JP2014082487A - Bn electrolytic material with accumulative, conductive and antibacterial properties - Google Patents

Bn electrolytic material with accumulative, conductive and antibacterial properties Download PDF

Info

Publication number
JP2014082487A
JP2014082487A JP2013201497A JP2013201497A JP2014082487A JP 2014082487 A JP2014082487 A JP 2014082487A JP 2013201497 A JP2013201497 A JP 2013201497A JP 2013201497 A JP2013201497 A JP 2013201497A JP 2014082487 A JP2014082487 A JP 2014082487A
Authority
JP
Japan
Prior art keywords
electrolyte material
compound
storage device
material according
antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013201497A
Other languages
Japanese (ja)
Other versions
JP5798164B2 (en
Inventor
Kengo Ito
謙吾 伊東
Masaharu Uehara
正治 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boron International KK
Original Assignee
Boron International KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boron International KK filed Critical Boron International KK
Priority to JP2013201497A priority Critical patent/JP5798164B2/en
Publication of JP2014082487A publication Critical patent/JP2014082487A/en
Application granted granted Critical
Publication of JP5798164B2 publication Critical patent/JP5798164B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a BN electrolytic material which has excellent conductive, accumulative, antibacterial, bacteria-removing and bactericidal properties and has high viscosity and high workability, a non-aqueous electrolyte for an electrical storage device, an electrical storage device, an antibacterial material and an antistatic agent using the BN electrolytic material.SOLUTION: The BN electrolytic material is formed from a charge-transfer conjugate which is a neutralization salt of one or two or more kinds of organic boron compounds with semipolar bonds and one or more kinds of amine compounds selected from the group of tertiary amine with totally 5 to 82 carbon atoms having at least one hydroxy radical and a polyamino compound having two or more basic nitrogen in a molecule, and which is a reaction product in a ratio of one basic nitrogen atom to one boron atom of the organic boron compound.

Description

本発明は、蓄電性、導電性、抗菌性、除菌性及び殺菌性を有するBN電解質材料、蓄電デバイス用非水電解液、蓄電デバイス、抗菌材料及び帯電防止剤に関する。   The present invention relates to a BN electrolyte material, a non-aqueous electrolyte for an electricity storage device, an electricity storage device, an antibacterial material, and an antistatic agent having electricity storage property, conductivity, antibacterial property, sterilization property, and bactericidal property.

従来、電池やコンデンサなどの電解質やめっき浴など電気化学的デバイスにおける電解液として種々のイオン液体が知られている(例えば、特許文献1)。しかしながら、従来のイオン液体は、蓄電性及び導電性ともに不足しており、また粘性が低い為、作業性も悪く、封止する技術が必要という問題があった。   Conventionally, various ionic liquids are known as electrolytes in electrochemical devices such as electrolytes such as batteries and capacitors and plating baths (for example, Patent Document 1). However, the conventional ionic liquids are insufficient in both power storage and electrical conductivity, and have low viscosity, so that workability is poor and there is a problem that a sealing technique is necessary.

一方、半極性有機ホウ素化合物とアミン化合物との反応生成物からなる電荷移動型結合体(BN化合物)は、帯電防止剤として知られていた(例えば、特許文献2及び3)。   On the other hand, charge transfer type conjugates (BN compounds) comprising reaction products of semipolar organic boron compounds and amine compounds have been known as antistatic agents (for example, Patent Documents 2 and 3).

特開2006−23689号公報Japanese Patent Laid-Open No. 2006-23689 特許第2588576号Japanese Patent No. 2588576 特許第2872817号Japanese Patent No. 2872817

本発明は、優れた導電性、蓄電性、抗菌性、除菌性及び殺菌性を有すると共に、高粘度であり作業性に優れたBN電解質材料、該BN電解質材料を用いた蓄電デバイス用非水電解液、蓄電デバイス、抗菌材料及び帯電防止剤を提供することを目的とする。   The present invention relates to a BN electrolyte material having excellent conductivity, power storage property, antibacterial property, sterilization property, and bactericidal property, and having high viscosity and excellent workability, and non-water for a power storage device using the BN electrolyte material An object is to provide an electrolytic solution, an electricity storage device, an antibacterial material, and an antistatic agent.

本発明者は、半極性有機ホウ素化合物とアミン化合物との反応生成物からなる電荷移動型結合体(BN化合物)について鋭意研究を重ねた結果、驚くべきことに該BN化合物が優れた蓄電性、抗菌性、除菌性及び殺菌性を有することを見出した。   As a result of earnest research on a charge transfer type conjugate (BN compound) comprising a reaction product of a semipolar organoboron compound and an amine compound, the present inventors have surprisingly found that the BN compound has an excellent electricity storage property, It has been found that it has antibacterial properties, bactericidal properties and bactericidal properties.

即ち、本発明の蓄電性及び導電性を有するBN電解質材料は、半極性結合を有する有機ホウ素化合物の1種又は2種以上と、ヒドロキシ基を少なくとも1個有する合計炭素数5〜82の三級アミン及び分子中に2個以上の塩基性窒素を有するポリアミノ化合物からなる群から選択される1種以上のアミン化合物との中和塩であって、前記有機ホウ素化合物のホウ素原子1個に対して塩基性窒素原子1個の割合での反応生成物である電荷移動型結合体よりなることを特徴とする。   That is, the BN electrolyte material having electrical storage properties and conductivity according to the present invention is one or more organic boron compounds having a semipolar bond, and a tertiary class having a total carbon number of 5 to 82 having at least one hydroxy group. A neutralized salt with an amine and one or more amine compounds selected from the group consisting of an amine and a polyamino compound having two or more basic nitrogen atoms in the molecule, with respect to one boron atom of the organoboron compound It consists of the charge transfer type | mold coupling body which is a reaction product in the ratio of one basic nitrogen atom.

前記半極性結合を有する有機ホウ素化合物としては、公知の半極性結合を有する有機ホウ素化合物を広く用いることができ、特に制限はないが、例えば、特許文献2記載の半極性有機ホウ素高分子化合物や、特許文献3記載の半極性有機ホウ素化合物、特公平3−53331号記載の有機ホウ素高分子化合物等が挙げられる。   As the organoboron compound having a semipolar bond, known organoboron compounds having a semipolar bond can be widely used, and are not particularly limited. For example, the semipolar organoboron polymer compound described in Patent Document 2 And semi-polar organic boron compounds described in Patent Document 3, organoboron polymer compounds described in JP-B-3-53331, and the like.

前記ヒドロキシ基を少なくとも1個有する合計炭素数5〜82の三級アミンとしては、例えば、特許文献2記載の三級アミンが好適に用いられる。前記分子中に2個以上の塩基性窒素を有するポリアミノ化合物としては、例えば、特許文献3記載のポリアミノ化合物や、(メタ)アクリル酸ジメチルアミノエチルと他の単量体との共重合体が挙げられる。なお、本願明細書において、メタクリル酸とアクリル酸をあわせて(メタ)アクリル酸と称する。前記他の単量体としては、例えば、(メタ)アクリル酸アルキルエステル単量体、(メタ)アクリル酸ヒドロキシ(アルコキシ)含有エステル単量体、(メタ)アクリル酸脂環・芳香環・複素環及びビニール基含有エステル単量体からなる群から選択される1種又は2種以上が好ましく、他の単量体が2種以上であることがより好ましい。   As the tertiary amine having 5 to 82 carbon atoms and having at least one hydroxy group, for example, a tertiary amine described in Patent Document 2 is preferably used. Examples of the polyamino compound having two or more basic nitrogen atoms in the molecule include a polyamino compound described in Patent Document 3 and a copolymer of dimethylaminoethyl (meth) acrylate and another monomer. It is done. In the present specification, methacrylic acid and acrylic acid are collectively referred to as (meth) acrylic acid. Examples of the other monomers include (meth) acrylic acid alkyl ester monomers, (meth) acrylic acid hydroxy (alkoxy) -containing ester monomers, (meth) acrylic acid alicyclic rings, aromatic rings, and heterocyclic rings. And one or more selected from the group consisting of vinyl group-containing ester monomers are preferred, and the other monomers are more preferably two or more.

本発明のBN電解質材料は、Rct(電荷移動抵抗)が3kΩ以上かつ10kΩ未満であり、尚且つ、τ(緩和時間)が200msec以下でCs(誘電率相当)が8μF未満である優れた導電性を有することができる。   The BN electrolyte material of the present invention has excellent electrical conductivity with Rct (charge transfer resistance) of 3 kΩ or more and less than 10 kΩ, τ (relaxation time) of 200 msec or less, and Cs (dielectric constant equivalent) of less than 8 μF. Can have.

本発明のBN電解質材料は、C×100が100以上であり、尚且つ、τ(緩和時間)が300msec以上でCs(誘電率相当)が7μF以上である優れた蓄電性を有することが可能である。   The BN electrolyte material of the present invention can have excellent electric storage properties such that C × 100 is 100 or more, τ (relaxation time) is 300 msec or more, and Cs (dielectric constant equivalent) is 7 μF or more. is there.

本発明のBN電解質材料は、τ(緩和時間)が200msec以下でCs(誘電率)が8μF以上であるイオン解離性を有することができ、例えばリチウムイオン電池の反応溶媒として好適である。   The BN electrolyte material of the present invention can have an ion dissociation property in which τ (relaxation time) is 200 msec or less and Cs (dielectric constant) is 8 μF or more, and is suitable as a reaction solvent for lithium ion batteries, for example.

本発明の蓄電デバイス用非水電解液は、本発明のBN電解質材料のみからなる、又は本発明のBN電解質材料を含むことを特徴とする。該非水電解液は、必要に応じて、公知の有機溶媒やイオン導電性塩を含んでいてもよい。   The nonaqueous electrolytic solution for an electricity storage device of the present invention is characterized by comprising only the BN electrolyte material of the present invention or containing the BN electrolyte material of the present invention. The non-aqueous electrolyte may contain a known organic solvent or an ion conductive salt as necessary.

本発明の蓄電デバイスは、本発明の蓄電デバイス用非水電解質を含んでなることを特徴とする。該蓄電デバイスとは、化学的、物理的または物理化学的に電気を蓄えることのできる装置または素子等をいい、例えば、リチウムイオン電池等の二次電池、電気二重層キャパシタ、電解コンデンサなどの充放電可能なデバイスが挙げられる。   The electricity storage device of the present invention comprises the nonaqueous electrolyte for an electricity storage device of the present invention. The electricity storage device refers to a device or an element that can store electricity chemically, physically, or physicochemically, for example, a secondary battery such as a lithium ion battery, an electric double layer capacitor, an electrolytic capacitor, or the like. Examples include devices that can be discharged.

本発明の抗菌材料は、本発明のBN電解質材料を含むことを特徴とする。本発明のBN電解質材料は、優れた抗菌性、除菌性及び殺菌性を有しており、抗菌力を要求される種々の用途に適用可能である。例えば、本発明のBN電解質材料を抗菌成分として含む抗菌剤や、抗菌スプレー、抗菌塗料、抗菌樹脂、抗菌シート等の抗菌加工製品に好適に用いられる。   The antibacterial material of the present invention includes the BN electrolyte material of the present invention. The BN electrolyte material of the present invention has excellent antibacterial properties, sterilization properties, and bactericidal properties, and can be applied to various uses that require antibacterial activity. For example, it is suitably used for antibacterial agents containing the BN electrolyte material of the present invention as an antibacterial component, antibacterial processed products such as antibacterial sprays, antibacterial paints, antibacterial resins, and antibacterial sheets.

本発明の帯電防止剤は本発明のBN電解質材料を含むことを特徴とする。本発明のBN電解質材料は、静電気の帯電を防ぎ、導電性を高めることができ、帯電防止剤として好適に用いられる。   The antistatic agent of the present invention comprises the BN electrolyte material of the present invention. The BN electrolyte material of the present invention can be prevented from being charged with static electricity and can increase conductivity, and is preferably used as an antistatic agent.

本発明のBN電解質材料は、蓄電性及び導電性に優れ、高粘度であり(たとえば、30℃で10万センチポイズ)、作業性がよく、封止技術が不要であるという甚大な効果を奏する。さらに、本発明のBN電解質材料は優れた抗菌性、除菌性及び殺菌性を有している。   The BN electrolyte material of the present invention is excellent in power storage and electrical conductivity, has high viscosity (for example, 100,000 centipoise at 30 ° C.), has good workability, and does not require a sealing technique. Furthermore, the BN electrolyte material of the present invention has excellent antibacterial properties, sterilization properties, and bactericidal properties.

複素平面上に表れる電気化学的特性の意味とその等価回路を示す概略説明図である。It is a schematic explanatory drawing which shows the meaning of the electrochemical characteristic which appears on a complex plane, and its equivalent circuit. BN−3のナイキスト線図を示すグラフである。It is a graph which shows the Nyquist diagram of BN-3. BN化合物の電極界面におけるRctとC*100の関係を示すグラフである。It is a graph which shows the relationship between Rct and C * 100 in the electrode interface of a BN compound. BN化合物の誘電率と緩和時間の関係を示すグラフである。It is a graph which shows the relationship between the dielectric constant of a BN compound, and relaxation time. BN化合物の導電性能を示すグラフである。It is a graph which shows the electroconductivity of a BN compound. BN化合物の蓄電性能を示すグラフである。It is a graph which shows the electrical storage performance of a BN compound. BN化合物及びイオン液体の電位窓の比較試験の結果を示すグラフである。It is a graph which shows the result of the comparative test of the potential window of a BN compound and an ionic liquid. BN化合物及びイオン液体の充放電比較試験の結果を示すグラフである。It is a graph which shows the result of the charge-discharge comparison test of a BN compound and an ionic liquid. 抗菌力試験における大腸菌を用いた対照(開始時)の結果を示す写真である。It is a photograph which shows the result of the control (at the time of start) using colon_bacillus | E._coli in an antibacterial activity test. 抗菌力試験における大腸菌を用いたBN−2(24時間後)の結果を示す写真である。It is a photograph which shows the result of BN-2 (after 24 hours) using colon_bacillus | E._coli in an antibacterial activity test. 抗菌力試験における大腸菌を用いたBN−5(24時間後)の結果を示す写真である。It is a photograph which shows the result of BN-5 (after 24 hours) using colon_bacillus | E._coli in an antibacterial activity test. 抗菌力試験における大腸菌を用いたBN−1−3(24時間後)の結果を示す写真である。It is a photograph which shows the result of BN-1-3 (after 24 hours) using colon_bacillus | E._coli in an antibacterial activity test. 抗菌力試験における大腸菌を用いた対照(24時間後)の結果を示す写真である。It is a photograph which shows the result of the control (after 24 hours) using colon_bacillus | E._coli in an antibacterial activity test. 抗菌力試験における黄色ブドウ球菌を用いた対照(開始時)の結果を示す写真である。It is a photograph which shows the result of the control (at the start) using Staphylococcus aureus in the antibacterial activity test. 抗菌力試験における黄色ブドウ球菌を用いたBN−2(24時間後)の結果を示す写真である。It is a photograph which shows the result of BN-2 (after 24 hours) using Staphylococcus aureus in the antibacterial activity test. 抗菌力試験における黄色ブドウ球菌を用いたBN−5(24時間後)の結果を示す写真である。It is a photograph which shows the result of BN-5 (after 24 hours) using Staphylococcus aureus in the antibacterial activity test. 抗菌力試験における黄色ブドウ球菌を用いたBN−1−3(24時間後)の結果を示す写真である。It is a photograph which shows the result of BN-1-3 (after 24 hours) using Staphylococcus aureus in the antibacterial activity test. 抗菌力試験における黄色ブドウ球菌を用いた対照(24時間後)の結果を示す写真である。It is a photograph which shows the result of the control (after 24 hours) using Staphylococcus aureus in the antibacterial activity test.

以下に本発明の実施の形態を説明するが、これらは例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。   Embodiments of the present invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention.

以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。   The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are shown by way of illustration and should not be construed in a limited manner.

下記表1は、本願明細書の実験で用いた各BN化合物の称呼、電極界面における電荷移動抵抗(Rct)及び表面抵抗率(Ω/Sq)である。   Table 1 below shows the names of the BN compounds used in the experiments of the present specification, the charge transfer resistance (Rct) and the surface resistivity (Ω / Sq) at the electrode interface.

表1において、各BN化合物の詳細は下記の通りである。
<BN−1>
ジ・グリセリンボラート(グリセリンホウ酸エステル)とC14不飽和,側鎖型ジカルボン酸エステルとポリオキシエチレンステアリルアミン(7モル付加)と等モル反応した低分子BN化合物。
<BN−1−1>
ジ・グリセリンボラートとC16飽和,直鎖型カルボン酸エステルとポリオキシエチレンステアリルアミンと等モル反応した低分子型BN化合物。
<BN−1−2>
ジ・グリセリンボラートとC16飽和,直鎖型カルボン酸エステルとポリオキシエチレンステアリルアミン(7モル付加)等モル反応した低分子型BN化合物。
<BN−1−3>
ジ・グリセリンボラートとポリオキシエチレンステアリルアミン(7モル付加)と等モル反応した低分子型BN化合物。
<BN−1−4>
ポリオキシエチレングリジ・グリセリンンボラート(24モル付加)のC15飽和,直鎖型カルボン酸エステルとポリオキシエチレンステアリルアミン(7モル付加)と等モル反応した低分子型BN化合物。
<BN−1−5>
ポリオキシエチレンジ・グリセリンボラート(24モル付加)のC17飽和,直鎖型カルボン酸エステルとポリオキシエチレンステアリルアミン(7モル付加)と等モル反応した低分子型BN化合物。
<BN−1−6>
ジ・グリセリンボラートとポリオキシエチレンステアリルアミン(15モル付加)と等モル反応した低分子型BN化合物。
<BN−1−7>
ジ・グリセリンボラートのC17不飽和,直鎖型カルボン酸エステルとポリオキシエチレンステアリルアミン(15モル付加)と等モル反応した低分子型BN化合物。
<BN−1−8>
ポリオキシエチレンジ・グリセリンボラート(24モル付加)とポリオキシエチレンステアリルアミン(15モル付加)と等モル反応した低分子型BN化合物。
<BN−1−9>
ジ・グリセリンボラートとC6不飽和,環状ジカルボン酸ジエステルとポリオキシエチレンステアリルアミン(15モル付加)と1:2モル反応した低分子型BN化合物。
<BN−1−10>
ジ・グリセリンボラートとトリエチルジアミンと2:1モル反応した低分子型BN化合物。
In Table 1, the details of each BN compound are as follows.
<BN-1>
A low molecular weight BN compound obtained by equimolar reaction of diglyceryl borate (glycerin borate), C14 unsaturated, side chain dicarboxylic acid ester and polyoxyethylene stearylamine (7 mol addition).
<BN-1-1>
Low molecular weight BN compound obtained by equimolar reaction of diglycerin borate, C16 saturated, linear carboxylic acid ester and polyoxyethylene stearylamine.
<BN-1-2>
A low-molecular-weight BN compound obtained by equimolar reaction of di-glycerin borate, C16 saturated, linear carboxylic acid ester and polyoxyethylene stearylamine (7 mol addition).
<BN-1-3>
A low-molecular-weight BN compound obtained by an equimolar reaction between di-glycerin borate and polyoxyethylene stearylamine (7 mol addition).
<BN-1-4>
A low-molecular-weight BN compound obtained by reacting equimolar amounts of C15 saturated, linear carboxylic acid ester of polyoxyethyleneglycidyl glycerin borate (24 mol addition) and polyoxyethylene stearylamine (7 mol addition).
<BN-1-5>
A low molecular weight BN compound obtained by reacting polyoxyethylene diglycerin borate (24 mol addition) with C17 saturated, linear carboxylic acid ester and polyoxyethylene stearylamine (7 mol addition) in an equimolar amount.
<BN-1-6>
A low-molecular-weight BN compound obtained by an equimolar reaction between di-glycerin borate and polyoxyethylene stearylamine (15 mol addition).
<BN-1-7>
A low molecular weight BN compound obtained by reacting an equimolar amount of a C17 unsaturated, linear carboxylic acid ester of di-glycerin borate with polyoxyethylene stearylamine (15 mol addition).
<BN-1-8>
A low molecular weight BN compound obtained by reacting polyoxyethylene diglycerin borate (24 mol addition) and polyoxyethylene stearylamine (15 mol addition) in an equimolar amount.
<BN-1-9>
A low-molecular-weight BN compound obtained by reacting 1: 2 mol of diglycerin borate, C6 unsaturated, cyclic dicarboxylic acid diester and polyoxyethylene stearylamine (15 mol addition).
<BN-1-10>
A low-molecular-weight BN compound obtained by reacting 2: 1 mol of diglycerin borate with triethyldiamine.

<BN−5−4>
ポリオキシエチレンジ・グリセリンボラート(24モル付加)のC17の飽和,直鎖状カルボン酸エステルとステアリン酸ジメチルアミノプロピルアミドと等モル反応した低分子型BN化合物。
<BN−5−3>
ポリオキシエチレンジ・グリセリンボラート(24モル付加)のC15飽和,直鎖状カルボン酸エステルとステアリン酸ジメチルアミノブロピルアミドと等モル反応した低分子型BN化合物。
<BN−5−2>
モノステアリルジ・グリセリンボラートとステアリン酸ジメチルアミノプロピルアミドと等モル反応した低分子型BN化合物。
<BN-5-4>
A low-molecular-weight BN compound obtained by reacting equimolar amounts of a C17 saturated, linear carboxylic acid ester of polyoxyethylene diglycerin borate (24 mol addition) and stearic acid dimethylaminopropylamide.
<BN-5-3>
A low molecular weight BN compound obtained by reacting equimolar amounts of C15 saturated, linear carboxylic acid ester of polyoxyethylene diglycerin borate (24 mol addition) and dimethylaminopropylamide stearate.
<BN-5-2>
Low molecular weight BN compound obtained by equimolar reaction of monostearyl diglycerin borate and dimethylaminopropylamide stearate.

<BN−2>
ジ・グリセリンボラートとC34不飽和,側鎖状ジカルボン酸エステル高分子ホウ素化合物とポリオキシエチレンステアリルアミン(7モル付加)と等モル反応した高分子型BN化合物。
<BN−2*>
ジ・グリセリンボラートとC34不飽和,側鎖状ジカルボン酸エステルの高分子ホウ素化合物とポリオキシエチレンステアリルアミン(7モル付加)と等モル反応した高分子型BN化合物。BN−2の別ロット。
<BN2−5>
ジ・ジグリセリンボラート(ジグリセリンホウ酸エステル高分子型化合物)とポリオキシエチレンステアリルアミン(7モル付加)と等モル反応した高分子型BN化合物。
<BN2−6>
ジ・グリセリンボラートのC2ジカルボン酸エステルとポリオキシエチレンステアリルアミン(7モル付加)と等モル反応した低分子型BN化合物。
<BN2−7>
ジ・グリセリンボラートとC34不飽和,側鎖状ジカルボン酸エステルのより高分子量の高分子ホウ素化合物とポリオキシエチレンステアリルアミン(7モル付加)と等モル反応した高分子型BN化合物。
<BN-2>
Polymeric BN compound obtained by equimolar reaction of diglycerin borate, C34 unsaturated, side chain dicarboxylic acid ester polymer boron compound and polyoxyethylene stearylamine (7 mol addition).
<BN-2 *>
Polymeric BN compound obtained by equimolar reaction of diglycerin borate, C34 unsaturated, side chain dicarboxylic ester polymeric boron compound and polyoxyethylene stearylamine (7 mol addition). Another lot of BN-2.
<BN2-5>
Polymeric BN compound obtained by reacting equimolar amounts of di-diglycerin borate (diglycerin borate polymer compound) and polyoxyethylene stearylamine (7 mol addition).
<BN2-6>
A low-molecular-weight BN compound obtained by reacting equimolar amounts of C2 dicarboxylic acid ester of diglycerin borate and polyoxyethylene stearylamine (7 mol addition).
<BN2-7>
A polymeric BN compound obtained by equimolar reaction of a higher molecular weight boron compound of di-glycerin borate, C34 unsaturated, side chain dicarboxylic acid ester and polyoxyethylene stearylamine (7 mole addition).

<BN−3>
ジ・グリセリンボラートとC10飽和,直鎖状ジカルボン酸エステルの高分子ホウ素化合物とポリオキシエチレンステアリルアミン(7モル付加)と等モル反応した高分子型BN化合物。
<BN-3>
Polymeric BN compound obtained by equimolar reaction between di-glycerin borate, C10 saturated, linear dicarboxylic acid polymeric boron compound and polyoxyethylene stearylamine (7 mol addition).

<BN−5>
ジメチルアミノエチルメタクリレート,2−ヒドロキシメタクリレート,シクロへキシルメタクリレートの単量体のそれぞれ,0.3モル%,0.4モル%,0.3モル%の比率で,アルコール溶剤中で,アゾ系重合開始剤の存在の元,共重合してえられた共重合液の3級アミンとジ・グリセリルボラートと等モル反応した高分子型BN化合物。
<BN-5>
Azo-based polymerization of dimethylaminoethyl methacrylate, 2-hydroxymethacrylate, and cyclohexyl methacrylate monomers in alcohol solvent at ratios of 0.3 mol%, 0.4 mol%, and 0.3 mol%, respectively. In the presence of an initiator, a polymeric BN compound obtained by equimolar reaction of a tertiary amine and diglyceryl borate in a copolymerization solution obtained by copolymerization.

図1に示す構造のITO蒸着対向電極ガラスセル(厚さ100μ、有効面積1cm)に液体試料(各BN化合物)を充填し、両電極間に最大振幅1.0Vの0.1Hz〜1MHzの交流電圧を印加して複素平面上に描き出されるインピーダンス特性を調査した。BN−3の結果を図2に示す。各BN化合物は、図2のナイキスト線図(cole−coleプロット)に示されるような高周波領域の円弧と低周波領域の直線から構成される図形が描き出された。 A liquid sample (each BN compound) was filled in an ITO-deposited counter electrode glass cell (thickness 100 μm, effective area 1 cm 2 ) having the structure shown in FIG. 1, and a maximum amplitude of 1.0 V between 0.1 Hz and 1 MHz between the electrodes. The impedance characteristics drawn on the complex plane by applying AC voltage were investigated. The result of BN-3 is shown in FIG. For each BN compound, a figure composed of a circular arc in a high frequency region and a straight line in a low frequency region as depicted in the Nyquist diagram (colle-coll plot) in FIG. 2 was drawn.

200Ω前後の抵抗値を有するITO電極との界面で電気2重層を形成しつつ相応する電荷移動抵抗を有し、ワールブルグ抵抗とされる物質拡散に起因する抵抗をも有することからバルク中の電荷輸送機構はイオン電導的であることを示唆する。とりわけ電極界面においてRctで示される迅速な伝導:電荷移動過程が存在することがBN化合物の特徴でもある。   Charge transport in the bulk because it has a corresponding charge transfer resistance while forming an electric double layer at the interface with the ITO electrode having a resistance value of around 200Ω, and also has a resistance caused by the diffusion of the material, which is a Warburg resistance. It is suggested that the mechanism is ion conductive. In particular, the BN compound is characterized by the presence of a rapid conduction: charge transfer process indicated by Rct at the electrode interface.

表1は、各BN化合物の電極界面における電荷移動抵抗(複素平面図から読み取れる実数軸上の数値Rct)の対応関係をまとめたものである。   Table 1 summarizes the correspondence relationship of the charge transfer resistance (the numerical value Rct on the real axis that can be read from the complex plan view) at the electrode interface of each BN compound.

さらに、虚数軸上に表される容量性のインピーダンスが最大となった点の周波数fから計算される容量Cの値を求め(C=1/2πf・R)、それらの関係を図3にプロットした。尚、縦軸はC値の100倍C×100を電極界面の電気2重層に蓄積される電荷容量の指標とした。
図3から各種BN化合物の電極界面における電荷移動抵抗Rctと電気2重層に蓄積される電荷容量Cの関係はRctの累乗に近似された。これは、概ね分子量に応じて等価回路における抵抗が大きくなる一方で容量はほぼ一定値に落ち着くことを示唆する。
Further, the value of the capacitance C calculated from the frequency f at the point where the capacitive impedance represented on the imaginary axis is maximized is obtained (C = 1 / 2πf · R), and the relationship is plotted in FIG. did. The vertical axis is 100 times the C value C × 100, which is an indicator of the charge capacity accumulated in the electric double layer at the electrode interface.
From FIG. 3, the relationship between the charge transfer resistance Rct at the electrode interface of various BN compounds and the charge capacity C accumulated in the electric double layer was approximated to the power of Rct. This suggests that the resistance in the equivalent circuit increases according to the molecular weight, while the capacitance settles at a substantially constant value.

この事情がどのような物理的因子を反映しているかを探る為、先述の周波数帯で各化合物の外部電界による損失(誘電損失)ε”が最大となる周波数fcをグラフから求め、界面インピーダンスの等価回路をCとRの直列接続と見做した場合に得られる測定値Csの関数としてプロットし、図4にまとめた。Cs及びRs、fc及び緩和時間τの計算値(τ=1/2πfc)は表2に示される。   In order to investigate what physical factors this situation reflects, the frequency fc at which the loss (dielectric loss) ε ″ due to the external electric field of each compound is maximized in the frequency band described above is obtained from the graph, and the interface impedance 4 is plotted as a function of the measured value Cs obtained when the equivalent circuit is regarded as a series connection of C and R, and is summarized in Fig. 4. Calculated values of Cs, Rs, fc, and relaxation time τ (τ = 1 / 2πfc) ) Is shown in Table 2.

ここでCsは外部からの蓄積エネルギーを意味する誘電率の実数部分、すなわち実際の誘電率であること、また観測されたfcは0.3〜6Hz程度の低い周波数であることから、求められた緩和時間τは誘電率に寄与する分極(周波数の高い順に電子分極、原子分極、配向分極等が在る)で分子の双極子回転モーメントに基づく配向分極に由来すると考えられる。   Here, Cs is obtained from the real part of the dielectric constant, which means stored energy from the outside, that is, the actual dielectric constant, and the observed fc is a low frequency of about 0.3 to 6 Hz. The relaxation time τ is considered to be derived from the orientation polarization based on the dipole rotation moment of the molecule in the polarization that contributes to the dielectric constant (there are electronic polarization, atomic polarization, orientation polarization, etc. in order of increasing frequency).

ここで図4を俯瞰すると、有機ホウ素(B)骨格の置換基R1=Hを共通にR2が直鎖モノカルボン酸エステルであるBN−1−1を基準にするとジカルボン酸モノエステルのBN−1は分子量は同程度であるにも拘らず末端にカルボン酸を持つために分子間に水素結合が介在して電場内での回転配向が妨げられやすいことが容易に推定される。さらに同様なジカルボン酸を有しながら構成単位が5〜6個の繰り返し構造をとるBN−2は分岐鎖も相まって分子としての嵩高さから非常に大きな回転障害が想定される。加えてBN−1−4もしくは同1−5も同1−1と同様な直鎖モノエステル構造をとることからこれらの5種の化合物が殆ど同一線上にあることが頷ける。BN−1−4は同−1−5に比較するとエステル部分に不飽和結合を有するのでB骨格への極性基(ポリオキシエチレン基)導入による双極子回転モーメント減少に連動して、より電場配向し易いと推定される。   Here, when FIG. 4 is looked down on, the substituent R1 = H of the organoboron (B) skeleton is commonly used, and R2 is a linear monocarboxylic acid ester BN-1-1. Despite having the same molecular weight, it is easily presumed that since it has a carboxylic acid at the end, a hydrogen bond intervenes between the molecules and rotation orientation in the electric field tends to be hindered. Furthermore, BN-2 having a repeating structure with 5 to 6 constitutional units having the same dicarboxylic acid is considered to have a very large rotational obstacle due to its bulk as a molecule together with a branched chain. In addition, since BN-1-4 or 1-5 has the same linear monoester structure as 1-1, it can be seen that these five compounds are almost on the same line. BN-1-4 has an unsaturated bond in the ester moiety as compared to -1-5. Therefore, the electric field orientation is more linked to the dipole rotation moment reduction due to the introduction of a polar group (polyoxyethylene group) into the B skeleton. It is estimated that it is easy to do.

次に、最も電場配向し易いと考えられるBN−1−4を基準に据えるとB骨格中には嵩高い電子吸引性の原子(基)を含まず、塩として構造的な対を成すN骨格の方に電子吸引基を有するBN−1−3やさらに対極Nへの電子吸引基を増やした同1−6は、分子配向性をそのままに誘電率を大幅に増大するものと考えられる。同様な理由からB骨格中に嵩高い電子吸引性の原子(基)を含むBN−1−5や同1−8の誘電率が低いことが予想される。   Next, based on BN-1-4, which is considered to be most easily electric field oriented, the B skeleton does not contain bulky electron-withdrawing atoms (groups) and forms a structural pair as a salt. BN-1-3 having an electron withdrawing group on the other side and 1-6 having an increased number of electron withdrawing groups to the counter electrode N are considered to significantly increase the dielectric constant while maintaining the molecular orientation. For the same reason, it is expected that the dielectric constants of BN-1-5 and 1-8 containing bulky electron-withdrawing atoms (groups) in the B skeleton are low.

以上を総括すると、電極界面でオーミックな伝導機構を有することを特徴とするBN化合物は、B及びN骨格に導入する置換基の種類や量を制御することにより導電性のみならず蓄電性能をも付与できることが判明した。このことは、BN構造を核に分子設計を施すことで従来のイオン電導による除電もしくは帯電防止の用途に加えて物質の拡散に依存しない高速の電荷輸送機能を付与したり、従来はイオン液体の独壇場であった蓄電性の発現をも可能にすることが明らかとなった。   In summary, the BN compound, which has an ohmic conduction mechanism at the electrode interface, has not only conductivity but also power storage performance by controlling the type and amount of substituents introduced into the B and N skeletons. It was found that it can be granted. This is because the molecular design with the BN structure as the core gives a high-speed charge transport function that does not depend on the diffusion of the substance in addition to the conventional ionization or antistatic application by ionic conduction. It became clear that it would also be possible to express electricity storage, which was a unique place.

そこで、BN化合物の実用的電気化学的性能を把握する為に下記実験を行った。
(導電性試験)
対象物質を含むセルに10mV/200msecのパルス電圧を与えた時のセルに流れる電流を測定することで導電性能を評価した。実際には、同上の条件でパルス駆動されながら階段状に昇圧(降圧)されるサイクリックボルタモグラム(CV)を±2Vの範囲で実施し、CV画像より0Vでの電流幅を測定した。その結果を図5にまとめた。
Therefore, the following experiment was conducted in order to grasp the practical electrochemical performance of the BN compound.
(Conductivity test)
The conductive performance was evaluated by measuring the current flowing through the cell when a pulse voltage of 10 mV / 200 msec was applied to the cell containing the target substance. Actually, a cyclic voltammogram (CV) that is stepped up (stepped down) while being pulse-driven under the same conditions as described above was performed in the range of ± 2 V, and the current width at 0 V was measured from the CV image. The results are summarized in FIG.

その結果、図5に示した如く、導電性に優れるグループとしては、Rctが小さく同時に誘電率も大きい化合物(例えばBN−1−3、同1−6、同‐3等)が当てはまることが分かった。とりわけBN−3は、この中では重合度が最大で分子量が大きいにもかかわらずリニアー型ジカルボン酸を採用して結晶性も強いことから誘電率が高いので分極電流の寄与を考慮する必要があるが、そのCV図からは±1.5Vの範囲でほぼ一定の電流値を示したので分極電流の寄与は観測されない。同様にRctがさらに1桁大きいBN−2が最高電流値の1/2程度の電流を流し得たことは、電圧が10mVと小さく印加時間も緩和時間以下の200msecであったことから予想外に大きい値と云える。計算値の約3倍の電流値が得られていることは特筆に値する。   As a result, as shown in FIG. 5, it is understood that a compound having a small Rct and a large dielectric constant (for example, BN-1-3, 1-6, -3, etc.) applies to the group having excellent conductivity. It was. In particular, BN-3 has a high dielectric constant because it employs linear dicarboxylic acid and has high crystallinity despite the maximum degree of polymerization and high molecular weight. Therefore, it is necessary to consider the contribution of polarization current. However, from the CV diagram, since a substantially constant current value was shown in the range of ± 1.5 V, no contribution of the polarization current was observed. Similarly, BN-2, which is one digit larger in Rct, was able to pass a current about half the maximum current value because the voltage was as small as 10 mV and the application time was 200 msec, which is less than the relaxation time. It can be said to be a large value. It is worthy to note that a current value approximately three times the calculated value is obtained.

(蓄電性試験)
同上のセルに1.3Vで3分間の定電圧充電した後に3秒間保持後2μAの定電流で放電した時の放電時間(sec)を測定することで蓄電性を評価し、先の容量指標C*100との対応関係として図6にまとめた。この結果は、図6に示した如く、容量指標と放電時間がほぼ直線関係にあることを示唆する。
(Electricity test)
The above cell was charged at a constant voltage of 1.3 V for 3 minutes, held for 3 seconds, and then discharged at a constant current of 2 μA to measure the chargeability, and the previous capacity index C * The correspondence with 100 is summarized in FIG. This result suggests that the capacity index and the discharge time are in a substantially linear relationship as shown in FIG.

(電位窓の測定及び充放電試験)
BN−2と従来のイオン液体(1−nーブチル−3−メチルイミダゾリウムテトラフルオロボラート、BMIMB4)の電位窓(酸化還元を受けずに電気的に安定な電位領域)の比較及び充放電比較を行った。電位窓の比較試験は、CV(サイクリックボルタモグラム)、走査速度10mV/sec(±2V)、試料:2cm角100μ充填/ITOガラス間(表面抵抗20Ω/cm)の条件で行った。充放電比較試験は、3回の挙動の比較であり、1.3V30sec充電 休止7sec 5μA放電、試料:2cm角100μ充填/ITOガラス間(表面抵抗20Ω/cm)の条件で行った。電位窓の比較試験の結果を図7に、充放電比較試験の結果を図8に示した。
(Measurement of potential window and charge / discharge test)
Comparison and charge / discharge comparison of potential window (electrically stable potential region without undergoing redox) of BN-2 and conventional ionic liquid (1-n-butyl-3-methylimidazolium tetrafluoroborate, BMIMB4) Went. The comparison test of the potential window was performed under the conditions of CV (cyclic voltammogram), scanning speed 10 mV / sec (± 2 V), sample: 2 cm square 100 μm filling / ITO glass (surface resistance 20 Ω / cm). The charge / discharge comparison test was a comparison of the behaviors of 3 times, and was performed under the conditions of 1.3 V 30 sec charge rest 7 sec 5 μA discharge, sample: 2 cm square 100 μm filling / ITO glass (surface resistance 20 Ω / cm). The result of the potential window comparison test is shown in FIG. 7, and the result of the charge / discharge comparison test is shown in FIG.

図7及び図8に示した如く、BN化合物(BN樹脂)とイオン液体を比較すると、BN樹脂の方が放電開始電圧が0.1Vほど高く、放電時間が長い事からBN樹脂は、キャパシタとして実用に供されるイオン液体よりも蓄電性能が優ると考えられる。   As shown in FIG. 7 and FIG. 8, when the BN compound (BN resin) is compared with the ionic liquid, the BN resin has a higher discharge start voltage of about 0.1 V and the discharge time is longer. It is considered that the power storage performance is superior to that of ionic liquids that are put to practical use.

(表面抵抗率の測定試験)
イオン液体の帯電性防止特性を調べるため、各BN化合物の表面抵抗率を測定した。BN化合物をエタノールに溶解して5%濃度溶液とし、PETフィルム(表面無処理)面にワイヤーバー(#5)で塗布(乾燥塗布厚:0.5μm)し、80℃5分間乾燥し、調湿器(50〜60%RH)に1日間保管後、表面抵抗率を測定した。結果を表1に示した。
(Surface resistivity measurement test)
In order to investigate the antistatic property of the ionic liquid, the surface resistivity of each BN compound was measured. Dissolve the BN compound in ethanol to make a 5% concentration solution, apply it to the surface of the PET film (untreated surface) with a wire bar (# 5) (dry coating thickness: 0.5 μm), and dry at 80 ° C. for 5 minutes. The surface resistivity was measured after storing in a humidifier (50-60% RH) for 1 day. The results are shown in Table 1.

(抗菌力試験)
1)試験菌液の調製
試験菌(大腸菌又は黄色ブドウ球菌)を普通寒天培地(栄研化学株式会社製)で35℃±1℃、18〜24時間培養した後、溶液(大腸菌は精製水、黄色ブドウ球菌は生理食塩水)に浮遊させ、菌数が10〜10/mLとなるように調製し、試験菌液とした。
(Antimicrobial test)
1) Preparation of test bacterium solution After culturing the test bacterium (E. coli or Staphylococcus aureus) on a normal agar medium (manufactured by Eiken Chemical Co., Ltd.) at 35 ° C. ± 1 ° C. for 18-24 hours, the solution (E. coli is purified water, Staphylococcus aureus was suspended in physiological saline and prepared so that the number of bacteria would be 10 7 to 10 8 / mL, and used as a test bacterial solution.

2)試験方法
BN化合物(BN−2,BN−5,BN−1−3)10gに試験菌液を0.1mL接種し、試料とした。35℃±1℃で保存し、24時間後に試料をSCDLP寒天培地(日本製薬株式会社製)で直ちに10倍(黄色ブドウ球菌の検体(BN−2)は100倍、黄色ブドウ球菌の検体(BN−1−3)は1000倍)に希釈し、試料中の生菌数をSCDLP寒天培地(日本製薬株式会社製)を用いて測定した。培養条件は混釈平板培養法により35℃±1℃で2日間とした。なお、試料をSCDLP培地で10倍(黄色ブドウ球菌の検体(BN−2)は100倍、黄色ブドウ球菌の検体(BN−1−3)は1000倍)に希釈することにより、検体の影響を受けずに生菌数が測定できることを予備試験により確認した。
対照として、大腸菌は精製水、黄色ブドウ球菌は生理食塩水を用いて同様に試験し、開始時(菌液接種直後)についても生菌数を測定した。
結果を表3に示した。また、培養後の生菌数測定平板の写真を図9〜図18に示した。
2) Test method 0.1 mL of the test bacterial solution was inoculated into 10 g of BN compounds (BN-2, BN-5, BN-1-3) to prepare a sample. The sample was stored at 35 ° C. ± 1 ° C., and after 24 hours, the sample was immediately 10 times on the SCDLP agar medium (manufactured by Nippon Pharmaceutical Co., Ltd.) (Staphylococcus aureus specimen (BN-2) was 100 times, S. aureus specimen (BN) 1-3) was diluted 1000 times), and the number of viable bacteria in the sample was measured using a SCDLP agar medium (manufactured by Nippon Pharmaceutical Co., Ltd.). The culture conditions were 2 days at 35 ° C. ± 1 ° C. by the pour plate culture method. By diluting the sample 10 times with the SCDLP medium (100 times for the Staphylococcus aureus specimen (BN-2) and 1000 times for the Staphylococcus aureus specimen (BN-1-3)), the influence of the specimen was reduced. It was confirmed by a preliminary test that the number of viable bacteria could be measured without receiving.
As a control, Escherichia coli was purified using purified water and Staphylococcus aureus using physiological saline, and the number of viable cells was also measured at the start (immediately after inoculation of the bacterial solution).
The results are shown in Table 3. Moreover, the photograph of the viable count plate after culture | cultivation was shown in FIGS.

表3及び図9〜図18に示した如く、BN化合物は甚大な抗菌性、除菌性及び殺菌性を有していた。   As shown in Table 3 and FIGS. 9 to 18, the BN compound had a great antibacterial property, sterilization property and bactericidal property.

Claims (10)

半極性結合を有する有機ホウ素化合物の1種又は2種以上と、ヒドロキシ基を少なくとも1個有する合計炭素数5〜82の三級アミン及び分子中に2個以上の塩基性窒素を有するポリアミノ化合物からなる群から選択される1種以上のアミン化合物との中和塩であって、前記有機ホウ素化合物のホウ素原子1個に対して塩基性窒素原子1個の割合での反応生成物である電荷移動型結合体よりなることを特徴とする蓄電性及び導電性を有するBN電解質材料。   From one or more organic boron compounds having a semipolar bond, a tertiary amine having a total of 5 to 82 carbon atoms having at least one hydroxy group, and a polyamino compound having two or more basic nitrogen atoms in the molecule Charge transfer that is a neutralized salt with one or more amine compounds selected from the group consisting of a reaction product at a ratio of one basic nitrogen atom to one boron atom of the organoboron compound A BN electrolyte material having electrical storage properties and electrical conductivity, characterized by comprising a mold combination. Rct(電荷移動抵抗)が3kΩ以上かつ10kΩ未満であり、尚且つ、τ(緩和時間)が200msec以下でCs(誘電率)が8μF未満である導電性を有することを特徴とする請求項1記載のBN電解質材料。   2. Rct (charge transfer resistance) is 3 kΩ or more and less than 10 kΩ, and τ (relaxation time) is 200 msec or less and Cs (dielectric constant) is less than 8 μF. BN electrolyte material. C×100が100以上であり、尚且つ、τ(緩和時間)が300msec以上でCs(誘電率)が7μF以上である蓄電性を有することを特徴とする請求項1記載のBN電解質材料。   2. The BN electrolyte material according to claim 1, wherein C × 100 is 100 or more, τ (relaxation time) is 300 msec or more, and Cs (dielectric constant) is 7 μF or more. τ(緩和時間)が200msec以下でCs(誘電率)が8μF以上であるイオン解離性を有することを特徴とする請求項1記載のBN電解質材料。   2. The BN electrolyte material according to claim 1, which has an ion dissociation property in which τ (relaxation time) is 200 msec or less and Cs (dielectric constant) is 8 μF or more. 前記アミン化合物が、(メタ)アクリル酸ジメチルアミノエチルと他の単量体との共重合体であり、前記他の単量体が、(メタ)アクリル酸アルキルエステル単量体、(メタ)アクリル酸ヒドロキシ(アルコキシ)含有エステル単量体、(メタ)アクリル酸脂環・芳香環・複素環及びビニール基含有エステル単量体からなる群から選択される1種又は2種以上であることを特徴とする請求項1〜4のいずれか1項記載のBN電解質材料。   The amine compound is a copolymer of dimethylaminoethyl (meth) acrylate and another monomer, and the other monomer is a (meth) acrylic acid alkyl ester monomer or (meth) acrylic. It is one or more selected from the group consisting of acid hydroxy (alkoxy) -containing ester monomers, (meth) acrylic acid alicyclic / aromatic / heterocyclic and vinyl group-containing ester monomers The BN electrolyte material according to any one of claims 1 to 4. 請求項1〜5のいずれか1項記載のBN電解質材料のみからなる、又は該BN電解質材料を含むことを特徴とする蓄電デバイス用非水電解液。   A non-aqueous electrolyte for an electricity storage device, comprising only the BN electrolyte material according to any one of claims 1 to 5 or containing the BN electrolyte material. 請求項6記載の蓄電デバイス用非水電解質を含んでなることを特徴とする蓄電デバイス。   An electricity storage device comprising the nonaqueous electrolyte for an electricity storage device according to claim 6. 電気二重層キャパシタ又はリチウムイオン電池であることを特徴とする請求項7記載の蓄電デバイス。   The electric storage device according to claim 7, wherein the electric storage device is an electric double layer capacitor or a lithium ion battery. 請求項1〜5のいずれか1項記載のBN電解質材料を含むことを特徴とする抗菌材料。   An antibacterial material comprising the BN electrolyte material according to any one of claims 1 to 5. 請求項1〜5のいずれか1項記載のBN電解質材料を含むことを特徴とする帯電防止剤。   An antistatic agent comprising the BN electrolyte material according to any one of claims 1 to 5.
JP2013201497A 2012-09-28 2013-09-27 BN electrolyte material with electrical storage, conductivity and antibacterial properties Expired - Fee Related JP5798164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201497A JP5798164B2 (en) 2012-09-28 2013-09-27 BN electrolyte material with electrical storage, conductivity and antibacterial properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012217799 2012-09-28
JP2012217799 2012-09-28
JP2013201497A JP5798164B2 (en) 2012-09-28 2013-09-27 BN electrolyte material with electrical storage, conductivity and antibacterial properties

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015068903A Division JP2015165571A (en) 2012-09-28 2015-03-30 Bn electrolytic material with accumulative, conductive and antibacterial properties

Publications (2)

Publication Number Publication Date
JP2014082487A true JP2014082487A (en) 2014-05-08
JP5798164B2 JP5798164B2 (en) 2015-10-21

Family

ID=50786351

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013201497A Expired - Fee Related JP5798164B2 (en) 2012-09-28 2013-09-27 BN electrolyte material with electrical storage, conductivity and antibacterial properties
JP2015068903A Pending JP2015165571A (en) 2012-09-28 2015-03-30 Bn electrolytic material with accumulative, conductive and antibacterial properties

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015068903A Pending JP2015165571A (en) 2012-09-28 2015-03-30 Bn electrolytic material with accumulative, conductive and antibacterial properties

Country Status (1)

Country Link
JP (2) JP5798164B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069784A (en) * 2013-09-27 2015-04-13 伊東 謙吾 Electro-conductive bn electrolyte-clay composite material
JP5734491B1 (en) * 2014-04-10 2015-06-17 株式会社ボロン研究所 Molded product comprising antistatic agent and insulator polymer material and method for producing the same
JP2015165571A (en) * 2012-09-28 2015-09-17 株式会社ボロンインターナショナル Bn electrolytic material with accumulative, conductive and antibacterial properties
WO2016035109A1 (en) * 2014-09-05 2016-03-10 西松建設株式会社 Composite containing silver nanoparticles and antibacterial agent, photoelectric converter, photosensitive pointing device, and thin-film photovoltaic cell using this composite
CN110911746A (en) * 2019-11-29 2020-03-24 华中科技大学 Two-dimensional nano-structure electrolyte additive, preparation method and application
JP2020164585A (en) * 2019-03-28 2020-10-08 株式会社ボロン研究所 Antistatic acrylic resin and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2872817B2 (en) * 1991-01-26 1999-03-24 東洋紡績株式会社 Antistatic agent
JP2007084785A (en) * 2005-03-29 2007-04-05 Techno Polymer Co Ltd Antistatic resin composition, antistatic/pressure-sensitive-adhesive resin composition, pressure-sensitive adhesive film, and method for producing the same
JP2007210971A (en) * 2006-02-10 2007-08-23 Tokyo Univ Of Agriculture & Technology Liquid complex compound, electrolyte containing the liquid complex compound, and electrochemical device having the electrolyte
JP2009137936A (en) * 2007-11-13 2009-06-25 Hokko Chem Ind Co Ltd Method for producing amine-alkyl(diaryl)borane complex

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100611A (en) * 1998-09-21 2000-04-07 Kawaguchi Kasei:Kk Bond magnet composition, bond magnet, manufacture thereof and accessories
JP2004333636A (en) * 2003-05-01 2004-11-25 Canon Inc Developer carrier, development apparatus, development method,image forming method, and process cartridge
JP2006111827A (en) * 2004-10-18 2006-04-27 Kri Inc Antifouling coating
JP5116958B2 (en) * 2005-08-29 2013-01-09 テクノポリマー株式会社 Antistatic resin composition and molded article
JP5588611B2 (en) * 2008-12-18 2014-09-10 アート金属工業株式会社 Radical-generating solid catalyst
JP5798164B2 (en) * 2012-09-28 2015-10-21 株式会社ボロンインターナショナル BN electrolyte material with electrical storage, conductivity and antibacterial properties

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2872817B2 (en) * 1991-01-26 1999-03-24 東洋紡績株式会社 Antistatic agent
JP2007084785A (en) * 2005-03-29 2007-04-05 Techno Polymer Co Ltd Antistatic resin composition, antistatic/pressure-sensitive-adhesive resin composition, pressure-sensitive adhesive film, and method for producing the same
JP2007210971A (en) * 2006-02-10 2007-08-23 Tokyo Univ Of Agriculture & Technology Liquid complex compound, electrolyte containing the liquid complex compound, and electrochemical device having the electrolyte
JP2009137936A (en) * 2007-11-13 2009-06-25 Hokko Chem Ind Co Ltd Method for producing amine-alkyl(diaryl)borane complex

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165571A (en) * 2012-09-28 2015-09-17 株式会社ボロンインターナショナル Bn electrolytic material with accumulative, conductive and antibacterial properties
JP2015069784A (en) * 2013-09-27 2015-04-13 伊東 謙吾 Electro-conductive bn electrolyte-clay composite material
JP5734491B1 (en) * 2014-04-10 2015-06-17 株式会社ボロン研究所 Molded product comprising antistatic agent and insulator polymer material and method for producing the same
WO2015156133A1 (en) * 2014-04-10 2015-10-15 株式会社ボロン研究所 Antistatic agent, molded article comprising insulator polymer material, and method for producing same
WO2016035109A1 (en) * 2014-09-05 2016-03-10 西松建設株式会社 Composite containing silver nanoparticles and antibacterial agent, photoelectric converter, photosensitive pointing device, and thin-film photovoltaic cell using this composite
JP5950217B1 (en) * 2014-09-05 2016-07-13 西松建設株式会社 Photoelectric conversion element and light sensitive pointing device using composite containing silver nanoparticles
JP2020164585A (en) * 2019-03-28 2020-10-08 株式会社ボロン研究所 Antistatic acrylic resin and method for producing the same
CN110911746A (en) * 2019-11-29 2020-03-24 华中科技大学 Two-dimensional nano-structure electrolyte additive, preparation method and application
CN110911746B (en) * 2019-11-29 2021-04-06 华中科技大学 Two-dimensional nano-structure electrolyte additive, preparation method and application

Also Published As

Publication number Publication date
JP5798164B2 (en) 2015-10-21
JP2015165571A (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP5798164B2 (en) BN electrolyte material with electrical storage, conductivity and antibacterial properties
Navaratnam et al. Transport mechanism studies of chitosan electrolyte systems
Patil et al. Polymers bearing catechol pendants as universal hosts for aqueous rechargeable H+, Li-ion, and post-Li-ion (mono-, di-, and trivalent) batteries
Pandey et al. Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor
Chen et al. Supramolecular hydrogels for high-voltage and neutral-pH flexible supercapacitors
Hor et al. High energy density carbon supercapacitor with ionic liquid-based gel polymer electrolyte: Role of redox-additive potassium iodide
Wang et al. Enhanced electrochemical performance of polyaniline-based electrode for supercapacitors in mixed aqueous electrolyte
US11702496B2 (en) Hydrophilic compositions
Tomšík et al. Assembly and interaction of polyaniline chains: Impact on electro-and physical–chemical behavior
Liu et al. Highly strong and tough double‐crosslinked hydrogel electrolyte for flexible supercapacitors
Siyahjani et al. Highly efficient supercapacitor using single-walled carbon nanotube electrodes and ionic liquid incorporated solid gel electrolyte
Yang et al. Matching diethyl terephthalate with n-doped conducting polymers
Lee et al. Ionic liquid ethanol sensor
Xu et al. Electrochemical properties of polyaniline in p-toluene sulfonic acid solution
Florjańczyk et al. Lithium gel polyelectrolytes based on crosslinked maleic anhydride–styrene copolymer
Pace et al. Impact of Side Chain Chemistry on Lithium Transport in Mixed Ion–Electron-Conducting Polymers
Isa et al. Electrical and electrochemical studies on sodium ion-based gel polymer electrolytes
Cohen et al. Micromorphological dynamics of polypyrrole films in propylene carbonate solutions studied by in situ AFM and EQCM
Basappa et al. Preparation, characterization, and electrochemical properties of PEO/PVDF blend films
JP6244153B2 (en) Conductive BN electrolyte / clay composite material
Rosdi et al. Ionic transport and electrochemical stability of PVDF-HFP based gel polymer electrolytes
Choi et al. Ionic Conduction and Dielectric Response of Nanoparticle-Coupled Hydrogel Network Polymer Electrolytes
CN103915611A (en) Water-based aluminum ion battery positive electrode material and preparation method thereof
SE1100333A1 (en) Composites of biopolymers
Tiwari et al. Single-Ion-Conducting SPP–SPA Blend Hydrogel-Based Pseudo-Solid Polymeric Electrolyte Material for Na+-Ion Constructed Energy Storage Devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150820

R150 Certificate of patent or registration of utility model

Ref document number: 5798164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees