JP2014083664A - Cutting tool and surface-coated cutting tool utilizing cubic crystal boron nitride based ultrahigh-pressure sintered body as tool base body - Google Patents

Cutting tool and surface-coated cutting tool utilizing cubic crystal boron nitride based ultrahigh-pressure sintered body as tool base body Download PDF

Info

Publication number
JP2014083664A
JP2014083664A JP2012236527A JP2012236527A JP2014083664A JP 2014083664 A JP2014083664 A JP 2014083664A JP 2012236527 A JP2012236527 A JP 2012236527A JP 2012236527 A JP2012236527 A JP 2012236527A JP 2014083664 A JP2014083664 A JP 2014083664A
Authority
JP
Japan
Prior art keywords
phase
sintered body
cbn
cutting tool
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012236527A
Other languages
Japanese (ja)
Other versions
JP6032409B2 (en
Inventor
Noriji Yumoto
憲志 油本
Yasusuke Miyashita
庸介 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012236527A priority Critical patent/JP6032409B2/en
Priority to CN201310445743.5A priority patent/CN103787662B/en
Publication of JP2014083664A publication Critical patent/JP2014083664A/en
Application granted granted Critical
Publication of JP6032409B2 publication Critical patent/JP6032409B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool and a coated cutting tool which utilizes a cBN based ultrahigh-pressure sintered body having excellent toughness as the tool base body and have excellent defect resistance.SOLUTION: A cubic boron nitride based ultra-high sintered body cutting tool utilizes a cBN based ultrahigh-pressure sintered body comprising cBN particles, a binder phase and TiBand WB phases as the tool base body. In a coated cutting tool, the average particle size of cBN particles is 0.5-3.5 μm and the content of the cBN particles is 40-75 vol.%. In the binder phase, fine TiBand WB phases of an average particle size of 50-500 nm are distributed in a dispersed form. The total amount of the TiBand WB phases produced in the sintered body is 5-15 vol.% in the binder phase. In the binder phase, 15-35 vol.% is one or both of Al nitride and oxide, and remaining components comprises at least one or more of Ti nitride, carbide, boride and carbonitride and unavoidable impurities. The binder phase meets the relationship: 0.5≤(amount of WB phase produced)/(amount of TiBphase produced)≤1.0.

Description

本発明は、靭性にすぐれた立方晶窒化ほう素(以下、「cBN」で示す)基超高圧焼結体(以下、cBN焼結体という)からなる切削工具(以下、cBN工具という)に関する。   The present invention relates to a cutting tool (hereinafter referred to as a cBN tool) made of a cubic boron nitride (hereinafter referred to as “cBN”)-based ultrahigh pressure sintered body (hereinafter referred to as a cBN sintered body) having excellent toughness.

従来から、cBN焼結体は、すぐれた耐久性、熱安定性、熱伝導性を有し、衝撃抵抗、摩擦係数にも優れることが知られており、さらに、鉄系材料との親和性が低いことから、これらの特性を生かし、鋼、鋳鉄等の鉄系被削材の切削工具材料として用いられている。   Conventionally, cBN sintered bodies have been known to have excellent durability, thermal stability, thermal conductivity, excellent impact resistance, and coefficient of friction, and have an affinity for iron-based materials. Since it is low, it is used as a cutting tool material for iron-based work materials such as steel and cast iron, taking advantage of these characteristics.

例えば、特許文献1に示すように、高硬度鋼、チル鋳鉄などを高速連続切削するための耐摩耗性、耐欠損性および耐チッピング性に優れたcBN焼結体として、 Ti系化合物を含有する原料粉末をボールミルで粉砕・混合した後、cBN粉末と配合・混合して成形体を作製し、これを、焼結することによって、Tiの炭化物、窒化物、炭窒化物のうちの1種または2種以上をマトリックスとし、このマトリックス中に、平均粒径4〜20μmのcBN10〜50容量%未満、平均粒径0.2μm以下のWC0.1〜1.0容量%、平均粒径0.2μm以下のAl3〜10容量%、平均粒径0.5μm以下のAlN3〜7容量%、平均粒径0.5μm以下のTiB1〜5容量%を均一に分散させたcBN焼結体を得ることが提案されている。 For example, as shown in Patent Document 1, as a cBN sintered body excellent in wear resistance, fracture resistance, and chipping resistance for high-speed continuous cutting of high hardness steel, chill cast iron, etc., a Ti-based compound is contained. The raw material powder is pulverized and mixed with a ball mill, and then blended and mixed with the cBN powder to produce a molded body. By sintering this, one kind of Ti carbide, nitride, carbonitride or Two or more kinds are used as a matrix, and in this matrix, cBN having an average particle size of 4 to 20 μm is less than 10 to 50% by volume, WC is 0.1 to 1.0% by volume of an average particle size of 0.2 μm or less, and the average particle size is 0.2 μm. CBN sintering in which 3 to 10% by volume of the following Al 2 O 3, 3 to 7% by volume of AlN having an average particle size of 0.5 μm or less, and 1 to 5% by volume of TiB 2 having an average particle size of 0.5 μm or less are uniformly dispersed. Proposed to get the body There.

また、例えば、特許文献2に示すように、Ti系化合物を含有する原料粉末から成形体を作製し、これを破砕・粉砕した後、所定粒径かつ所定量のcBN粉末混合物をスラリーに添加し、該cBN含有スラリーを、粉砕混合、乾燥して圧粉体を成形し、これを焼結することによって、焼結体のマトリックス相に含有されるTiBの(101)ピークのXRDピーク高さを、cBNの(111)ピークのピーク高さの12%よりも小さくし、耐欠損性・耐破損性を向上させるようにしたcBN焼結体が提案されている。 Also, for example, as shown in Patent Document 2, after forming a compact from a raw material powder containing a Ti-based compound, crushing and pulverizing it, a mixture of cBN powder having a predetermined particle size and a predetermined amount is added to the slurry. The cBN-containing slurry is pulverized, mixed and dried to form a green compact, which is then sintered to obtain an XRD peak height of the (101) peak of TiB 2 contained in the matrix phase of the sintered body. Has been proposed in which cBN is made to be smaller than 12% of the peak height of the (111) peak of cBN to improve fracture resistance and breakage resistance.

さらに、例えば、特許文献3に示すように、体積平均粒度約3〜6μmのcBNを約60〜80体積%、セラミック結合剤相を約40〜20体積%及びタングステン約3〜15重量%を含むcBN焼結体において、セラミック結合剤のうちの約20〜60体積%を第4族又は第6族金属の炭化物、窒化物又はホウ化物の1種以上で構成し、残りの約40〜80体積%をアルミニウムの炭化物、窒化物、ホウ化物又は酸化物の1種以上で構成するとともに、焼結体中のWB相の生成はTiB相の生成を抑制し、耐欠損性を低下させることから、XRD強度比でWB/TiBを0.4未満に抑えることによって、cBN焼結体の耐欠損性を向上させることが提案されている。 Further, for example, as shown in Patent Document 3, cBN having a volume average particle size of about 3 to 6 μm is about 60 to 80% by volume, the ceramic binder phase is about 40 to 20% by volume, and tungsten is about 3 to 15% by weight. In the cBN sintered body, about 20 to 60% by volume of the ceramic binder is composed of one or more of Group 4, Group 6 metal carbide, nitride or boride, and the remaining about 40 to 80 volume. % Is composed of one or more of aluminum carbide, nitride, boride or oxide, and the formation of the WB phase in the sintered body suppresses the formation of the TiB 2 phase and lowers the fracture resistance. It has been proposed to improve the fracture resistance of the cBN sintered body by suppressing WB / TiB 2 to less than 0.4 in terms of the XRD intensity ratio.

特開平8−81270号公報JP-A-8-81270 特表2008−528413号公報JP 2008-528413 A 特開2004−160637号公報Japanese Patent Laid-Open No. 2004-160637

上記特許文献1、2に示されるcBN焼結体は、いずれも高硬度のTi硼化物(TiB)相を結合相中に分散させることによってcBN焼結体の耐摩耗性向上を図るものであるが、従来は、結合相中に分散分布させるTi硼化物相の生成サイズ、生成形態を制御することができないため、cBN焼結体中において、cBN粒子と結合相の界面に、帯状、膜状にTi硼化物相が生成したり、或いは、結合相中に大きな塊としてTi硼化物相が形成されることがあった。
そして、このような場合には、cBN粒子と結合相の界面での付着力低下、また、熱膨張率の違いにより、それらが起点となって、クラックが発生・進展しやすく、cBN焼結体の靭性低下の原因となっていた。
特に、cBN焼結体を切削工具として用いた場合には、切削加工時にcBN焼結体に高負荷、衝撃等が作用するため、靭性低下による欠損、破損は大きな問題となっていた。
また、上記特許文献3に示されるcBN焼結体は、焼結体中にWを含有するため、焼結に際し、Ti硼化物相とW硼化物相を同時に生成するが、W硼化物相の生成は、cBN粒子−結合相界面のTi硼化物相の生成を抑制し、そのため、cBN粒子−結合相界面の付着力が低下し、これがクラック発生の起点となることによって耐欠損性が低下するという問題があった。
本発明は、上記の課題を解決するものであって、微粒なTi硼化物相とW硼化物相をセラミック結合相中に分散させることによって、結合相が高靱性化し、焼結体の靱性が向上することで、このcBN焼結体からなるcBN工具は、高負荷、衝撃等が作用する切削加工条件に供された場合であっても、長期の使用に亘り、耐欠損性にすぐれたcBN工具を提供することを目的とするものである。
The cBN sintered bodies disclosed in Patent Documents 1 and 2 are intended to improve the wear resistance of the cBN sintered body by dispersing a high-hardness Ti boride (TiB 2 ) phase in the binder phase. However, conventionally, since the generation size and generation form of the Ti boride phase dispersed and distributed in the binder phase cannot be controlled, a band-like film is formed at the interface between the cBN particles and the binder phase in the cBN sintered body. In some cases, a Ti boride phase is formed, or a Ti boride phase is formed as a large mass in the binder phase.
In such a case, due to a decrease in adhesion at the interface between the cBN particles and the binder phase, and due to the difference in the coefficient of thermal expansion, cracks are easily generated and propagated. It was a cause of lowering toughness.
In particular, when a cBN sintered body is used as a cutting tool, a high load, an impact, and the like act on the cBN sintered body during cutting, so that defects and breakage due to a decrease in toughness have been serious problems.
In addition, since the cBN sintered body shown in Patent Document 3 contains W in the sintered body, a Ti boride phase and a W boride phase are generated simultaneously during the sintering. The formation suppresses the formation of the Ti boride phase at the cBN particle-binding phase interface, and therefore the adhesion at the cBN particle-binding phase interface decreases, and this becomes the starting point of crack generation, thereby reducing the fracture resistance. There was a problem.
The present invention solves the above-mentioned problems. By dispersing fine Ti boride phase and W boride phase in a ceramic binder phase, the binder phase becomes tough and the toughness of the sintered body is improved. By improving the cBN tool made of this cBN sintered body, the cBN tool has excellent fracture resistance over a long period of use even when subjected to cutting conditions where high loads, impacts, etc. act. The purpose is to provide a tool.

本発明者等は、上記課題を解決するため、cBN焼結体からなるcBN工具について、結合相に含有されるTi硼化物(以下、「TiB」で示す)相およびW硼化物(以下、「WB」で示す)相の生成量、生成量比率、分散分布形態に着目し、鋭意研究を進めたところ、次のような知見を得たのである。 In order to solve the above-mentioned problems, the present inventors have made a cBN tool made of a cBN sintered body with a Ti boride (hereinafter referred to as “TiB 2 ”) phase and a W boride (hereinafter referred to as “boride”) contained in the binder phase. As a result of diligent research focusing on the generation amount of the phase (indicated by “WB”), the generation amount ratio, and the dispersion distribution form, the following knowledge was obtained.

従来、cBN焼結体の製造に際しては、焼結体の中間相を構成するTi系化合物、W系化合物等を含有する原料粉末を粉砕し、その後、cBN粉末を添加して混合・粉砕して成形体を作製し、これを焼結することにより、cBN焼結体を得ていた。
しかし、本発明者らは、上記cBN焼結体の製造工程において、焼結体の中間相を構成するTi系化合物等を含有する原料粉末を混合した後、cBN粉末を添加するに先立って、六方晶窒化ほう素(以下、「hBN」で示す)粉末およびW系化合物粉末を添加して混合・粉砕し、次いで、ここで得られた原料粉末とcBN粉末とを混合して成形−焼結したところ、得られたcBN焼結体は、結合相中には塊状のTiB相、WB相の形成がなく、硬質物質である微細なTiB相、WB相が結合中に分散分布する焼結組織が形成されることによって、cBN焼結体の靭性が向上し、このような組織を有するcBN焼結体をcBN工具として供した場合には、欠損・破損の発生がしにくく、長時間の使用に亘って、すぐれた耐欠損性を発揮することを見出したのである。
Conventionally, when manufacturing a cBN sintered body, a raw material powder containing a Ti-based compound, a W-based compound and the like constituting an intermediate phase of the sintered body is pulverized, and then cBN powder is added and mixed and pulverized. A cBN sintered body was obtained by preparing a molded body and sintering it.
However, the present inventors, in the manufacturing process of the cBN sintered body, after mixing the raw material powder containing Ti-based compound and the like constituting the intermediate phase of the sintered body, prior to adding the cBN powder, Hexagonal boron nitride (hereinafter referred to as “hBN”) powder and W-based compound powder are added, mixed and pulverized, and then the obtained raw material powder and cBN powder are mixed and molded and sintered. When the, cBN sintered body obtained had a binding phase TiB 2 phase massive during, no formation of WB phase, baked fine TiB 2 phase is a hard material, WB phase is dispersed distributed in bond By forming a knot structure, the toughness of the cBN sintered body is improved. When a cBN sintered body having such a structure is used as a cBN tool, it is difficult for defects and breakage to occur, and for a long time. Exhibits excellent fracture resistance over the use of It is was found.

このような靭性の向上の原因について、さらに検討を進めたところ、本発明者らは、焼結体の中間相を構成するTi系化合物等を含有する混合原料粉末にcBN粉末を添加するに先立って、六方晶窒化ほう素(以下、「hBN」で示す)粉末およびW系化合物粉末を添加して混合し粉砕することによって、結合相中には微細なhBN粒子と微細なW系化合物粒子が均一に分布し、さらに、これを、cBN粉末と混合して焼結することによって、微細なhBN粒子はTi金属成分と微細なW系化合物粒子と反応して微細なTiB相、WB相となり、その結果、焼結後のcBN焼結体の結合相中には、微細なTiB相およびWB相が均一に分散分布する焼結組織が形成されることを見出したのである。
そして、このような焼結組織を有するcBN焼結体をcBN工具として用いた場合には、切削加工時に高負荷、衝撃等が作用したとしても、結合相の高靱性化によってクラックの発生・進展が抑制されるために、耐欠損性が向上することを見出したのである。
As a result of further investigation on the cause of such an improvement in toughness, the present inventors prior to adding the cBN powder to the mixed raw material powder containing the Ti-based compound constituting the intermediate phase of the sintered body. Then, by adding hexagonal boron nitride (hereinafter referred to as “hBN”) powder and W-based compound powder, mixing and grinding, fine hBN particles and fine W-based compound particles are present in the binder phase. Evenly distributed, and further mixed with cBN powder and sintered, fine hBN particles react with Ti metal component and fine W-based compound particles to become fine TiB 2 phase and WB phase. As a result, it was found that a sintered structure in which fine TiB 2 phase and WB phase are uniformly distributed is formed in the binder phase of the sintered cBN sintered body.
When a cBN sintered body having such a sintered structure is used as a cBN tool, even if a high load, impact, etc. are applied during cutting, cracks are generated and propagated by increasing the toughness of the binder phase. As a result, it was found that the fracture resistance is improved.

本発明は、上記知見に基づいてなされたものであって、
「(1) 立方晶窒化ほう素粒子と結合相とTi硼化物相とW硼化物相を含有する立方晶窒化ほう素基超高圧焼結体を工具基体とする立方晶窒化ほう素基超高圧焼結体切削工具において、立方晶窒化ほう素粒子の平均粒径は0.5〜3.5μm、その含有量は40〜75容量%であり、また、結合相中には、平均粒径が50〜500nmの微細なTi硼化物相と平均粒径が50〜500nmの微細なW硼化物相とが分散分布しており、Ti硼化物相とW硼化物相の生成量の和は結合相中の5〜15容量%であり、その結合相中の15〜35容量%がAlの窒化物、酸化物の少なくとも1種以上であって、それ以外がTiの窒化物、炭化物、硼化物、又は炭窒化物の少なくとも1種以上と不可避の不純物であり、かつ、
0.5≦(W硼化物相の生成量)/(Ti硼化物相の生成量)≦1.0
の関係を満足する立方晶窒化ほう素基超高圧焼結体を工具基体とすることを特徴とする立方晶窒化ほう素基超高圧焼結体切削工具。
(2) 前記(1)に記載の立方晶窒化ほう素基超高圧焼結体切削工具において、工具基体の表面に、硬質被覆層を蒸着形成したことを特徴とする表面被覆立方晶窒化ほう素基超高圧焼結体切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) Cubic boron nitride-based ultrahigh pressure using a cubic boron nitride-based ultrahigh pressure sintered body containing cubic boron nitride particles, a binder phase, a Ti boride phase, and a W boride phase as a tool substrate In the sintered body cutting tool, the cubic boron nitride particles have an average particle diameter of 0.5 to 3.5 μm, the content thereof is 40 to 75% by volume, and the average particle diameter is in the binder phase. A fine Ti boride phase of 50 to 500 nm and a fine W boride phase having an average particle size of 50 to 500 nm are dispersed and distributed, and the sum of the amount of Ti boride phase and W boride phase produced is the binding phase. 5 to 15% by volume in the binder phase, and 15 to 35% by volume in the binder phase is at least one of Al nitride and oxide, and the other is Ti nitride, carbide, boride, Or at least one of carbonitrides and inevitable impurities, and
0.5 ≦ (production amount of W boride phase) / (production amount of Ti boride phase) ≦ 1.0
A cubic boron nitride-based ultrahigh-pressure sintered body cutting tool characterized by using a cubic boron nitride-based ultrahigh-pressure sintered body satisfying the above relationship as a tool base.
(2) The surface-coated cubic boron nitride according to (1), wherein a hard coating layer is formed by vapor deposition on the surface of the tool base. Super high pressure sintered body cutting tool. "
It is characterized by.

本発明について、以下に説明する。   The present invention will be described below.

<cBN粒子>
この発明では、cBN焼結体におけるcBN粒子の平均粒径は0.5〜3.5μm、その含有量は40〜75容量%とする。
cBN粒子の平均粒径が0.5μm未満では、例えば、高硬度鋼等の高速切削加工に供した場合、長期の使用に亘って十分な耐欠損性を発揮することができず、一方、cBN粒子の平均粒径が3.5μmを超えると、仕上げ面精度の低下を招く恐れがあるため、cBN粒子の平均粒径は0.5〜3.5μmと定めた。
また、cBNの含有割合が40容量%未満では、cBN工具としての硬さが十分ではなく、高硬度鋼等の高速切削加工において摩耗の進行が増大するからであり、一方、cBNの含有割合が75容量%を超えると、結合相の含有割合が相対的に減少し、同時に、結合相中に分散分布するTiB相、WB相の量も減少し、cBN焼結体の靭性向上効果が低減することから、cBN焼結体に占めるcBN粒子の含有割合は、40〜75容量%と定めた。
<CBN particles>
In this invention, the average particle diameter of cBN particles in the cBN sintered body is 0.5 to 3.5 μm, and the content thereof is 40 to 75% by volume.
When the average particle size of the cBN particles is less than 0.5 μm, for example, when subjected to high-speed cutting such as high-hardness steel, sufficient fracture resistance cannot be exhibited over a long period of use. If the average particle size of the particles exceeds 3.5 μm, the accuracy of the finished surface may be lowered. Therefore, the average particle size of the cBN particles is determined to be 0.5 to 3.5 μm.
In addition, when the content ratio of cBN is less than 40% by volume, the hardness as a cBN tool is not sufficient, and the progress of wear increases in high-speed cutting such as high-hardness steel, while the content ratio of cBN is When it exceeds 75% by volume, the content ratio of the binder phase is relatively reduced, and at the same time, the amount of TiB 2 phase and WB phase dispersed and distributed in the binder phase is also reduced, and the effect of improving the toughness of the cBN sintered body is reduced. Therefore, the content ratio of the cBN particles in the cBN sintered body was determined to be 40 to 75% by volume.

<Alの窒化物、酸化物>
この発明では、cBN焼結体に含有するAlN、Alの1種以上は結合相中の15〜35容量%とする。この時の結合相中の容量%とは、cBN焼結体中のcBN粒子を除いた成分の合計容量を100としたとき、AlN、Alの和との容量比を表わしている。
AlN、Alの1種以上が結合相中の15容量%未満では、焼結性が低下することで、結合相がcBN粒子を保持することができず、cBN焼結体の強度が低下する。一方、AlN、Al3の1種以上が結合相中の35容量%を超えると、cBN粒子と結合相の界面や結合相中に生成するAlN、Alが多くなるためにcBN焼結体の靱性が低下し、高硬度鋼の高速切削加工時には硬さの低いAlN、Alを起点として早期にクラックが発生することから、AlN、Alの1種以上の結合相中の含有割合は、15〜35容量%と定めた。
<Al nitride and oxide>
In the present invention, at least one of AlN and Al 2 O 3 contained in the cBN sintered body is 15 to 35% by volume in the binder phase. The capacity% in the binder phase at this time represents a capacity ratio with the sum of AlN and Al 2 O 3 when the total capacity of the components excluding the cBN particles in the cBN sintered body is defined as 100.
If one or more of AlN and Al 2 O 3 is less than 15% by volume in the binder phase, the sinterability deteriorates, so that the binder phase cannot hold cBN particles, and the strength of the cBN sintered body is high. descend. On the other hand, when one or more of AlN and Al 2 O 3 exceeds 35% by volume in the binder phase, the amount of AlN and Al 2 O 3 generated in the interface between the cBN particles and the binder phase and in the binder phase increases. Since the toughness of the sintered body is reduced and cracks occur at an early stage starting from low hardness AlN and Al 2 O 3 during high-speed cutting of high hardness steel, one or more of AlN and Al 2 O 3 The content ratio in the binder phase was determined to be 15 to 35% by volume.

<TiB相、WB相>
cBN焼結体の結合相中に分散分布されるTiB相、WB相は、本発明のcBN焼結体の製造方法(後記)で述べるように、結合相を形成するための原料粉末中のTi化合物(例えば、TiAl,TiAl,TiAl,TiN,TiCN等)粉末、W化合物(例えば、WC等)粉末と微粒hBN粉末との反応により形成されることから、その反応性を高めるためには、Ti化合物粉末、W化合物粉末とhBN粉末は、いずれも混合・粉砕によって微粉化されていることが望ましい。
しかし、結合相中のTiB相、WB相の平均粒径がそれぞれ50nm未満となる程度にまで微粉化された場合には、hBN粉末からの酸素、水分等の不純物の混入が多くなるため、かえって靭性が低下する恐れがあり、一方、あまり微粉化を行わず、結合相中のTiB相、WB相の平均粒径がそれぞれ500nmを超えるような大きさの場合には、粗大TiB相、粗大WB相が形成されることになり、さらに、TiB相の中心部分に未反応のhBNが残留し、WB相の中心部に未反応のW化合物が残留することによって、靭性の低下をきたすとともにクラック発生の原因にもなることから、cBN焼結体の結合相中に分散分布されるTiB相、WB相の平均粒径は、それぞれ50〜500nmとすることが必要である。
<TiB 2 phase, WB phase>
The TiB 2 phase and WB phase dispersed and distributed in the binder phase of the cBN sintered body are included in the raw material powder for forming the binder phase as described in the method for producing a cBN sintered body of the present invention (described later). In order to increase the reactivity of Ti compound (for example, TiAl, TiAl 3 , Ti 3 Al, TiN, TiCN, etc.) powder, W compound (for example, WC, etc.) powder and fine hBN powder. For this, it is desirable that the Ti compound powder, the W compound powder and the hBN powder are all finely divided by mixing and pulverization.
However, when the average particle size of the TiB 2 phase and the WB phase in the binder phase is micronized to be less than 50 nm, contamination of impurities such as oxygen and moisture from the hBN powder increases. On the other hand, there is a possibility that the toughness is lowered. On the other hand, if the average particle size of the TiB 2 phase and the WB phase in the binder phase is more than 500 nm without much pulverization, the coarse TiB 2 phase As a result, a coarse WB phase is formed. Further, unreacted hBN remains in the central portion of the TiB 2 phase, and unreacted W compound remains in the central portion of the WB phase. In addition to causing cracks, the average particle diameters of the TiB 2 phase and the WB phase dispersed and distributed in the binder phase of the cBN sintered body must be 50 to 500 nm, respectively.

この発明では、TiB相の生成量とWB相の生成量の比率(=(WB相の生成量)/(TiB相の生成量))の好ましい比率は0.5〜1.0であり、さらに好ましい比率は0.8〜1.0である。これはTiB相の生成量とWB相の生成量の比率が0.5未満である場合には、TiB相の生成量が多くなることで、塊状のTiB相が生成され、それを起点としてクラックが発生しやすくなることで、期待される工具寿命が得られないことがあり、一方、TiB相の生成量とWB相の生成量の比率が1.0を超える場合には、結合相中に硬質なWB相が多くなることで、結合相の脆性が高くなるためcBN焼結体としての靱性が低下することから、TiB相の生成量とWB相の生成量の比率は0.5〜1.0と定めた。 In the present invention, a preferred ratio of the ratio of the TiB 2 phase generation amount and the WB phase generation amount (= (WB phase generation amount) / (TiB 2 phase generation amount)) is 0.5 to 1.0. A more preferable ratio is 0.8 to 1.0. This is because when the ratio of the amount of TiB 2 phase produced and the amount of WB phase produced is less than 0.5, the amount of TiB 2 phase produced is increased, and a massive TiB 2 phase is produced. When the crack is likely to occur as a starting point, the expected tool life may not be obtained. On the other hand, when the ratio of the TiB 2 phase generation amount and the WB phase generation amount exceeds 1.0, Since the brittleness of the binder phase increases due to an increase in the hard WB phase in the binder phase, the toughness of the cBN sintered body decreases, so the ratio of the amount of TiB 2 phase produced and the amount of WB phase produced is It was determined to be 0.5 to 1.0.

図1に、従来のcBN焼結体におけるTiB相、WB相の分散分布状況を示す。
図1(a)は、二次電子像であり、(b)は、Bのマッピング像であり、(c)は、Tiのマッピング像、(d)は、Wのマッピング像であって、図1の(b)、(c)の重なり部分がTiB相の生成領域、また、(b)、(d)の重なり部分がWB相の生成領域となっている。
FIG. 1 shows the dispersion distribution of TiB 2 phase and WB phase in a conventional cBN sintered body.
1A is a secondary electron image, FIG. 1B is a mapping image of B, FIG. 1C is a mapping image of Ti, and FIG. 1D is a mapping image of W. The overlapping portion of (b) and (c) of 1 is a TiB 2 phase generation region, and the overlapping portion of (b) and (d) is a WB phase generation region.

図2には、本発明のcBN焼結体におけるTiB相、WB相の分散分布状況を示す。
図1と同様に、図2(a)は、二次電子像であり、(b)は、Bのマッピング像であり、(c)は、Tiのマッピング像、(d)は、Wのマッピング像であって、図2の(b)、(c)の重なり部分であるTiB相の生成領域、また、(b)、(d)の重なり部分であるWB相の生成領域からみれば、図2の本発明cBN焼結体においては、TiB相およびWB相は、結合相中に分散分布していることが分かる。
FIG. 2 shows the dispersion distribution of the TiB 2 phase and the WB phase in the cBN sintered body of the present invention.
2A is a secondary electron image, FIG. 2B is a B mapping image, FIG. 2C is a Ti mapping image, and FIG. 2D is a W mapping image. 2B, the generation region of TiB 2 phase that is an overlapping portion of (b) and (c) in FIG. 2, and the generation region of WB phase that is an overlapping portion of (b) and (d), In the cBN sintered body of the present invention shown in FIG. 2, it can be seen that the TiB 2 phase and the WB phase are dispersed and distributed in the binder phase.

図3は、本発明cBN焼結体の焼結組織を模式図で示したものである。
図3において、cBN焼結体の結合相中にTiB相、WB相は、微細組織(平均粒径が50〜500nm)として分散分布している。
そして、本発明では、このようなTiB相、WB相の分散状態を規定することによって、硬質TiB相、WB相の分散による結合相の靭性の向上、さらに、微細な分散相(TiB相)の存在による他の結合相成分(例えば、TiN、TiC、TiCN等)の粒成長抑制による靭性の向上を図ることができる。
FIG. 3 schematically shows the sintered structure of the cBN sintered body of the present invention.
In FIG. 3, the TiB 2 phase and the WB phase are dispersed and distributed as a fine structure (average particle diameter is 50 to 500 nm) in the binder phase of the cBN sintered body.
In the present invention, such TiB 2 phase, by defining the state of dispersion of the WB-phase, hard TiB 2 phase, improving the toughness of the binder phase by dispersion of the WB phase, further, fine dispersion phase (TiB 2 Toughness can be improved by suppressing grain growth of other binder phase components (for example, TiN, TiC, TiCN, etc.) due to the presence of the phase.

また、この発明では、TiB相とWB相の生成量の和は、結合相中の5〜15容量%であることが必要である。この時の結合相中の容量%とは、cBN焼結体中のcBN粒子を除いた成分の合計容量を100としたとき、TiB相、WB相の生成量の和との容量比を表わしている。
TiB相とWB相の生成量の和が結合相中の5容量%未満の場合では、結合相中に分散分布するTiB相とWB相の量が少ないために、結合相成分の粒成長を抑制する効果が見られず、一方、TiB相とWB相の生成量の和が結合相中の15容量%を超える場合では、結合相中に硬質なTiB相とWB相が多くなることで、結合相の脆性が高くなるためcBN焼結体としての靱性が低下する。
したがって、この発明では、TiB相とWB相の生成量の和は、結合相中の5〜15容量%であることが必要であり、このような場合にはじめて、cBN焼結体の靭性を高めることができ、このcBN焼結体をcBN工具として供した場合に、耐欠損性にすぐれ、長期の使用に亘ってすぐれた切削性能を発揮するcBN工具を提供することができるのである。
Moreover, in this invention, the sum of the production amount of the TiB 2 phase and the WB phase needs to be 5 to 15% by volume in the binder phase. The volume% in the binder phase at this time represents the volume ratio with respect to the sum of the amounts of TiB 2 phase and WB phase generated when the total capacity of the components excluding cBN particles in the cBN sintered body is defined as 100. ing.
When the sum of the amount of TiB 2 phase and WB phase generated is less than 5% by volume in the binder phase, the amount of TiB 2 phase and WB phase dispersed and distributed in the binder phase is small. On the other hand, when the sum of the generation amounts of TiB 2 phase and WB phase exceeds 15% by volume in the binder phase, hard TiB 2 phase and WB phase increase in the binder phase. As a result, the brittleness of the binder phase is increased, so that the toughness of the cBN sintered body is lowered.
Therefore, according to the present invention, the sum of the amount of TiB 2 phase and WB phase generated needs to be 5 to 15% by volume in the binder phase. In such a case, the toughness of the cBN sintered body is not improved. Thus, when this cBN sintered body is used as a cBN tool, it is possible to provide a cBN tool that has excellent fracture resistance and exhibits excellent cutting performance over a long period of use.

<cBN焼結体の製造法>
この発明の靭性にすぐれたcBN焼結体を作製するための手順の一例を次に示す。
(a)まず、結合相を構成する成分の原料粉末を用意する。
原料粉末としては、Ti化合物粉末(例えば、TiN粉末、TiC粉末、TiCN粉末、TiAl粉末、TiAl粉末、TiAlN粉末、TiAl粉末、TiAl粉末等)を用意し、或いはこれに加えて、従来から知られている結合相形成原料粉末(Al粉末、Al粉末、AlN粉末等)を、さらに、添加含有させることができる。
(b)これらの原料粉末を、例えば、超硬合金で内張りされたボールミル内にWC製の超硬合金ボールとアセトンと共に充填し、蓋をした後に回転ボールミルにより粉砕および混合を行う。
(c)次いで、平均粒径1〜5μmのhBN粉末を、全粉末に対して約0.8〜約7.0重量%となるように添加し、また、平均粒径0.5〜3μmのWC粉末を、全粉末に対して約1.5〜約18.0重量%添加し、同じくボールミル内で、24〜72時間、粉砕および混合を行い、hBN粉末を500nm以下の微粒のhBNに粉砕し、また、WC粉末を500nm以下の微粒のWCに粉砕し、結合相中に均一に分散させる。
(d)次いで、上記粉砕・混合を行ったhBN粉末と結合相形成用原料粉末に対して、平均粒径0.5〜3.5μmのcBN粉末を添加し、さらに、ボールミル内で24時間、混合を行う。
(e)次いで、得られた焼結体原料粉末を、所定圧力で成形して成形体を作製し、これを圧力:10−4Pa以下の真空雰囲気中、900〜1300℃で仮焼結し、その後、超高圧焼結装置に装入して、圧力:5GPa、温度:1200〜1400℃の範囲内の所定の温度で焼結することにより、本発明のcBN焼結体を作製する。
<Method for producing cBN sintered body>
An example of a procedure for producing a cBN sintered body having excellent toughness according to the present invention will be described below.
(A) First, raw material powders for components constituting the binder phase are prepared.
As the raw material powder, Ti compound powder (for example, TiN powder, TiC powder, TiCN powder, TiAl powder, TiAl 3 powder, Ti 2 AlN powder, Ti 3 Al powder, Ti 4 Al 2 C 2 powder, etc.) is prepared, Alternatively, in addition to this, conventionally known binder phase forming raw material powders (Al powder, Al 2 O 3 powder, AlN powder, etc.) can be further added and contained.
(B) These raw material powders are filled together with, for example, a WC cemented carbide ball and acetone in a ball mill lined with cemented carbide, capped and mixed by a rotating ball mill.
(C) Next, hBN powder having an average particle diameter of 1 to 5 μm was added so as to be about 0.8 to about 7.0 wt% with respect to the total powder, and an average particle diameter of 0.5 to 3 μm was added. Add about 1.5 to about 18.0% by weight of WC powder to the total powder, grind and mix in the same ball mill for 24 to 72 hours, and grind the hBN powder into fine hBN particles of 500 nm or less In addition, the WC powder is pulverized into fine WC of 500 nm or less and uniformly dispersed in the binder phase.
(D) Next, to the pulverized and mixed hBN powder and raw material powder for forming the binder phase, cBN powder having an average particle size of 0.5 to 3.5 μm is added, and further, for 24 hours in a ball mill. Mix.
(E) Next, the obtained sintered body raw material powder is molded at a predetermined pressure to produce a molded body, and this is temporarily sintered at 900 to 1300 ° C. in a vacuum atmosphere at a pressure of 10 −4 Pa or less. Thereafter, the cBN sintered body of the present invention is prepared by charging in an ultrahigh pressure sintering apparatus and sintering at a predetermined temperature within a range of pressure: 5 GPa and temperature: 1200 to 1400 ° C.

本発明は、特に、上記工程(c)を特徴とするものであり、この工程(c)を設けてcBN焼結体を作製することによって、結合相中に微細なTiB相、WB相を分散分布させることができ、これによって、cBN焼結体の靭性向上を図ることができるのである。
なお、TiB相、WB相の平均粒径(50〜500nm)、TiB相、WB相の合計生成量(容量%)、及び、TiB相の生成量とWB相の生成量の比率(=(WB相の生成量)/(TiB相の生成量))は、主として、上記工程(c)におけるhBNの添加量、W系化合物粉末の添加量、粉砕・混合条件によって調整することができる。
In particular, the present invention is characterized by the above-mentioned step (c). By providing this step (c) to produce a cBN sintered body, a fine TiB 2 phase and a WB phase are formed in the binder phase. It can be distributed and distributed, thereby improving the toughness of the cBN sintered body.
Incidentally, TiB 2 phase, the average particle size of the WB phase (50 to 500 nm), TiB 2 phase, the total generation amount of WB phase (volume%), and the ratio of the amount of the amount and WB phase of TiB 2 phase ( = (Production amount of WB phase) / (Production amount of TiB 2 phase)) can be adjusted mainly by the addition amount of hBN, the addition amount of W-based compound powder, and pulverization / mixing conditions in the above step (c). it can.

<cBN工具>
この発明の、靭性にすぐれたcBN焼結体を工具基体とするcBN基超高圧焼結体切削工具は、例えば、高硬度鋼の高速切削加工においても、耐欠損性にすぐれ、長期の使用に亘ってすぐれた切削性能を発揮する。
また、この発明のcBN焼結体を工具基体とし、この上に、例えば、TiN層及びTiとAlの複合窒化物層のうちの1層、あるいは、2層、さらには、これらの層を交互に積層した複層層からなる硬質被覆層を、物理蒸着等により蒸着形成した表面被覆cBN基超高圧焼結体切削工具は、例えば、高硬度鋼の高速切削加工においても、すぐれた耐欠損性を発揮する。
<CBN tool>
The cBN-based ultrahigh-pressure sintered body cutting tool using a cBN sintered body with excellent toughness as a tool base according to the present invention has excellent fracture resistance even in high-speed cutting of high-hardness steel, for example, for long-term use. Excellent cutting performance over time.
Further, the cBN sintered body of the present invention is used as a tool base, and on this, for example, one or two of a TiN layer and a composite nitride layer of Ti and Al, or even these layers are alternately arranged. The surface-coated cBN-based ultra-high pressure sintered cutting tool formed by depositing a hard coating layer consisting of multiple layers laminated on the surface by physical vapor deposition, for example, has excellent fracture resistance even in high-speed cutting of high-hardness steel. Demonstrate.

上記のとおり、本発明のcBN工具においては、特に、cBN焼結体の結合相におけるTiB相、WB相の平均粒径、生成量、生成比率、を規定することによって、靭性にすぐれたcBN焼結体を得ることができ、このcBN工具(cBN基超高圧焼結体切削工具、表面被覆cBN基超高圧焼結体切削工具)は、高硬度鋼の高速切削加工においてもすぐれた耐欠損性を示し、長期の使用に亘って、すぐれた切削性能を発揮する。 As described above, in the cBN tool of the present invention, in particular, by defining the TiB 2 phase and the average particle size of the WB phase, the generation amount, and the generation ratio in the binder phase of the cBN sintered body, cBN excellent in toughness A sintered body can be obtained, and this cBN tool (cBN-based ultra-high-pressure sintered body cutting tool, surface-coated cBN-based ultra-high-pressure sintered body cutting tool) has excellent fracture resistance even in high-speed cutting of high-hardness steel. Show excellent cutting performance over a long period of use.

従来のcBN焼結体におけるTiB相の分散分布状況を示し、(a)は、二次電子像であり、(b)は、オージェ電子分光分析によるB元素のマッピング像であり、(c)は、オージェ電子分光分析によるTi元素のマッピング像であり、(d)は、オージェ電子分光分析によるW元素のマッピング像である。The dispersion distribution situation of the TiB 2 phase in the conventional cBN sintered body is shown, (a) is a secondary electron image, (b) is a mapping image of B element by Auger electron spectroscopy analysis, (c) Is a mapping image of Ti element by Auger electron spectroscopy, and (d) is a mapping image of W element by Auger electron spectroscopy. 本発明のcBN焼結体におけるTiB相の分散分布状況を示し、(a)は、二次電子像であり、(b)は、オージェ電子分光分析によるB元素のマッピング像であり、(c)は、オージェ電子分光分析によるTi元素のマッピング像であり、(d)は、オージェ電子分光分析によるW元素のマッピング像である。The dispersion distribution situation of the TiB 2 phase in the cBN sintered body of the present invention is shown, (a) is a secondary electron image, (b) is a mapping image of B element by Auger electron spectroscopy analysis, (c ) Is a mapping image of Ti element by Auger electron spectroscopy, and (d) is a mapping image of W element by Auger electron spectroscopy. 本発明のcBN焼結体の焼結組織を模式図として示したものである。The sintered structure of the cBN sintered body of the present invention is shown as a schematic diagram.

以下に、本発明を実施例に基づいて説明する。   Hereinafter, the present invention will be described based on examples.

(a)まず、表1に示すように、焼結体の結合相を構成する所定の成分および配合割合からなる原料粉末を用意した。
(b)次いで、上記原料粉末を、超硬合金で内張りされたボールミル内に、超硬合金製ボールとアセトンと共に充填し、蓋をした後に回転ボールミルにより粉砕および混合を行った。
(c)次いで、表2に示す平均粒径のhBN粉末およびWC粉末を、それぞれ、全粉末重量に対して同じく表2に示す添加割合となるように添加含有させ、同じくボールミル内で、同じく表2に示す時間、粉砕および混合を行った。
(d)次いで、上記粉砕・混合を行ったhBN粉末と結合相形成用原料粉末に対して、表2に示す平均粒径のcBN粉末を、全粉末重量に対して同じく表2に示す添加割合となるように添加含有させ、同じくボールミル内で、24時間混合を行った。
(e)次いで、得られた焼結体原料粉末を、成形圧100MPaで直径:50mm×厚さ:1.5mmの寸法にプレス成形し、ついでこの成形体を、圧力:10−4Pa以下の真空雰囲気中、900〜1300℃の範囲内の所定温度に保持して仮焼結し、その後、超高圧焼結装置に装入して、圧力:5GPa、温度:1200〜1400℃の範囲内の所定の温度で焼結することにより、本発明のcBN焼結体1〜12(本発明品1〜12という)を作製した。
(A) First, as shown in Table 1, raw material powders comprising predetermined components and blending ratios constituting the binder phase of the sintered body were prepared.
(B) Next, the raw material powder was filled in a ball mill lined with cemented carbide together with cemented carbide balls and acetone, capped, and then ground and mixed by a rotating ball mill.
(C) Next, the hBN powder and WC powder having the average particle diameter shown in Table 2 were added and contained so as to have the addition ratio shown in Table 2 with respect to the total powder weight. Grinding and mixing were performed for the time indicated in 2.
(D) Next, with respect to the hBN powder and the binder phase forming raw material powder that were pulverized and mixed, the cBN powder having the average particle diameter shown in Table 2 was also added in the ratio shown in Table 2 with respect to the total powder weight. In the same manner, the mixture was mixed for 24 hours in a ball mill.
(E) Next, the obtained sintered body raw material powder was press-molded at a molding pressure of 100 MPa to a size of diameter: 50 mm × thickness: 1.5 mm, and then this molded body was subjected to pressure: 10 −4 Pa or less. In a vacuum atmosphere, it is preliminarily sintered while being held at a predetermined temperature in the range of 900 to 1300 ° C., and then charged into an ultra-high pressure sintering apparatus, pressure: 5 GPa, temperature: in the range of 1200 to 1400 ° C. By sintering at a predetermined temperature, cBN sintered bodies 1 to 12 of the present invention (referred to as inventive products 1 to 12) were produced.



比較のため、本発明品1〜12と同様な方法、または、上記工程(c)で所定平均粒径のhBN粉末あるいはWC粉末を添加しない方法で、比較例のcBN焼結体1〜12(比較品1〜12という)を作製した。   For comparison, the cBN sintered bodies 1 to 12 (comparative examples) are the same as the products 1 to 12 of the present invention or the method in which the hBN powder or WC powder having a predetermined average particle diameter is not added in the step (c). Comparative products 1 to 12) were prepared.

上記で得た本発明品1〜12と比較品1〜12について、結合相中のTiB相の平均粒径、生成量、また、結合相中のWB相の平均粒径、生成量、さらに、(結合相中のWB相生成量)/(結合相中のTiB相生成量)の比の値を求めた。
cBN粒子についても、平均粒径とその含有割合を測定した。また、Alの窒化物、酸化物についても、その含有割合を測定した。
About the present invention products 1-12 and the comparative products 1-12 obtained above, the average particle size and production amount of the TiB 2 phase in the binder phase, and the average particle size and production amount of the WB phase in the binder phase, The ratio value of (WB phase generation amount in the binder phase) / (TiB two phase generation amount in the binder phase) was determined.
For the cBN particles, the average particle size and the content ratio were also measured. The content ratios of Al nitrides and oxides were also measured.

TiB相の平均粒径の測定方法を下記に示す。
TiB相の平均粒径を測定するために、cBN焼結体の結合相のみの観察視野を、オージェ電子分光により分析した。その後、オージェ電子分光分析によるTi元素のマッピング像のコントラスト強度をRGBのBlueに変換し、B元素のマッピング像のコントラスト強度をRGBのRedに変換し、画像処理により合成する。合成画像を画像解析にて、RGBの閾値をR:30〜255、G:0、B:30〜255(閾値範囲:0〜255)に設定し二値化することで、画面中の全TiB相を抜き出す。抜き出したTiB相の粒子の最長径をその粒子の粒径とし、それら平均値をTiBの平均粒径とした。
TiB相の生成量の測定方法を下記に示す。
前記TiB相を抜き出した後、画像解析によりその総面積を算出し、画像総面積で除して面積比率を算出することにより、その面積比率を容量%とみなし、結合相中のTiB相の生成量を測定した。
上記3項目については、オージェ電子分光分析の100,000倍の画像の各5視野を上記方法にて処理した値の平均値を測定結果とした。
A method for measuring the average particle size of the TiB two- phase is shown below.
In order to measure the average particle diameter of the TiB 2 phase, the observation field of only the binding phase of the cBN sintered body was analyzed by Auger electron spectroscopy. Thereafter, the contrast intensity of the Ti element mapping image by Auger electron spectroscopy is converted to RGB Blue, the contrast intensity of the B element mapping image is converted to RGB Red, and they are synthesized by image processing. By analyzing the composite image and setting the RGB threshold values to R: 30-255, G: 0, B: 30-255 (threshold range: 0-255) and binarizing, all TiB in the screen Extract two phases. The longest diameter of the extracted TiB 2 phase particles was defined as the particle size of the particles, and the average value thereof was defined as the average particle size of TiB 2 .
The method for measuring the amount of TiB 2 phase produced is shown below.
After extracting the TiB 2 phase, the total area is calculated by image analysis, the area ratio is calculated by dividing by the total area of the image, the area ratio is regarded as volume%, and the TiB 2 phase in the binder phase The production amount of was measured.
With respect to the above three items, the average value of the values obtained by processing the five fields of view of each 100,000-magnification image of Auger electron spectroscopic analysis by the above method was used as the measurement result.

WB相の平均粒径の測定、生成量の測定についても、上記TiB相に関する測定と同様な方法で行った。
即ち、cBN焼結体の結合相のみの観察視野を、オージェ電子分光により分析し、W元素のマッピング像のコントラスト強度をRGBのBlueに変換し、B元素のマッピング像のコントラスト強度をRGBのRedに変換し、画像処理により合成する。合成画像を画像解析にて、RGBの閾値をR:30〜255、G:0、B:30〜255(閾値範囲:0〜255)に設定し二値化することで、画面中の全WB相を抜き出す。抜き出したWB相の粒子の最長径をその粒子の粒径とし、それら平均値をWBの平均粒径とした。
WB相の生成量の測定は、前記WB相を抜き出した後、画像解析によりその総面積を算出し、画像総面積で除して面積比率を算出することにより、その面積比率を容量%みなし、結合相中のWB相の生成量を測定した。
上記3項目については、オージェ電子分光分析の100,000倍の画像の各5視野を上記方法にて処理した値の平均値を測定結果とした。
なお、(結合相中のWB相生成量)/(結合相中のTiB相生成量)の値は、上記で求めた結合相中のTiB相の生成量および結合相中のWB相の生成量から算出した。
The measurement of the average particle size of the WB phase and the measurement of the production amount were also performed by the same method as the measurement related to the TiB 2 phase.
That is, the observation field only of the binder phase of the cBN sintered body is analyzed by Auger electron spectroscopy, the contrast intensity of the W element mapping image is converted to RGB Blue, and the contrast intensity of the B element mapping image is converted to RGB Red. And synthesized by image processing. By analyzing the composite image and setting the RGB threshold values to R: 30 to 255, G: 0, B: 30 to 255 (threshold range: 0 to 255), and binarizing, all WB in the screen Extract the phase. The longest diameter of the extracted WB phase particles was defined as the particle diameter of the particles, and the average value thereof was defined as the average particle diameter of WB.
The measurement of the amount of WB phase generated is that after extracting the WB phase, the total area is calculated by image analysis, and the area ratio is calculated by dividing the total area by the image area. The amount of WB phase produced in the binder phase was measured.
With respect to the above three items, the average value of the values obtained by processing the five fields of view of each 100,000-magnification image of Auger electron spectroscopic analysis by the above method was used as the measurement result.
Incidentally, the value of WB phase above bonding phase 2 phase product weight and the binder phase of TiB in obtained in (WB phase generation amount of binder phase) / (TiB 2 phase production of binder phase) Calculated from the amount produced.

次に、cBN粒子の平均粒径の測定方法を下記に示す。
走査電子顕微鏡にて観察した二次電子像を、画像処理によりcBN粒子を抜き出し、そのcBN粒子の最長径をその粒子の粒径とし、それら平均値をcBN粒子の平均粒径とした。
cBN粒子の含有割合の測定方法を下記に示す。
前記cBN粒子を抜き出した後、画像解析によりその総面積を算出した値を、画像総面積で除して面積比率を算出することにより、その面積比率を容量%とみなし、cBN粒子の含有割合を測定した。
上記2項目については、走査電子顕微鏡の5,000倍、10,000倍の画像の各3視野を上記方法にて処理した値の平均値を測定結果とした。
表3に、それぞれの測定結果を示す。
Next, the measuring method of the average particle diameter of cBN particles is shown below.
From the secondary electron image observed with a scanning electron microscope, cBN particles were extracted by image processing, the longest diameter of the cBN particles was defined as the particle diameter of the particles, and the average value thereof was defined as the average particle diameter of the cBN particles.
The measuring method of the content rate of cBN particle | grains is shown below.
After extracting the cBN particles, the area ratio is calculated by dividing the value of the total area calculated by image analysis by the total area of the image, so that the area ratio is regarded as volume%, and the content ratio of the cBN particles is It was measured.
With respect to the above two items, the average value of the values obtained by processing each of the three fields of view of the 5,000 times and 10,000 times images of the scanning electron microscope by the above method was used as the measurement result.
Table 3 shows each measurement result.

Alの窒化物、酸化物の含有割合の測定方法を下記に示す。
まず、cBN焼結体をX線回折装置を用いて分析した。X線源としてX線の波長が1.54ÅであるCuKα線源を用いた。X線回折の結果、Alの化合物としてAlN、Alのピークのみがあることを確認し、次いで、Alの窒化物、酸化物の含有割合を測定するために、cBN焼結体の結合相のみの観察視野を、オージェ電子分光により分析し、Al元素のマッピング像から、画像解析によりAl元素が検出されている部分の総面積を算出した値を、画像総面積で除して面積比率を算出することにより、その面積比率を容積%とみなし、Alの窒化物、酸化物の含有割合を測定した。
上記1オージェ電子分光分析の20,000倍の画像の各5視野を上記方法にて処理した値の平均値を測定結果とした。
A method for measuring the content of Al nitride and oxide is shown below.
First, the cBN sintered body was analyzed using an X-ray diffractometer. A CuKα radiation source having an X-ray wavelength of 1.54 nm was used as the X-ray source. As a result of X-ray diffraction, it was confirmed that there were only AlN and Al 2 O 3 peaks as Al compounds, and then bonding of cBN sintered bodies was performed in order to measure the content of Al nitride and oxide. Analyzing the phase-only observation field by Auger electron spectroscopy, and from the mapping image of Al element, the total area of the area where Al element is detected by image analysis is divided by the total area of the area and the area ratio The area ratio was regarded as volume%, and the content ratio of Al nitride and oxide was measured.
The average value of the values obtained by processing the five fields of view of the 20,000-fold image of the 1 Auger electron spectroscopic analysis by the above method was used as the measurement result.


次に、上記で作製した本発明品1〜12、比較品1〜12を、ワイヤー放電加工機で所定寸法に切断し、Co:5質量%、TaC:5質量%、WC:残りの組成およびISO規格CNGA120408のインサート形状をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、上下面および外周研磨、ホーニング処理を施すことによりISO規格CNGA120408のインサート形状をもつ本発明のcBN基超高圧焼結体切削工具(本発明チップという)1〜12、比較例のcBN基超高圧焼結体切削工具(比較チップという)1〜12を製造した。
なお、本発明チップ1,5,7,9、および、比較チップ1,5,7,9については、さらに、物理蒸着により、表4に示される硬質被覆層を、同じく表4に示される層厚で被覆形成することにより、本発明の表面被覆cBN基超高圧焼結体切削工具(本発明被覆チップという)1,5,7,9、比較例の表面被覆cBN基超高圧焼結体切削工具(比較被覆チップという)1,5,7,9を製造した。
Next, the inventive products 1 to 12 and comparative products 1 to 12 produced above were cut into predetermined dimensions with a wire electric discharge machine, Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and Ag having a composition consisting of Cu: 26%, Ti: 5%, and Ag: remaining in the brazed part (corner part) of the insert body made of WC-base cemented carbide having an ISO standard CNGA120408 insert shape. A cBN-based ultrahigh-pressure sintered cutting tool (referred to as a chip of the present invention) of the present invention having an insert shape conforming to ISO standard CNGA120408 by brazing using an alloy brazing material, polishing upper and lower surfaces and outer periphery, and honing treatment. ˜12, cBN-based ultra-high pressure sintered body cutting tools (referred to as comparative tips) 1 to 12 of Comparative Examples were produced.
In addition, about this invention chip | tip 1,5,7,9 and comparative chip | tip 1,5,7,9, the hard coating layer shown in Table 4 is further shown by Table 4 by physical vapor deposition. By forming the coating with a thickness, the surface-coated cBN-based ultrahigh-pressure sintered body cutting tool (referred to as the present-coated chip) 1, 5, 7, 9 of the present invention, and the surface-coated cBN-based ultrahigh-pressure sintered body of the comparative example are cut. Tools (referred to as comparative coated tips) 1, 5, 7, 9 were manufactured.


次いで、上記の本発明チップ1〜6、本発明被覆チップ1,5,比較チップ1〜6、比較被覆チップ1,5について、以下の切削条件で切削加工試験を実施し、欠損に至るまでの工具寿命(sec)を測定した。
《切削条件》
被削材:浸炭焼き入れ鋼(JIS・SCM415、硬さ:HRC62)の長さ方向等間隔1本縦溝入り丸棒、
切削速度:170m/min、
切り込み:0.2mm、
送り:0.1mm/rev
の条件での、高硬度鋼の乾式高速切削加工試験。
各チップの刃先が欠損した時間(sec)を工具寿命とした。
表5に、上記切削加工試験の測定結果を示した。
Next, a cutting test is performed under the following cutting conditions on the above-described chips 1 to 6 of the present invention, the chips 1 and 5 of the present invention, the comparative chips 1 to 6 and the chips 1 and 5 of comparison, The tool life (sec) was measured.
<Cutting conditions>
Work material: Carburized and hardened steel (JIS / SCM415, hardness: HRC62) in the longitudinal direction with one equally spaced round bar,
Cutting speed: 170 m / min,
Cutting depth: 0.2mm,
Feed: 0.1mm / rev
Dry high-speed cutting test of high hardness steel under the conditions of
The time (sec) when the cutting edge of each chip was lost was defined as the tool life.
Table 5 shows the measurement results of the cutting test.


表5に示される結果から、本発明チップ、本発明被覆チップは、比較チップ、比較被覆チップに比して、突発的な刃先のチッピングが発生することなく、工具寿命が延命化されたことから、本発明チップ、本発明被覆チップは、比較チップ、比較被覆チップに比して、靱性が向上したことが分かる。   From the results shown in Table 5, the tool life of the present invention chip and the present invention coated chip was prolonged as compared with the comparative chip and the comparative coated chip without causing sudden chipping of the cutting edge. It can be seen that the inventive chip and the inventive coated chip have improved toughness compared to the comparative chip and the comparative coated chip.

次いで、上記の本発明チップ7〜12、本発明被覆チップ7,9比較チップ7〜12、比較被覆チップ7,9について、以下の切削条件で切削加工試験を実施し、欠損に至るまでの工具寿命(sec)を測定した。
《切削条件》
被削材:浸炭焼き入れ鋼(JIS・SCM415、硬さ:HRC62)の長さ方向等間隔8本縦溝入り丸棒、
切削速度:150m/min、
切り込み:0.2mm、
送り:0.2mm/rev
の条件での、高硬度鋼の乾式高速切削加工試験。
各チップの刃先が欠損した時間(sec)を工具寿命とした。
表6に、上記切削加工試験の測定結果を示した。
Next, a cutting test is carried out under the following cutting conditions for the above-described inventive chips 7 to 12, inventive coated chips 7 and 9 comparative chips 7 to 12, and comparative coated chips 7 and 9. The lifetime (sec) was measured.
<Cutting conditions>
Work material: Eight longitudinally spaced round bars of carburized and hardened steel (JIS SCM415, hardness: HRC62) in the longitudinal direction,
Cutting speed: 150 m / min,
Cutting depth: 0.2mm,
Feed: 0.2mm / rev
Dry high-speed cutting test of high hardness steel under the conditions of
The time (sec) when the cutting edge of each chip was lost was defined as the tool life.
Table 6 shows the measurement results of the cutting test.


表6に示される結果から、本発明チップ、本発明被覆チップは、比較チップ、比較被覆チップに比して、欠損が発生することもなく、工具寿命が延命化されたことから、本発明チップ、本発明被覆チップは、比較チップ、比較被覆チップに比して、靱性が向上したことが分かる。   From the results shown in Table 6, since the chip of the present invention and the coated chip of the present invention were not damaged as compared with the comparative chip and the comparative coated chip, the tool life was extended. It can be seen that the toughness of the coated chip of the present invention is improved as compared with the comparative chip and the comparative coated chip.

本発明の靱性にすぐれたcBN焼結体を工具基体とするcBN工具は、欠損、破損を発生することなく長期の使用に亘って、すぐれた耐欠損性を発揮し、工具寿命の延命化が図られるものであることから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、低コスト化に十分満足に対応できるものである。   The cBN tool using the cBN sintered body having excellent toughness according to the present invention as a tool base exhibits excellent fracture resistance over a long period of use without causing any fracture or breakage, thereby extending the tool life. Therefore, it is possible to satisfactorily meet the demand for higher performance of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

Claims (2)

立方晶窒化ほう素粒子と結合相とTi硼化物相とW硼化物相を含有する立方晶窒化ほう素基超高圧焼結体を工具基体とする立方晶窒化ほう素基超高圧焼結体切削工具において、立方晶窒化ほう素粒子の平均粒径は0.5〜3.5μm、その含有量は40〜75容量%であり、また、結合相中には、平均粒径が50〜500nmの微細なTi硼化物相と平均粒径が50〜500nmの微細なW硼化物相とが分散分布しており、微細なTi硼化物相とW硼化物相の生成量の和は、結合相中の5〜15容量%であり、その結合相中の15〜35容量%がAlの窒化物、酸化物の少なくとも1種以上であって、それ以外がTiの窒化物、炭化物、硼化物、又は炭窒化物の少なくとも1種以上と不可避の不純物であり、かつ、
0.5≦(W硼化物相の生成量)/(Ti硼化物相の生成量)≦1.0
の関係を満足している立方晶窒化ほう素基超高圧焼結体を工具基体とすることを特徴とする立方晶窒化ほう素基超高圧焼結体切削工具。
Cubic boron nitride-based ultra-high-pressure sintered body cutting using cubic boron nitride-based ultra-high-pressure sintered body containing cubic boron nitride particles, binder phase, Ti boride phase, and W boride phase as a tool base In the tool, the average particle size of cubic boron nitride particles is 0.5 to 3.5 μm, the content thereof is 40 to 75% by volume, and the average particle size is 50 to 500 nm in the binder phase. A fine Ti boride phase and a fine W boride phase having an average particle diameter of 50 to 500 nm are dispersed and distributed. The sum of the fine Ti boride phase and the W boride phase produced is 5 to 15% by volume, and 15 to 35% by volume in the binder phase is at least one of Al nitride and oxide, and the other is Ti nitride, carbide, boride, or At least one of carbonitrides and inevitable impurities, and
0.5 ≦ (production amount of W boride phase) / (production amount of Ti boride phase) ≦ 1.0
A cubic boron nitride-based ultrahigh-pressure sintered body cutting tool characterized by using a cubic boron nitride-based ultrahigh-pressure sintered body satisfying the above relationship as a tool base.
請求項1に記載の立方晶窒化ほう素基超高圧焼結体切削工具において、工具基体の表面に、硬質被覆層を蒸着形成したことを特徴とする表面被覆立方晶窒化ほう素基超高圧焼結体切削工具。






























The cubic boron nitride-based ultrahigh-pressure sintered cutting tool according to claim 1, wherein a hard coating layer is formed on the surface of the tool base by vapor deposition. Combined cutting tool.






























JP2012236527A 2012-10-26 2012-10-26 Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base Expired - Fee Related JP6032409B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012236527A JP6032409B2 (en) 2012-10-26 2012-10-26 Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
CN201310445743.5A CN103787662B (en) 2012-10-26 2013-09-25 Cubic boron nitride base ultra-high pressure sintered material cutting tool and surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012236527A JP6032409B2 (en) 2012-10-26 2012-10-26 Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base

Publications (2)

Publication Number Publication Date
JP2014083664A true JP2014083664A (en) 2014-05-12
JP6032409B2 JP6032409B2 (en) 2016-11-30

Family

ID=50663781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012236527A Expired - Fee Related JP6032409B2 (en) 2012-10-26 2012-10-26 Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base

Country Status (2)

Country Link
JP (1) JP6032409B2 (en)
CN (1) CN103787662B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154730A1 (en) * 2016-03-07 2017-09-14 三菱マテリアル株式会社 Surface-coated cubic boron nitride sintered tool
JP2017159445A (en) * 2016-03-07 2017-09-14 三菱マテリアル株式会社 Sintered body tool of surface-coated cubic crystal boron nitride
JP2018145020A (en) * 2017-03-01 2018-09-20 三菱マテリアル株式会社 cBN sintered body and cutting tool
EP3466573A4 (en) * 2016-05-23 2020-01-22 Mitsubishi Materials Corporation Cubic boron nitride sintered compact cutting tool
WO2020175598A1 (en) * 2019-02-27 2020-09-03 三菱マテリアル株式会社 Cbn sintered body and cutting tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693253B (en) * 2014-11-28 2020-12-11 三菱综合材料株式会社 Cubic boron nitride sintered body cutting tool having excellent chipping resistance
GB201704133D0 (en) * 2017-03-15 2017-04-26 Element Six (Uk) Ltd Sintered polycrystalline cubic boron nitride material
WO2021124700A1 (en) * 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered body and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131573A (en) * 1989-10-13 1991-06-05 Toshiba Tungaloy Co Ltd Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same
JPH05117037A (en) * 1991-10-24 1993-05-14 Kobe Steel Ltd High-hardness sintered compact
JPH0881270A (en) * 1994-09-13 1996-03-26 Mitsubishi Materials Corp Ceramic sintered compact containing cubic boron nitride and cutting tool
JP2004160637A (en) * 2002-06-26 2004-06-10 General Electric Co <Ge> Sintered compact used for machining chemically reactive material
WO2012005275A1 (en) * 2010-07-06 2012-01-12 株式会社タンガロイ Coated polycrystalline cbn tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787387B2 (en) * 1998-07-22 2011-10-05 住友電工ハードメタル株式会社 Cutting tool with excellent crater resistance and strength and method for producing the same
CN1922119B (en) * 2004-02-20 2013-11-13 戴蒙得创新股份有限公司 Sintered compact
KR101386763B1 (en) * 2007-01-30 2014-04-18 스미토모덴키고교가부시키가이샤 Composite sintered body
JP5447844B2 (en) * 2010-03-19 2014-03-19 三菱マテリアル株式会社 High toughness cubic boron nitride based ultra high pressure sintered material and cutting tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131573A (en) * 1989-10-13 1991-06-05 Toshiba Tungaloy Co Ltd Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same
JPH05117037A (en) * 1991-10-24 1993-05-14 Kobe Steel Ltd High-hardness sintered compact
JPH0881270A (en) * 1994-09-13 1996-03-26 Mitsubishi Materials Corp Ceramic sintered compact containing cubic boron nitride and cutting tool
JP2004160637A (en) * 2002-06-26 2004-06-10 General Electric Co <Ge> Sintered compact used for machining chemically reactive material
WO2012005275A1 (en) * 2010-07-06 2012-01-12 株式会社タンガロイ Coated polycrystalline cbn tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154730A1 (en) * 2016-03-07 2017-09-14 三菱マテリアル株式会社 Surface-coated cubic boron nitride sintered tool
JP2017159445A (en) * 2016-03-07 2017-09-14 三菱マテリアル株式会社 Sintered body tool of surface-coated cubic crystal boron nitride
US10744569B2 (en) 2016-03-07 2020-08-18 Mitsubishi Materials Corporation Surface-coated cubic boron nitride sintered material tool
EP3466573A4 (en) * 2016-05-23 2020-01-22 Mitsubishi Materials Corporation Cubic boron nitride sintered compact cutting tool
US11130713B2 (en) 2016-05-23 2021-09-28 Mitsubishi Materials Corporation Cubic boron nitride sintered material cutting tool
JP2018145020A (en) * 2017-03-01 2018-09-20 三菱マテリアル株式会社 cBN sintered body and cutting tool
US10584069B2 (en) 2017-03-01 2020-03-10 Mitsubishi Materials Corporation cBN sintered material and cutting tool
WO2020175598A1 (en) * 2019-02-27 2020-09-03 三菱マテリアル株式会社 Cbn sintered body and cutting tool
EP3932892A4 (en) * 2019-02-27 2022-10-19 Mitsubishi Materials Corporation Cbn sintered body and cutting tool
JP7377463B2 (en) 2019-02-27 2023-11-10 三菱マテリアル株式会社 cBN sintered body and cutting tools

Also Published As

Publication number Publication date
CN103787662A (en) 2014-05-14
CN103787662B (en) 2017-03-01
JP6032409B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP6082650B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP5305056B1 (en) Cutting tool made of cubic boron nitride based sintered body
JP6853951B2 (en) cBN sintered body and cutting tool
JP6637664B2 (en) Cubic boron nitride sintered compact cutting tool
JP5447844B2 (en) High toughness cubic boron nitride based ultra high pressure sintered material and cutting tool
JPWO2013069657A1 (en) Cubic boron nitride sintered body
JP2017014084A (en) Cubic crystal boron nitride sintered body, method of producing cubic crystal boron nitride sintered body, tool and cutting tool
JP5804448B2 (en) Cubic boron nitride based ultra-high pressure sintered body, cutting tool using this as a tool base, and surface-coated cutting tool
JP6968341B2 (en) Cubic boron nitride-based sintered body with microstructural structure and cutting tools
JP6283985B2 (en) Sintered body
US11383305B2 (en) cBN sintered compact and cutting tool
JP7185844B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JP2020131293A (en) Cutting tool made of cubic crystal boron nitride-based sintered body
JP7377463B2 (en) cBN sintered body and cutting tools
JP2020050559A (en) cBN sintered body and cutting tool
WO2020179809A1 (en) cBN SINTERED COMPACT AND CUTTING TOOL
JP2022142894A (en) cBN SINTERED COMPACT
JP2020001990A (en) cBN sintered body and cutting tool
JP2019107768A (en) Cutting tool made by cubic crystal boron nitride sintered body
JPH08197307A (en) Cutting tool made of cubic system boron nitride base superhigh pressure sintered material having high strength and high toughness
JPH08197305A (en) Cutting tool made of high-strength and highly tough cubic system boron nitride base superhigh pressure sintered material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

R150 Certificate of patent or registration of utility model

Ref document number: 6032409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees