JP2014084081A - Steering angle control device - Google Patents

Steering angle control device Download PDF

Info

Publication number
JP2014084081A
JP2014084081A JP2012237243A JP2012237243A JP2014084081A JP 2014084081 A JP2014084081 A JP 2014084081A JP 2012237243 A JP2012237243 A JP 2012237243A JP 2012237243 A JP2012237243 A JP 2012237243A JP 2014084081 A JP2014084081 A JP 2014084081A
Authority
JP
Japan
Prior art keywords
steering
steering angle
wheel
vehicle
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012237243A
Other languages
Japanese (ja)
Other versions
JP5942780B2 (en
Inventor
Mitsuhisa Murakami
光央 村上
Koji Okada
康志 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012237243A priority Critical patent/JP5942780B2/en
Publication of JP2014084081A publication Critical patent/JP2014084081A/en
Application granted granted Critical
Publication of JP5942780B2 publication Critical patent/JP5942780B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steering angle control device capable of suppressing possibility that a vehicle spins when a steering angle of rear wheels is controlled to turn the vehicle.SOLUTION: A steering angle control device 10 includes: steering means for steering front wheels 22; a steering angle sensor 14 for detecting a steering angle of the front wheels 22; a steering actuator 32 for steering rear wheels 24; and an ECU 20 for, on the basis of vehicle speed and the steering angle of the front wheels 22, deriving a target steering angle of the rear wheels 24, and controlling the steering actuator 32 so as to obtain the target steering angle. When the vehicle speed is equal to or above predetermined vehicle speed, the ECU 20 derives a target steering angle of the rear wheels 24, by which cornering force of the front wheels 22 becomes the ground load of the front wheels 22 when lateral acceleration of a vehicle reaches a predetermined value, and controls the steering actuator 32 so as to obtain the target steering angle.

Description

本発明は、舵角制御装置に関し、特に舵角制御装置での車輪の舵角の制御に関する。   The present invention relates to a rudder angle control device, and more particularly to control of a rudder angle of a wheel in a rudder angle control device.

近年、走行中の車両の挙動を安定化させる技術が知られており、例えば、特許文献1には、前輪および後輪と、前輪および後輪の間に配置された一対の中間輪と、を有する車両において、各車輪に付与する制動力を調整することで、各車輪の接地力配分を調整し、車両を安定化させる技術が開示される。   In recent years, a technique for stabilizing the behavior of a running vehicle has been known. For example, Patent Document 1 includes a front wheel and a rear wheel, and a pair of intermediate wheels disposed between the front wheel and the rear wheel. A technique for stabilizing a vehicle by adjusting a grounding force distribution of each wheel by adjusting a braking force applied to each wheel in the vehicle having the vehicle is disclosed.

また、一対の前輪および一対の後輪を有する車両において、車両の前後の車輪の舵角を制御し、旋回能力を向上させる四輪操舵技術が知られている。   In addition, in a vehicle having a pair of front wheels and a pair of rear wheels, a four-wheel steering technique is known in which the rudder angle of the front and rear wheels of the vehicle is controlled to improve the turning ability.

国際公開2011/045854号公報International Publication No. 2011-045854

ところで、前後に配置された車輪の舵角を制御する操舵技術において、後輪を前輪の舵角と逆相側に転舵させ、車両の旋回能力を向上させる技術がある。後輪を前輪の舵角と逆相側に転舵させた際に車速が高ければ、旋回中の車両に大きな横加速度が付与され、車両の走行状態が不安定になる可能性がある。   By the way, in the steering technology for controlling the steering angle of the wheels arranged in the front and rear, there is a technology for improving the turning ability of the vehicle by turning the rear wheels to the opposite side to the steering angle of the front wheels. If the vehicle speed is high when the rear wheels are steered to the opposite side to the rudder angle of the front wheels, a large lateral acceleration is applied to the turning vehicle, and the traveling state of the vehicle may become unstable.

本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、車両旋回時に後輪の舵角を制御した場合に、車両の走行状態が不安定になる可能性を抑える舵角制御装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to control the possibility that the traveling state of the vehicle becomes unstable when the steering angle of the rear wheel is controlled when the vehicle turns. It is to provide a control device.

上記課題を解決するために、本発明のある態様の舵角制御装置は、前輪を操舵する操舵手段と、前輪の舵角を検出する舵角検出手段と、後輪を転舵する転舵アクチュエータと、車速および前輪の舵角にもとづいて後輪の目標舵角を導出し、前記目標舵角になるよう前記転舵アクチュエータを制御する制御手段と、を備える。前記制御手段は、所定の車速以上である場合に、車両の横加速度が所定値になるときに前輪のコーナリングフォースが前輪の接地荷重となる後輪の前記目標舵角を導出し、前記目標舵角になるように前記転舵アクチュエータを制御する。   In order to solve the above-described problems, a steering angle control device according to an aspect of the present invention includes a steering unit that steers front wheels, a steering angle detection unit that detects a steering angle of the front wheels, and a steering actuator that steers the rear wheels. And a control means for deriving a target rudder angle of the rear wheel based on the vehicle speed and the rudder angle of the front wheel and controlling the steered actuator so as to be the target rudder angle. The control means derives the target rudder angle of the rear wheel at which the cornering force of the front wheel becomes the ground load of the front wheel when the lateral acceleration of the vehicle reaches a predetermined value when the vehicle speed is equal to or higher than a predetermined vehicle speed, and the target rudder The steered actuator is controlled to be a corner.

この態様によると、車両旋回時の横加速度が所定値に達した場合に、前輪のグリップ力が低下しつつも、前輪以外の車輪のグリップ力の低下を抑え、車両全体の走行状態がスピン状態になることを抑えることができる。   According to this aspect, when the lateral acceleration at the time of turning of the vehicle reaches a predetermined value, the grip force of the wheels other than the front wheels is suppressed while the grip force of the front wheels is reduced, and the traveling state of the entire vehicle is in the spin state. Can be suppressed.

この発明により、車両旋回時に後輪の舵角を制御した場合に、車両の走行状態が不安定になる可能性を抑えることができる。   According to the present invention, when the steering angle of the rear wheel is controlled when the vehicle is turning, the possibility that the traveling state of the vehicle becomes unstable can be suppressed.

実施形態の舵角制御装置の概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a rudder angle control device of an embodiment. 従来技術の後輪の転舵制御を説明するための図である。It is a figure for demonstrating steering control of the rear wheel of a prior art. 実施形態の後輪の転舵制御について説明するための図である。It is a figure for demonstrating steering control of the rear-wheel of embodiment. 従来技術の後輪の他の転舵制御を説明するための図である。It is a figure for demonstrating other steering control of the rear wheel of a prior art.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate.

図1は、実施形態の舵角制御装置の概略構成を示す模式図である。舵角制御装置10は、ハンドル12、操舵角センサ14、操舵軸16、前輪ギア18、ECU20、前輪22、後輪24、中間輪26、駆動モータ28、車速センサ30、転舵アクチュエータ32および舵角センサ34を備える。   Drawing 1 is a mimetic diagram showing a schematic structure of a rudder angle control device of an embodiment. The steering angle control device 10 includes a steering wheel 12, a steering angle sensor 14, a steering shaft 16, a front wheel gear 18, an ECU 20, a front wheel 22, a rear wheel 24, an intermediate wheel 26, a drive motor 28, a vehicle speed sensor 30, a steering actuator 32, and a rudder. An angle sensor 34 is provided.

ハンドル12は、運転者が操舵量を入力するために回転させる操舵部材として機能する。ハンドル12は操舵軸16を介して前輪22に接続される。操舵角センサ14は、運転者が入力した操舵量としてのハンドル12の回転角を検出し、この検出値をECU20に対して出力する。   The handle 12 functions as a steering member that is rotated by the driver to input a steering amount. The handle 12 is connected to the front wheel 22 via the steering shaft 16. The steering angle sensor 14 detects the rotation angle of the handle 12 as the steering amount input by the driver, and outputs the detected value to the ECU 20.

操舵角センサ14は、ハンドル12の操作量に応じた情報を検出する検出手段として機能する。ハンドル12の操舵角(操作量)に応じて前輪の転舵角が変動するため、操舵角センサ14は、前輪22の舵角を検出する舵角検出手段としても機能する。前輪ギア18は、操舵軸16の回転動作を、前輪22の転舵角を変化させる動作に変換する。なお、舵角検出手段として、前輪22の転舵角を直接検出するセンサが設けられてもよい。   The steering angle sensor 14 functions as a detection unit that detects information according to the operation amount of the handle 12. Since the steering angle of the front wheels varies according to the steering angle (operation amount) of the handle 12, the steering angle sensor 14 also functions as a steering angle detection unit that detects the steering angle of the front wheels 22. The front wheel gear 18 converts the rotation operation of the steering shaft 16 into an operation for changing the turning angle of the front wheel 22. A sensor that directly detects the turning angle of the front wheel 22 may be provided as the steering angle detection means.

前輪22と後輪24の間には一対の中間輪26が設けられる。中間輪26には、中間輪26を回転させる駆動モータ28、および、中間輪26の回転量を検出する車速センサ30が設けられる。車速は左右の車速センサ30の平均により算出されてよい。駆動モータ28は、不図示のアクセルペダルの動作、すなわち運転者の操作量に応じてECU20により駆動を制御される。なお、各駆動モータ28は、それぞれ個別に制御可能とされてよい。なお、中間輪26は転舵せず、車両の直進方向に進むよう設定される。   A pair of intermediate wheels 26 are provided between the front wheels 22 and the rear wheels 24. The intermediate wheel 26 is provided with a drive motor 28 that rotates the intermediate wheel 26 and a vehicle speed sensor 30 that detects the amount of rotation of the intermediate wheel 26. The vehicle speed may be calculated by the average of the left and right vehicle speed sensors 30. The drive of the drive motor 28 is controlled by the ECU 20 according to the operation of an accelerator pedal (not shown), that is, the operation amount of the driver. Each drive motor 28 may be individually controllable. Note that the intermediate wheel 26 is set so as not to be steered but to travel in the straight direction of the vehicle.

後輪24には転舵アクチュエータ32および舵角センサ34が設けられる。転舵アクチュエータ32は、ECU20の制御により動作し、後輪24を転舵する。舵角センサ34は後輪24の舵角を検出し、ECU20に送る。   A steering actuator 32 and a steering angle sensor 34 are provided on the rear wheel 24. The steered actuator 32 operates under the control of the ECU 20 to steer the rear wheel 24. The steering angle sensor 34 detects the steering angle of the rear wheel 24 and sends it to the ECU 20.

ECU20は、各種センサの情報に基づいて、駆動モータ28や転舵アクチュエータ32を制御する。ECU20は、例えばCPU、ROM、RAMおよびそれらを相互に接続するデータバスから構成され、ROMに格納されたプログラムに従い、前輪22の操舵角センサ14の検出結果および車速センサ30の検出結果に基づいて後輪24を転舵する制御を行う制御手段として機能する。ここで、前輪の舵角にもとづいて後輪の舵角を制御する技術を図2を用いて説明する。   The ECU 20 controls the drive motor 28 and the steering actuator 32 based on information from various sensors. The ECU 20 is composed of, for example, a CPU, a ROM, a RAM, and a data bus that interconnects them, and is based on the detection result of the steering angle sensor 14 of the front wheels 22 and the detection result of the vehicle speed sensor 30 according to a program stored in the ROM. It functions as a control means for performing control for turning the rear wheel 24. Here, a technique for controlling the steering angle of the rear wheel based on the steering angle of the front wheel will be described with reference to FIG.

図2は、従来技術の後輪の転舵制御を説明するための図であり、前輪22の舵角が大きい場合に、後輪24を前輪22と逆相側に転舵した状態を示す。なお、逆相側に転舵とは、図2に示すように、車両の直進方向Sを基準として、前輪22が左方向に操舵している場合に、後輪24を右方向、すなわち前輪22と逆側に転舵することをいい、同相側に転舵とは、前輪22が左方向に操舵している場合に、後輪24も左方向、すなわち前輪22と同じ側に転舵することをいう。   FIG. 2 is a diagram for explaining steering control of the rear wheels of the prior art, and shows a state in which the rear wheels 24 are steered to the opposite side to the front wheels 22 when the steering angle of the front wheels 22 is large. As shown in FIG. 2, the steering to the opposite phase side means that when the front wheels 22 are steered leftward with respect to the straight traveling direction S of the vehicle, the rear wheels 24 are moved rightward, that is, the front wheels 22. And turning to the same phase side means that when the front wheels 22 are steered leftward, the rear wheels 24 are steered leftward, that is, on the same side as the front wheels 22. Say.

図2において、前輪22が左方向に操舵され、後輪24は前輪22の逆相側に転舵されている。この後輪24の転舵によって小回りができるものの、高速走行時において、前輪22の操舵角に対するヨーレイトや横加速度が大きくなり、運転者が操舵しづらくなり、横加速度が限界域に達すると車両がスピンするおそれがある。   In FIG. 2, the front wheel 22 is steered leftward, and the rear wheel 24 is steered to the opposite phase side of the front wheel 22. Although the turning of the rear wheel 24 can make a small turn, the yaw rate and the lateral acceleration with respect to the steering angle of the front wheel 22 increase during high-speed driving, making it difficult for the driver to steer, and when the lateral acceleration reaches the limit range, There is a risk of spinning.

そこで実施形態のECU20は、所定の車速以上において、車両に働く横加速度が所定の限界値である場合に前輪22のコーナリングフォースが前輪22の接地荷重と所定の割合になるように後輪24目標舵角を設定し、転舵アクチュエータ32を制御する。車輪のコーナリングフォースは、車輪の進行方向と直角の向きに発生する力であり、車輪のスリップ角に比例して増加する。また、コーナリングフォースの上限は車輪と路面の間の摩擦係数μに車輪の接地荷重を乗じたもので、μ=1である場合はコーナリングフォースと接地荷重が等しくなる。車輪のスリップ角が増大し、コーナリングフォースが上限に達してから、その角度以上に車輪のスリップ角を増大させると、コーナリングフォースは低下し、いわゆるグリップ力が低下した状態になる。つまり車両に働く横加速度が所定の限界値に達する際に後輪24の舵角制御により、前輪22のコーナリングフォースが接地荷重と所定の割合(μにより定まる上限)となり、グリップ力が低下して滑り出すように車体スリップ角の制御を行う。このように前輪22を他の車輪よりも先に滑らせるようにすると車両はドリフトアウト状態となり、他の輪が先に滑るスピン状態となるよりも安定した挙動となる。また実施形態ではμ=1に合わせて、コーナリングフォースの上限=接地荷重として所定の割合を固定した態様を説明するが、摩擦係数μに応じてコーナリングフォースの上限が変化するため、検知した摩擦係数μに応じて制御してもよい。   Therefore, the ECU 20 according to the embodiment sets the rear wheel 24 target so that the cornering force of the front wheel 22 becomes a predetermined ratio to the ground load of the front wheel 22 when the lateral acceleration acting on the vehicle is a predetermined limit value at a predetermined vehicle speed or higher. A steering angle is set, and the steering actuator 32 is controlled. The wheel cornering force is a force generated in a direction perpendicular to the traveling direction of the wheel, and increases in proportion to the slip angle of the wheel. The upper limit of the cornering force is obtained by multiplying the friction coefficient μ between the wheel and the road surface by the ground contact load of the wheel. When μ = 1, the cornering force and the ground load are equal. If the slip angle of the wheel is increased and the cornering force reaches the upper limit and then the slip angle of the wheel is increased beyond that angle, the cornering force is lowered and the so-called gripping force is reduced. That is, when the lateral acceleration acting on the vehicle reaches a predetermined limit value, the cornering force of the front wheel 22 becomes a predetermined ratio (upper limit determined by μ) by the steering angle control of the rear wheel 24, and the grip force is reduced. Car body slip angle is controlled so as to slide. If the front wheel 22 is slid before the other wheels in this way, the vehicle is in a drift-out state, and the behavior is more stable than in a spin state in which the other wheels slide first. Further, in the embodiment, a mode in which a predetermined ratio is fixed as the upper limit of the cornering force = the ground load according to μ = 1 will be described. However, since the upper limit of the cornering force changes according to the friction coefficient μ, the detected friction coefficient You may control according to (micro | micron | mu).

図3は、実施形態の後輪24の転舵制御について説明するための図である。図3(a)〜(c)は、車両の横加速度が所定の限界値である場合に前輪22のコーナリングフォースが前輪22の接地荷重と等しくなるように算出したものであり、図3(a)は、前輪22の舵角δfと車速との関係を示し、図3(b)は、後輪24の舵角δrと車速との関係を示し、図3(c)は、前輪22と後輪24の舵角比kを示す。なお、舵角がゼロのとき車両直進方向であることを示し、左方向への舵角をマイナス、右方向への舵角をプラスとして示す。図3(a)では、右方向への舵角を示し、左方向への舵角は省略する。また、この態様では、前輪22の舵角δfにハンドル12の操舵角を用いており、操舵角は、±π/2ラジアンを上限としている。   Drawing 3 is a figure for explaining steering control of rear wheel 24 of an embodiment. FIGS. 3A to 3C are calculated so that the cornering force of the front wheel 22 is equal to the ground load of the front wheel 22 when the lateral acceleration of the vehicle is a predetermined limit value. ) Shows the relationship between the steering angle δf of the front wheel 22 and the vehicle speed, FIG. 3B shows the relationship between the steering angle δr of the rear wheel 24 and the vehicle speed, and FIG. 3C shows the relationship between the front wheel 22 and the rear wheel. The steering angle ratio k of the wheel 24 is shown. When the rudder angle is zero, it indicates that the vehicle is traveling straight, the left rudder angle is negative, and the right rudder angle is positive. In FIG. 3A, the steering angle to the right is shown, and the steering angle to the left is omitted. In this aspect, the steering angle of the steering wheel 12 is used as the steering angle δf of the front wheel 22, and the steering angle has an upper limit of ± π / 2 radians.

以下に示す式(1)では、横加速度Ayの限界値を設定する。横加速度Ayの限界値は、限界値より横加速度Ayが大きくなれば車両がスピンや横転をする可能性が上昇し始める値、または、限界値より横加速度Ayが小さくなれば車両がスピンや横転をする可能性がほとんどなくなる値であって、重心位置やトレッドなどの車両諸元、サスペンション特性などを考慮して定められる値である。

Figure 2014084081
γ:ヨーレート、V:車速、Kf・Kc・Kr:コーナリングスティッフネス(またはコーナリングパワー)、lf・lc・lr:重心から車輪までの距離、m:車両質量、β:車体のスリップ角、βf:前輪のスリップ角、Cp:単位荷重当りのコーナリングステッィフネス、ef:操舵系剛性によるコーナリングステッィフネスの低下率。 In the following formula (1), the limit value of the lateral acceleration Ay is set. The limit value of the lateral acceleration Ay is a value at which the possibility that the vehicle will spin or roll over increases if the lateral acceleration Ay becomes larger than the limit value, or the vehicle spins or rolls if the lateral acceleration Ay becomes smaller than the limit value. This value is determined in consideration of the position of the center of gravity, vehicle specifications such as tread, suspension characteristics, and the like.
Figure 2014084081
γ: yaw rate, V: vehicle speed, Kf · Kc · Kr: cornering stiffness (or cornering power), lf · lc · lr: distance from the center of gravity to the wheel, m: vehicle mass, β: slip angle of the vehicle body, βf: Slip angle of front wheel, Cp: Cornering stiffness per unit load, ef: Decrease rate of cornering stiffness due to steering system rigidity.

以下に示す式(2)では、前輪22のコーナリングフォースと前輪22の接地荷重とが所定の割合になるように設定している。

Figure 2014084081
In the following equation (2), the cornering force of the front wheel 22 and the ground load of the front wheel 22 are set to a predetermined ratio.
Figure 2014084081

式(1)と式(2)を連立方程式として解き、前輪22の舵角δf、δr=kδfとなる舵角比kを算出する。舵角比kは、ECU20に予め記憶される。ECU20は、舵角比kを数式で記憶してもよく、テーブル形式で記憶してもよい。   Equations (1) and (2) are solved as simultaneous equations, and the steering angle ratio k at which the steering angles δf and δr = kδf of the front wheels 22 are calculated. The steering angle ratio k is stored in the ECU 20 in advance. The ECU 20 may store the steering angle ratio k as a mathematical expression or may store it in a table format.

ECU20は、車速センサ30の検出結果が所定の車速V1以上であれば、操舵角センサ14から取得した前輪22の舵角δfに図3(c)に示す舵角比kを乗算して後輪24の目標舵角δrを導出し、導出した後輪24の目標舵角δrになるように転舵アクチュエータ32の駆動を制御する。所定の車速V1は、それ以下では前輪のコーナリングフォースが接地荷重に等しくなるδfが存在しない速度である。   If the detection result of the vehicle speed sensor 30 is equal to or higher than the predetermined vehicle speed V1, the ECU 20 multiplies the steering angle δf of the front wheel 22 acquired from the steering angle sensor 14 by the steering angle ratio k shown in FIG. The target steering angle δr of 24 is derived, and the drive of the steering actuator 32 is controlled so that the derived target steering angle δr of the rear wheel 24 is obtained. The predetermined vehicle speed V1 is a speed below which δf at which the cornering force of the front wheels is equal to the ground load does not exist.

図3(a)〜(c)では、所定の車速V1以上の舵角および舵角比を示す。図3(a)には、限界値での前輪22が滑り始める、前輪22の舵角δfと車速の関係が示される。車速が上昇するにつれて滑り始める舵角δfが小さくなる。車速V2より大きくなると、舵角δfはほぼ一定である。   3A to 3C show a steering angle and a steering angle ratio that are equal to or higher than a predetermined vehicle speed V1. FIG. 3A shows the relationship between the steering angle δf of the front wheel 22 and the vehicle speed at which the front wheel 22 starts to slip at the limit value. As the vehicle speed increases, the steering angle δf that starts to slide decreases. When the vehicle speed V2 is exceeded, the steering angle δf is substantially constant.

図3(b)には、前輪22が滑りはじめるときの後輪24の舵角δrが示される。車速が低い場合は逆相側の舵角δrにて制御され、車速V1において逆相側のほぼ最大限の舵角となっており、車速V2にて逆相側から同相側に切り替わる。この例では車速V2は、約時速37kmである。   FIG. 3B shows the steering angle δr of the rear wheel 24 when the front wheel 22 starts to slide. When the vehicle speed is low, the control is performed at the steering angle δr on the opposite phase side, the steering angle is almost the maximum on the opposite phase side at the vehicle speed V1, and the phase is switched from the opposite phase side to the in-phase side at the vehicle speed V2. In this example, the vehicle speed V2 is about 37 km / h.

図3(c)に示す舵角比kは、δr=kδfという関係であるから、図3(b)に示す後輪24の舵角δrと同じく車速V2で負から正の値に切り替わる。図3(c)に示すように、車速V1ではk=−1であり、車速V2以下の低速では常に後輪24を逆相に転舵するため、前輪22の舵角δfが大きくなっても前輪のスリップ角が大きくなりすぎることはなく、所定の横加速度が車体にかかるまでドリフトアウトすることなく旋回することができる。また、車速V2以上では後輪24を前輪22と同相で制御するためアンダーステアとしながら、前輪22のスリップ角を大きくすることで所定の横加速度が車体にかかる際にコーナリングフォースが上限に達するようにしている。その結果、前輪22のグリップ力が低下し、車両がスピンすることなくドリフトアウトするように制御できる。   Since the steering angle ratio k shown in FIG. 3C has a relationship of δr = kδf, it switches from a negative value to a positive value at the vehicle speed V2 in the same manner as the steering angle δr of the rear wheel 24 shown in FIG. As shown in FIG. 3C, k = −1 at the vehicle speed V1, and the rear wheel 24 is always steered in the opposite phase at a low speed equal to or less than the vehicle speed V2, so that even if the steering angle δf of the front wheel 22 increases. The slip angle of the front wheels does not become too large, and the vehicle can turn without drifting out until a predetermined lateral acceleration is applied to the vehicle body. Further, at a vehicle speed of V2 or higher, the rear wheel 24 is controlled in phase with the front wheel 22 and understeering, while the slip angle of the front wheel 22 is increased so that the cornering force reaches the upper limit when a predetermined lateral acceleration is applied to the vehicle body. ing. As a result, the grip force of the front wheels 22 is reduced, and the vehicle can be controlled to drift out without spinning.

図4は、従来技術の後輪の他の転舵制御を説明するための図であり、前輪22の舵角が小さい場合に、後輪24を前輪22と同相側に転舵した状態を示す。   FIG. 4 is a diagram for explaining another steering control of the rear wheel of the prior art, and shows a state in which the rear wheel 24 is steered to the same phase as the front wheel 22 when the steering angle of the front wheel 22 is small. .

図4に示すように、前輪22の舵角が小さい場合、後輪24は前輪22と同相側、かつ、前輪22の舵角より小さく転舵されている。この場合、各車輪は矢印方向のコーナリングフォース(摩擦力)を受ける。前輪22の舵角は後輪24の舵角より大きいため、前輪22のコーナリングフォースCfは、後輪24のコーナリングフォースCrより大きくなる。車体スリップ角βがついてるため中間輪26のコーナリングフォースCcは、前輪22および後輪24と逆側の方向である。   As shown in FIG. 4, when the steering angle of the front wheel 22 is small, the rear wheel 24 is steered smaller than the steering angle of the front wheel 22 on the same phase side as the front wheel 22. In this case, each wheel receives a cornering force (frictional force) in the direction of the arrow. Since the steering angle of the front wheel 22 is larger than the steering angle of the rear wheel 24, the cornering force Cf of the front wheel 22 is larger than the cornering force Cr of the rear wheel 24. Since the vehicle body slip angle β is provided, the cornering force Cc of the intermediate wheel 26 is in the direction opposite to the front wheel 22 and the rear wheel 24.

このとき前輪22のスリップ角が大きくなり、各車輪の中でコーナリングフォースの最大値が最も先に出てしまう。所定の車速以下でこのような後輪24の転舵制御を実行した場合、前輪22が滑り、小回りができなくなる可能性がある。   At this time, the slip angle of the front wheel 22 becomes large, and the maximum value of the cornering force comes out first in each wheel. When such steering control of the rear wheel 24 is executed at a predetermined vehicle speed or less, the front wheel 22 may slip and cannot turn.

そこで、図3で不図示の車速V1以下では、δr=−δfとなるように制御される。つまり、ECU20は、車速が数km程度と低速である場合に、前輪22に対して後輪24を単純な逆相で転舵する制御を実行する。また車速V1以上V2以下では転舵比kにもとづき逆相で転舵する制御を実行する。これにより図4の従来技術に対して前輪22のスリップ角が大きくなりすぎず、所定の車速以下の低速で所定の横加速度が発生するまでは前輪22がグリップを失わず、車両が小回りできる。また車速V2以上では転舵比kにもとづき後輪24を同相に転舵する制御を実行する。これにより、車両をアンダーステアとしながら、前輪22のスリップ角を大きくして、挙動が不安定となる所定の横加速度が車体にかかる際に前輪22のコーナリングフォースが上限に達してグリップ力が低下し、車両がスピンすることなくドリフトアウトする。なお後輪24を転舵する実行条件として前輪22が所定の角度以上転舵しているか判定してよい。これにより、操舵の中立位置付近の車両の応答ゲインを下げることができ、運転しやすくなる場合がある。   Therefore, at a vehicle speed V1 or less (not shown in FIG. 3), control is performed so that δr = −δf. That is, when the vehicle speed is as low as several kilometers, the ECU 20 executes control for turning the rear wheel 24 with a simple reverse phase with respect to the front wheel 22. Further, when the vehicle speed is V1 or more and V2 or less, the control for turning in the opposite phase is executed based on the turning ratio k. As a result, the slip angle of the front wheel 22 does not become too large compared to the prior art of FIG. 4, and the front wheel 22 does not lose the grip until the predetermined lateral acceleration is generated at a low speed equal to or lower than the predetermined vehicle speed, and the vehicle can make a small turn. At a vehicle speed of V2 or higher, control is performed to steer the rear wheels 24 in phase based on the steering ratio k. As a result, the slip angle of the front wheel 22 is increased while the vehicle is understeered, and the cornering force of the front wheel 22 reaches the upper limit when a predetermined lateral acceleration that causes unstable behavior is applied to the vehicle body, resulting in a decrease in gripping force. The vehicle drifts out without spinning. As an execution condition for turning the rear wheel 24, it may be determined whether the front wheel 22 is steered by a predetermined angle or more. As a result, the response gain of the vehicle in the vicinity of the neutral position of steering can be lowered, which may facilitate driving.

以上、本発明を上述の実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。   As described above, the present invention has been described with reference to the above-described embodiment. However, the present invention is not limited to the above-described embodiment, and the present invention can be appropriately combined or replaced with the configuration of the embodiment. It is included in the present invention. In addition, it is possible to appropriately change the combination and processing order in the embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to the embodiment. The described embodiments can also be included in the scope of the present invention.

実施形態ではひし形の頂点に車輪を配置した態様の車両を用いて説明したが、その車両に限定されない。たとえば、前輪に操舵機構、後輪に転舵アクチュエータを有する前輪2輪、後輪2輪の通常の車両であってもよい。   Although the embodiment has been described using a vehicle in which wheels are arranged at the apexes of the rhombus, the present invention is not limited to the vehicle. For example, the vehicle may be a normal vehicle having two front wheels and two rear wheels each having a steering mechanism on the front wheels and a steering actuator on the rear wheels.

舵角比kは、車両走行中の路面の状況に応じて補正して用いてよい。たとえば路面が凍ってる場合や路面が濡れてる場合では、摩擦係数μが下がり、コーナリングフォースの上限値が低くなるため、その分を補正する。数式2の値を補正して方程式を解いた舵角比kに変更すればよい。   The steering angle ratio k may be corrected and used in accordance with the road surface condition during vehicle travel. For example, when the road surface is frozen or the road surface is wet, the friction coefficient μ decreases, and the upper limit value of the cornering force is lowered. What is necessary is just to change to the steering angle ratio k which correct | amended the value of Numerical formula 2 and solved the equation.

10 舵角制御装置、 12 ハンドル、 14 操舵角センサ、 16 操舵軸、 18 前輪ギア、 20 ECU、 22 前輪、 24 後輪、 26 中間輪、 28 駆動モータ、 30 車速センサ、 32 転舵アクチュエータ、 34 舵角センサ。   DESCRIPTION OF SYMBOLS 10 Steering angle control apparatus, 12 Steering wheel, 14 Steering angle sensor, 16 Steering shaft, 18 Front wheel gear, 20 ECU, 22 Front wheel, 24 Rear wheel, 26 Intermediate wheel, 28 Drive motor, 30 Vehicle speed sensor, 32 Steering actuator, 34 Rudder angle sensor.

Claims (1)

前輪を操舵する操舵手段と、
前輪の舵角を検出する舵角検出手段と、
後輪を転舵する転舵アクチュエータと、
車速および前輪の舵角にもとづいて後輪の目標舵角を導出し、前記目標舵角になるよう前記転舵アクチュエータを制御する制御手段と、を備え、
前記制御手段は、所定の車速以上である場合に、車両の横加速度が所定値になるときに前輪のコーナリングフォースと前輪の接地荷重とが所定の割合となる後輪の前記目標舵角を導出し、前記目標舵角になるように前記転舵アクチュエータを制御することを特徴とする舵角制御装置。
Steering means for steering the front wheels;
Rudder angle detection means for detecting the rudder angle of the front wheels;
A steering actuator that steers the rear wheels;
A control means for deriving a target rudder angle of a rear wheel based on a vehicle speed and a rudder angle of a front wheel, and controlling the steering actuator so as to be the target rudder angle;
The control means derives the target rudder angle of the rear wheel at which the cornering force of the front wheel and the ground contact load of the front wheel become a predetermined ratio when the lateral acceleration of the vehicle reaches a predetermined value when the vehicle speed is equal to or higher than a predetermined vehicle speed. And a steering angle control device for controlling the steering actuator so as to achieve the target steering angle.
JP2012237243A 2012-10-26 2012-10-26 Rudder angle control device Expired - Fee Related JP5942780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012237243A JP5942780B2 (en) 2012-10-26 2012-10-26 Rudder angle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012237243A JP5942780B2 (en) 2012-10-26 2012-10-26 Rudder angle control device

Publications (2)

Publication Number Publication Date
JP2014084081A true JP2014084081A (en) 2014-05-12
JP5942780B2 JP5942780B2 (en) 2016-06-29

Family

ID=50787542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012237243A Expired - Fee Related JP5942780B2 (en) 2012-10-26 2012-10-26 Rudder angle control device

Country Status (1)

Country Link
JP (1) JP5942780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220306059A1 (en) * 2021-03-25 2022-09-29 Toyota Research Institute, Inc. Emergency maneuvering using lateral sliding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148772A (en) * 1984-01-13 1985-08-06 Honda Motor Co Ltd Steering device for vehicles
JPH0357771A (en) * 1989-07-25 1991-03-13 Kayaba Ind Co Ltd Motor-driven type independent system rear wheel steering device
JP2005306249A (en) * 2004-04-22 2005-11-04 Toyota Motor Corp Vehicle steering control device
JP2007168698A (en) * 2005-12-26 2007-07-05 Toyota Motor Corp Steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148772A (en) * 1984-01-13 1985-08-06 Honda Motor Co Ltd Steering device for vehicles
JPH0357771A (en) * 1989-07-25 1991-03-13 Kayaba Ind Co Ltd Motor-driven type independent system rear wheel steering device
JP2005306249A (en) * 2004-04-22 2005-11-04 Toyota Motor Corp Vehicle steering control device
JP2007168698A (en) * 2005-12-26 2007-07-05 Toyota Motor Corp Steering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220306059A1 (en) * 2021-03-25 2022-09-29 Toyota Research Institute, Inc. Emergency maneuvering using lateral sliding
US11807206B2 (en) * 2021-03-25 2023-11-07 Toyota Research Institute, Inc. Emergency maneuvering using lateral sliding

Also Published As

Publication number Publication date
JP5942780B2 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP4930007B2 (en) Steering angle control device for vehicle
JP4556775B2 (en) Vehicle steering system
JP6162762B2 (en) Vehicle control apparatus and vehicle control method
JP5830554B2 (en) Control method for four-wheel steering vehicle
CN104417564B (en) Vehicle behavior control device
US8594888B2 (en) Steering control apparatus
JP2019194060A (en) Method of controlling implementation of drift driving state of vehicle
JP6123884B2 (en) Vehicle steering control device
JP6328841B1 (en) Control device and steering device
JP2007118898A (en) Braking/driving force controller for vehicle
KR20150025810A (en) Steering control apparatus and method
JP4600126B2 (en) Vehicle attitude control device
JP2020083169A (en) Vehicle motion control device
JP5983114B2 (en) Braking control device
JP5942780B2 (en) Rudder angle control device
JP2006187047A (en) Driving force controller for four-wheel independent drive vehicle
JP5040302B2 (en) Vehicle control device
JP6329308B2 (en) Vehicle control apparatus and vehicle control method
JP5272570B2 (en) Rudder angle control device and rudder angle control method
JP5407402B2 (en) Vehicle steering control device and vehicle steering control method
JP2011161957A (en) Central controller
JP2006158149A (en) Control device to control driving force of vehicles
JP2008144788A (en) Apparatus for controlling vehicle driving force
JP4244849B2 (en) Road surface friction coefficient detection controller
JP5228937B2 (en) Behavior control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R151 Written notification of patent or utility model registration

Ref document number: 5942780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees