑制することができる。   According to the present invention, since each of the adhesion prevention plates adjacent to each other overlaps with a predetermined length and with a gap of 3 mm or less in the thickness direction, for example, in the vacuum chamber Even if sputtering is performed by applying high-frequency power to the target in a state where the partial pressure of the sputtering gas is increased so that the total pressure becomes 10 Pa or more, discharge leakage from the gaps between the protective plates can be effectively suppressed. Was confirmed. Thereby, the fall of the amplitude voltage Vpp of the high frequency alternating current component applied to the target is suppressed, and the sputtering rate can be increased and the productivity can be improved. In addition, if the length which overlaps each of an adhesion prevention board shall be 10 mm or more, an electric discharge leak can be suppressed reliably.

本発明においては、前記隙間が上下方向にのびるように各防着板がオーバーラップされることが好ましい。これによれば、前記隙間の端部が真空チャンバ内に形成したプラズマを臨むように防着板の各々をオーバーラップさせている場合と比較して、より確実に放電漏れを抑制することができる。   In the present invention, it is preferable that the deposition preventing plates are overlapped so that the gap extends in the vertical direction. According to this, compared with the case where each of the deposition preventing plates is overlapped so that the end of the gap faces the plasma formed in the vacuum chamber, the discharge leakage can be suppressed more reliably. .

ところで、ターゲットとステージとの間の空間を囲繞するように配置し、真空チャンバ内に更に隔絶された空間が画成されるように各防着板を設ける場合、いずれか1個の防着板を他の防着板に対して相対移動し得るようにし、例えば搬送ロボットによりステージへの基板の受渡し/受取りを行い得るように構成する必要がある。この場合、一の防着板に、この一の防着板を上下動する駆動手段の駆動軸を連結することになる。このような場合においても、防着板相互の隙間からの放電漏れを効果的に抑制するように構成しておく必要がある。そこで、一の防着板の他の防着板側の端部を真空チャンバの内方に向けてL字状に屈曲すると共に、当該他の防着板の一の防着板側の端部を真空チャンバの内方に向けて直角に屈曲し、両防着板の端部により区画される空間にスペーサーが充填されて上記隙間を形成することが好ましい。   By the way, when arrange | positioning so that the space between a target and a stage may be enclosed, and each adhesion prevention board may be provided so that the space further isolated in the vacuum chamber may be defined, any one adhesion prevention board Must be configured to be able to move relative to other deposition prevention plates, for example, so that the substrate can be transferred / received to / from the stage by a transfer robot. In this case, the drive shaft of the drive means for moving the one deposition plate up and down is connected to the one deposition plate. Even in such a case, it is necessary to configure so as to effectively suppress discharge leakage from the gaps between the adhesion preventing plates. Therefore, the end of the other deposition plate is bent in an L shape toward the inside of the vacuum chamber, and the end of the other deposition plate on the deposition plate side Is bent at right angles toward the inside of the vacuum chamber, and a space is preferably filled in a space defined by the end portions of the two protection plates to form the gap.

本発明の高周波スパッタリング装置の模式図。The schematic diagram of the high frequency sputtering device of the present invention. 図1の高周波スパッタリング装置の要部を拡大して説明する断面図。Sectional drawing which expands and demonstrates the principal part of the high frequency sputtering device of FIG.

以下、図面を参照して、ターゲットを絶縁物とし、シリコンウエハやサファイア基板等の基板W表面に絶縁膜を成膜する場合を例に本発明の実施形態の高周波スパッタリング装置を説明する。   Hereinafter, with reference to the drawings, a high-frequency sputtering apparatus according to an embodiment of the present invention will be described by taking as an example a case where an insulating film is formed on the surface of a substrate W such as a silicon wafer or a sapphire substrate using an insulator.

図1及び図2を参照して、SMは、本実施形態の高周波スパッタリング装置である。この高周波スパッタリング装置SMは、真空処理室1aを画成する真空チャンバ1を備え、真空チャンバ1の天井部にカソードユニットCが着脱自在に取付けられている。以下においては、図1中、真空チャンバ1の天井部側を向く方向を「上」とし、その底部側を向く方向を「下」として説明する。   With reference to FIG.1 and FIG.2, SM is the high frequency sputtering device of this embodiment. The high-frequency sputtering device SM includes a vacuum chamber 1 that defines a vacuum processing chamber 1a, and a cathode unit C is detachably attached to a ceiling portion of the vacuum chamber 1. In the following description, in FIG. 1, the direction facing the ceiling portion side of the vacuum chamber 1 is referred to as “up” and the direction facing the bottom portion side is described as “down”.

カソードユニットCは、ターゲット2と、このターゲット2の上方に配置された磁石ユニット3とから構成されている。ターゲット2は、アルミナ、窒化シリコンまたは炭化シリコンなどの絶縁物で構成され、基板Wの輪郭に応じて、公知の方法で平面視円形や矩形に形成されたものである。ターゲット2は、バッキングプレート21に装着した状態で、そのスパッタ面22を下方にして、真空チャンバ1の上壁に設けた第1絶縁体41を介して真空チャンバ1の上部に取り付けられる。また、ターゲット2は、公知の構造を有する高周波電源Eに接続され、スパッタリング時、アースとの間で所定周波数(例えば、13.56MHz)の高周波(交流)電力が投入されるようにしている。ターゲット2の上方に配置される磁石ユニット3は、ターゲット2のスパッタ面22の下方空間に磁場を発生させ、スパッタ時にスパッタ面22の下方で電離した電子等を捕捉してターゲット2から飛散したスパッタ粒子を効率よくイオン化する公知の閉鎖磁場若しくはカスプ磁場構造を有するものであり、ここでは詳細な説明を省略する。   The cathode unit C includes a target 2 and a magnet unit 3 disposed above the target 2. The target 2 is made of an insulator such as alumina, silicon nitride, or silicon carbide, and is formed in a circular shape or a rectangular shape in plan view by a known method according to the contour of the substrate W. The target 2 is attached to the upper portion of the vacuum chamber 1 via the first insulator 41 provided on the upper wall of the vacuum chamber 1 with the sputtering surface 22 facing downward while being mounted on the backing plate 21. The target 2 is connected to a high-frequency power source E having a known structure, and high-frequency (alternating current) power having a predetermined frequency (for example, 13.56 MHz) is supplied between the target 2 and the ground during sputtering. The magnet unit 3 disposed above the target 2 generates a magnetic field in the space below the sputtering surface 22 of the target 2, captures electrons etc. ionized below the sputtering surface 22 during sputtering, and sputters from the target 2. It has a known closed magnetic field or cusp magnetic field structure for efficiently ionizing particles, and detailed description thereof is omitted here.

真空チャンバ1の底部中央には、ターゲット2に対向させてステージ5が配置されている。ステージ5は、例えば筒状の輪郭を持つ金属製の基台51と、この基台51の上面に接着したチャックプレート52とで構成されている。チャックプレート52は、基台51の上面より一回り小さい外径を有し、静電チャック用の電極52a,52bが埋設され、図外のチャック電源から電圧が印加されるようになっている。この場合、チャックプレート52は、リング状の第1防着板53により基台51の上面に着脱自在に取り付けられている。この場合、第1防着板53は、スパッタリング中に基板Wに発生するバイアス電位を低減するために、第2絶縁体42を介して基台51の上面に取り付けられている。なお、静電チャックの構造については、単極型や双極型等の公知のものが利用できるため、ここでは詳細な説明を省略する。   A stage 5 is disposed in the center of the bottom of the vacuum chamber 1 so as to face the target 2. The stage 5 includes a metal base 51 having a cylindrical outline, for example, and a chuck plate 52 bonded to the upper surface of the base 51. The chuck plate 52 has an outer diameter that is slightly smaller than the upper surface of the base 51, and is embedded with electrodes 52a and 52b for electrostatic chuck, so that a voltage is applied from a chuck power source (not shown). In this case, the chuck plate 52 is detachably attached to the upper surface of the base 51 by a ring-shaped first attachment plate 53. In this case, the first deposition preventing plate 53 is attached to the upper surface of the base 51 via the second insulator 42 in order to reduce the bias potential generated in the substrate W during sputtering. In addition, about the structure of an electrostatic chuck, since well-known things, such as a monopolar type and a bipolar type, can be utilized, detailed description is abbreviate | omitted here.

基台51は、真空チャンバ1の底面に設けた開口に気密に装着された第3絶縁体43で保持され、アース接地の真空チャンバ1とは縁切りされ、電気的にフローティングにされている。第1〜第3の各絶縁体41,42,43の材質としては特に制限はなく、ガラス入りのフッ素樹脂(ポリテトラフルオロエチレン)や、ガラス入りのエポキシ樹脂などを用いることができる。また、ステージ5には、この基台51をフローティングとアース電位との間で切り換える電位切換手段54が接続され、スパッタリング中、ステージ5の電位をフローティングとし、プラズマ中の正イオンが基板Wに引き込まれて膜中に取り込まれる量を大幅に低減するようにしている。電位切換手段54は、基台51に接続される配線54aを備え、この配線54aには、真空処理室1a外に位置させて、抵抗54bとスイッチング素子54cとが介在され、アース接地されている。この場合、抵抗54bは、チャック電源からの電圧印加を停止すると共にアースに短絡して基板Wの吸着を解除するとき、これに同期してスイッチング素子54cを切り換えてステージ5をアース接地する際に過電流が流れることを防止するもの(例えば、1MΩ)である。基台51には、冷媒循環用の通路55aやヒータ55bが内蔵され、スパッタリング中、基板Wを所定温度に制御することができるようにしている。   The base 51 is held by a third insulator 43 that is airtightly attached to an opening provided on the bottom surface of the vacuum chamber 1, and is separated from the grounded vacuum chamber 1 and is electrically floating. There is no restriction | limiting in particular as a material of each 1st-3rd insulator 41,42,43, A glass-containing fluororesin (polytetrafluoroethylene), a glass-filled epoxy resin, etc. can be used. Further, the stage 5 is connected to a potential switching means 54 for switching the base 51 between a floating state and a ground potential. During sputtering, the potential of the stage 5 is set to a floating state, and positive ions in the plasma are drawn into the substrate W. Therefore, the amount taken into the film is greatly reduced. The potential switching means 54 includes a wiring 54a connected to the base 51. The wiring 54a is positioned outside the vacuum processing chamber 1a, and a resistor 54b and a switching element 54c are interposed and grounded. . In this case, the resistor 54b stops the voltage application from the chuck power supply and shorts to the ground to release the adsorption of the substrate W. When the resistor 54b switches the switching element 54c in synchronization with this to ground the stage 5 to the ground. This is to prevent an overcurrent from flowing (for example, 1 MΩ). The base 51 incorporates a refrigerant circulation passage 55a and a heater 55b so that the substrate W can be controlled to a predetermined temperature during sputtering.

更に、真空チャンバ1の側壁には、スパッタガスを導入するガス導入手段としてのガス管6が接続され、このガス管6がマスフローコントローラ6aを介して図示省略のガス源に連通する。スパッタガスには、真空処理室1aにプラズマを形成する際に導入されるアルゴンガス等の希ガスだけでなく、酸素ガスや窒素ガスなどの反応ガスが含まれる。真空チャンバ1の側面にはまた、ターボ分子ポンプやロータリポンプなどで構成される真空ポンプPに通じる排気管7が接続され、真空処理室1aを一定速度で真空引きし、所定圧力に保持できるようにしている。   Further, a gas pipe 6 serving as a gas introducing means for introducing sputtering gas is connected to the side wall of the vacuum chamber 1, and this gas pipe 6 communicates with a gas source (not shown) via a mass flow controller 6a. The sputtering gas includes not only a rare gas such as an argon gas introduced when forming plasma in the vacuum processing chamber 1a but also a reactive gas such as an oxygen gas or a nitrogen gas. The side surface of the vacuum chamber 1 is also connected to an exhaust pipe 7 leading to a vacuum pump P constituted by a turbo molecular pump, a rotary pump, or the like so that the vacuum processing chamber 1a can be evacuated at a constant speed and maintained at a predetermined pressure. I have to.

真空チャンバ1内でステージ5の周囲には、アース電極としての環状の第2防着板8が設けられている。第2防着板8は、その内周縁部から径方向外側に下方に傾斜するように形成されたものである。なお、特に図示して説明しないが、第2防着板8に、上下方向に貫通する複数個の貫通孔を開設するようにしてもよい。そして、第2防着板8は、アース接地の真空チャンバ1の底面に設置され、スパッタリング時にアースとしての役割を果たすようにしている。真空チャンバ1内にはまた、この真空チャンバ1の内壁面へのスパッタ粒子の付着を防止するために、ターゲット2と基板Wとの間の空間を囲う第3防着板9が配置され、この第3防着板9が本実施形態の防着手段を構成する。   Around the stage 5 in the vacuum chamber 1, an annular second adhesion-preventing plate 8 is provided as a ground electrode. The second adhesion-preventing plate 8 is formed so as to incline downward radially outward from the inner peripheral edge thereof. Although not specifically illustrated and described, a plurality of through holes penetrating in the vertical direction may be formed in the second deposition preventing plate 8. And the 2nd adhesion prevention board 8 is installed in the bottom face of the vacuum chamber 1 of earth ground, and plays a role as earth at the time of sputtering. In the vacuum chamber 1, a third deposition plate 9 that surrounds the space between the target 2 and the substrate W is disposed in order to prevent sputter particles from adhering to the inner wall surface of the vacuum chamber 1. The 3rd adhesion prevention board 9 constitutes the adhesion prevention means of this embodiment.

図2も参照して、第3防着板9は、夫々がアルミナ、ステンレス等の公知の材料製である、真空チャンバ1の上壁に吊設した上防着板91と、真空チャンバ1の底面に立設した下防着板92と、上防着板91及び下防着板92の間で両防着板91,92より真空チャンバ1の内側に設けられて上防着板91及び下防着板92と上下方向でオーバーラップする可動防着板93とで構成されている。上防着板91は、板状部材の一側を略直角に屈曲し、この状態で円形に成形し、リング状の輪郭を持つように両自由端を接合したものである。また、下防着板92もまた、板状部材の一側を略直角に屈曲し、この状態で円形に成形し、リング状の輪郭を持つように両自由端を接合したものであり、上端が真空チャンバ1の内方へと延出するように設置される。なお、上防着板91及び下防着板92は、真空チャンバ1の周方向に複数個の部品で分割して構成することもできる。上防着板91及び下防着板92の間に設けられる可動防着板93は、板状部材の両側を互い違いに略直角に屈曲し、この状態で円形に成形し、リング状の輪郭を持つように両自由端を接合したものである。   Referring also to FIG. 2, the third deposition preventive plate 9 is made of a well-known material such as alumina or stainless steel, and the upper deposition preventive plate 91 suspended from the upper wall of the vacuum chamber 1 and the vacuum chamber 1. Between the lower deposition plate 92 erected on the bottom surface, the upper deposition plate 91 and the lower deposition plate 92, both the deposition plates 91, 92 are provided inside the vacuum chamber 1, and the upper deposition plate 91 and the lower deposition plate 91 are disposed below. It is comprised by the adhesion prevention board 92 and the movable adhesion prevention board 93 which overlaps in an up-down direction. The upper protection plate 91 is formed by bending one side of a plate-like member substantially at a right angle, forming a circular shape in this state, and joining both free ends so as to have a ring-like contour. The lower prevention plate 92 is also formed by bending one side of the plate-like member substantially at a right angle, forming a circular shape in this state, and joining both free ends so as to have a ring-shaped contour. Is installed so as to extend inward of the vacuum chamber 1. The upper deposition preventing plate 91 and the lower deposition preventing plate 92 can also be configured by dividing a plurality of components in the circumferential direction of the vacuum chamber 1. The movable deposition plate 93 provided between the upper deposition plate 91 and the lower deposition plate 92 is bent at substantially right angles on both sides of the plate-shaped member alternately, and is formed into a circular shape in this state, thereby forming a ring-shaped contour. Both free ends are joined so as to have.

可動防着板93の外側面には、周方向に90°間隔で真空チャンバ1の底面を貫通して設けたシリンダCyの駆動軸Crが夫々連結され、各駆動軸Crにより支持されている。そして、シリンダCyにより、真空チャンバ1の内壁面へのスパッタ粒子の付着を防止する下動位置(図1に示す位置)と、上防着板91側に移動することで可動防着板93と下防着板92との間に隙間を形成し、図外のゲートバルブで開閉される搬送用の透孔Toを通してステージ5への基板Wの搬出・搬入を行い得る上動位置との間で可動防着板93が移動自在となる。   The driving shaft Cr of the cylinder Cy provided through the bottom surface of the vacuum chamber 1 at 90 ° intervals in the circumferential direction is connected to the outer surface of the movable protection plate 93 and supported by each driving shaft Cr. Then, the cylinder Cy is used to move the lower adhesion position (position shown in FIG. 1) to prevent the sputter particles from adhering to the inner wall surface of the vacuum chamber 1 and the movable adhesion prevention plate 93 by moving to the upper adhesion prevention plate 91 side. A gap is formed between the lower protection plate 92 and the upper moving position where the substrate W can be carried out and carried into the stage 5 through a through hole To for opening and closing by a gate valve (not shown). The movable adhesion preventing plate 93 is movable.

ここで、可動防着板93の下動位置では、可動防着板93の上下方向にのびる上端部と可動防着板93の上下方向にのびる下端部とが所定長さlに亘って、かつ、上端部と下端部との間の隙間dが3mm以下となるようにオーバーラップされている。この場合、長さlは、10mm以上とすればよい。他方で、上記の如く、可動防着板93と下防着板92とを形成した場合、下防着板92の水平な上端部と、可動防着板93との間に環状の空間が形成される。このため、可動防着板93の水平部下側に、10mm以上の所定長さlに亘って、かつ、下防着板92の水平な上端部との間の隙間dが3mm以下となるようにオーバーラップされるスペーサー94を固定することとした。この場合、スペーサー94としては、ガラス入りのフッ素樹脂(ポリテトラフルオロエチレン)や、ガラス入りのエポキシ樹脂製で環状に一体成型したものを用いることができる。 Here, at the downward movement position of the movable deposition plate 93, the upper end portion extending in the vertical direction of the movable deposition plate 93 and the lower end portion extending in the vertical direction of the movable deposition plate 93 extend over a predetermined length l 1 . and a gap d 1 between the upper and lower ends are overlapped so that less than 3mm. In this case, the length l 1 may be 10 mm or more. On the other hand, when the movable deposition plate 93 and the lower deposition plate 92 are formed as described above, an annular space is formed between the horizontal upper end portion of the lower deposition plate 92 and the movable deposition plate 93. Is done. For this reason, the gap d 2 between the horizontal upper end of the lower anti-adhesion plate 92 and the horizontal upper end of the lower anti-adhesion plate 92 is 3 mm or less below the horizontal portion of the movable anti-adhesion plate 93 over a predetermined length l 2. Thus, the overlapping spacer 94 was fixed. In this case, as the spacer 94, a glass-containing fluororesin (polytetrafluoroethylene) or a glass-containing epoxy resin that is integrally formed in a ring shape can be used.

以下に、上記高周波スパッタリング装置SMによる成膜処理を説明する。図外の真空搬送ロボットにより、可動防着板93の上動位置にて、真空雰囲気下の真空処理室1aに搬送用の透孔Toを通して、ステージ5上へと基板Wを搬出し、ステージ5のチャックプレート52上面に基板Wを載置する。真空搬送ロボットが退避すると、可動防着板93の下動位置に移動し、真空チャンバ1内壁面へのスパッタ粒子の付着しないようにされる。電位切換手段54のスイッチング素子54cはオフであり、ステージ5はフローティングとされている。そして、静電チャック用の電極52a,52bに対してチャック電源から所定電圧を印加すると、基板Wが静電吸着される。   Below, the film-forming process by the said high frequency sputtering device SM is demonstrated. An unillustrated vacuum transfer robot unloads the substrate W onto the stage 5 through the transfer through hole To to the vacuum processing chamber 1a in the vacuum atmosphere at the upward movement position of the movable protection plate 93, and the stage 5 The substrate W is placed on the upper surface of the chuck plate 52. When the vacuum transfer robot is retracted, it moves to the lower position of the movable adhesion preventing plate 93 so that the sputtered particles do not adhere to the inner wall surface of the vacuum chamber 1. The switching element 54c of the potential switching means 54 is off, and the stage 5 is in a floating state. When a predetermined voltage is applied from the chuck power source to the electrostatic chuck electrodes 52a and 52b, the substrate W is electrostatically attracted.

次に、真空処理室1a内が所定圧力(例えば、10−5Pa)まで真空引きされると、ガス導入手段を介してスパッタガスとしてのアルゴンガスを一定の流量(例えば、アルゴン分圧が1.5Pa)で導入し、これに併せてターゲット2に高周波電源Eから所定の高周波電力(例えば、1〜5kW)を投入する。これにより、真空処理室1a内にプラズマが形成され、プラズマ中のアルゴンガスのイオンでターゲット2がスパッタリングされ、ターゲット2からのスパッタ粒子が基板Wに付着、堆積して窒化シリコン膜やアルミナ膜などの絶縁膜が成膜される。この場合、プラズマを介して高周波電流がアースへと流れるが、本実施形態では、ステージ5と、基板周囲の第1防着板53とが電気的にフローティングになっているため、基板Wに流れる高周波電流が制限され、基板Wにバイアス電位がかかることが抑制された状態で成膜される。 Next, when the inside of the vacuum processing chamber 1a is evacuated to a predetermined pressure (for example, 10 −5 Pa), an argon gas as a sputter gas is supplied at a constant flow rate (for example, an argon partial pressure of 1 through the gas introduction means). In addition to this, predetermined high-frequency power (for example, 1 to 5 kW) is input from the high-frequency power source E to the target 2. Thereby, plasma is formed in the vacuum processing chamber 1a, the target 2 is sputtered by ions of argon gas in the plasma, and the sputtered particles from the target 2 adhere to and deposit on the substrate W to form a silicon nitride film, an alumina film, etc. An insulating film is formed. In this case, a high-frequency current flows to the ground through the plasma. However, in this embodiment, the stage 5 and the first deposition plate 53 around the substrate are in an electrically floating state, and therefore flow to the substrate W. The film is formed in a state where the high-frequency current is limited and the bias potential is not applied to the substrate W.

成膜終了後、ターゲット2への高周波電力の投入とガス導入とが停止され、チャック電源からの電圧印加を停止すると共にアースに短絡して基板Wの吸着を解除すると共に、スイッチング素子54cをオンに切り換えてステージ5をアース接地する。そして、図外の真空搬送ロボットにより、真空処理室1aに搬送用の透孔Toを通して、ステージ5上にある成膜済みの基板Wが真空処理室1aから搬出される。   After the film formation is completed, the application of high-frequency power to the target 2 and the introduction of gas are stopped, the voltage application from the chuck power supply is stopped, the short circuit to the ground is released, the adsorption of the substrate W is released, and the switching element 54c is turned on. And the stage 5 is grounded. Then, the film-formed substrate W on the stage 5 is unloaded from the vacuum processing chamber 1a through a through hole To for transporting to the vacuum processing chamber 1a by a vacuum transfer robot (not shown).

以上の実施形態によれば、上防着板91及び下防着板92と可動防着板93とが、所定長さに亘って、かつ、板厚方向に3mm以下の隙間を存して上下方向にのびるようにオーバーラップさせているため、例えば、真空チャンバ1内の全圧が10Pa以上となるようにスパッタガスの分圧を高めた状態でターゲット2に高周波電力を投入してスパッタリングしても、防着板91,92,93相互の隙間からの放電漏れを効果的に抑制される。これにより、ターゲット2に印加される高周波の交流成分の振幅電圧Vppの低下が抑制され、スパッタリングレートを高めて生産性を向上することができる。   According to the above embodiment, the upper and lower protective plates 91 and 92 and the movable protective plate 93 are vertically moved with a gap of 3 mm or less in the thickness direction over a predetermined length. Since they are overlapped so as to extend in the direction, for example, sputtering is performed by applying high-frequency power to the target 2 in a state where the partial pressure of the sputtering gas is increased so that the total pressure in the vacuum chamber 1 is 10 Pa or more. Moreover, the discharge leakage from the clearance gap between the adhesion prevention plates 91, 92, and 93 is effectively suppressed. Thereby, the fall of the amplitude voltage Vpp of the high frequency alternating current component applied to the target 2 is suppressed, and the sputtering rate can be increased and the productivity can be improved.

次に、以上の効果を確認するために、図1に示す高周波スパッタリング装置SMを用いて以下の実験を行った。本実験では、基板Wをシリコンウエハとした。そして、ターゲット2としてアルミナを用い、シリコンウエハ表面にアルミナ膜を成膜した。スパッタ条件として、ターゲット2と基板Wとの間の距離を70mm、高周波電源Eにより投入電力を1kW、スパッタ時間を90secに設定した。また、l、lが夫々10mm、d、dが夫々3mmとなるように防着手段9を設けることとした。また、本実験では、スパッタガスとしてアルゴンガスを用い、スパッタリング中、スパッタガスの分圧を約1〜10Pa、高周波電源Eからの投入高周波電力を0.5kW〜5kWの範囲で変化させた。そして、ビューポートから放電漏れの有無を確認した。これによれば、上記圧力範囲及び投入電力の範囲では、防着板からの放電漏れは確認できなかった。 Next, in order to confirm the above effects, the following experiment was performed using the high-frequency sputtering apparatus SM shown in FIG. In this experiment, the substrate W was a silicon wafer. Then, alumina was used as the target 2 and an alumina film was formed on the silicon wafer surface. As the sputtering conditions, the distance between the target 2 and the substrate W was set to 70 mm, the input power was set to 1 kW by the high frequency power source E, and the sputtering time was set to 90 sec. Further, the adhesion preventing means 9 is provided so that l 1 and l 2 are 10 mm each, and d 1 and d 2 are 3 mm each. In this experiment, argon gas was used as the sputtering gas. During sputtering, the partial pressure of the sputtering gas was changed in the range of about 1 to 10 Pa and the input high frequency power from the high frequency power source E was changed in the range of 0.5 kW to 5 kW. And the presence or absence of the discharge leakage was confirmed from the viewport. According to this, no discharge leakage from the deposition preventing plate could be confirmed in the pressure range and input power range.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上防着板91、下防着板92及び可動防着板93で防着手段9を構成したものを例に説明したが、防着手段9はこれに限定されるものではなく、いずれかの防着板が可動のものか否かに関係なく、複数枚の防着板で構成する場合には本発明を適用することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited above. Although the description has been given of the example in which the anti-adhesion means 9 is configured by the upper anti-adhesion plate 91, the lower anti-adhesion plate 92 and the movable anti-adhesion plate 93, the anti-adhesion means 9 is not limited to this, The present invention can be applied to a case where a plurality of deposition prevention plates are used regardless of whether the deposition prevention plate is movable.

SM…高周波スパッタリング装置、1…真空チャンバ、1a…真空処理室、2…ターゲット、5…ステージ、6…ガス管(ガス導入手段)、9…第3防着板(防着手段)、91…上防着板、92…下防着板、93…可動防着板、94…スペーサー、C…カソードユニット、E…高周波電源、W…基板。
SM ... high frequency sputtering apparatus, 1 ... vacuum chamber, 1a ... vacuum processing chamber, 2 ... target, 5 ... stage, 6 ... gas pipe (gas introduction means), 9 ... third deposition plate (protection means), 91 ... Upper protective plate, 92 ... Lower protective plate, 93 ... Movable protective plate, 94 ... Spacer, C ... Cathode unit, E ... High frequency power supply, W ... Substrate.

Claims (3)

ターゲットが着脱自在に取り付けられる真空チャンバと、この真空チャンバ内でターゲットに対向配置されて処理対象物を保持するステージと、ターゲットとステージとの間の空間を囲繞して真空チャンバの内壁面へのスパッタ粒子の付着を防止する防着手段とを備え、
ステージからターゲットに向かう方向を上とし、防着手段は上下方向に並設される複数枚の防着板で構成され、互いに隣接する防着板の各々は、所定長さに亘って、かつ、板厚方向に3mm以下の隙間を存してオーバーラップさせて配置されることを特徴とするスパッタリング装置。
A vacuum chamber in which the target is detachably attached, a stage that is disposed opposite to the target in the vacuum chamber and holds the object to be processed, and surrounds a space between the target and the inner wall of the vacuum chamber. An adhesion preventing means for preventing adhesion of sputtered particles,
The direction from the stage toward the target is the top, and the adhesion prevention means is composed of a plurality of adhesion prevention plates arranged in parallel in the vertical direction, each of the adhesion prevention plates adjacent to each other over a predetermined length, and A sputtering apparatus characterized by being disposed so as to overlap with a gap of 3 mm or less in the thickness direction.
前記隙間が上下方向にのびるように各防着板がオーバーラップされることを特徴とする請求項1記載のスパッタリング装置。   The sputtering apparatus according to claim 1, wherein the adhesion preventing plates are overlapped so that the gap extends in the vertical direction. 請求項1または請求項2記載のスパッタリング装置であって、いずれか1個の防着板に当該一の防着板を上下動する駆動手段の駆動軸が連結され、この一の防着板が上側または下側に位置する他の防着板に対して上下動自在であるものにおいて、
一の防着板の他の防着板側の端部を真空チャンバの内方に向けてL字状に屈曲すると共に、当該他の防着板の一の防着板側の端部を真空チャンバの内方に向けて直角に屈曲し、両防着板の端部により区画される空間にスペーサーを設けて上記隙間を形成することを特徴とするスパッタリング装置。
The sputtering apparatus according to claim 1 or 2, wherein a driving shaft of a driving means for moving the one deposition preventing plate up and down is connected to any one deposition preventing plate. In those that can move up and down with respect to the other deposition plate located on the upper side or the lower side
The end of the other plate is bent in an L shape toward the inside of the vacuum chamber, and the end of the other plate is closed A sputtering apparatus, wherein the gap is formed by bending at a right angle toward the inside of the chamber and providing a spacer in a space defined by the end portions of both deposition preventing plates.
JP2012232719A 2012-10-22 2012-10-22 Sputtering equipment Active JP6030404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232719A JP6030404B2 (en) 2012-10-22 2012-10-22 Sputtering equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012232719A JP6030404B2 (en) 2012-10-22 2012-10-22 Sputtering equipment

Publications (2)

Publication Number Publication Date
JP2014084483A true JP2014084483A (en) 2014-05-12
JP6030404B2 JP6030404B2 (en) 2016-11-24

Family

ID=50787849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232719A Active JP6030404B2 (en) 2012-10-22 2012-10-22 Sputtering equipment

Country Status (1)

Country Link
JP (1) JP6030404B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5978417B1 (en) * 2015-03-10 2016-08-24 株式会社アルバック Method and method for forming aluminum oxide film and sputtering apparatus
WO2016143263A1 (en) * 2015-03-10 2016-09-15 株式会社アルバック Aluminum oxide film-forming method and molding method, and sputtering apparatus
JPWO2016189809A1 (en) * 2015-05-22 2018-03-01 株式会社アルバック Magnetron sputtering equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247956A (en) * 2000-03-08 2001-09-14 Ulvac Japan Ltd Vacuum treatment apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247956A (en) * 2000-03-08 2001-09-14 Ulvac Japan Ltd Vacuum treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5978417B1 (en) * 2015-03-10 2016-08-24 株式会社アルバック Method and method for forming aluminum oxide film and sputtering apparatus
WO2016143263A1 (en) * 2015-03-10 2016-09-15 株式会社アルバック Aluminum oxide film-forming method and molding method, and sputtering apparatus
KR20170120175A (en) * 2015-03-10 2017-10-30 가부시키가이샤 알박 Method and apparatus for depositing aluminum oxide film and sputtering apparatus
CN107406967A (en) * 2015-03-10 2017-11-28 株式会社爱发科 The film build method and forming method and sputter equipment of pellumina
KR101871899B1 (en) * 2015-03-10 2018-06-27 가부시키가이샤 알박 Method and apparatus for depositing aluminum oxide film and sputtering apparatus
JPWO2016189809A1 (en) * 2015-05-22 2018-03-01 株式会社アルバック Magnetron sputtering equipment

Also Published As

Publication number Publication date
JP6030404B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6007070B2 (en) Sputtering method and sputtering apparatus
US20130098757A1 (en) Sputtering deposition apparatus and adhesion preventing member
JP2011179120A (en) Apparatus and method of physical vapor deposition with multi-point clamp
JP6171108B2 (en) Film forming apparatus and film forming method
JP2011179119A (en) Apparatus and method of physical vapor deposition with heat diffuser
JP2018502224A (en) Apparatus for PVD dielectric deposition
JP6030404B2 (en) Sputtering equipment
WO2011152481A1 (en) Sputter film forming device
JP2017008374A (en) Measuring method of deviation amount
JP6088780B2 (en) Plasma processing method and plasma processing apparatus
TWI705151B (en) Physical vapor deposition in-chamber electro-magnet
JP6871067B2 (en) Sputtering equipment
KR101871900B1 (en) High frequency sputtering apparatus and sputtering method
JP3729769B2 (en) Plasma processing equipment
JP2002129320A (en) Method and apparatus for sputtering
JP2010106370A (en) Bias sputtering apparatus
TW201903180A (en) Sputtering device
TW202024370A (en) Sputtering device and sputtering method
JP2020143353A (en) Vacuum treatment apparatus
JP6035002B1 (en) Sputtering apparatus and state determination method thereof
JP2018104738A (en) Film deposition method
WO2023228232A1 (en) Method for reproducing inner wall member
JP2010245296A (en) Film deposition method
TWI692532B (en) Methods and apparatus for nodule control in a titanium-tungsten target
KR20170102368A (en) Sputtering apparatus and method for determining the state thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161020

R150 Certificate of patent or registration of utility model

Ref document number: 6030404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250