JP2014083232A - Ophthalmologic apparatus, ophthalmology control method, and program - Google Patents

Ophthalmologic apparatus, ophthalmology control method, and program Download PDF

Info

Publication number
JP2014083232A
JP2014083232A JP2012234649A JP2012234649A JP2014083232A JP 2014083232 A JP2014083232 A JP 2014083232A JP 2012234649 A JP2012234649 A JP 2012234649A JP 2012234649 A JP2012234649 A JP 2012234649A JP 2014083232 A JP2014083232 A JP 2014083232A
Authority
JP
Japan
Prior art keywords
image
light
eye
optical path
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012234649A
Other languages
Japanese (ja)
Inventor
Isao Komine
功 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012234649A priority Critical patent/JP2014083232A/en
Priority to US14/061,321 priority patent/US20140111768A1/en
Priority to CN201310506780.2A priority patent/CN103767678A/en
Publication of JP2014083232A publication Critical patent/JP2014083232A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ophthalmologic apparatus having a function of recognizing whether or not irradiation is performed with a wrong quantity of light (quantity of excessive light) even when measuring light is radiated to a subject's eye, an ophthalmology control method and a program.SOLUTION: An ophthalmologic apparatus includes: a light source for irradiating a subject's eye; an irradiation optical system provided in an optical path between the light source and the eye examined; a first imaging optical system provided with a first optical path diverge member for diverging the optical path of the irradiation optical system and configured to form an image of return light from the eye examined as a first image; and a second imaging optical system provided with a second optical path diverge member for diverging the optical path of the irradiation optical system and configured to form an image of light emitted from the light source not through the eye examined as a second image at a position different from that of the first image.

Description

本発明は、眼科装置および眼科制御方法並びにプログラムに関する。   The present invention relates to an ophthalmologic apparatus, an ophthalmologic control method, and a program.

現在、医療機器の様々な規格が整備されてきている中で、検査、測定、加工などを行う眼科機器にとっても、被検眼にとって安心できる光量を用いた装置の実現が必要になってきている。一方で、様々な被検者に対応して、より正確な診断を行うために装置の性能向上も必須となっている。そのため、高光量のレーザ光源などを利用する必要がある。したがって、安心できることを確保するための優れたインターロック機構などの開発が必要になっている。   Currently, various standards for medical devices have been established, and it has become necessary for ophthalmic devices that perform examination, measurement, processing, and the like to implement an apparatus using a light amount that can be relieved for the eye to be examined. On the other hand, it is essential to improve the performance of the apparatus in order to make a more accurate diagnosis corresponding to various subjects. For this reason, it is necessary to use a high light quantity laser light source. Therefore, it is necessary to develop an excellent interlock mechanism or the like for ensuring safety.

従来技術としては、参照光の光量に基づいて光路を遮るシャッタ等の開閉を行う(参照光の光量が許容範囲内にあれば測定を実行し、許容範囲内になければ測定を実行しない)OCT装置が知られる(特許文献1)。   As a conventional technique, OCT is performed to open and close a shutter or the like that blocks an optical path based on the amount of reference light (measurement is performed if the amount of reference light is within the allowable range, and measurement is not performed unless the amount of reference light is within the allowable range). An apparatus is known (Patent Document 1).

特開2011−27715号公報JP 2011-27715 A

しかしながら、特許文献1では、測定光が被検眼に照射されていない状態で検出された参照光の光量に基づいて、被検眼に対して測定光が照射されるか否かが切替えられる。これによると、測定光が被検眼へ照射されている場合の参照光の光量検出は行われていないため、照射中の被検眼に対して、レーザ光束が不適切なものとならないようにする点で改善の余地がある。   However, in Patent Document 1, whether or not the measurement light is irradiated on the eye to be examined is switched based on the light amount of the reference light detected in a state where the measurement light is not irradiated on the eye to be examined. According to this, since the light amount of the reference light is not detected when the measurement light is irradiated to the eye to be examined, the laser light flux is prevented from being inappropriate for the eye being examined. There is room for improvement.

本発明の目的は、測定光が被検眼に照射されている場合でも、不適切な光量(光量過多)での照射となっていないかを認識できる機能を備えた眼科装置および眼科制御方法並びにプログラムを提供することにある。   An object of the present invention is to provide an ophthalmologic apparatus, an ophthalmologic control method, and a program having a function capable of recognizing whether or not irradiation is performed with an inappropriate amount of light (excessive amount of light) even when measurement light is irradiated on an eye to be examined. Is to provide.

上記目的を達成するために、本発明に係る眼科装置の代表的な構成は、被検眼を照射する光源と、前記光源と前記被検眼との間の光路に設けられる照射光学系と、前記照射光学系の光路を分岐する第1の光路分岐部材を備え、前記被検眼からの戻り光の像を第1の像として結像する第1の結像光学系と、前記照射光学系の光路を分岐する第2の光路分岐部材を備え、前記被検眼を介さない前記光源から射出された光の像を第2の像として前記第1の像と異なる位置に結像する第2の結像光学系と、を有することを特徴とする。   In order to achieve the above object, a typical configuration of an ophthalmologic apparatus according to the present invention includes a light source that irradiates an eye to be examined, an irradiation optical system that is provided in an optical path between the light source and the eye to be examined, and the irradiation. A first optical path branching member for branching the optical path of the optical system; a first imaging optical system that forms an image of the return light from the eye to be examined as a first image; and an optical path of the irradiation optical system. Second imaging optics that includes a second optical path branching member that branches, and forms an image of light emitted from the light source not through the eye to be examined at a position different from the first image as a second image. And a system.

更に、本発明に係る眼科制御方法の代表的な構成は、光源と被検眼との間の光路に設けられる照射光学系で被検眼を照射する照射ステップと、前記照射光学系の光路を分岐する第1の光路分岐部材を備える第1の結像光学系で、前記被検眼で反射した前記光源の像を第1の像として結像する第1の結像ステップと、前記照射光学系の光路を分岐する第2の光路分岐部材を備える第2の結像光学系で、前記被検眼を介さない前記光源の像を第2の像として前記第1の像と異なる位置に結像する第2の結像ステップと、を有することを特徴とする。   Furthermore, a typical configuration of the ophthalmologic control method according to the present invention includes an irradiation step of irradiating the subject's eye with an irradiation optical system provided in an optical path between the light source and the subject's eye, and the optical path of the irradiation optical system is branched. A first imaging optical system including a first optical path branching member, a first imaging step of forming an image of the light source reflected by the eye to be examined as a first image, and an optical path of the irradiation optical system; A second image forming optical system including a second optical path branching member that branches the image of the light source that does not pass through the eye to be examined is formed as a second image at a position different from the first image. And an imaging step.

更に、眼科制御プログラムも本発明の他の一側面を構成する。   Furthermore, the ophthalmologic control program constitutes another aspect of the present invention.

本発明によれば、測定光が被検眼に照射されている場合でも、不適切な光量(光量過多)での照射となっていないかを認識できる。   According to the present invention, it is possible to recognize whether or not the measurement light is irradiated with an inappropriate light amount (excessive light amount) even when the eye to be examined is irradiated.

(a)は本発明の第1の実施形態に係る眼屈折力測定装置の光学配置の一例を示す図、(b)は機能ブロック図である。(A) is a figure which shows an example of the optical arrangement | positioning of the eye refractive power measuring apparatus which concerns on the 1st Embodiment of this invention, (b) is a functional block diagram. 第1の実施形態に係る撮像素子上での測定リング像と参照スポット像の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the measurement ring image and reference spot image on the image pick-up element which concerns on 1st Embodiment. (a)は第1の実施形態に係る動作の一例を説明するためのフローチャート、(b)はステップS4の詳細なフローチャート、(c)は各走査線位置での検出される信号の数を示す図である。(A) is a flowchart for explaining an example of the operation according to the first embodiment, (b) is a detailed flowchart of step S4, and (c) shows the number of signals detected at each scanning line position. FIG. 変形例に係る屈折力測定装置の光学配置の一例を示す図である。It is a figure which shows an example of the optical arrangement | positioning of the refracting power measuring apparatus which concerns on a modification. 本発明の実施形態に係るアライメントプリズム絞りの斜視図である。It is a perspective view of the alignment prism stop which concerns on embodiment of this invention. (a)はアライメントプリズム絞りを用いた前後方向のアライメントが合った状態の説明図、(b)は遠すぎる状態の説明図、(c)は近すぎる状態の説明図である。(A) is explanatory drawing of the state where the alignment of the front-back direction using the alignment prism aperture was suitable, (b) is explanatory drawing of a state too far, (c) is explanatory drawing of a state too close.

以下、図面を参照しながら本発明の実施形態の一例を説明する。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.

《第1の実施形態》
図1(a)は、本発明の第1の実施形態に係る眼屈折力測定装置の光学配置の一例を示す。
<< First Embodiment >>
Fig.1 (a) shows an example of the optical arrangement | positioning of the eye refractive power measuring apparatus which concerns on the 1st Embodiment of this invention.

(固視標投影光学系とアライメント受光光学系)
先ず、ダイクロイックミラー107の反射方向には、固視標投影光学系と、被検眼の前眼部観察とアライメント検出が共用されるアライメント受光光学系が配置されている。固視標投影光学系の光路05上には、レンズ114、ダイクロイックミラー212、レンズ119、折り返しミラー120、レンズ121、固視標122、固視標照明用光源124が順次に配列されている。
(Fixed target projection optical system and alignment light receiving optical system)
First, in the reflection direction of the dichroic mirror 107, a fixation target projection optical system and an alignment light receiving optical system that shares anterior eye portion observation and alignment detection of the eye to be examined are arranged. On the optical path 05 of the fixation target projection optical system, a lens 114, a dichroic mirror 212, a lens 119, a folding mirror 120, a lens 121, a fixation target 122, and a fixation target illumination light source 124 are sequentially arranged.

固視誘導時に、点灯された固視標照明用光源124の投影光束は、固視標122を裏側から照明し、レンズ121、折り返しミラー120、レンズ119、レンズ114を介して被検眼Eの眼底Erに投影される。なお、レンズ121は被検眼Eの視度誘導を行い、雲霧状態を実現するために、固視誘導モータ123により光軸方向に移動できるようになっている。   At the time of fixation fixation, the projected luminous flux of the light source 124 for illuminating the fixation target illuminates the fixation target 122 from the back side, and the fundus of the eye E to be examined through the lens 121, the folding mirror 120, the lens 119, and the lens 114. Projected to Er. The lens 121 can be moved in the optical axis direction by a fixation guidance motor 123 in order to guide the diopter of the eye E and realize a cloudy state.

また、ダイクロイックミラー212の反射方向の光路04上には、アライメントプリズム絞り223、レンズ116、絞り117、撮像素子118が順次に配列され、被検眼の前眼部観察とアライメント検出を行うことができる。ここで、アライメントプリズム絞り223は、アライメントプリズム絞り駆動ソレノイド(不図示)により駆動され、絞り117は絞り駆動ソレノイド(不図示)により駆動される。   In addition, an alignment prism diaphragm 223, a lens 116, a diaphragm 117, and an image sensor 118 are sequentially arranged on the optical path 04 in the reflection direction of the dichroic mirror 212, so that the anterior eye portion of the eye to be examined and alignment detection can be performed. . Here, the alignment prism aperture 223 is driven by an alignment prism aperture drive solenoid (not shown), and the aperture 117 is driven by an aperture drive solenoid (not shown).

アライメントプリズム絞り223の挿抜により、アライメントプリズム絞り223が光路06上にある時にはアライメントを、光路から退避しているときは前眼部観察または徹照観察を行うことができる。   By inserting / extracting the alignment prism diaphragm 223, alignment can be performed when the alignment prism diaphragm 223 is on the optical path 06, and anterior eye observation or transillumination observation can be performed when retracted from the optical path.

アライメントプリズム絞り223は、図5に示すように円盤状の絞り板に3つの開口部(中央部の223aと左右方向の両端部223b、223c)が設けられる。また、左右方向の両端部の開口部223b、223cのダイクロイックミラー212側には例えば波長880nm付近のみの光束を透過するアライメントプリズム301a、301bが夫々貼付される。   As shown in FIG. 5, the alignment prism diaphragm 223 is provided with three openings (a central part 223a and left and right ends 223b and 223c) in a disc-shaped diaphragm plate. In addition, alignment prisms 301a and 301b that transmit only a light beam having a wavelength of about 880 nm, for example, are attached to the dichroic mirror 212 side of the openings 223b and 223c at both ends in the left-right direction.

また、被検眼Eの前眼部の斜め前方には、例えば780nm程度の波長を有する前眼部照明光源125a、125bが配置されている。前眼部照明光源125a、125bで照明された被検眼前眼部からの光束は、ダイクロイックミラー107、レンズ114、ダイクロイックミラー212、アライメントプリズム絞り223の中央開口部223aを介して撮像素子220の受光センサ面に結像する。ここで、アライメントプリズム絞り223の中央の開口部223aは、前眼部照明光源221a、221bの波長780nm以上の光束が通るようになっている。   Further, anterior eye part illumination light sources 125a and 125b having a wavelength of, for example, about 780 nm are disposed obliquely in front of the anterior eye part of the eye E to be examined. The light flux from the anterior ocular segment illuminated by the anterior ocular illumination light sources 125 a and 125 b is received by the image sensor 220 via the dichroic mirror 107, the lens 114, the dichroic mirror 212, and the central opening 223 a of the alignment prism diaphragm 223. An image is formed on the sensor surface. Here, the central opening 223a of the alignment prism diaphragm 223 is configured to allow a light beam having a wavelength of 780 nm or more of the anterior segment illumination light sources 221a and 221b to pass.

(アライメント)
アライメント検出のための光源は、眼屈折力測定用の測定光源101と兼用されている。アライメント時には、半透明の拡散板105が拡散板駆動ソレノイドにより光路に挿入される。拡散板105が挿入される位置は、前記の測定光源101の投影レンズ102による一次結像位置であり、かつレンズ106の焦点位置に挿入される。これにより、測定光源101の像が拡散板105上に一旦結像して、それが二次光源となりレンズ106から被検眼Eに向かって太い光束の平行光束として投影される。
(alignment)
The light source for alignment detection is also used as the measurement light source 101 for measuring eye refractive power. At the time of alignment, the translucent diffusion plate 105 is inserted into the optical path by the diffusion plate driving solenoid. The position where the diffusion plate 105 is inserted is a primary image formation position by the projection lens 102 of the measurement light source 101 and is inserted at the focal position of the lens 106. As a result, the image of the measurement light source 101 is once formed on the diffusion plate 105, which becomes a secondary light source and is projected from the lens 106 toward the eye E as a thick parallel light beam.

この平行光束が被検眼角膜Efで反射されて輝点像を形成する。そして、光束は再びダイクロイックミラー107でその一部が反射され、レンズ114を介して更にダイクロイックミラー212で反射し、アライメントプリズム絞り223を透過し、レンズ116に収斂されて撮像素子118に結像される。   This parallel light beam is reflected by the eye cornea Ef to be examined to form a bright spot image. Then, a part of the light beam is again reflected by the dichroic mirror 107, further reflected by the dichroic mirror 212 through the lens 114, transmitted through the alignment prism diaphragm 223, converged by the lens 116, and imaged on the image sensor 118. The

即ち、アライメントプリズム絞り223の開口部223a、223b、223cおよびプリズム301a、301bにより分割された光束が、指標像Ta、Tb、Tcとして撮像素子220に形成される。また、外眼照明光源221a、221bの輝点像221a’、221b’が、外眼照明光源221a、221bによって照明された被検眼前眼部とともに、撮像素子220で撮像される。   That is, the light beams divided by the openings 223a, 223b, and 223c of the alignment prism diaphragm 223 and the prisms 301a and 301b are formed on the image sensor 220 as index images Ta, Tb, and Tc. In addition, the bright spot images 221a 'and 221b' of the external illumination light sources 221a and 221b are imaged by the imaging element 220 together with the anterior eye segment illuminated by the external illumination light sources 221a and 221b.

図6(a)に示すように、3つの角膜輝点Ta、Tb、Tcが水平方向に直交する方向に1列に並んだ状態でアライメントを完了する。Z方向(前後方向)のアライメントが不良状態では、遠すぎる場合は図6(b)、近すぎる場合は図6(c)のようになる。   As shown in FIG. 6A, the alignment is completed in a state where the three corneal bright points Ta, Tb, and Tc are arranged in a line in a direction orthogonal to the horizontal direction. When the alignment in the Z direction (front-rear direction) is poor, FIG. 6B shows a case where it is too far, and FIG. 6C shows a case where it is too close.

(屈折力測定)
光路01に係る光学系は、眼屈折力測定用である。測定光源101から発せられた光束は、絞り103で光束が絞られつつ、レンズ102によりレンズ106の手前で1次結像され、レンズ106、ダイクロイックミラー107を透過して被検眼Eの瞳中心に投光される。その光束は眼底Erで結像され、その反射光は瞳中心を通って再びレンズ106に入射される。入射された光束はレンズ106を透過後に、孔あきミラー104(被検眼を照射する照射光学系の光路01を分岐する第1の光路分岐部材として機能)の周辺で反射される。
(Refractive power measurement)
The optical system related to the optical path 01 is for measuring eye refractive power. The light beam emitted from the measurement light source 101 is primarily focused in front of the lens 106 by the lens 102 while being focused by the aperture 103 and passes through the lens 106 and the dichroic mirror 107 to reach the center of the pupil of the eye E to be examined. Lighted. The luminous flux forms an image on the fundus Er, and the reflected light enters the lens 106 again through the center of the pupil. The incident light beam is transmitted through the lens 106 and then reflected around the perforated mirror 104 (functioning as a first optical path branching member that branches the optical path 01 of the irradiation optical system that irradiates the eye to be examined).

反射された光束は、レンズ106、111を含む第1の結像光学系により、被検眼瞳孔Epと共役なリング状絞り109で瞳分離され、各経線方向に光束を変位させるプリズム110を介して、撮像素子112の受光面にリング像として結像される。被検眼Eが正視眼であれば、このリング像は所定の円になり、近視眼では円の曲率が小さく、遠視眼では円の曲率が大きくなる。被検眼Eに乱視がある場合、リング像は楕円になり、水平軸と楕円の長軸でなす角度が乱視軸角度となる。この楕円の係数を基に屈折力を求める。撮像素子112で撮像された像に関しては、モニタ200により検者が視認可能である。   The reflected light beam is separated by the first imaging optical system including the lenses 106 and 111 by a ring-shaped diaphragm 109 conjugate with the eye pupil Ep to be examined, via a prism 110 that displaces the light beam in each meridian direction. A ring image is formed on the light receiving surface of the image sensor 112. If the eye E is a normal eye, the ring image is a predetermined circle, and the curvature of the circle is small for the myopic eye, and the curvature of the circle is large for the hyperopic eye. When the subject eye E has astigmatism, the ring image becomes an ellipse, and the angle formed by the horizontal axis and the major axis of the ellipse becomes the astigmatism axis angle. The refractive power is obtained based on the coefficient of the ellipse. The examiner can visually recognize the image picked up by the image pickup device 112 on the monitor 200.

(レーザ照射判断のための参照光)
ここで、眼屈折力測定用の測定光源101は、一例として近赤外光である波長880nmのレーザ光を発生させるSLD(Super Luminescent Diode)を用いる。この測定光源101は、以下に説明するレーザ照射判断のための参照光の光源として兼用される。
(Reference light for laser irradiation judgment)
Here, as an example, the measurement light source 101 for measuring eye refractive power uses an SLD (Super Luminescent Diode) that generates laser light having a wavelength of 880 nm, which is near infrared light. The measurement light source 101 is also used as a reference light source for laser irradiation determination described below.

被検眼を照射する照射光学系の光路01を分岐する第2の光路分岐部材としての光分割ミラー126で反射された光が進む光路02は、レーザ光源101から投影された投影光の一部を光路02を経由して参照光としてモニタするための光路である。即ち、測定光源101から射出されたレーザ光束は、レンズ102、絞り103、光分割ミラー126、ミラー127、光分割ミラー128を備える第2の結像光学系で、スポット像として撮像素子210に結像される。   The optical path 02 along which the light reflected by the light splitting mirror 126 as the second optical path branching member that branches the optical path 01 of the irradiation optical system that irradiates the eye to be examined travels a part of the projection light projected from the laser light source 101. This is an optical path for monitoring as reference light via the optical path 02. That is, the laser beam emitted from the measurement light source 101 is coupled to the image sensor 210 as a spot image by the second imaging optical system including the lens 102, the diaphragm 103, the light dividing mirror 126, the mirror 127, and the light dividing mirror 128. Imaged.

一方、測定光は、被検眼Eで反射された後、リング状絞り109で瞳分離され、プリズム110、レンズ111を介して、撮像素子112の受光面にリング像として結像される。測定光がリング状の光束となり、参照光がスポット状の光束となるために、参照光が光路03へ入る位置(即ち、光分割ミラー128の位置)は、絞り109よりも撮像素子112に近くなければならない。   On the other hand, the measurement light is reflected by the eye E, and then is pupil-separated by the ring-shaped stop 109 and formed as a ring image on the light receiving surface of the image sensor 112 via the prism 110 and the lens 111. Since the measurement light becomes a ring-shaped light beam and the reference light becomes a spot-shaped light beam, the position where the reference light enters the optical path 03 (that is, the position of the light splitting mirror 128) is closer to the image sensor 112 than the stop 109. There must be.

図2に、本実施形態に係る撮像素子112における測定光のリング像と、その内部に形成される参照光のスポット像の位置関係を示す。301は撮像素子112の有効画素面を示している。また、302aは被検眼のディオプタが最もプラス側のリング像、302bは被検眼のディオプタが最もマイナス側のリング像を示している。したがって、リング像302bよりも中心に近い領域では、測定で使用しない領域となる。303は参照光によるスポット像であり、リング像302bと重ならないように中心付近に位置している。   FIG. 2 shows a positional relationship between the ring image of the measurement light and the spot image of the reference light formed inside the image sensor 112 according to the present embodiment. Reference numeral 301 denotes an effective pixel surface of the image sensor 112. Reference numeral 302a denotes a ring image having the most diopter of the eye to be examined, and 302b denotes a ring image having the most diopter of the eye to be examined. Therefore, the region closer to the center than the ring image 302b is a region that is not used for measurement. Reference numeral 303 denotes a spot image by reference light, which is positioned near the center so as not to overlap the ring image 302b.

撮像素子112の2次元面上では、眼屈折力の測定可能範囲の中でディオプタの最もプラス側のリング像と、最もマイナス側のリング像が、どこの領域で撮像されるかが設定されている。即ち、撮像素子112の2次元面上でリング像の検出には使用しない領域が予め分かっている。その領域に参照光のスポット像を結像させることで、リング像の測定中においても参照光によって、レーザ光源の状態をモニタすることができる。なお、リング像とスポット像の位置関係は図3に示すものに限定されるものではなく、リング像とスポット像とが重なり合わない位置関係であれば図3に示す位置関係でなくともよい。   On the two-dimensional surface of the image sensor 112, it is set in which region the most positive ring image and the most negative ring image of the diopter are captured in the measurable range of eye refractive power. Yes. That is, a region that is not used for detecting a ring image on the two-dimensional surface of the image sensor 112 is known in advance. By forming a spot image of the reference light in that region, the state of the laser light source can be monitored by the reference light even during measurement of the ring image. Note that the positional relationship between the ring image and the spot image is not limited to that shown in FIG. 3, and the positional relationship shown in FIG. 3 is not necessary as long as the ring image and the spot image do not overlap.

(測定光と参照光の受光光量差)
ここで、測定光と参照光とは、同じレーザ光源から発せられた光束であるが、撮像素子112までの光路が異なるため、撮像素子上での受光光量が異なる。測定光と参照光とを同時測定するには、撮像素子において測定ゲインを同じにすることが望ましく、測定光と参照光との受光光量差を抑えることが望ましい。測定ゲインを同じにすることで、測定時にゲイン調整をすることなく参照光と測定光とを測定でき、またノイズレベルが同じになることで参照光と測定光との測定誤差が少なくすることが可能となる。
(Difference in amount of received light between measurement light and reference light)
Here, the measurement light and the reference light are light beams emitted from the same laser light source, but since the optical paths to the image sensor 112 are different, the amounts of received light on the image sensor are different. In order to simultaneously measure the measurement light and the reference light, it is desirable to make the measurement gains the same in the image sensor, and it is desirable to suppress the difference in the amount of received light between the measurement light and the reference light. By making the measurement gain the same, it is possible to measure the reference beam and the measurement beam without adjusting the gain during measurement, and the same noise level can reduce the measurement error between the reference beam and the measurement beam. It becomes possible.

なお、本発明における「同時」や「同じ」との文言は、厳密に同時や同一の場合のみを含む概念ではなく、略同時や略同一の場合をも含む概念である。   Note that the terms “simultaneous” and “same” in the present invention are not a concept including only the case of exactly the same or the same, but a concept including a case of substantially the same or substantially the same.

図1(a)において、測定光の減衰率は、ダイクロックミラー107から穴あきミラー104を介して光路03の光分割ミラー128に至るまでの間で決まる。ここで、ダイクロックミラー107による透過率が90%、被検眼眼底で入射光が反射され戻る反射率が0.1%、再び光束が通過するダイクロックミラー107の透過率が90%、穴あきミラー104の反射による損失は無いものとする。また、穴あきミラー104で反射された光路03でのプリズム110の透過率90%とすると、測定光の減衰率はおよそ0.15%になる。   In FIG. 1A, the attenuation factor of the measurement light is determined from the dichroic mirror 107 to the light splitting mirror 128 in the optical path 03 through the holed mirror 104. Here, the transmittance of the dichroic mirror 107 is 90%, the reflectance of incident light reflected by the fundus of the eye to be examined is 0.1%, the transmittance of the dichroic mirror 107 through which the light beam passes again is 90%, and there is a hole. It is assumed that there is no loss due to the reflection of the mirror 104. Also, assuming that the transmittance of the prism 110 in the optical path 03 reflected by the perforated mirror 104 is 90%, the attenuation factor of the measurement light is about 0.15%.

一方で、参照光の減衰率は、光路02の光分割ミラー126から光分割ミラー128までの間で決まる。測定光の減衰率はおよそ0.15%になるため、光分割ミラー126のみで減衰率0.15%を補うとすると、光路01への透過率は99.85%程度、また光路02への反射は0.15%程度にすればよい。   On the other hand, the attenuation factor of the reference light is determined between the light dividing mirror 126 and the light dividing mirror 128 in the optical path 02. Since the attenuation rate of the measurement light is about 0.15%, if the attenuation rate of 0.15% is supplemented only by the light splitting mirror 126, the transmittance to the optical path 01 is about 99.85%, and the optical path 02 The reflection may be about 0.15%.

これに対して、光路02上に光学部材を追加して参照光の受光光量を設定する場合には、光分割ミラー126とミラー127の間や、ミラー127と光分割ミラー128の間に、予め透過率を決めた光学フィルターを挿入する。例えば、光分割ミラー126による透過と反射が50対50である場合には、測定光は、50×0.15%=0.075となるため、参照光は、測定光の0.075付近にするべく、透過率0.15%程度の光学フィルターなどを挿入すればよい。   On the other hand, when an optical member is added on the optical path 02 and the received light amount of the reference light is set, it is previously set between the light dividing mirror 126 and the mirror 127 or between the mirror 127 and the light dividing mirror 128. Insert an optical filter with a determined transmittance. For example, when the transmission and reflection by the light splitting mirror 126 are 50 to 50, the measurement light is 50 × 0.15% = 0.075, so the reference light is in the vicinity of 0.075 of the measurement light. Therefore, an optical filter having a transmittance of about 0.15% may be inserted.

これにより、参照光の受光光量を設定することができる。ここで、挿入する光学フィルターの透過率は、前記測定光の減衰率に基づいて、測定光と参照光が同等の光量になるように決める。   Thereby, the received light quantity of the reference light can be set. Here, the transmittance of the optical filter to be inserted is determined based on the attenuation factor of the measurement light so that the measurement light and the reference light have the same light quantity.

また、光路02を構成する光分割ミラー126、128、ミラー127の反射率や透過率で参照光の受光光量を設定する場合には、光分割ミラー126の透過率や光分割ミラー128、ミラー127の反射率を変える。これにより、参照光の受光光量を設定することができる。ここで、ミラーの透過率や反射率は、前記測定光の減衰率に基づいて、測定光と参照光が同等の光量になるように決める。   Further, when the received light amount of the reference light is set by the reflectance and transmittance of the light splitting mirrors 126 and 128 and the mirror 127 constituting the optical path 02, the transmittance of the light splitting mirror 126, the light splitting mirror 128, and the mirror 127 are set. Change the reflectance. Thereby, the received light quantity of the reference light can be set. Here, the transmittance and reflectance of the mirror are determined based on the attenuation rate of the measurement light so that the measurement light and the reference light have the same light quantity.

(レーザ照射切替えと光源光量調整)
被検眼への光源からの光の入射を制限する状態と、被検眼への光源からの光の入射を制限しない状態を切替えるシャッタ108による被検眼へのレーザ光束の照射切替えは、次のように実施される。先ず、測定開始直後の状態では、シャッタ108が遮光状態となり、レーザ光束が被検眼に照射されないようにしてある。
(Laser irradiation switching and light source light quantity adjustment)
The irradiation switching of the laser light beam to the eye to be examined by the shutter 108 that switches the state in which the light from the light source is restricted to the eye to be examined and the state in which the light from the light source to the eye to be examined is not restricted is as follows. To be implemented. First, in a state immediately after the start of measurement, the shutter 108 is shielded from light so that the laser beam is not irradiated on the eye to be examined.

光路01がシャッタ108によって遮断されているため、光路03に測定光が戻ってくることはない。一方、参照光は、光源101からレンズ102、絞り103を通り、光分割ミラー126で反射され、光路02に入り、ミラー127、光分割ミラー128で反射され、撮像素子112の有効画素面301上のリング像で使用しない領域である中心付近に結像される。   Since the optical path 01 is blocked by the shutter 108, the measurement light does not return to the optical path 03. On the other hand, the reference light passes from the light source 101 through the lens 102 and the diaphragm 103, is reflected by the light splitting mirror 126, enters the optical path 02, is reflected by the mirror 127, and the light splitting mirror 128, and is reflected on the effective pixel surface 301 of the image sensor 112. The ring image is formed in the vicinity of the center, which is an unused area.

CPU113は、中心付近に結像されたスポット像の出力値と、予め設定されている所定値を比較する。そして、出力値が所定値以下であった場合(許容範囲内にある場合)には、CPU113はシャッタ108の駆動回路(不図示)を制御し、光路01を開放する。即ち、レーザ光束が被検眼へ照射される状態へ切替える。ここで、所定値とは、例えば被検眼に有害な影響を与えることがない最大値である。一方、出力値が所定値を超えた場合(許容範囲内にない場合)には、CPU113は光路01を遮断した状態を維持し、レーザ光源光量を所定値を超えないように調整する。   The CPU 113 compares the output value of the spot image formed near the center with a predetermined value set in advance. When the output value is equal to or smaller than the predetermined value (when it is within the allowable range), the CPU 113 controls the drive circuit (not shown) of the shutter 108 to open the optical path 01. That is, the state is switched to a state in which the laser beam is irradiated to the eye to be examined. Here, the predetermined value is, for example, the maximum value that does not adversely affect the eye to be examined. On the other hand, when the output value exceeds the predetermined value (when it is not within the allowable range), the CPU 113 maintains the state where the optical path 01 is blocked and adjusts the laser light source light amount so as not to exceed the predetermined value.

以上は、レーザ光束が被検眼へ照射される測定の前の状態に関するものであるが、レーザ光束が被検眼へ照射される測定中の状態であっても、CPU113は出力値と所定値を比較している。そして、出力値が所定値を超えた場合(許容範囲内にない場合)、CPU113は直ちに、シャッタ108の駆動回路(不図示)を制御して光路01を遮断し、レーザ光源光量の調整を行う。光量制御手段としてのCPU113によるレーザ光源光量の調整は、レーザ光源の電流や電圧の制御により行う。これにより、レーザ光源光量を低下させ、出力値が所定値以下(許容範囲内)となる。   The above description relates to the state before the measurement in which the laser beam is applied to the eye to be examined, but the CPU 113 compares the output value with a predetermined value even during the measurement in which the laser beam is applied to the eye to be examined. doing. When the output value exceeds a predetermined value (when it is not within the allowable range), the CPU 113 immediately controls the drive circuit (not shown) of the shutter 108 to block the optical path 01 and adjust the laser light source light amount. . The adjustment of the laser light source light amount by the CPU 113 as the light amount control means is performed by controlling the current and voltage of the laser light source. As a result, the light amount of the laser light source is reduced, and the output value becomes a predetermined value or less (within an allowable range).

そして、出力値が所定値以下(許容範囲内)になれば、CPU113はシャッタ108の駆動回路(不図示)を制御することによって、光路01を開放し、レーザ光束が被検眼に照射可能となる。   When the output value becomes equal to or less than a predetermined value (within an allowable range), the CPU 113 controls the driving circuit (not shown) of the shutter 108 to open the optical path 01 so that the eye can be irradiated with the laser beam. .

しかし、レーザ光源光量を制御しても出力値が所定値以下(許容範囲内)にならない場合には、装置の故障などの可能性があるため、モニタ200により、警告などが表示される。警告が表示される場合には、検者が異常を確実に認識できる。   However, if the output value does not fall below the predetermined value (within the allowable range) even when the laser light source quantity is controlled, there is a possibility that the device is broken, and thus a warning or the like is displayed on the monitor 200. When the warning is displayed, the examiner can surely recognize the abnormality.

(フローチャート)
(装置全体のフローチャート)
以上の構成を、図1(b)に示すブロック図と共に、図3(a)に示すフローチャートに沿って説明すると、以下のようになる。ここで、図1(b)のCPU113は、レーザー光源101、シャッタ108、モニタ200などを全体的に制御するものである。
(flowchart)
(Flow chart of the entire device)
The above configuration will be described along with the block diagram shown in FIG. 1B along the flowchart shown in FIG. 3A. Here, the CPU 113 in FIG. 1B controls the laser light source 101, the shutter 108, the monitor 200 and the like as a whole.

測定が開始される(図3(a)のS1)と、レーザ光を遮り、レーザ光が装置外部に放射されないようにする確認(図3(a)のS2)を行う。次に、レーザ光を発生させる工程(図3(a)のS3)が進み、レーザー光源(測定光源を兼ねる)201を点灯し、レーザ光の出力を測定する工程(図3(a)のS4)で出力測定手段としての撮像素子112にてレーザ出力を測定する。   When the measurement is started (S1 in FIG. 3A), confirmation (S2 in FIG. 3A) is performed to block the laser beam and prevent the laser beam from being emitted outside the apparatus. Next, the step of generating laser light (S3 in FIG. 3A) proceeds, the laser light source (also serving as the measurement light source) 201 is turned on, and the output of the laser light is measured (S4 in FIG. 3A). ), The laser output is measured by the image sensor 112 as an output measuring means.

次に、レーザ出力と、記憶手段(不図示)に記憶されたレーザ光の出力と被検眼眼底に照射される照射量との換算式に基づき、換算する換算工程(図3(a)のS5)で、被検眼眼底に照射される照射量を換算する。換言すれば、被検眼に入射する光量を決定する。   Next, a conversion step (S5 in FIG. 3A) for conversion based on a conversion formula between the laser output, the output of the laser light stored in the storage means (not shown), and the dose irradiated to the fundus of the eye to be examined. ), The amount of irradiation irradiated to the eye fundus of the subject is converted. In other words, the amount of light incident on the eye to be examined is determined.

そして、該換算された照射量の多寡の判別に基づいて、所定値以下であれば、CPU113によりシャッタ108を切替え、シャッタ閉からシャッタ開へ切替える(図3(a)のS6、S7)。そして、図3(a)のS8で上述したオートアライメントを行った後に、図3(a)のS9でレーザー光による測定を行う。   Then, based on the determination of the amount of the converted dose, if it is equal to or less than a predetermined value, the CPU 113 switches the shutter 108 and switches from shutter closing to shutter opening (S6 and S7 in FIG. 3A). Then, after performing the above-described auto-alignment in S8 of FIG. 3A, measurement with a laser beam is performed in S9 of FIG.

即ち、光源と被検眼との間の光路に設けられる照射光学系で被検眼を照射する照射ステップと、照射光学系の光路を分岐する第1の光路分岐部材を備える第1の結像光学系で、被検眼で反射した光源の像を第1の像として結像する第1の結像ステップが開始される。一方、レーザ出力の測定(S4からS6、S9からS10)に関しては、照射光学系の光路を分岐する第2の光路分岐部材を備える第2の結像光学系で、被検眼を介さない光源の像を第2の像として第1の像と異なる位置に結像する第2の結像ステップが介在する。   That is, a first imaging optical system including an irradiation step of irradiating the subject's eye with an irradiation optical system provided in an optical path between the light source and the eye to be examined, and a first optical path branching member that branches the optical path of the irradiation optical system. Thus, the first imaging step for forming an image of the light source reflected by the eye to be examined as a first image is started. On the other hand, regarding the measurement of the laser output (S4 to S6, S9 to S10), the second imaging optical system including the second optical path branching member that branches the optical path of the irradiation optical system is used for the light source that does not pass through the eye to be examined. There is a second imaging step in which the image is imaged as a second image at a position different from the first image.

換算された照射量が所定値より大きい場合は、光量調整手段としてのCPU113により、レーザ光を調整する光量調整工程で光量の調整を行う(図3(a)のS12)。光量調整工程のS13では、CPU113はレーザ光量の値が変化したか否かを判定して調整が有効か否かを判定する。光量調整が有効である状態では、図3(a)のS4に戻る。   When the converted irradiation amount is larger than the predetermined value, the CPU 113 as the light amount adjusting means adjusts the light amount in the light amount adjusting step for adjusting the laser light (S12 in FIG. 3A). In S13 of the light amount adjustment step, the CPU 113 determines whether or not the adjustment is effective by determining whether or not the value of the laser light amount has changed. When the light amount adjustment is effective, the process returns to S4 in FIG.

光量調整が有効ではない状態であれば、図3(a)のS14で制御不能な状態を知らせる手段としてモニタ200に視覚的に警告する表示を行う、もしくは聴覚的に警告表示する。このように警告表示を行う状態とは、例えば、レーザ光源の出力制御ができない状態や、光学部材が破損していて異常な出力値が検出されている状態などの装置の異常や故障が発生している状態が該当する。   If the light amount adjustment is not effective, a visual warning display is given to the monitor 200 as a means for notifying the uncontrollable state in S14 of FIG. The state in which the warning is displayed in this way is, for example, an abnormality or failure of the apparatus such as a state in which the output control of the laser light source cannot be performed or an optical member is damaged and an abnormal output value is detected. Applicable state.

図3(a)のS9でレーザー光による測定を行うとき、同時にレーザ出力確認およびレーザ照射量の換算ができるため、図3(a)のS10でレーザ照射量が所定値以下か否かを判断する。所定値以下の場合はS15に進み、適正な測定値が得られ測定完了として良いかが判断され、良ければ測定完了(S16)となる。図3(a)のS10でレーザ照射量が所定値以下ではない場合はシャッタ108を閉じて光路01を遮断し(S11)、S12へ進んでレーザ光源光量を調整する。また図3(a)のS15で適正な測定値が得られずに測定完了とできない場合は、S8に戻って位置合わせをし直して再測定する。   When performing measurement with laser light in S9 of FIG. 3 (a), it is possible to simultaneously confirm the laser output and convert the laser irradiation amount, so in S10 of FIG. 3 (a), it is determined whether or not the laser irradiation amount is a predetermined value or less. To do. If it is equal to or smaller than the predetermined value, the process proceeds to S15, where it is determined whether an appropriate measurement value is obtained and the measurement can be completed, and if it is satisfactory, the measurement is completed (S16). If the laser irradiation amount is not less than the predetermined value in S10 of FIG. 3A, the shutter 108 is closed to block the optical path 01 (S11), and the process proceeds to S12 to adjust the laser light source light amount. If the measurement cannot be completed because an appropriate measurement value cannot be obtained in S15 of FIG. 3A, the process returns to S8, the position is adjusted again, and the measurement is performed again.

ここで、レーザー光による測定を行うとき、同時にレーザ出力確認およびレーザ照射量の換算ができることを、図3(a)のS10の詳細フローとして図3(b)に、信号検出を示す図3(c)と共に示す。撮像素子112における光学像を順次に各走査線で検出していくとき(S10a)、1走査線に信号が3個ある走査線か否かが判断され(S10b)、Yesであれば真中の信号Scを抽出し(S10d)、真中の信号Scの強度を出力する(S10e)。またNoであれば、第m番目の走査線から第(m+1)番目の走査線の位置へ変更し(S10c)、1走査線に信号が3個ある走査線となるまで繰り返す。   Here, when performing measurement with laser light, it is possible to simultaneously confirm the laser output and convert the laser irradiation amount. FIG. 3B shows the signal detection in FIG. 3B as a detailed flow of S10 in FIG. Shown with c). When an optical image in the image sensor 112 is sequentially detected by each scanning line (S10a), it is determined whether or not there is three scanning lines in one scanning line (S10b). Sc is extracted (S10d), and the intensity of the middle signal Sc is output (S10e). If No, the position is changed from the m-th scanning line to the (m + 1) -th scanning line (S10c), and the process is repeated until one scanning line has three scanning lines.

以上、説明したように、本実施形態では測定中においても参照光の出力をモニタし、出力値が許容範囲内にあることを確認しながら測定できる。また、出力値が異常な値(許容範囲内にない場合)になったときには、光路を遮断すると共に光源光量を低下調整することが可能である。それによって、不適切とならないレーザ光束が被検眼へ照射されることが保証される。   As described above, in the present embodiment, the output of the reference light can be monitored even during measurement, and measurement can be performed while confirming that the output value is within the allowable range. In addition, when the output value becomes an abnormal value (when it is not within the allowable range), it is possible to cut off the optical path and adjust the light source light amount to decrease. Thereby, it is ensured that a laser beam that does not become inappropriate is irradiated to the eye to be examined.

(変形例1)
上述した実施形態では、測定リング像と参照スポット像を撮像する同一の撮像素子112を兼用し、本来測定スポット像として参照スポット像に重なるところ、プリズム110等により変位させて重ならないように相対的に変位させている。しかし、本発明はこれに限らず、図4に示すように、測定リング像と参照スポット像を異なる撮像素子112、112aで別々に撮像するように構成し、測定リング像の位置と、参照スポット像の位置と、を重ならないように、しても良い。図4で、参照スポット像は、光分割ミラー126、ミラー127a、127bで反射された光束により、撮像素子112aに形成される。
(Modification 1)
In the above-described embodiment, the same imaging device 112 that captures the measurement ring image and the reference spot image is used as a measurement spot image. It is displaced to. However, the present invention is not limited to this, and as shown in FIG. 4, the measurement ring image and the reference spot image are separately captured by different imaging elements 112 and 112 a, and the position of the measurement ring image and the reference spot are determined. You may make it not overlap with the position of an image. In FIG. 4, the reference spot image is formed on the image sensor 112a by the light beams reflected by the light splitting mirror 126 and the mirrors 127a and 127b.

(変形例2)
上述した実施形態では、被検眼で反射した光源の像(第1の像)が本来撮像素子の中心位置に形成されるところ、プリズム110の作用で各経線方向へ変位した像としてリング像を形成させ、参照スポット像の位置と重ならないようにすることを説明した。しかし、本発明はこれに限らず、例えば被検眼角膜で反射した光源の像(第1の像)が撮像素子の中心位置に形成される一方、被検眼を介さない光源の像を第2の像として同じ撮像素子の中心位置から外れた位置に結像するよう参照光路に変位部材を設けても良い。
(Modification 2)
In the above-described embodiment, the image of the light source (first image) reflected by the eye to be examined is originally formed at the center position of the image sensor, and a ring image is formed as an image displaced in each meridian direction by the action of the prism 110. It was explained that the position of the reference spot image does not overlap. However, the present invention is not limited to this. For example, an image of the light source (first image) reflected by the subject's eye cornea is formed at the center position of the image sensor, while an image of the light source that does not pass through the subject's eye is displayed as the second image. A displacement member may be provided in the reference optical path so as to form an image at a position deviating from the center position of the same image sensor.

具体的には、ミラー127を紙面内で回転変位させて、撮像素子113の中心から外れた位置に参照スポット像を形成させることができる。   Specifically, the reference spot image can be formed at a position deviating from the center of the image sensor 113 by rotating and displacing the mirror 127 within the paper surface.

(変形例3)
上述した実施形態では、参照光の出力が許容範囲を超える場合、シャッタ108により被検眼を照射する照射光学系の光路を遮断状態へ切替えることを説明したが、本発明はこれに限られない。即ち、光源の光量調整を行わない場合には、シャッタ108を用いずに、光源101を消灯状態へ切替えるようにしても良い。
(Modification 3)
In the above-described embodiment, when the output of the reference light exceeds the allowable range, the optical path of the irradiation optical system that irradiates the eye to be examined is switched to the cutoff state by the shutter 108, but the present invention is not limited to this. That is, when the light amount adjustment of the light source is not performed, the light source 101 may be switched to the off state without using the shutter 108.

(その他の実施形態)
また、本発明は、眼科制御方法の各ステップをコンピュータに実行させるための眼科制御プログラムとして、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
(Other embodiments)
The present invention is also realized by executing the following processing as an ophthalmologic control program for causing a computer to execute each step of the ophthalmologic control method. That is, software (program) that realizes the functions of the above-described embodiments is supplied to a system or apparatus via a network or various storage media, and a computer (or CPU, MPU, or the like) of the system or apparatus reads the program. It is a process to be executed.

101・・測定光源、102・・レンズ、104・・穴あきミラー、108・・シャッタ、109・・リング状絞り、110:プリズム、111・・レンズ、112・・撮像素子、126、128・・光分割ミラー、200・・モニタ、E・・被検眼 101..Measurement light source, 102..Lens, 104..Perforated mirror, 108..Shutter, 109..Ring diaphragm, 110: Prism, 111..Lens, 112..Image sensor, 126, 128 .. Light splitting mirror, 200 ... monitor, E ... eye to be examined

Claims (9)

被検眼を照射する光源と、
前記光源と前記被検眼との間の光路に設けられる照射光学系と、
前記照射光学系の光路を分岐する第1の光路分岐部材を備え、前記被検眼からの戻り光の像を第1の像として結像する第1の結像光学系と、
前記照射光学系の光路を分岐する第2の光路分岐部材を備え、前記被検眼を介さない前記光源から射出された光の像を第2の像として前記第1の像と異なる位置に結像する第2の結像光学系と、
を有することを特徴とする眼科装置。
A light source for irradiating the eye to be examined;
An irradiation optical system provided in an optical path between the light source and the eye to be examined;
A first imaging optical system that includes a first optical path branching member that branches the optical path of the irradiation optical system, and that forms an image of return light from the eye as a first image;
A second optical path branching member that branches the optical path of the irradiation optical system is provided, and an image of light emitted from the light source not passing through the eye to be examined is formed as a second image at a position different from the first image. A second imaging optical system that
An ophthalmologic apparatus comprising:
前記第1の像と前記第2の像とを、同一の撮像素子に結像することを特徴とする請求項1に記載の眼科装置。   The ophthalmologic apparatus according to claim 1, wherein the first image and the second image are formed on the same image sensor. 前記第1の像がリング像であり、前記第2の像がスポット像であることを特徴とする請求項2に記載の眼科装置。   The ophthalmologic apparatus according to claim 2, wherein the first image is a ring image, and the second image is a spot image. 前記スポット像は前記リング像の内部に結像されることを特徴とする請求項3に記載の眼科装置。   The ophthalmologic apparatus according to claim 3, wherein the spot image is formed inside the ring image. 前記第2の像の出力が許容範囲を超える場合、前記被検眼への前記光源からの光の入射を制限する状態、または前記光源の消灯状態へ切替える切替え手段を有することを特徴とする請求項1乃至4のいずれか1項に記載の眼科装置。   The apparatus according to claim 1, further comprising: a switching unit configured to switch the light source from the light source to the eye to be inspected in a state where the output of the second image exceeds an allowable range, or to switch the light source off. The ophthalmologic apparatus according to any one of 1 to 4. 前記第2の像の出力が許容範囲を超える場合、前記第2の像の出力に基づいて、前記光源の光量を低下させるように制御する光量制御手段を備えることを特徴とする請求項1乃至5のいずれか1項に記載の眼科装置。   2. The apparatus according to claim 1, further comprising: a light amount control unit configured to control the light amount of the light source to be reduced based on the output of the second image when the output of the second image exceeds an allowable range. The ophthalmologic apparatus according to any one of 5. 前記第1の像と前記第2の像は、前記撮像素子の受光光量が等しくなるように、前記第1の結像光学系または前記第2の結像光学系を構成している光学部材の反射率または透過率が設定されていることを特徴とする請求項2乃至6のいずれか1項に記載の眼科装置。   The first image and the second image of the optical member constituting the first imaging optical system or the second imaging optical system so that the amount of light received by the imaging element is equal. The ophthalmologic apparatus according to any one of claims 2 to 6, wherein a reflectance or a transmittance is set. 光源と被検眼との間の光路に設けられる照射光学系で被検眼を照射する照射ステップと、
前記照射光学系の光路を分岐する第1の光路分岐部材を備える第1の結像光学系で、前記被検眼で反射した前記光源の像を第1の像として結像する第1の結像ステップと、
前記照射光学系の光路を分岐する第2の光路分岐部材を備える第2の結像光学系で、前記被検眼を介さない前記光源の像を第2の像として前記第1の像と異なる位置に結像する第2の結像ステップと、
を有することを特徴とする眼科制御方法。
An irradiation step of irradiating the subject's eye with an irradiation optical system provided in an optical path between the light source and the subject's eye;
A first image forming optical system including a first optical path branching member that branches an optical path of the irradiation optical system, and forms an image of the light source reflected by the eye to be examined as a first image. Steps,
In a second imaging optical system comprising a second optical path branching member that branches the optical path of the irradiation optical system, a position different from the first image with the image of the light source not passing through the eye to be examined as a second image A second imaging step for imaging on
An ophthalmologic control method comprising:
請求項8に記載の眼科制御方法の各ステップをコンピュータに実行させるための眼科制御プログラム。   An ophthalmologic control program for causing a computer to execute each step of the ophthalmologic control method according to claim 8.
JP2012234649A 2012-10-24 2012-10-24 Ophthalmologic apparatus, ophthalmology control method, and program Pending JP2014083232A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012234649A JP2014083232A (en) 2012-10-24 2012-10-24 Ophthalmologic apparatus, ophthalmology control method, and program
US14/061,321 US20140111768A1 (en) 2012-10-24 2013-10-23 Ophthalmologic apparatus, ophthalmological control method, and storage medium
CN201310506780.2A CN103767678A (en) 2012-10-24 2013-10-24 Ophthalmologic apparatus and ophthalmological control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234649A JP2014083232A (en) 2012-10-24 2012-10-24 Ophthalmologic apparatus, ophthalmology control method, and program

Publications (1)

Publication Number Publication Date
JP2014083232A true JP2014083232A (en) 2014-05-12

Family

ID=50485052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234649A Pending JP2014083232A (en) 2012-10-24 2012-10-24 Ophthalmologic apparatus, ophthalmology control method, and program

Country Status (3)

Country Link
US (1) US20140111768A1 (en)
JP (1) JP2014083232A (en)
CN (1) CN103767678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102007658B1 (en) * 2018-02-02 2019-08-06 주식회사 휴비츠 Eye examining apparatus having reduced color ghost image

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9655517B2 (en) 2012-02-02 2017-05-23 Visunex Medical Systems Co. Ltd. Portable eye imaging apparatus
US20150021228A1 (en) 2012-02-02 2015-01-22 Visunex Medical Systems Co., Ltd. Eye imaging apparatus and systems
US9351639B2 (en) 2012-03-17 2016-05-31 Visunex Medical Systems Co. Ltd. Eye imaging apparatus with a wide field of view and related methods
US9986908B2 (en) 2014-06-23 2018-06-05 Visunex Medical Systems Co. Ltd. Mechanical features of an eye imaging apparatus
EP3250106A4 (en) 2015-01-26 2019-01-02 Visunex Medical Systems Co. Ltd. A disposable cap for an eye imaging apparatus and related methods
JP6490519B2 (en) * 2015-06-30 2019-03-27 株式会社トプコン Ophthalmic microscope system
CN106444028B (en) * 2016-09-27 2019-11-19 成都虚拟世界科技有限公司 A kind of near-eye display system and virtual reality device
CN110558931A (en) * 2019-10-14 2019-12-13 浙江维真医疗科技有限公司 refractometer
WO2024064142A1 (en) * 2022-09-19 2024-03-28 University Of Maryland, College Park Brillouin spectroscopy systems and methods for detection of subclinical keratoconus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824400B2 (en) * 2005-12-28 2011-11-30 株式会社トプコン Ophthalmic equipment
JP4855150B2 (en) * 2006-06-09 2012-01-18 株式会社トプコン Fundus observation apparatus, ophthalmic image processing apparatus, and ophthalmic image processing program
JP4969925B2 (en) * 2006-06-28 2012-07-04 株式会社トプコン Fundus observation device
US8125645B2 (en) * 2008-03-31 2012-02-28 Fujifilm Corporation Optical tomographic imaging system, tomographic image acquiring method, and optical tomographic image forming method
JP5464891B2 (en) * 2009-04-13 2014-04-09 キヤノン株式会社 Optical image acquisition apparatus provided with adaptive optical system, and control method thereof
JP5460452B2 (en) * 2010-04-30 2014-04-02 株式会社ニデック Ophthalmic equipment
JP5528205B2 (en) * 2010-05-17 2014-06-25 キヤノン株式会社 Ophthalmologic apparatus, ophthalmologic apparatus control method, adaptive optical system, image generation apparatus, image generation method, program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102007658B1 (en) * 2018-02-02 2019-08-06 주식회사 휴비츠 Eye examining apparatus having reduced color ghost image

Also Published As

Publication number Publication date
CN103767678A (en) 2014-05-07
US20140111768A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP2014083232A (en) Ophthalmologic apparatus, ophthalmology control method, and program
US9078595B2 (en) Ophthalmic laser treatment apparatus
JP2014083231A (en) Ophthalmologic apparatus, ophthalmology control method, and program
JP6041538B2 (en) Ophthalmic equipment
JP6116122B2 (en) Ophthalmologic apparatus, ophthalmologic control method, and program
JP2013165818A (en) Ophthalmologic apparatus, ophthalmologic control method, and program
KR20120074232A (en) Eye refractive power measurement apparatus
JP5101370B2 (en) Fundus photographing device
JP2006263082A (en) Ocular optical characteristic measuring apparatus
JP2013248254A (en) Ophthalmic device
JP5554610B2 (en) Fundus photographing device
JP6604020B2 (en) Fundus imaging apparatus and fundus imaging program
JP6060525B2 (en) Fundus examination device
JP2013027672A (en) Fundus photography device
JP5522629B2 (en) Fundus photographing device
JP2012223428A (en) Ophthalmic apparatus
JP5807701B2 (en) Fundus photographing device
JP2014226369A (en) Ophthalmologic apparatus, and method and program for controlling the same
JP2005342284A (en) Eye refractivity measuring device
JP2005312501A (en) Refraction measuring instrument
JP2015177878A (en) Ophthalmologic apparatus and control method
JP7118197B2 (en) ophthalmic equipment
JP6140947B2 (en) Ophthalmic apparatus and ophthalmic imaging method
JP6292331B2 (en) Fundus photographing device
JP2013179979A (en) Fundus imaging apparatus