JP2007210971A - Liquid complex compound, electrolyte containing the liquid complex compound, and electrochemical device having the electrolyte - Google Patents

Liquid complex compound, electrolyte containing the liquid complex compound, and electrochemical device having the electrolyte Download PDF

Info

Publication number
JP2007210971A
JP2007210971A JP2006034589A JP2006034589A JP2007210971A JP 2007210971 A JP2007210971 A JP 2007210971A JP 2006034589 A JP2006034589 A JP 2006034589A JP 2006034589 A JP2006034589 A JP 2006034589A JP 2007210971 A JP2007210971 A JP 2007210971A
Authority
JP
Japan
Prior art keywords
electrolyte
complex compound
liquid complex
present
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006034589A
Other languages
Japanese (ja)
Inventor
Noriyoshi Matsumi
紀佳 松見
Hiroyuki Ono
弘幸 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2006034589A priority Critical patent/JP2007210971A/en
Publication of JP2007210971A publication Critical patent/JP2007210971A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)
  • Pyridine Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid complex compound which has good designability and high polarity, because of not having a free ion originated from a matrix, and is useful as a reaction solvent or an electrolyte, to provide an electrolyte which contains the liquid complex compound and exhibits an excellent ion conductive characteristic, and to provide an electrochemical device has the electrolyte and has an excellent electric characteristic. <P>SOLUTION: This liquid complex compound is characterized by having a boron alkylate-nitrogen-containing heterocyclic complex structure in which the boron alkylate and the nitrogen-containing heterocyclic group coexist. An electrolyte comprising an ionic compound and the liquid complex compound has excellent ion conductivity. An electrochemical device having the electrolyte can be used as one of various kinds of batteries, an electric double layer capacitor, or the like. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液状錯体化合物、当該液状錯体化合物を含有する電解質、及び当該電解質を備える電気化学デバイスに関する。更に詳しくは、液物性を維持しつつ優れた極性を有し、イオン性化合物とともに用いた場合にはイオン伝導性に優れる液状錯体化合物、当該液状錯体化合物を含有し、イオン伝導性に優れる電解質、及び当該電解質を備え、電気的特性に優れる電気化学デバイスに関する。   The present invention relates to a liquid complex compound, an electrolyte containing the liquid complex compound, and an electrochemical device including the electrolyte. More specifically, a liquid complex compound having excellent polarity while maintaining liquid physical properties and having excellent ion conductivity when used with an ionic compound, an electrolyte containing the liquid complex compound and having excellent ion conductivity, And an electrochemical device including the electrolyte and having excellent electrical characteristics.

近年、デザイン性が高い反応溶媒や電解質として用いるイオン液体の研究が行われており、また、これらについて諸特性のいっそうの向上が求められている。イオン液体は不燃性、不揮発性であり、再利用も可能なクリーン溶媒であり、また、電解質として用いた場合であっても電気化学的な安定性が高く、かつイオン伝導性に優れた液体である。このようなイオン液体はリチウム電池や燃料電池等の各種電池、エレクトロクロミックディスプレイ、色素増感太陽電池、電気二重層キャパシタ等、さまざまな電気化学デバイスへの利用が検討されている。   In recent years, research has been conducted on ionic liquids used as reaction solvents and electrolytes having high design properties, and further improvements in various properties have been demanded. An ionic liquid is a non-flammable, non-volatile, clean solvent that can be reused, and has high electrochemical stability and excellent ionic conductivity even when used as an electrolyte. is there. Such ionic liquids have been studied for use in various electrochemical devices such as various batteries such as lithium batteries and fuel cells, electrochromic displays, dye-sensitized solar cells, and electric double layer capacitors.

また、電池等においては、特性を改善する上では高いイオン伝導性のみならず、電極との反応性を有する目的イオンの選択的輸送もまた重要である。一般的なイオン液体の場合、リチウムイオン輸率は多くの非プロトン性極性溶媒と同様に室温において0.2〜0.3であり、リチウムイオンのアニオンに対する移動度は低い。また、イオン液体の場合には、マトリックス自身がイオンにより構成されているが、かかる構成を取る場合には構成イオンもまた電解質内を電位勾配に沿って移動していると考えられるため、目的イオンの選択的輸送は容易ではない。更には、このようなイオン液体を備える電解質を電池等の電気化学デバイスに用いた場合にあっては、充放電時に電解質の内部で分極が起こるという問題も発生していた。   In addition, in batteries and the like, not only high ion conductivity but also selective transport of target ions having reactivity with electrodes is important for improving characteristics. In the case of a general ionic liquid, the lithium ion transport number is 0.2 to 0.3 at room temperature like many aprotic polar solvents, and the mobility of lithium ions to anions is low. In the case of an ionic liquid, the matrix itself is composed of ions. However, in such a configuration, the constituent ions are considered to move along the potential gradient in the electrolyte. This is not easy to transport. Furthermore, when an electrolyte having such an ionic liquid is used in an electrochemical device such as a battery, there has also been a problem that polarization occurs inside the electrolyte during charging and discharging.

一方、このような問題を解決する手段としては、カチオンとアニオンを共有結合で結びつけることにより、マトリックス由来のイオン移動を抑止した双性イオン型溶融塩を挙げることができる。また、ルイス酸性の有機ホウ素ユニットをアニオンレセプターとして導入した有機ホウ素溶融塩も、カチオン輸率を改善した材料である(例えば、特許文献1〜特許文献8、及び非特許文献1〜非特許文献3参照。)。   On the other hand, as a means for solving such a problem, a zwitterionic molten salt in which ion migration derived from a matrix is suppressed by binding a cation and an anion with a covalent bond can be mentioned. An organic boron molten salt in which a Lewis acidic organic boron unit is introduced as an anion receptor is also a material with improved cation transport number (for example, Patent Document 1 to Patent Document 8 and Non-Patent Document 1 to Non-Patent Document 3). reference.).

特開平4−349365号公報JP-A-4-349365 特開平10−92467号公報Japanese Patent Laid-Open No. 10-92467 特開平11−86905号公報JP 11-86905 A 特開平11−260400号公報JP 11-260400 A 特開2002−110230号公報JP 2002-110230 A 特開2004−263004号公報JP 2004-263004 A 特開2004−161615号公報JP 2004-161615 A 特開2005−228588号公報JP 2005-228588 A 吉澤(Yoshizawa,M)、平尾(Hirao,M)、伊藤(Ito-Akita,K)、大野(Ohno,H)、「ジャナル・オブ・マテリアル・ケミストリー(Journal of MaterialChemistry)」,(英国),2001年,第11巻,p.1057Yoshizawa (M), Hirao (Mira), Ito (Ito-Akita, K), Ohno (H), “Journal of Material Chemistry” (UK), 2001 Year, Volume 11, p. 1057 松見(Matsumi, N)、水雲(Mizumo, T)、大野(Ohno,H)、「ポリマー・ブレティン(Polymer Bulletin)」,(ドイツ),2004年,第51巻,p.389Matsumi (N), Mizumo, T, Ohno, H, “Polymer Bulletin” (Germany), 2004, Vol. 51, p.389. 松見(Matsumi, N)、三宅(Miyake, M)、大野(Ohno, H)、「ケミカル・コミュニケーションズ(Chemical. Communications)」,(英国),2004年,p.2852Matsumi (N), Miyake (Miyake, M), Ohno (H), "Chemical. Communications" (UK), 2004, p. 2852

しかしながら、前記した従来技術については、カチオン輸率は向上したものの、なお相当量のマトリックス由来によるアニオンの移動が必要とされていた。加えて、かかる従来技術にあっては、マトリックスが液物性を維持している系はごく限られていた。したがって、イオン液体と同様、マトリックスが液物性を維持し、かつ、マトリックスに本質的にイオンを含まないデザイン性に優れた電解液の開発が期待されている。   However, although the above-described prior art has improved the cation transport number, a significant amount of matrix-derived anion migration has been required. In addition, in such a prior art, the system in which the matrix maintains the liquid physical properties is very limited. Therefore, like an ionic liquid, the development of an electrolytic solution excellent in design property in which the matrix maintains liquid properties and essentially does not contain ions in the matrix is expected.

本発明は前記の課題に鑑みてなされたものであり、常温で安定した液物性を示すことに加え、マトリックス由来の自由なイオンを有しないため、デザイン性が良好でかつ高い極性を備え、反応溶媒や電解液として有用な液状錯体化合物、また、当該液状錯体化合物を含有して優れたイオン伝導性を示す電解質、及び、当該電解質を備えて電気的特性に優れた電気化学デバイスを提供することにある。   The present invention has been made in view of the above problems, and in addition to exhibiting stable liquid physical properties at room temperature, since it does not have free ions derived from the matrix, it has good design and high polarity, and has a reaction. To provide a liquid complex compound useful as a solvent or an electrolytic solution, an electrolyte containing the liquid complex compound and exhibiting excellent ion conductivity, and an electrochemical device having the electrolyte and having excellent electrical characteristics. It is in.

前記の目的を達成するために、本発明の液状錯体化合物は、アルキル化ホウ素と含窒素複素環が共存していることを特徴とする。   In order to achieve the above object, the liquid complex compound of the present invention is characterized in that an alkylated boron and a nitrogen-containing heterocycle coexist.

本発明の液状錯体化合物は、アルキル化ホウ素と含窒素複素環が共存することにより、含窒素複素環の窒素原子がアルキル化ホウ素のホウ素原子に配位して、アルキル化ホウ素−含窒素複素環複合構造を形成する。すなわち、本発明に係る液状錯体化合物は、アルキル化ホウ素と含窒素複素環が共存して、アルキル化ホウ素−含窒素複素環複合構造をとることにより、ホウ素と窒素の両原子上に電荷が生成するため、液物性を維持しながら、マトリックス由来の自由なイオンを有することなく高い極性を備えることができ、また、溶液としてのデザイン性も良好となる。よって、様々な有機化合物やイオン性化合物に適用した場合にあっては、その溶解性を高める効果が得られ、イオン性化合物とともに用いる場合にはその解離性を高める効果を奏することが可能な、高いイオン伝導度を有する電解質を構成できる電解液、もしくは反応溶媒となる。   In the liquid complex compound of the present invention, the alkylated boron and the nitrogen-containing heterocycle coexist, whereby the nitrogen atom of the nitrogen-containing heterocycle is coordinated to the boron atom of the alkylated boron, and the alkylated boron-nitrogen-containing heterocycle Form a composite structure. That is, in the liquid complex compound according to the present invention, an alkylated boron and a nitrogen-containing heterocycle coexist and an alkylated boron-nitrogen-containing heterocyclic complex structure is formed, so that charges are generated on both boron and nitrogen atoms. Therefore, it is possible to provide high polarity without having free ions derived from the matrix while maintaining the liquid physical properties, and the design as a solution is also good. Therefore, when applied to various organic compounds and ionic compounds, the effect of increasing the solubility is obtained, and when used together with the ionic compound, the effect of increasing the dissociation can be achieved. It becomes an electrolytic solution or a reaction solvent that can constitute an electrolyte having high ionic conductivity.

本発明の液状錯体化合物は、前記含窒素複素環がイミダゾール環、ピリジン環及びこれらの誘導体からなる群より選ばれる1種であることが好ましい。このような構成によれば、前記した含窒素複素環としてイミダゾール環やピリジン環等を採用し、これらをアルキル化ホウ素との複合構造としているので、ホウ素、窒素両原子上に電荷が安定して生成し、高い極性が得られ、マトリックス中を単独で移動可能なイオンが存在しない液状錯体化合物となり、前記した効果を効率よく奏することができる。   In the liquid complex compound of the present invention, the nitrogen-containing heterocycle is preferably one selected from the group consisting of an imidazole ring, a pyridine ring, and derivatives thereof. According to such a configuration, an imidazole ring, a pyridine ring, or the like is employed as the nitrogen-containing heterocycle described above, and these have a composite structure with an alkylated boron, so that the charges are stable on both boron and nitrogen atoms. Thus, a high polarity can be obtained, and a liquid complex compound in which no ions that can move alone in the matrix are present, and the above-described effects can be efficiently achieved.

本発明の液状錯体化合物は、下記式(I)で表される分子構造を有することが好ましい。   The liquid complex compound of the present invention preferably has a molecular structure represented by the following formula (I).

Figure 2007210971
(式(I)中、3つのRのうち少なくとも1つはアルキル基、残りはアルキル基または水素原子であり、R、R、R、Rはそれぞれ水素原子または1価の基、を示す。)
Figure 2007210971
(In formula (I), at least one of the three R 1 is an alkyl group, the rest is an alkyl group or a hydrogen atom, and R 2 , R 3 , R 4 and R 5 are each a hydrogen atom or a monovalent group. )

このような構成によれば、本発明に係る化合物は、式(I)で表されるように、アルキル化ホウ素−イミダゾール複合構造を有することにより、これとともに用いるイオン性化合物の解離性を高める効果が得られ、高いイオン伝導度を有する電解質を構成できる液状の錯体化合物となる。   According to such a configuration, the compound according to the present invention, as represented by the formula (I), has an alkylated boron-imidazole composite structure, thereby improving the dissociation property of the ionic compound used therewith. And a liquid complex compound capable of constituting an electrolyte having high ionic conductivity.

本発明に係る液状錯体化合物は、下記式(II)で表される分子構造を有することが好ましい。   The liquid complex compound according to the present invention preferably has a molecular structure represented by the following formula (II).

Figure 2007210971
(式(II)中、3つのRのうち少なくとも1つはアルキル基、残りはアルキル基または水素原子であり、R、R、R、R、Rはそれぞれ水素原子または1価の基、を示す。)
Figure 2007210971
(In the formula (II), at least one of the three R 1 is an alkyl group, the rest is an alkyl group or a hydrogen atom, and R 2 , R 3 , R 4 , R 5 , R 6 are each a hydrogen atom or 1 Valent group.)

このような構成によれば、本発明に係る化合物は、式(II)で表されるように、アルキル化ホウ素−ピリジニウム複合構造を有することにより、これとともに用いるイオン性化合物の解離性をより高める効果が得られ、高いイオン伝導度を有する電解質を構成できる液状の錯体化合物となる。   According to such a configuration, as represented by the formula (II), the compound according to the present invention has an alkylated boron-pyridinium composite structure, thereby further improving the dissociation property of the ionic compound used therewith. An effect is obtained and it becomes a liquid complex compound which can constitute an electrolyte having high ionic conductivity.

本発明の液状錯体化合物は、前記Rが全てアルキル基であることが好ましい。
かかる本発明によれば、式(I)あるいは式(II)においてRを全てアルキル基とすることにより、アルキル化ホウ素がトリアルキルボランとなり、化合物がキャリアーイオンの輸送の際の活性化エネルギーが小さく、低粘度系の液状錯体化合物となる。
In the liquid complex compound of the present invention, it is preferable that all of R 1 are alkyl groups.
According to the present invention, by all alkyl groups R 1 in formula (I) or Formula (II), the alkyl boron becomes trialkyl borane, activation energy during transport compound carrier ions It becomes a small, low-viscosity liquid complex compound.

また、本発明の電解質は、イオン性化合物と、前記した本発明の液状錯体化合物を含有することを特徴とする。本発明の電解質は、高い極性を有する本発明の液状錯体化合物を含有しているので、イオン性化合物とともに用いることによりその解離性が高められ、高いイオン伝導度を有する電解質となる。   The electrolyte of the present invention is characterized by containing an ionic compound and the above-described liquid complex compound of the present invention. Since the electrolyte of the present invention contains the liquid complex compound of the present invention having high polarity, the dissociation property is enhanced by using it together with the ionic compound, and the electrolyte has high ionic conductivity.

また、本発明の電気化学デバイスは、前記した本発明の電解質を備えることを特徴とする。本発明に係る電気化学デバイスは、高いイオン伝導性を有する本発明の電解質を備えているので、優れた電気的特性を有することになる。   Moreover, the electrochemical device of the present invention includes the above-described electrolyte of the present invention. Since the electrochemical device according to the present invention includes the electrolyte of the present invention having high ionic conductivity, the electrochemical device has excellent electrical characteristics.

本発明の液状錯体化合物によれば、アルキル化ホウ素−含窒素複素環複合構造をとることにより、低粘度で液物性を維持しつつ、高い極性を発現できるため、溶液としてのデザイン性も良好であり、高いイオン伝導度を有する電解質を構成できる電解液、もしくは反応溶媒を提供する。また、かかる液状錯体化合物を含有する本発明の電解質は、高いイオン伝導度を発現できる、イオン伝導性に優れた電解質となる。そして、当該電解質を備えた本発明の電気化学デバイスは、電気的特性に優れたものとなり、リチウム一次電池、リチウム二次電池、リチウムイオン電池、燃料電池、太陽電池等の各種電池や、電気二重層キャパシタ等に適用することができる。   According to the liquid complex compound of the present invention, by taking an alkylated boron-nitrogen-containing heterocyclic complex structure, it is possible to express high polarity while maintaining liquid properties with low viscosity, so that the design as a solution is also good. There is provided an electrolytic solution or a reaction solvent that can constitute an electrolyte having high ionic conductivity. Moreover, the electrolyte of the present invention containing such a liquid complex compound is an electrolyte that exhibits high ionic conductivity and excellent in ionic conductivity. The electrochemical device of the present invention provided with the electrolyte has excellent electrical characteristics, such as various batteries such as a lithium primary battery, a lithium secondary battery, a lithium ion battery, a fuel cell, and a solar cell, It can be applied to a multilayer capacitor or the like.

本発明は、アルキル化ホウ素に含窒素複素環を共存させることにより、アルキル化ホウ素−含窒素複素環複合構造を形成している液状錯体化合物である。
まず、本発明の液状錯体化合物を構成するアルキル化ホウ素として、ホウ素、モノアルキル化ホウ素、ジアルキル化ホウ素、トリアルキル化ホウ素を適用することができるが、本発明の液状錯体化合物は、キャリアーイオンの輸送の際の活性化エネルギーが小さい低粘度の系が好ましく、この観点から、トリアルキル化ホウ素(トリアルキルボラン)とすることが好ましい。
The present invention is a liquid complex compound in which an alkylated boron-nitrogen-containing heterocyclic complex structure is formed by allowing a nitrogen-containing heterocyclic ring to coexist with an alkylated boron.
First, boron, monoalkylated boron, dialkylated boron, and trialkylated boron can be applied as the alkylated boron constituting the liquid complex compound of the present invention, but the liquid complex compound of the present invention is a carrier ion. A low-viscosity system having a small activation energy during transportation is preferred. From this viewpoint, trialkylated boron (trialkylborane) is preferred.

アルキル化ホウ素におけるアルキル基以外の基としては、例えば、水素原子、アリール基、アリル基、ベンジル基、アルケニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、複素環基またはこれらの誘導体(以下、「水素原子等」ということもある。)が挙げられる。これらは直鎖構造だけではなく、側鎖を有していてもよく、更には環状構造を有していてもよい。   Examples of the group other than the alkyl group in the alkylated boron include, for example, a hydrogen atom, aryl group, allyl group, benzyl group, alkenyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group, heterocyclic group, or these groups. Derivatives (hereinafter also referred to as “hydrogen atom etc.”). These may have not only a straight chain structure but also a side chain, and may further have a cyclic structure.

アルキル基としては、例えば、メチル基(CH−)、エチル基(CHCH−)、プロピル基(CHCHCH−)、イソプロピル基((CHCH−)、ブチル基(CHCHCHCH−)、イソブチル基((CHCHCH−)、s−ブチル基(CHCHCH(CH)−)、t−ブチル基((CHC−)、フェニル基(C−)等を挙げることができる。 Examples of the alkyl group include a methyl group (CH 3 —), an ethyl group (CH 3 CH 2 —), a propyl group (CH 3 CH 2 CH 2 —), an isopropyl group ((CH 3 ) 2 CH—), and butyl. group (CH 3 CH 2 CH 2 CH 2 -), an isobutyl group ((CH 3) 2 CHCH 2 -), s- butyl group (CH 3 CH 2 CH (CH 3) -), t- butyl ((CH 3 ) 3 C-), phenyl group (C 6 H 5- ) and the like.

また、本発明の液状錯体化合物を構成する、アルキル化ホウ素と共存する含窒素複素環としては、例えば、イミダゾール環、ピリジン環、ピロリジン環、ピペリジン環、ピロリン環、ピロール環、ピラゾール環、インドール環、カルバゾール環、及びこれらの誘導体等を挙げることができる。これらの含窒素複素環のうち、イミダゾール環、ピリジン環またはこれらの誘導体を有することが好ましく、含窒素複素環としてこれらを採用することにより、ホウ素、窒素両原子上に電荷が安定して生成し、高い極性が得られ、マトリックス中を単独で移動可能なイオンが存在しない液状錯体化合物となる。   Examples of the nitrogen-containing heterocycle coexisting with the alkylated boron constituting the liquid complex compound of the present invention include, for example, an imidazole ring, a pyridine ring, a pyrrolidine ring, a piperidine ring, a pyrroline ring, a pyrrole ring, a pyrazole ring, and an indole ring. , A carbazole ring, and derivatives thereof. Among these nitrogen-containing heterocycles, it is preferable to have an imidazole ring, a pyridine ring, or a derivative thereof. By adopting these as nitrogen-containing heterocycles, a stable charge is generated on both boron and nitrogen atoms. Thus, a high polarity is obtained, and a liquid complex compound in which ions that can move alone in the matrix do not exist is obtained.

更には、本発明の液状錯体化合物は、その分子構造として、式(I)または式(II)で表される構造を有していることが好ましい。式(I)に表されるアルキル化ホウ素−イミダゾール複合構造、あるいは、式(II)に表されるアルキル化ホウ素−ピリジニウム複合構造を有することにより、イオン性化合物と電解質を形成した場合にあっては、ともに用いるイオン性化合物の解離性を高める効果が得られ、高いイオン伝導度を有する電解質を構成できる液状錯体化合物となる。また、イミダゾール環あるいはピリジン環を形成するためのイミダゾール化合物、ピリジン化合物は安価で入手できるので、本発明の液状錯体化合物を低コストで提供可能とする。   Furthermore, the liquid complex compound of the present invention preferably has a structure represented by formula (I) or formula (II) as its molecular structure. In the case of forming an electrolyte with an ionic compound by having an alkylated boron-imidazole composite structure represented by formula (I) or an alkylated boron-pyridinium composite structure represented by formula (II) Provides an effect of increasing the dissociation property of the ionic compound used together, and becomes a liquid complex compound that can constitute an electrolyte having high ionic conductivity. Moreover, since the imidazole compound and pyridine compound for forming an imidazole ring or a pyridine ring can be obtained at low cost, the liquid complex compound of the present invention can be provided at low cost.

Figure 2007210971
Figure 2007210971

Figure 2007210971
Figure 2007210971

式(I)及び式(II)で表される構造において、3つのRのうち少なくとも1つはアルキル基、残りはアルキル基または水素原子等であり、アルキル基または水素原子であることが好ましい。一方、前記したように、本発明の液状錯体化合物は、キャリアーイオンの輸送の際の活性化エネルギーが小さい低粘度の系が好ましく、この観点から、3つのRを全てアルキル基とすることが特に好ましい。 In the structures represented by formula (I) and formula (II), at least one of the three R 1 is an alkyl group, the rest is an alkyl group or a hydrogen atom, and is preferably an alkyl group or a hydrogen atom. . On the other hand, as described above, the liquid complex compound of the present invention is preferably a low-viscosity system having a small activation energy when transporting carrier ions, and from this point of view, all three R 1 are all alkyl groups. Particularly preferred.

また、式(I)におけるR〜R、式(II)におけるR〜Rは、それぞれ水素原子または1価の基であり、1価の基としては、例えば、アルキル基、アリール基、アリル基、アルケニル基、ビニル基、アルキニル基、アルキルエーテル基、アルキルエステル基、アルキルケトン基、シアノ基、ヒドロキシル基、ホルミル基、アリールオキシ基、アルキルチオ基、アリールチオ基、アシルオキシ基、スルホニルオキシ基、アミノ基、アルキルアミノ基、アリールアミノ基、カルボンアミノ基、オキシスルホニルアミノ基、スルホンアミド基、オキシカルボニルアミノ基、アシル基、オキシカルボニル基、カルバモイル基、スルホニル基、スルフィニル基、オキシスルホニル基、スルファモイル基、カルボン酸基、スルホン酸基、ベンジル基、ホスホン酸基、複素環基、及びこれらの誘導体が挙げられる。これらは直鎖構造だけでなく、側鎖を有していてもよく、更には環状構造を有していてもよい。 Further, R 2 to R 5 in formula (I), R 2 ~R 6 in formula (II) are each hydrogen atom or a monovalent group, the monovalent group include an alkyl group, an aryl group , Allyl group, alkenyl group, vinyl group, alkynyl group, alkyl ether group, alkyl ester group, alkyl ketone group, cyano group, hydroxyl group, formyl group, aryloxy group, alkylthio group, arylthio group, acyloxy group, sulfonyloxy group Amino group, alkylamino group, arylamino group, carboxylicamino group, oxysulfonylamino group, sulfonamido group, oxycarbonylamino group, acyl group, oxycarbonyl group, carbamoyl group, sulfonyl group, sulfinyl group, oxysulfonyl group, Sulfamoyl group, carboxylic acid group, sulfonic acid group, ben Group, phosphonic acid group, a heterocyclic group, and derivatives thereof. These may have not only a linear structure but also a side chain, and may further have a cyclic structure.

以下に、式(I)で表される構造の好ましい例を示す。式(III)は、式(I)において3つのR、及びRをアルキル基、R、R、Rを水素原子としたものであり、また、式(IV)は、式(I)において3つのRをアルキル基、Rをアリル基、R、R、Rを水素原子としたものである。なお、m、nは正の整数である。 Hereinafter, preferred examples of the structure represented by the formula (I) are shown. Formula (III) is a compound in which three R 1 and R 3 are alkyl groups and R 2 , R 4 , and R 5 are hydrogen atoms in Formula (I). In I), three R 1 are alkyl groups, R 3 is an allyl group, and R 2 , R 4 , and R 5 are hydrogen atoms. Note that m and n are positive integers.

Figure 2007210971
Figure 2007210971

Figure 2007210971
Figure 2007210971

ここで、式(III)、式(IV)で表される構造において、mが16以上の整数であると、得られる液状錯体化合物は高粘度、低極性となり、溶媒、もしくは電解液ないし電解質としての充分な性能が得られないため、mは15以下が好ましい。   Here, in the structures represented by the formulas (III) and (IV), when m is an integer of 16 or more, the resulting liquid complex compound has high viscosity and low polarity, and is used as a solvent, an electrolyte solution or an electrolyte. Therefore, m is preferably 15 or less.

また、式(III)で表される構造において、nが5以上の整数であると、生成した化合物の極性が低下し、本発明の液状錯体化合物を含有する電解質に用いるイオン性化合物の解離性を高める効果が充分得られず、また、溶媒として用いる場合にも様々な基質の溶解能力が低下するため、nは4以下が好ましい。   Further, in the structure represented by the formula (III), when n is an integer of 5 or more, the polarity of the generated compound decreases, and the dissociation property of the ionic compound used for the electrolyte containing the liquid complex compound of the present invention. N is preferably 4 or less because the effect of increasing the pH cannot be sufficiently obtained, and also when used as a solvent, the ability to dissolve various substrates decreases.

以下に、式(III)及び式(IV)で表される構造の好ましい具体例を、式(V)及び式(VI)として例示する。   Below, the preferable specific example of the structure represented by Formula (III) and Formula (IV) is illustrated as Formula (V) and Formula (VI).

Figure 2007210971
Figure 2007210971

Figure 2007210971
Figure 2007210971

同様に、式(II)で表される構造の好ましい例を示す。式(VII)は、式(II)において3つのR、及びRをアルキル基、R、R、R及びRを水素原子としたものであり、また、式(VIII)は、式(II)において3つのRをアルキル基、R、R、R、R及びRを水素原子としたものであり、式(IX)は、式(II)において3つのRをアルキル基、Rをビニル基、R、R、R及びRを水素原子としたものである。なお、m、nは正の整数である。 Similarly, preferred examples of the structure represented by formula (II) are shown. In the formula (VII), three R 1 and R 4 in the formula (II) are alkyl groups, R 2 , R 3 , R 5 and R 6 are hydrogen atoms, and the formula (VIII) is In the formula (II), three R 1 are alkyl groups, R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen atoms, and the formula (IX) R 1 is an alkyl group, R 4 is a vinyl group, and R 2 , R 3 , R 5, and R 6 are hydrogen atoms. Note that m and n are positive integers.

Figure 2007210971
Figure 2007210971

Figure 2007210971
Figure 2007210971

Figure 2007210971
Figure 2007210971

ここで、式(VII)、式(VIII)、式(IX)で表される構造において、mが16以上の整数であると、得られる液状錯体化合物は、高粘度、低極性となり、溶媒、もしくは電解液ないし電解質としての充分な性能が得られないため、mは15以下が好ましい。   Here, in the structure represented by formula (VII), formula (VIII), or formula (IX), when m is an integer of 16 or more, the resulting liquid complex compound has high viscosity and low polarity, Alternatively, m is preferably 15 or less because sufficient performance as an electrolyte or electrolyte cannot be obtained.

また、式(VII)で表される構造において、nが4以上の整数であると、生成した化合物の極性が低下し、本発明の液状錯体化合物を含有する電解質に用いるイオン性化合物の解離性を高める効果が充分に得られず、また、溶媒として用いる場合にも様々な基質の溶解能力が低下するため、nは3以下が好ましい。   Further, in the structure represented by the formula (VII), when n is an integer of 4 or more, the polarity of the generated compound decreases, and the dissociation property of the ionic compound used for the electrolyte containing the liquid complex compound of the present invention. N is preferably 3 or less because the effect of increasing the pH cannot be sufficiently obtained, and also when used as a solvent, the dissolving ability of various substrates decreases.

以下に、式(IX)で表される構造の好ましい具体例を、式(X)として例示する。 Below, the preferable specific example of the structure represented by Formula (IX) is illustrated as Formula (X).

Figure 2007210971
Figure 2007210971

以下に、本発明の実施形態に係る液状錯体化合物の好ましい製造方法について例示して説明する。
次のスキームに示すように、式(X)で表されるアルキル化ホウ素は、式(Y)で表されるイミダゾール類等の含窒素複素環化合物と反応させることによって、式(I’)で表される本発明の実施形態に係る液状錯体化合物が得られる。なお、式(I’)におけるnは、前記した式(III)と同様正の整数であり、nは4以下が好ましい。
Below, the preferable manufacturing method of the liquid complex compound which concerns on embodiment of this invention is illustrated and demonstrated.
As shown in the following scheme, the alkylated boron represented by the formula (X) is reacted with a nitrogen-containing heterocyclic compound such as imidazoles represented by the formula (Y) to form the formula (I ′). A liquid complex compound according to an embodiment of the present invention is obtained. In the formula (I ′), n is a positive integer as in the above formula (III), and n is preferably 4 or less.

ここで、式(X)で表されるアルキル化ホウ素としては、例えば、トリエチルボラン、トリブチルボラン等を好適に挙げることができる。また、式(Y)で表されるイミダゾール類としては、例えば、イミダゾール、1−メチルイミダゾール、1−エチルイミダゾール等を好適に挙げることができ、東京化成工業(株)製等の市販品を使用することができる。   Here, as the alkylated boron represented by the formula (X), for example, triethylborane, tributylborane and the like can be preferably exemplified. Moreover, as imidazole represented by Formula (Y), for example, imidazole, 1-methylimidazole, 1-ethylimidazole and the like can be preferably exemplified, and commercial products such as those manufactured by Tokyo Chemical Industry Co., Ltd. are used. can do.

Figure 2007210971
Figure 2007210971

以上、式(I)で表される構造を有する本発明の実施形態に係る液状錯体化合物の好ましい例を説明したが、式(II)で表される構造を有する本発明の実施形態に係る液状錯体化合物についても、同様にして製造できる。すなわち、次のスキームに示すように、式(X)で表されるアルキル化ホウ素は、式(Z)で表されるピリジン環類の含窒素複素環化合物と反応させることによって、式(II’)で表される本発明の実施形態に係る液状錯体化合物が前記の式(I’)同様に得られる。ここで、式(Z)で表されるピリジン化合物としては、例えばピリジンを挙げることができ、東京化成工業(株)製等の市販品を使用することができる。なお、式(II’)におけるnは、前記した式(VII)と同様正の整数であり、nは3以下が好ましい。   As mentioned above, although the preferable example of the liquid complex compound which concerns on embodiment of this invention which has a structure represented by Formula (I) was demonstrated, the liquid which concerns on embodiment of this invention which has a structure represented by Formula (II) The complex compound can be produced in the same manner. That is, as shown in the following scheme, the alkylated boron represented by the formula (X) is reacted with the nitrogen-containing heterocyclic compound of the pyridine ring represented by the formula (Z) to thereby obtain the formula (II ′ The liquid complex compound according to the embodiment of the present invention represented by formula (I) is obtained in the same manner as in the formula (I ′). Here, as a pyridine compound represented by a formula (Z), a pyridine can be mentioned, for example, and commercial items, such as the Tokyo Chemical Industry Co., Ltd. product, can be used. In the formula (II ′), n is a positive integer like the above formula (VII), and n is preferably 3 or less.

Figure 2007210971
Figure 2007210971

本発明の液状錯体化合物は、アルキル化ホウ素と含窒素複素環が共存し、含窒素複素環の窒素原子がアルキル化ホウ素のホウ素原子に配位して、アルキル化ホウ素−含窒素複素環複合構造を形成することにより、ホウ素と窒素の両原子上に電荷が生成するため、マトリックス由来の自由なイオンを有することなく、液物性を維持しながら、高い極性を有することができ、溶液としてのデザイン性も良好となる。よって、様々な有機化合物やイオン性化合物に適用した場合にあっては、その溶解性を高める効果が得られ、例えば、イオン性化合物とともに用いる場合にはその解離性を高める効果を備える、高いイオン伝導度を有する電解質を構成できる電解液もしくは反応溶媒となる。   In the liquid complex compound of the present invention, the alkylated boron and the nitrogen-containing heterocyclic ring coexist, the nitrogen atom of the nitrogen-containing heterocyclic ring is coordinated to the boron atom of the alkylated boron, and the alkylated boron-nitrogen-containing heterocyclic complex structure By forming a charge on both boron and nitrogen atoms, it can have high polarity while maintaining liquid properties without having free ions derived from the matrix, and design as a solution The property is also good. Therefore, when applied to various organic compounds and ionic compounds, the effect of increasing the solubility is obtained. For example, when used together with the ionic compound, the high ion having the effect of increasing the dissociation property is obtained. It becomes an electrolytic solution or a reaction solvent that can constitute an electrolyte having conductivity.

また、本発明の電解質は、イオン性化合物と、前記した本発明の液状錯体化合物を含有することにより構成される。かかる構成の電解質は、極性に優れた本発明の液状錯体化合物を含有しているので、高いイオン伝導度を有する電解質となる。本発明の電解質は、キャリアーイオンを提供するため、かかるキャリアーイオンから構成されるイオン性化合物を、本発明の液状錯体化合物と共存させることにより得ることができるが、液状錯体化合物とイオン性化合物との割合は、特に制限はないが、有効成分として含有すればよく、粘度と極性を考慮すれば、例えば、0.1〜10モル/リットル程度とすればよいが、この範囲には限定されない。   Moreover, the electrolyte of this invention is comprised by containing an ionic compound and the above-mentioned liquid complex compound of this invention. Since the electrolyte having such a configuration contains the liquid complex compound of the present invention having excellent polarity, the electrolyte has high ionic conductivity. Since the electrolyte of the present invention provides carrier ions, an ionic compound composed of such carrier ions can be obtained by coexisting with the liquid complex compound of the present invention. Although there is no restriction | limiting in particular, What is necessary is just to contain as an active ingredient, and if it considers a viscosity and polarity, what is necessary is just about 0.1-10 mol / liter, for example, but it is not limited to this range.

キャリアーイオンから構成されるイオン性化合物としては、例えば、LiClO、LiBF、LiAsF、LiPF、LiSCN、LiBr、LiI、LiSO、Li10Cl10、LiAlCl、LiSbF、LiCl、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のリチウム(Li)、ナトリウム(Na)、またはカリウム(K)の1種を含む無機イオン塩が挙げられる。
また、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO等のリチウムを含む有機イオン塩が挙げられる。
更には、(CHNBF、(CH)NBr,(CH)N(CFSON、(CH)N(CSON、(CNBF、(CNClO、(CNI、(CN(CFSON、 (CN(CSON、(CNBr、(n−CNBF、(n−C)N(CFSON、(n−C)4N(CSON、(n−CNClO、(n−CNI、(CN−maleate、(CN−benzoate、(C)4N−phtalate等の四級アンモニウム塩等が挙げられる。これらのイオン性化合物は、それぞれを単独で、あるいは二種類以上を組み合わせて使用することができる。
Examples of ionic compounds composed of carrier ions include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , LiAlCl 4 , LiSbF 6 , Inorganic ion salts containing one of lithium (Li), sodium (Na), or potassium (K) such as LiCl, NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , and KSCN can be given.
In addition, LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 and organic ion salts containing lithium such as LiC (C 2 F 5 SO 2 ) 3 .
Furthermore, (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (CH 3 ) 4 N (CF 3 SO 2 ) 2 N, (CH 3 ) 4 N (C 2 F 5 SO 2 ) 2 N, (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 2 H 5 ) 4 N (CF 3 SO 2 ) 2 N, (C 2 H 5) 4 n (C 2 F 5 SO 2) 2 n, (C 3 H 7) 4 NBr, (n-C 4 H 9) 4 NBF 4, (n-C 4 H 9) 4 n (CF 3 SO 2) 2 n, (n- C 4 H 9) 4N (C 2 F 5 SO 2) 2 n, (n-C 4 H 9) 4 NClO 4, (n-C 4 H 9) 4 NI, (C 2 H 5) 4 N-maleate , (C 2 H 5) 4 N-benzoate, (C 2 H 5) quaternary ammonium such as 4N-phtalate Umm salts and the like. These ionic compounds can be used alone or in combination of two or more.

なお、本発明に係る電解質は、必要に応じて、プロピレンカーボネート、ポリエチレンオキシド、ジメトキシエタン等の液体電解質である有機溶媒や1−エチル−3メチルイミダゾール−ビストリフルオロメチルスルホニルイミド(TFSI)や1−エチル−3メチルイミダゾール−テトラフルオロボレート等のイオン液体を、本発明の効果を妨げない範囲で添加するようにしてもよい。   The electrolyte according to the present invention may be an organic solvent such as propylene carbonate, polyethylene oxide, dimethoxyethane, 1-ethyl-3methylimidazole-bistrifluoromethylsulfonylimide (TFSI) or 1- 1 An ionic liquid such as ethyl-3methylimidazole-tetrafluoroborate may be added as long as the effects of the present invention are not hindered.

本発明の電解質を調製するには、特に制限はないが、例えば、本発明の液状錯体化合物とイオン性化合物を、窒素雰囲気下でテトラヒドロフラン等の溶剤中で撹拌等の手段により混合し、混合後溶剤を除去して乾燥することにより簡便に得ることができる。   There are no particular restrictions on the preparation of the electrolyte of the present invention. For example, the liquid complex compound of the present invention and an ionic compound are mixed in a solvent such as tetrahydrofuran under a nitrogen atmosphere by means such as stirring, and then mixed. It can be easily obtained by removing the solvent and drying.

また、本発明の電気化学デバイスは、かかる本発明の電解質を備えることを特徴とする。かかる電気化学デバイスは、イオン伝導性に優れる本発明の電解質を備えるので、電気的特性に優れた電気化学デバイスとすることができる。ここで、電気化学デバイスの例としては、リチウム一次電池、リチウム二次電池、リチウムイオン電池、燃料電池、太陽電池等の各種電池や、電気二重層キャパシタ等が挙げられる。   Moreover, the electrochemical device of the present invention is characterized by comprising the electrolyte of the present invention. Since such an electrochemical device includes the electrolyte of the present invention having excellent ionic conductivity, an electrochemical device having excellent electrical characteristics can be obtained. Here, examples of the electrochemical device include various batteries such as a lithium primary battery, a lithium secondary battery, a lithium ion battery, a fuel battery, and a solar battery, and an electric double layer capacitor.

図1は、本発明の電気化学デバイスの一態様であるリチウム二次電池1の構成の一例を示した断面図である。かかるリチウム二次電池に代表される各種電池は、正極、負極、及び本発明の電解質を備える。
図1に示すリチウム二次電池1は、図示しない正極端子付きの正極集電体12と、これに接触する正極13と、図示しない負極端子付きの負極集電体14と、これに接触する負極15と、正極13と負極15との間に挟まれた電解質11と、これらを収納する容器18とから構成される。
FIG. 1 is a cross-sectional view showing an example of the configuration of a lithium secondary battery 1 which is an embodiment of the electrochemical device of the present invention. Various batteries represented by such lithium secondary batteries include a positive electrode, a negative electrode, and the electrolyte of the present invention.
A lithium secondary battery 1 shown in FIG. 1 includes a positive electrode current collector 12 with a positive electrode terminal (not shown), a positive electrode 13 in contact therewith, a negative electrode current collector 14 with a negative electrode terminal (not shown), and a negative electrode in contact therewith. 15, an electrolyte 11 sandwiched between the positive electrode 13 and the negative electrode 15, and a container 18 for storing them.

ここで、正極13の正極活物質としては、例えば、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等の遷移金属酸化物、ポリアセチレン、ポリフェニレン、ポリアニリン、ポリピロール等の従来公知の導電性高分子等が用いられる。一方、負極15の負極活物質としては、例えば、リチウムイオンを貯蔵できる炭素材料、リチウム金属、リチウム合金、導電性高分子等の従来公知のものが用いられる。正極集電体12及び負極集電体14としては、例えば、アルミニウム、銅等の金属や、炭素材料等の従来公知のものが用いられる。   Here, examples of the positive electrode active material of the positive electrode 13 include transition metal oxides such as lithium manganate, lithium nickelate, and lithium cobaltate, and conventionally known conductive polymers such as polyacetylene, polyphenylene, polyaniline, and polypyrrole. Used. On the other hand, as the negative electrode active material of the negative electrode 15, for example, conventionally known materials such as a carbon material capable of storing lithium ions, lithium metal, a lithium alloy, and a conductive polymer are used. As the positive electrode current collector 12 and the negative electrode current collector 14, for example, conventionally known materials such as metals such as aluminum and copper, and carbon materials are used.

電解質11は、図1に示すように電気化学デバイスをリチウム二次電池とする場合にあっては、電解質がキャリアーイオンとしてリチウムイオンを有することが好ましいことから、本発明に係る液状錯体化合物と、リチウムイオンを有するイオン性化合物を適用するのが好ましい。また、容器18としては、例えば、金属ケース、樹脂ケース、樹脂フィルム等の従来公知のものが用いられる。   In the case where the electrolyte 11 is a lithium secondary battery as shown in FIG. 1, the electrolyte 11 preferably has lithium ions as carrier ions, so that the liquid complex compound according to the present invention, It is preferable to apply an ionic compound having lithium ions. Moreover, as the container 18, conventionally well-known things, such as a metal case, a resin case, a resin film, are used, for example.

次に、図2は、本発明の電気化学デバイスの他の態様である電気二重層キャパシタ2の構成の一例を示した断面図である。電気二重層キャパシタ2は、本発明の電解質からなるセパレーター21と、セパレーター21を介して対向配置された分極性電極22に加え、加えて、セパレーター21と分極性電極22を側面から保持するガスケット23と、分極性電極22に接する一対の集電体24を基本構成として備える。   Next, FIG. 2 is a cross-sectional view showing an example of the configuration of an electric double layer capacitor 2 which is another aspect of the electrochemical device of the present invention. The electric double layer capacitor 2 includes a separator 21 made of the electrolyte of the present invention and a polarizable electrode 22 disposed so as to face the separator 21 and, in addition, a gasket 23 that holds the separator 21 and the polarizable electrode 22 from the side. And a pair of current collectors 24 in contact with the polarizable electrode 22 as a basic configuration.

分極性電極22としては、例えば、活性炭、または活性炭をバインダーにより固形化したものに、電解液を染み込ませたもの等が用いられる。ガスケット23としては、例えば、樹脂材料等の従来公知の構成材料が用いられる。集電体24としては、例えば、カーボン粉末等により導電性を付与された導電性樹脂等の従来公知のものを用いることができる。   As the polarizable electrode 22, for example, activated carbon or a material obtained by impregnating activated carbon into a solidified binder with an electrolytic solution is used. As the gasket 23, for example, a conventionally known constituent material such as a resin material is used. As the current collector 24, for example, a conventionally known one such as a conductive resin imparted with conductivity by carbon powder or the like can be used.

なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上記した実施の形態若しくは実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は、特許請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。また、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiments or examples are merely examples in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the scope of claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention. Further, although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention.

例えば、電気化学デバイスの一例として図1にリチウム二次電池1の構成、及び図2に電気二重層キャパシタ2の構成を示したが、リチウム二次電池及び電気二重層キャパシタの構成はこれらには限定されない。
その他、本発明の実施の際の具体的な構造及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
For example, as an example of an electrochemical device, the configuration of the lithium secondary battery 1 is shown in FIG. 1 and the configuration of the electric double layer capacitor 2 is shown in FIG. It is not limited.
In addition, the specific structure, shape, and the like in the implementation of the present invention may be other structures as long as the object of the present invention can be achieved.

以下、実施例を挙げて、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら制約されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not restrict | limited at all by these Examples.

[実施例1]
(液状錯体化合物Aの調製)
室温、窒素雰囲気にて、1.0Mトリブチルボラン及び溶剤としてテトラヒドロフラン溶液10mlに1−エチルイミダゾール0.961gを加え、反応溶液を2時間攪拌した。その後、溶媒を留去、減圧乾燥し1−エチルイミダゾール−トリブチルボラン錯体2.76gを得た(収率99%)。これを本発明化合物Aとする。以下にH−NMR、11B−NMRの測定結果を示す。併せて、図3にH−NMR、図4に11B−NMRのチャートを示す。
[Example 1]
(Preparation of liquid complex compound A)
In a nitrogen atmosphere at room temperature, 0.961 g of 1-ethylimidazole was added to 10 ml of tetrahydrofuran solution as 1.0 M tributylborane and a solvent, and the reaction solution was stirred for 2 hours. Thereafter, the solvent was distilled off and dried under reduced pressure to obtain 2.76 g of 1-ethylimidazole-tributylborane complex (yield 99%). This is designated as Compound A of the present invention. The measurement results of 1 H-NMR and 11 B-NMR are shown below. In addition, FIG. 3 shows a chart of 1 H-NMR, and FIG. 4 shows a chart of 11 B-NMR.

H−NMR及び11B−NMRの測定結果)
H−NMR(溶媒:CDCl、δ(ppm):0.87、1.30、1.46、4.01、6.91、7.09、7.63)
11B−NMR(溶媒:CDCl、δ(ppm):−11.9)
(Measurement results of 1 H-NMR and 11 B-NMR)
1 H-NMR (solvent: CDCl 3 , δ (ppm): 0.87, 1.30, 1.46, 4.01, 6.91, 7.09, 7.63)
11 B-NMR (solvent: CDCl 3 , δ (ppm): −11.9)

[実施例2]
(液状錯体化合物Bの調製)
室温、窒素雰囲気にて、1.0Mトリブチルボラン及び溶剤としてテトラヒドロフラン溶液10mlに1−アリルイミダゾール1.08gを加え、反応溶液を2時間攪拌した。その後、溶媒を留去、減圧乾燥し1−アリルイミダゾール−トリブチルボラン錯体2.84gを得た(収率98%)。これを本発明化合物Bとする。以下にH−NMR、11B−NMRの測定結果を示す。併せて、図5にH−NMR、図6に11B−NMRのチャートを示す。
[Example 2]
(Preparation of liquid complex compound B)
In a nitrogen atmosphere at room temperature, 1.08 g of 1-allylimidazole was added to 10 ml of a tetrahydrofuran solution as 1.0 M tributylborane and a solvent, and the reaction solution was stirred for 2 hours. Then, the solvent was distilled off and dried under reduced pressure to obtain 2.84 g of 1-allylimidazole-tributylborane complex (yield 98%). This is designated as Compound B of the present invention. The measurement results of 1 H-NMR and 11 B-NMR are shown below. In addition, FIG. 5 shows a chart of 1 H-NMR, and FIG. 6 shows a chart of 11 B-NMR.

H−NMR及び11B−NMRの測定結果)
H−NMR(溶媒:CDCl、δ(ppm):0.80、1.27、4.56、5.19〜5.31、5.94、6.89、7.10、7.61)
11B−NMR(溶媒:CDCl、δ(ppm):−11.6)
(Measurement results of 1 H-NMR and 11 B-NMR)
1 H-NMR (solvent: CDCl 3 , δ (ppm): 0.80, 1.27, 4.56, 5.19 to 5.31, 5.94, 6.89, 7.10, 7.61 )
11 B-NMR (solvent: CDCl 3 , δ (ppm): −11.6)

[実施例3]
(液状錯体化合物Cの調製)
室温、窒素雰囲気にて、1.0Mトリブチルボラン及び溶剤としてテトラヒドロフラン溶液10mlにイミダゾール0.681gを加え、反応溶液を2時間攪拌した。その後、溶媒を留去、減圧乾燥しイミダゾール−トリブチルボラン錯体2.40gを得た(収率98%)。これを本発明化合物Cとする。以下にH−NMR、11B−NMRの測定結果を示す。併せて、図7にH−NMR、図8に11B−NMRのチャートを示す。
[Example 3]
(Preparation of liquid complex compound C)
In a nitrogen atmosphere at room temperature, 0.681 g of imidazole was added to 10 ml of a tetrahydrofuran solution as 1.0 M tributylborane and a solvent, and the reaction solution was stirred for 2 hours. Then, the solvent was distilled off and dried under reduced pressure to obtain 2.40 g of imidazole-tributylborane complex (yield 98%). This is designated as Compound C of the present invention. The measurement results of 1 H-NMR and 11 B-NMR are shown below. In addition, FIG. 7 shows a chart of 1 H-NMR, and FIG. 8 shows a chart of 11 B-NMR.

H−NMR及び11B−NMRの測定結果)
H−NMR(溶媒:CDOD、δ(ppm):0.60、1.15、1.89、6.89、7.84)
11B−NMR(溶媒:CDOD、δ(ppm):−21.6、−18.3)
(Measurement results of 1 H-NMR and 11 B-NMR)
1 H-NMR (solvent: CD 3 OD, δ (ppm): 0.60, 1.15, 1.89, 6.89, 7.84)
11 B-NMR (solvent: CD 3 OD, δ (ppm): −21.6, −18.3)

[試験例1]
(粘度測定)
本発明化合物A、B、及びCについて、JIS Z8803に従い粘度の測定を行った。25℃における各化合物の粘度を表1に示す。
[Test Example 1]
(Viscosity measurement)
About this invention compound A, B, and C, the viscosity was measured according to JISZ8803. Table 1 shows the viscosity of each compound at 25 ° C.

(測定結果)

Figure 2007210971
(Measurement result)
Figure 2007210971

表1に示すように、25℃における本発明化合物A〜Cの粘度は、それぞれ36cP、28cP、及び109cPであった。これらの値は典型的なイオン液体である1−エチル−3メチルイミダゾール−ビストリフルオロメチルスルホニルイミド(TFSI)等の粘度(43〜45cP)と比較しても同程度であり、反応溶媒や電解質への使用を考えても充分に低い粘度である。   As shown in Table 1, the viscosities of the compounds A to C of the present invention at 25 ° C. were 36 cP, 28 cP, and 109 cP, respectively. These values are comparable to viscosities (43 to 45 cP) such as 1-ethyl-3methylimidazole-bistrifluoromethylsulfonylimide (TFSI), which is a typical ionic liquid, and are suitable for reaction solvents and electrolytes. The viscosity is sufficiently low even if the use of is considered.

[試験例2]
(極性評価)
上記の本発明化合物A〜Cについて、Reichard色素を用いて極性を評価した。各化合物で測定したReichard色素の吸収極大波長より算出した極性パラメータE(30)値を表2に示す。
[Test Example 2]
(Polarity evaluation)
The polarities of the compounds A to C of the present invention were evaluated using a Reichard dye. Table 2 shows the polar parameter E T (30) value calculated from the absorption maximum wavelength of the Reichard dye measured for each compound.

(測定結果)

Figure 2007210971
(Measurement result)
Figure 2007210971

表2に示すように、極性パラメータE(30)の値は、本発明化合物A、B、Cについてそれぞれ44、43、60と高い値であった。本発明化合物A、Bの極性は、非プロトン性極性溶媒であるアセトンやアセトニトリルの極性パラメータの値(40〜45)と同程度であった。 As shown in Table 2, the values of the polarity parameter E T (30) were as high as 44, 43 and 60 for the compounds A, B and C of the present invention, respectively. The polarities of the compounds A and B of the present invention were approximately the same as the polar parameter values (40 to 45) of acetone and acetonitrile, which are aprotic polar solvents.

[実施例4]
(電解質Aの調製)
溶剤であるテトラヒドロフラン10ml中に、室温、窒素雰囲気にて、本発明化合物A2mlと、イオン性化合物であるLiN(CFSO) 0.0574gとを混合し、1時間攪拌した後、前記溶剤を除去し、24時間真空乾燥させることにより、本発明電解質Aを得た。
[Example 4]
(Preparation of electrolyte A)
In 10 ml of tetrahydrofuran as a solvent, 2 ml of the compound A of the present invention and 0.0574 g of LiN (CF 3 SO 2 ) 2 as an ionic compound were mixed in a nitrogen atmosphere at room temperature and stirred for 1 hour. Was removed and vacuum-dried for 24 hours to obtain an electrolyte A of the present invention.

[実施例5]
(電解質Bの調製)
溶剤であるテトラヒドロフラン10ml中に、室温、窒素雰囲気にて、本発明化合物A2mlと、イオン性化合物であるLiN(CFSO) 0.144gとを混合し、1時間攪拌した後、前記溶剤を除去し、24時間真空乾燥させることにより、本発明電解質Bを得た。
[Example 5]
(Preparation of electrolyte B)
In 10 ml of tetrahydrofuran as a solvent, 2 ml of the compound A of the present invention and 0.144 g of LiN (CF 3 SO 2 ) 2 as an ionic compound were mixed in a nitrogen atmosphere at room temperature and stirred for 1 hour. Was removed and vacuum-dried for 24 hours to obtain an electrolyte B of the present invention.

[実施例6]
(電解質Cの調製)
溶剤であるテトラヒドロフラン10ml中に、室温、窒素雰囲気にて、本発明化合物A2mlと、イオン性化合物であるLiN(CFSO 0.287gとを混合し、1時間攪拌した後、前記溶剤を除去し、24時間真空乾燥させることにより、本発明電解質Cを得た。
[Example 6]
(Preparation of electrolyte C)
In 10 ml of tetrahydrofuran as a solvent, 2 ml of the compound A of the present invention and 0.287 g of LiN (CF 3 SO 2 ) 2 as an ionic compound were mixed in a nitrogen atmosphere at room temperature and stirred for 1 hour. Was removed and vacuum-dried for 24 hours to obtain an electrolyte C of the present invention.

[実施例7]
(電解質Dの調製)
溶剤であるテトラヒドロフラン10ml中に、室温、窒素雰囲気にて、本発明化合物A2mlと、イオン性化合物であるLiN(CFSO 0.574gとを混合し、1時間攪拌した後、前記溶剤を除去し、24時間真空乾燥させることにより、本発明電解質Dを得た。
[Example 7]
(Preparation of electrolyte D)
In 10 ml of tetrahydrofuran as a solvent, 2 ml of the compound A of the present invention and 0.574 g of LiN (CF 3 SO 2 ) 2 as an ionic compound were mixed in a nitrogen atmosphere at room temperature and stirred for 1 hour. Was removed and vacuum-dried for 24 hours to obtain an electrolyte D of the present invention.

[実施例8]
(電解質Eの調製)
溶剤であるテトラヒドロフラン10ml中に、室温、窒素雰囲気にて、本発明化合物B2mlと、イオン性化合物であるLiN(CFSO 0.0574gとを混合し、1時間攪拌した後、前記溶剤を除去し、24時間真空乾燥させることにより、本発明電解質Eを得た。
[Example 8]
(Preparation of electrolyte E)
In 10 ml of tetrahydrofuran as a solvent, 2 ml of the compound B of the present invention and 0.0574 g of LiN (CF 3 SO 2 ) 2 as an ionic compound were mixed in a nitrogen atmosphere at room temperature and stirred for 1 hour. Was removed and vacuum-dried for 24 hours to obtain an electrolyte E of the present invention.

[実施例9]
(電解質Fの調製)
溶剤であるテトラヒドロフラン10ml中に、室温、窒素雰囲気にて、本発明化合物B2mlと、イオン性化合物であるLiN(CFSO 0.144gとを混合し、1時間攪拌した後、前記溶剤を除去し、24時間真空乾燥させることにより、本発明電解質Fを得た。
[Example 9]
(Preparation of electrolyte F)
In 10 ml of tetrahydrofuran as a solvent, 2 ml of the compound B of the present invention and 0.144 g of LiN (CF 3 SO 2 ) 2 as an ionic compound were mixed in a nitrogen atmosphere at room temperature and stirred for 1 hour. Was removed and vacuum-dried for 24 hours to obtain an electrolyte F of the present invention.

[実施例10]
(電解質Gの調製)
溶剤であるテトラヒドロフラン10ml中に、室温、窒素雰囲気にて、本発明化合物B2mlと、イオン性化合物であるLiN(CFSO 0.287gとを混合し、1時間攪拌した後、前記溶剤を除去し、24時間真空乾燥させることにより、本発明電解質Gを得た。
[Example 10]
(Preparation of electrolyte G)
In 10 ml of tetrahydrofuran as a solvent, 2 ml of the compound B of the present invention and 0.287 g of LiN (CF 3 SO 2 ) 2 as an ionic compound were mixed in a nitrogen atmosphere at room temperature and stirred for 1 hour. Was removed and vacuum-dried for 24 hours to obtain an electrolyte G of the present invention.

[実施例11]
(電解質Hの調製)
溶剤であるテトラヒドロフラン10ml中に、室温、窒素雰囲気にて、本発明化合物B2mlと、イオン性化合物であるLiN(CFSO 0.574gとを混合し、1時間攪拌した後、前記溶剤を除去し、24時間真空乾燥させることにより、本発明電解質Hを得た。
[Example 11]
(Preparation of electrolyte H)
In 10 ml of tetrahydrofuran as a solvent, 2 ml of the compound B of the present invention and 0.574 g of LiN (CF 3 SO 2 ) 2 as an ionic compound were mixed in a nitrogen atmosphere at room temperature and stirred for 1 hour. Was removed and vacuum-dried for 24 hours to obtain the electrolyte H of the present invention.

[試験例3]
(イオン伝導度測定)
実施例4〜11で調製した本発明電解質A〜Hを用いて、電気化学デバイスとして二端子セルを作製した。二端子セル5の構成を、図9に断面図として示す。二端子セル5は、電解質11を挟むようにして2つの電極51,52を従来公知のホットプレスにより積層して構成され、本試験においては、一方の電極51及びもう一方の電極52としてステンレスを使用した。
[Test Example 3]
(Ion conductivity measurement)
Using the electrolytes A to H of the present invention prepared in Examples 4 to 11, two-terminal cells were produced as electrochemical devices. The configuration of the two-terminal cell 5 is shown as a cross-sectional view in FIG. The two-terminal cell 5 is configured by laminating two electrodes 51 and 52 by a conventionally known hot press so as to sandwich the electrolyte 11, and stainless steel is used as one electrode 51 and the other electrode 52 in this test. .

この二端子セル5を用いて、これらの電解質の電気化学的特性として、イオン伝導度の測定を行った。イオン伝導度は、交流インピーダンス法によって測定した。50℃において測定されたイオン伝導度を表3に示す。   Using this two-terminal cell 5, ion conductivity was measured as electrochemical characteristics of these electrolytes. Ionic conductivity was measured by the AC impedance method. Table 3 shows the ionic conductivity measured at 50 ° C.

(測定結果)

Figure 2007210971
(Measurement result)
Figure 2007210971

表3に示すように、本発明電解質A〜Hは幅広い塩濃度範囲において良好なイオン伝導度を示し、電解液由来のイオンを含まない、より選択的なイオン輸送に適した電解質として期待できるものであった。   As shown in Table 3, the electrolytes A to H of the present invention show good ionic conductivity in a wide range of salt concentrations, and do not contain ions derived from the electrolyte, and can be expected as electrolytes suitable for more selective ion transport. Met.

この結果からわかるように、ホウ素や含窒素複素環上の置換基を選択することで溶媒としての極性や粘度を制御し、また、好ましくは、カチオン輸率を同時に考慮することにより、イオン伝導度をさらに向上させることができる。以上より、本発明に係る液状錯体化合物は、高極性、低粘度であるとともに、イオン性化合物とともに電解質を形成した場合にあっては、イオン伝導度が高い電解質となり、電気的特性に優れた電気化学デバイスを提供できることが確認できた。   As can be seen from this result, the polarity and viscosity as a solvent are controlled by selecting a substituent on boron or a nitrogen-containing heterocycle, and preferably the ionic conductivity is considered by simultaneously considering the cation transport number. Can be further improved. As described above, the liquid complex compound according to the present invention has high polarity and low viscosity, and when an electrolyte is formed together with an ionic compound, the liquid complex compound is an electrolyte having high ionic conductivity and excellent electrical characteristics. It was confirmed that a chemical device could be provided.

本発明に係る液状錯体化合物は、反応溶媒のほか、リチウム一次電池、リチウム二次電池、リチウムイオン電池、電気二重層キャパシタ、燃料電池等の電気化学デバイス用電解質として広く適用できるものである。また、これらの電気化学デバイスに本発明に係る電解質を用いることによって充放電性能、充放電サイクル性能等の電気的特性に優れた電気化学デバイスを提供することができる。   The liquid complex compound according to the present invention can be widely applied as an electrolyte for electrochemical devices such as lithium primary batteries, lithium secondary batteries, lithium ion batteries, electric double layer capacitors, and fuel cells, in addition to reaction solvents. Moreover, the electrochemical device excellent in electrical characteristics, such as charging / discharging performance and charging / discharging cycling performance, can be provided by using the electrolyte concerning this invention for these electrochemical devices.

本発明の電気化学デバイスの一態様であるリチウム二次電池の構成の一例を示した断面図である。It is sectional drawing which showed an example of the structure of the lithium secondary battery which is one aspect | mode of the electrochemical device of this invention. 本発明の電気化学デバイスの一態様である電気二重層キャパシタの構成の一例を示した断面図である。It is sectional drawing which showed an example of the structure of the electrical double layer capacitor which is an aspect of the electrochemical device of this invention. 実施例1で得られた本発明化合物AのH−NMRチャートを示す図である。1 is a diagram showing a 1 H-NMR chart of the compound A of the present invention obtained in Example 1. FIG. 実施例1で得られた本発明化合物Aの11B−NMRチャートを示す図である。1 is a diagram showing an 11 B-NMR chart of the compound A of the present invention obtained in Example 1. FIG. 実施例2で得られた本発明化合物BのH−NMRチャートを示す図である。3 is a diagram showing a 1 H-NMR chart of the compound B of the present invention obtained in Example 2. FIG. 実施例2で得られた本発明化合物Bの11B−NMRチャートを示す図である。4 is a diagram showing an 11 B-NMR chart of the compound B of the present invention obtained in Example 2. FIG. 実施例3で得られた本発明化合物CのH−NMRチャートを示す図である。3 is a diagram showing a 1 H-NMR chart of the compound C of the present invention obtained in Example 3. FIG. 実施例3で得られた本発明化合物Cの11B−NMRチャートを示す図である。4 is a diagram showing an 11 B-NMR chart of the compound C of the present invention obtained in Example 3. FIG. 試験例3で使用した二端子セルの構成を示した断面図である。6 is a cross-sectional view showing a configuration of a two-terminal cell used in Test Example 3. FIG.

符号の説明Explanation of symbols

1 リチウム二次電池(電気化学デバイス)
2 電気二重層キャパシタ(電気化学デバイス)
5 二端子セル
11 電解質
12 正極集電体
13 正極
14 負極集電体
15 負極
18 容器
21 セパレーター(電解質)
22 分極性電極
23 ガスケット
24 集電体
51 電極
52 電極
1 Lithium secondary battery (electrochemical device)
2 Electric double layer capacitor (electrochemical device)
5 Two-terminal cell 11 Electrolyte 12 Positive electrode current collector 13 Positive electrode 14 Negative electrode current collector 15 Negative electrode 18 Container 21 Separator (electrolyte)
22 Polarized electrode 23 Gasket 24 Current collector 51 Electrode 52 Electrode

Claims (7)

アルキル化ホウ素と含窒素複素環が共存していることを特徴とする液状錯体化合物。   A liquid complex compound in which an alkylated boron and a nitrogen-containing heterocycle coexist. 前記含窒素複素環がイミダゾール環、ピリジン環及びこれらの誘導体からなる群より選ばれる1種であることを特徴とする請求項1に記載の液状錯体化合物。   The liquid complex compound according to claim 1, wherein the nitrogen-containing heterocycle is one selected from the group consisting of an imidazole ring, a pyridine ring, and derivatives thereof. 下記式(I)で表される分子構造を有することを特徴とする請求項1または請求項2に記載の液状錯体化合物。
Figure 2007210971
(式(I)中、3つのRのうち少なくとも1つはアルキル基、残りはアルキル基または水素原子であり、R、R、R、Rはそれぞれ水素原子または1価の基、を示す。)
The liquid complex compound according to claim 1 or 2, which has a molecular structure represented by the following formula (I).
Figure 2007210971
(In formula (I), at least one of the three R 1 is an alkyl group, the rest is an alkyl group or a hydrogen atom, and R 2 , R 3 , R 4 and R 5 are each a hydrogen atom or a monovalent group. )
下記式(II)で表される分子構造を有することを特徴とする請求項1または請求項2に記載の液状錯体化合物。
Figure 2007210971
(式(II)中、3つのRのうち少なくとも1つはアルキル基、残りはアルキル基または
水素原子であり、R、R、R、R、Rはそれぞれ水素原子または1価の基、を示す。)
The liquid complex compound according to claim 1 or 2, which has a molecular structure represented by the following formula (II).
Figure 2007210971
(In the formula (II), at least one of the three R 1 is an alkyl group, the rest is an alkyl group or a hydrogen atom, and R 2 , R 3 , R 4 , R 5 , R 6 are each a hydrogen atom or 1 Valent group.)
前記Rが全てアルキル基であることを特徴とする請求項3または請求項4に記載の液状錯体化合物。 The liquid complex compound according to claim 3 or 4, wherein all of R 1 are alkyl groups. イオン性化合物と、前記請求項1ないし請求項5のいずれかに記載の液状錯体化合物を含有することを特徴とする電解質。   An electrolyte comprising an ionic compound and the liquid complex compound according to any one of claims 1 to 5. 前記請求項6に記載の電解質を備えることを特徴とする電気化学デバイス。

An electrochemical device comprising the electrolyte according to claim 6.

JP2006034589A 2006-02-10 2006-02-10 Liquid complex compound, electrolyte containing the liquid complex compound, and electrochemical device having the electrolyte Pending JP2007210971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034589A JP2007210971A (en) 2006-02-10 2006-02-10 Liquid complex compound, electrolyte containing the liquid complex compound, and electrochemical device having the electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034589A JP2007210971A (en) 2006-02-10 2006-02-10 Liquid complex compound, electrolyte containing the liquid complex compound, and electrochemical device having the electrolyte

Publications (1)

Publication Number Publication Date
JP2007210971A true JP2007210971A (en) 2007-08-23

Family

ID=38489725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034589A Pending JP2007210971A (en) 2006-02-10 2006-02-10 Liquid complex compound, electrolyte containing the liquid complex compound, and electrochemical device having the electrolyte

Country Status (1)

Country Link
JP (1) JP2007210971A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082487A (en) * 2012-09-28 2014-05-08 Boron International:Kk Bn electrolytic material with accumulative, conductive and antibacterial properties
JP2015069784A (en) * 2013-09-27 2015-04-13 伊東 謙吾 Electro-conductive bn electrolyte-clay composite material
WO2019013140A1 (en) * 2017-07-14 2019-01-17 三井化学株式会社 Lithium boron fluorophosphate complex compound, composition containing lithium boron fluorophosphate, lithium boron fluorophosphate, additive for lithium secondary battery, non-aqueous electrolyte for battery, and lithium secondary battery
CN109686572A (en) * 2017-10-19 2019-04-26 江苏扬航光电科技有限公司 A kind of capacitor
CN110336077A (en) * 2019-07-02 2019-10-15 华南理工大学 A kind of lithium ion battery of high voltage nickel-cobalt-manganternary ternary anode material
CN114497743A (en) * 2022-02-23 2022-05-13 珠海市赛纬电子材料股份有限公司 Electrolyte applied to alkali metal battery and alkali metal battery thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082487A (en) * 2012-09-28 2014-05-08 Boron International:Kk Bn electrolytic material with accumulative, conductive and antibacterial properties
JP2015165571A (en) * 2012-09-28 2015-09-17 株式会社ボロンインターナショナル Bn electrolytic material with accumulative, conductive and antibacterial properties
JP2015069784A (en) * 2013-09-27 2015-04-13 伊東 謙吾 Electro-conductive bn electrolyte-clay composite material
WO2019013140A1 (en) * 2017-07-14 2019-01-17 三井化学株式会社 Lithium boron fluorophosphate complex compound, composition containing lithium boron fluorophosphate, lithium boron fluorophosphate, additive for lithium secondary battery, non-aqueous electrolyte for battery, and lithium secondary battery
CN110891958A (en) * 2017-07-14 2020-03-17 三井化学株式会社 Boron lithium fluorophosphate complex, composition containing boron lithium fluorophosphate, additive for lithium secondary battery, nonaqueous electrolyte for battery, and lithium secondary battery
CN110891958B (en) * 2017-07-14 2023-07-11 三井化学株式会社 Lithium borofluorophosphate complex, composition containing lithium borofluorophosphate, nonaqueous electrolyte for battery, and lithium secondary battery
CN109686572A (en) * 2017-10-19 2019-04-26 江苏扬航光电科技有限公司 A kind of capacitor
CN110336077A (en) * 2019-07-02 2019-10-15 华南理工大学 A kind of lithium ion battery of high voltage nickel-cobalt-manganternary ternary anode material
CN110336077B (en) * 2019-07-02 2022-02-15 华南理工大学 Lithium ion battery of high-voltage nickel-cobalt-manganese ternary cathode material
CN114497743A (en) * 2022-02-23 2022-05-13 珠海市赛纬电子材料股份有限公司 Electrolyte applied to alkali metal battery and alkali metal battery thereof
CN114497743B (en) * 2022-02-23 2022-09-27 珠海市赛纬电子材料股份有限公司 Electrolyte applied to alkali metal battery and alkali metal battery thereof
WO2023159798A1 (en) * 2022-02-23 2023-08-31 珠海市赛纬电子材料股份有限公司 Electrolyte used for alkali metal battery and alkali metal battery thereof

Similar Documents

Publication Publication Date Title
Lin et al. High temperature electrical energy storage: advances, challenges, and frontiers
Li et al. Electrolytes in organic batteries
Singh et al. Improved electrochemical performance of EMIMFSI ionic liquid based gel polymer electrolyte with temperature for rechargeable lithium battery
Chen et al. A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery
Wu et al. Highly safe ionic liquid electrolytes for sodium-ion battery: wide electrochemical window and good thermal stability
JP5067728B2 (en) Polymer electrolyte and method for producing the same
EP1763099B1 (en) Stable electrolyte counteranions for capacitors
Wang et al. Mixtures of unsaturated imidazolium based ionic liquid and organic carbonate as electrolyte for Li-ion batteries
Niedzicki et al. New type of imidazole based salts designed specifically for lithium ion batteries
US20140266075A1 (en) Methods Of Enhancing Electrochemical Double Layer Capacitor (EDLC) Performance And EDLC Devices Formed Therefrom
US20130095392A1 (en) Electrolyte Compositions, Methods Of Making And Battery Devices Formed There From
US8907133B2 (en) Electrolyte compositions and electrochemical double layer capacitors formed there from
Yamada et al. Pyrrolidinium-based organic ionic plastic crystals: Relationship between side chain length and properties
EP3059795B1 (en) Lithium secondary battery and electrolyte solution for lithium secondary battery
Puttaswamy et al. An account on the deep eutectic solvents-based electrolytes for rechargeable batteries and supercapacitors
Chen et al. Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells
US20170015693A1 (en) Acrylamide-based conductive compounds, and methods of preparation and uses thereof
Orita et al. Favorable combination of positive and negative electrode materials with glyme–Li salt complex electrolytes in lithium ion batteries
JP2007210971A (en) Liquid complex compound, electrolyte containing the liquid complex compound, and electrochemical device having the electrolyte
Horiuchi et al. Synthesis and evaluation of a novel pyrrolidinium-based zwitterionic additive with an ether side chain for ionic liquid electrolytes in high-voltage lithium-ion batteries
EP2929553A1 (en) Electrolyte compositions and electrochemical double layer capacitors formed there from
Tsunashima et al. A lithium battery electrolyte based on a room-temperature phosphonium ionic liquid
Karuppasamy et al. Nonaqueous liquid electrolytes based on novel 1-ethyl-3-methylimidazolium bis (nonafluorobutane-1-sulfonyl imidate) ionic liquid for energy storage devices
KR20190018866A (en) Electrolyte for secondary battery and secondary battery comprising the same
US9178248B2 (en) Solid-state electrolytes for rechargeable lithium batteries