EP2929553A1 - Electrolyte compositions and electrochemical double layer capacitors formed there from - Google Patents
Electrolyte compositions and electrochemical double layer capacitors formed there fromInfo
- Publication number
- EP2929553A1 EP2929553A1 EP13860380.8A EP13860380A EP2929553A1 EP 2929553 A1 EP2929553 A1 EP 2929553A1 EP 13860380 A EP13860380 A EP 13860380A EP 2929553 A1 EP2929553 A1 EP 2929553A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phosphonium
- edlc
- comprised
- ococoo
- salts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 193
- 239000000203 mixture Substances 0.000 title claims abstract description 171
- 239000003990 capacitor Substances 0.000 title claims abstract description 44
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 claims abstract description 216
- 150000003839 salts Chemical class 0.000 claims abstract description 167
- 239000002608 ionic liquid Substances 0.000 claims abstract description 166
- 238000004146 energy storage Methods 0.000 claims abstract description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 115
- 150000001768 cations Chemical class 0.000 claims description 115
- 150000001450 anions Chemical class 0.000 claims description 113
- -1 phosphonium cations Chemical class 0.000 claims description 109
- 150000004714 phosphonium salts Chemical class 0.000 claims description 89
- 239000002904 solvent Substances 0.000 claims description 73
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 71
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 39
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 39
- 125000000217 alkyl group Chemical group 0.000 claims description 34
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 33
- 239000007787 solid Substances 0.000 claims description 30
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 29
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 29
- 229910052744 lithium Inorganic materials 0.000 claims description 24
- 125000004432 carbon atom Chemical group C* 0.000 claims description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 22
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 22
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 11
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 claims description 10
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 10
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 claims description 10
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 claims description 10
- ZKOGUIGAVNCCKH-UHFFFAOYSA-N 4-phenyl-1,3-dioxolan-2-one Chemical compound O1C(=O)OCC1C1=CC=CC=C1 ZKOGUIGAVNCCKH-UHFFFAOYSA-N 0.000 claims description 10
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 10
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 claims description 10
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 claims description 10
- 229940017219 methyl propionate Drugs 0.000 claims description 10
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052731 fluorine Inorganic materials 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- GEWWCWZGHNIUBW-UHFFFAOYSA-N 1-(4-nitrophenyl)propan-2-one Chemical compound CC(=O)CC1=CC=C([N+]([O-])=O)C=C1 GEWWCWZGHNIUBW-UHFFFAOYSA-N 0.000 claims description 5
- DFFDSQBEGQFJJU-UHFFFAOYSA-N butyl hydrogen carbonate Chemical compound CCCCOC(O)=O DFFDSQBEGQFJJU-UHFFFAOYSA-N 0.000 claims description 5
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 5
- 239000011737 fluorine Substances 0.000 claims description 5
- 125000001153 fluoro group Chemical group F* 0.000 claims description 5
- YWWDBCBWQNCYNR-UHFFFAOYSA-N trimethylphosphine Chemical compound CP(C)C YWWDBCBWQNCYNR-UHFFFAOYSA-N 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 150000003949 imides Chemical class 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229920000123 polythiophene Polymers 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 239000010948 rhodium Substances 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 229920000767 polyaniline Polymers 0.000 claims description 3
- 229920000128 polypyrrole Polymers 0.000 claims description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 claims description 2
- 150000003842 bromide salts Chemical class 0.000 claims description 2
- 239000006229 carbon black Substances 0.000 claims description 2
- 235000019241 carbon black Nutrition 0.000 claims description 2
- 150000004678 hydrides Chemical class 0.000 claims description 2
- 239000002905 metal composite material Substances 0.000 claims description 2
- 150000002823 nitrates Chemical class 0.000 claims description 2
- 150000003346 selenoethers Chemical class 0.000 claims description 2
- 150000004763 sulfides Chemical class 0.000 claims description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 2
- 239000007773 negative electrode material Substances 0.000 claims 3
- 239000007774 positive electrode material Substances 0.000 claims 3
- 150000003841 chloride salts Chemical class 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 21
- 238000012546 transfer Methods 0.000 abstract description 16
- 239000000446 fuel Substances 0.000 abstract description 7
- 230000003068 static effect Effects 0.000 abstract description 4
- 238000003860 storage Methods 0.000 description 89
- 210000004027 cell Anatomy 0.000 description 85
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 65
- 125000001424 substituent group Chemical group 0.000 description 56
- 239000008151 electrolyte solution Substances 0.000 description 52
- 229940021013 electrolyte solution Drugs 0.000 description 52
- 239000003446 ligand Substances 0.000 description 40
- 238000002411 thermogravimetry Methods 0.000 description 40
- 238000007254 oxidation reaction Methods 0.000 description 38
- 239000000463 material Substances 0.000 description 37
- 230000003647 oxidation Effects 0.000 description 35
- 239000000654 additive Substances 0.000 description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- 150000004032 porphyrins Chemical class 0.000 description 29
- 230000000996 additive effect Effects 0.000 description 28
- 238000002474 experimental method Methods 0.000 description 28
- 150000001875 compounds Chemical class 0.000 description 26
- 125000004429 atom Chemical group 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 24
- 239000010410 layer Substances 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 24
- 229910052799 carbon Inorganic materials 0.000 description 23
- 125000003118 aryl group Chemical group 0.000 description 22
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 21
- 229910052757 nitrogen Inorganic materials 0.000 description 18
- 239000000758 substrate Substances 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 150000002500 ions Chemical class 0.000 description 15
- 150000002678 macrocyclic compounds Chemical class 0.000 description 15
- 125000005842 heteroatom Chemical group 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 13
- 150000003863 ammonium salts Chemical class 0.000 description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 125000002524 organometallic group Chemical group 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 229910001290 LiPF6 Inorganic materials 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 230000008901 benefit Effects 0.000 description 11
- 229910021645 metal ion Inorganic materials 0.000 description 11
- 229910052717 sulfur Inorganic materials 0.000 description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000011593 sulfur Substances 0.000 description 10
- 125000000623 heterocyclic group Chemical group 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 229910052723 transition metal Inorganic materials 0.000 description 8
- 229910001868 water Inorganic materials 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 229920002678 cellulose Polymers 0.000 description 7
- 239000001913 cellulose Substances 0.000 description 7
- 239000002322 conducting polymer Substances 0.000 description 7
- 229920001940 conductive polymer Polymers 0.000 description 7
- 239000011245 gel electrolyte Substances 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 239000012046 mixed solvent Substances 0.000 description 7
- VXTFGYMINLXJPW-UHFFFAOYSA-N phosphinane Chemical compound C1CCPCC1 VXTFGYMINLXJPW-UHFFFAOYSA-N 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 239000011149 active material Substances 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 238000003491 array Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 125000005647 linker group Chemical group 0.000 description 6
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 6
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 6
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 6
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 150000003624 transition metals Chemical class 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 5
- 125000004093 cyano group Chemical group *C#N 0.000 description 5
- 125000000753 cycloalkyl group Chemical group 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- GWLJTAJEHRYMCA-UHFFFAOYSA-N phospholane Chemical compound C1CCPC1 GWLJTAJEHRYMCA-UHFFFAOYSA-N 0.000 description 5
- 238000001394 phosphorus-31 nuclear magnetic resonance spectrum Methods 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 210000000352 storage cell Anatomy 0.000 description 5
- DJMUYABFXCIYSC-UHFFFAOYSA-N 1H-phosphole Chemical compound C=1C=CPC=1 DJMUYABFXCIYSC-UHFFFAOYSA-N 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 4
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 125000003368 amide group Chemical group 0.000 description 4
- 125000004104 aryloxy group Chemical group 0.000 description 4
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 101150047356 dec-1 gene Proteins 0.000 description 4
- 239000003517 fume Substances 0.000 description 4
- 238000004868 gas analysis Methods 0.000 description 4
- 125000001072 heteroaryl group Chemical group 0.000 description 4
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 4
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 4
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 4
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 4
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 150000004033 porphyrin derivatives Chemical class 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000007784 solid electrolyte Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910001560 Li(CF3SO2)2N Inorganic materials 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910009361 YP-50F Inorganic materials 0.000 description 3
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000016507 interphase Effects 0.000 description 3
- 229960004592 isopropanol Drugs 0.000 description 3
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 3
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000013110 organic ligand Substances 0.000 description 3
- 150000002902 organometallic compounds Chemical class 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 3
- 150000003003 phosphines Chemical class 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000011829 room temperature ionic liquid solvent Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 125000004962 sulfoxyl group Chemical group 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- MAUMSNABMVEOGP-UHFFFAOYSA-N (methyl-$l^{2}-azanyl)methane Chemical compound C[N]C MAUMSNABMVEOGP-UHFFFAOYSA-N 0.000 description 2
- QBPPRVHXOZRESW-UHFFFAOYSA-N 1,4,7,10-tetraazacyclododecane Chemical class C1CNCCNCCNCCN1 QBPPRVHXOZRESW-UHFFFAOYSA-N 0.000 description 2
- MDAXKAUIABOHTD-UHFFFAOYSA-N 1,4,8,11-tetraazacyclotetradecane Chemical compound C1CNCCNCCCNCCNC1 MDAXKAUIABOHTD-UHFFFAOYSA-N 0.000 description 2
- LZCBPGWHCMGYMZ-UHFFFAOYSA-N 1-butyl-1-methylphospholan-1-ium Chemical compound CCCC[P+]1(C)CCCC1 LZCBPGWHCMGYMZ-UHFFFAOYSA-N 0.000 description 2
- KUQUHMNWLQNGCF-UHFFFAOYSA-N 1-ethyl-1-methylphospholan-1-ium Chemical compound CC[P+]1(C)CCCC1 KUQUHMNWLQNGCF-UHFFFAOYSA-N 0.000 description 2
- CQKFNMOCFUHLCN-UHFFFAOYSA-N 1-methyl-1-phenylphospholan-1-ium Chemical compound C=1C=CC=CC=1[P+]1(C)CCCC1 CQKFNMOCFUHLCN-UHFFFAOYSA-N 0.000 description 2
- FJNXRRZOCDGMMP-UHFFFAOYSA-N 1-methyl-1-propylphospholan-1-ium Chemical compound CCC[P+]1(C)CCCC1 FJNXRRZOCDGMMP-UHFFFAOYSA-N 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- 229910017048 AsF6 Inorganic materials 0.000 description 2
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 2
- 229910004263 Li(NiMnCo) Inorganic materials 0.000 description 2
- 229910052493 LiFePO4 Inorganic materials 0.000 description 2
- 229910019785 NBF4 Inorganic materials 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910006020 NiCoAl Inorganic materials 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-O Pyrazolium Chemical compound C1=CN[NH+]=C1 WTKZEGDFNFYCGP-UHFFFAOYSA-O 0.000 description 2
- RWRDLPDLKQPQOW-UHFFFAOYSA-O Pyrrolidinium ion Chemical compound C1CC[NH2+]C1 RWRDLPDLKQPQOW-UHFFFAOYSA-O 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 150000001345 alkine derivatives Chemical class 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- SKOLWUPSYHWYAM-UHFFFAOYSA-N carbonodithioic O,S-acid Chemical class SC(S)=O SKOLWUPSYHWYAM-UHFFFAOYSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical group C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- ZWWCURLKEXEFQT-UHFFFAOYSA-N dinitrogen pentaoxide Chemical class [O-][N+](=O)O[N+]([O-])=O ZWWCURLKEXEFQT-UHFFFAOYSA-N 0.000 description 2
- BVQAWSJMUYMNQN-UHFFFAOYSA-N dipyridophenazine Chemical compound C1=CC=C2C3=NC4=CC=CC=C4N=C3C3=CC=CN=C3C2=N1 BVQAWSJMUYMNQN-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- PSPMZIDFGRRQPU-UHFFFAOYSA-M ethyl-methyl-dipropylphosphanium;iodide Chemical compound [I-].CCC[P+](C)(CC)CCC PSPMZIDFGRRQPU-UHFFFAOYSA-M 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910021480 group 4 element Inorganic materials 0.000 description 2
- 229910021478 group 5 element Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 2
- FRMOHNDAXZZWQI-UHFFFAOYSA-N lithium manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[Ni+2].[Li+] FRMOHNDAXZZWQI-UHFFFAOYSA-N 0.000 description 2
- 229910001947 lithium oxide Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 238000005442 molecular electronic Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 150000005041 phenanthrolines Chemical class 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001289 polyvinyl ether Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000002390 rotary evaporation Methods 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 229910018861 (C5H5)2Fe Inorganic materials 0.000 description 1
- SHSSLLOLLZHESK-UHFFFAOYSA-M 1-butyl-1-ethylphospholan-1-ium;iodide Chemical compound [I-].CCCC[P+]1(CC)CCCC1 SHSSLLOLLZHESK-UHFFFAOYSA-M 0.000 description 1
- SUFLAGNMNCBHRT-UHFFFAOYSA-N 1-butylphosphinane Chemical compound CCCCP1CCCCC1 SUFLAGNMNCBHRT-UHFFFAOYSA-N 0.000 description 1
- HUWKILZNNQBKKT-UHFFFAOYSA-N 1-butylphospholane Chemical compound CCCCP1CCCC1 HUWKILZNNQBKKT-UHFFFAOYSA-N 0.000 description 1
- KMRBEKCLQRFBPO-UHFFFAOYSA-M 1-ethyl-1-methylphosphinan-1-ium;iodide Chemical compound [I-].CC[P+]1(C)CCCCC1 KMRBEKCLQRFBPO-UHFFFAOYSA-M 0.000 description 1
- JNOWSZABIPABHH-UHFFFAOYSA-N 1-ethyl-1-methylphospholan-1-ium;nitrate Chemical compound [O-][N+]([O-])=O.CC[P+]1(C)CCCC1 JNOWSZABIPABHH-UHFFFAOYSA-N 0.000 description 1
- OFKCFUCRFXSKRV-UHFFFAOYSA-N 1-ethylphosphinane Chemical compound CCP1CCCCC1 OFKCFUCRFXSKRV-UHFFFAOYSA-N 0.000 description 1
- ILDJYBYCHCSGMR-UHFFFAOYSA-N 1-ethylphospholane Chemical compound CCP1CCCC1 ILDJYBYCHCSGMR-UHFFFAOYSA-N 0.000 description 1
- PFILEFCRRKEBFA-UHFFFAOYSA-N 1-phenylphosphinane Chemical compound C1CCCCP1C1=CC=CC=C1 PFILEFCRRKEBFA-UHFFFAOYSA-N 0.000 description 1
- JYDAZNWPLREYCL-UHFFFAOYSA-N 1-phenylphospholane Chemical compound C1CCCP1C1=CC=CC=C1 JYDAZNWPLREYCL-UHFFFAOYSA-N 0.000 description 1
- LHQYPQFGWOVTCF-UHFFFAOYSA-N 1-propylphosphinane Chemical compound CCCP1CCCCC1 LHQYPQFGWOVTCF-UHFFFAOYSA-N 0.000 description 1
- SUPVJDHNSHKGBR-UHFFFAOYSA-N 1-propylphospholane Chemical compound CCCP1CCCC1 SUPVJDHNSHKGBR-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- JFJNVIPVOCESGZ-UHFFFAOYSA-N 2,3-dipyridin-2-ylpyridine Chemical class N1=CC=CC=C1C1=CC=CN=C1C1=CC=CC=N1 JFJNVIPVOCESGZ-UHFFFAOYSA-N 0.000 description 1
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- HMZRMTOFMZSSTO-UHFFFAOYSA-N 2-butyl-1h-phosphole Chemical compound CCCCC1=CC=CP1 HMZRMTOFMZSSTO-UHFFFAOYSA-N 0.000 description 1
- SFPSQHKUYOFLDQ-UHFFFAOYSA-N 2-ethyl-1h-phosphole Chemical compound CCC1=CC=CP1 SFPSQHKUYOFLDQ-UHFFFAOYSA-N 0.000 description 1
- 125000004918 2-methyl-2-pentyl group Chemical group CC(C)(CCC)* 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- XRUMKPYIPGKNJD-UHFFFAOYSA-N 2-phenyl-1h-phosphole Chemical compound C1=CPC(C=2C=CC=CC=2)=C1 XRUMKPYIPGKNJD-UHFFFAOYSA-N 0.000 description 1
- QPXLHXGRVPTFBG-UHFFFAOYSA-N 2-propyl-1h-phosphole Chemical compound CCCC1=CC=CP1 QPXLHXGRVPTFBG-UHFFFAOYSA-N 0.000 description 1
- BMUDPLZKKRQECS-UHFFFAOYSA-K 3-[18-(2-carboxyethyl)-8,13-bis(ethenyl)-3,7,12,17-tetramethylporphyrin-21,24-diid-2-yl]propanoic acid iron(3+) hydroxide Chemical compound [OH-].[Fe+3].[N-]1C2=C(C)C(CCC(O)=O)=C1C=C([N-]1)C(CCC(O)=O)=C(C)C1=CC(C(C)=C1C=C)=NC1=CC(C(C)=C1C=C)=NC1=C2 BMUDPLZKKRQECS-UHFFFAOYSA-K 0.000 description 1
- VAJVGAQAYOAJQI-UHFFFAOYSA-N 3-[18-(2-carboxylatoethyl)-3,8,13,17-tetramethyl-22,23-dihydroporphyrin-21,24-diium-2-yl]propanoate Chemical compound N1C(C=C2C(C)=CC(N2)=CC=2C(=C(CCC(O)=O)C(=C3)N=2)C)=CC(C)=C1C=C1C(C)=C(CCC(O)=O)C3=N1 VAJVGAQAYOAJQI-UHFFFAOYSA-N 0.000 description 1
- NCAJWYASAWUEBY-UHFFFAOYSA-N 3-[20-(2-carboxyethyl)-9,14-diethyl-5,10,15,19-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(21),2,4,6(24),7,9,11,13,15,17,19-undecaen-4-yl]propanoic acid Chemical compound N1C2=C(C)C(CC)=C1C=C(N1)C(C)=C(CC)C1=CC(C(C)=C1CCC(O)=O)=NC1=CC(C(CCC(O)=O)=C1C)=NC1=C2 NCAJWYASAWUEBY-UHFFFAOYSA-N 0.000 description 1
- 125000004919 3-methyl-2-pentyl group Chemical group CC(C(C)*)CC 0.000 description 1
- JIVLDFFWTQYGSR-UHFFFAOYSA-N 4,7-dimethyl-[1,10]phenanthroline Chemical compound C1=CC2=C(C)C=CN=C2C2=C1C(C)=CC=N2 JIVLDFFWTQYGSR-UHFFFAOYSA-N 0.000 description 1
- 125000004920 4-methyl-2-pentyl group Chemical group CC(CC(C)*)C 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical class [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241001120493 Arene Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- GXSRAXAETCXSBC-UHFFFAOYSA-N C(CCC)C(C)[P] Chemical compound C(CCC)C(C)[P] GXSRAXAETCXSBC-UHFFFAOYSA-N 0.000 description 1
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 1
- UJKPHYRXOLRVJJ-MLSVHJFASA-N CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C Chemical compound CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C UJKPHYRXOLRVJJ-MLSVHJFASA-N 0.000 description 1
- KSFOVUSSGSKXFI-GAQDCDSVSA-N CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O Chemical compound CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O KSFOVUSSGSKXFI-GAQDCDSVSA-N 0.000 description 1
- LODPZDWUMCZTOA-UHFFFAOYSA-N CCCC1CCCCP1C Chemical compound CCCC1CCCCP1C LODPZDWUMCZTOA-UHFFFAOYSA-N 0.000 description 1
- LJRVQXRXKJPQSW-UHFFFAOYSA-N CCCCC1CCCCP1C Chemical compound CCCCC1CCCCP1C LJRVQXRXKJPQSW-UHFFFAOYSA-N 0.000 description 1
- HCKYCMXJPKXJBB-UHFFFAOYSA-N CCCCCCC1CCCCP1C Chemical compound CCCCCCC1CCCCP1C HCKYCMXJPKXJBB-UHFFFAOYSA-N 0.000 description 1
- ZHDYNXRKIQFXRF-UHFFFAOYSA-N CCP1(C)CCCCC1 Chemical compound CCP1(C)CCCCC1 ZHDYNXRKIQFXRF-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 101001021103 Homo sapiens Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial Proteins 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- SAFAOXARLNPQOP-UHFFFAOYSA-N N#C[Si]SC#N Chemical group N#C[Si]SC#N SAFAOXARLNPQOP-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 102100036201 Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial Human genes 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910021612 Silver iodide Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 241000287433 Turdus Species 0.000 description 1
- GPVWCGHDIGTNCE-UHFFFAOYSA-N [Fe](=S)=S.[Li] Chemical compound [Fe](=S)=S.[Li] GPVWCGHDIGTNCE-UHFFFAOYSA-N 0.000 description 1
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- NDPGDHBNXZOBJS-UHFFFAOYSA-N aluminum lithium cobalt(2+) nickel(2+) oxygen(2-) Chemical compound [Li+].[O--].[O--].[O--].[O--].[Al+3].[Co++].[Ni++] NDPGDHBNXZOBJS-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- RYXHOMYVWAEKHL-UHFFFAOYSA-N astatine atom Chemical compound [At] RYXHOMYVWAEKHL-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 150000004036 bacteriochlorins Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- KVBYPTUGEKVEIJ-UHFFFAOYSA-N benzene-1,3-diol;formaldehyde Chemical compound O=C.OC1=CC=CC(O)=C1 KVBYPTUGEKVEIJ-UHFFFAOYSA-N 0.000 description 1
- IWCQVOVBDXJJDF-UHFFFAOYSA-N benzene;chromium;cyclohexane Chemical compound [Cr].[CH-]1[CH-][CH-][CH-][CH-][CH-]1.C1=CC=CC=C1 IWCQVOVBDXJJDF-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- DVQCSQKAKACEGZ-UHFFFAOYSA-N butyl-ethyl-hexylphosphane Chemical compound CCCCCCP(CC)CCCC DVQCSQKAKACEGZ-UHFFFAOYSA-N 0.000 description 1
- SKXSOGCIGQMMOO-UHFFFAOYSA-N butyl-ethyl-methyl-propylphosphanium Chemical compound CCCC[P+](C)(CC)CCC SKXSOGCIGQMMOO-UHFFFAOYSA-N 0.000 description 1
- BHWOFJARJXORKD-UHFFFAOYSA-N butyl-ethyl-methylphosphane Chemical compound CCCCP(C)CC BHWOFJARJXORKD-UHFFFAOYSA-N 0.000 description 1
- GTFOFESGWQFPGJ-UHFFFAOYSA-N butyl-ethyl-propylphosphane Chemical compound CCCCP(CC)CCC GTFOFESGWQFPGJ-UHFFFAOYSA-N 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 150000004035 chlorins Chemical class 0.000 description 1
- 229930002868 chlorophyll a Natural products 0.000 description 1
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 1
- 229930002869 chlorophyll b Natural products 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 150000004039 corphins Chemical class 0.000 description 1
- WUPRCGRRQUZFAB-DEGKJRJSSA-N corrin Chemical compound N1C2CC\C1=C\C(CC/1)=N\C\1=C/C(CC\1)=N/C/1=C\C1=NC2CC1 WUPRCGRRQUZFAB-DEGKJRJSSA-N 0.000 description 1
- LYNARWYQOUZXDY-UHFFFAOYSA-N corrole Chemical compound N1C(C=C2NC(=CC=3NC4=CC=3)C=C2)=CC=C1C=C1C=CC4=N1 LYNARWYQOUZXDY-UHFFFAOYSA-N 0.000 description 1
- 238000003869 coulometry Methods 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 125000006841 cyclic skeleton Chemical group 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- QPJFIVIVOOQUKD-UHFFFAOYSA-N dipyrazino[2,3-f:2,3-h]quinoxaline Chemical group C1=CN=C2C3=NC=CN=C3C3=NC=CN=C3C2=N1 QPJFIVIVOOQUKD-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- RZCMCXHLUCOHPP-UHFFFAOYSA-N ethyl(dipropyl)phosphane Chemical compound CCCP(CC)CCC RZCMCXHLUCOHPP-UHFFFAOYSA-N 0.000 description 1
- RGRZDRAVZAZBDZ-UHFFFAOYSA-N ethyl(methyl)phosphanium;iodide Chemical compound [I-].CC[PH2+]C RGRZDRAVZAZBDZ-UHFFFAOYSA-N 0.000 description 1
- YAGMCBIUTUVNRS-UHFFFAOYSA-N ethyl-methyl-dipropylphosphanium Chemical compound CCC[P+](C)(CC)CCC YAGMCBIUTUVNRS-UHFFFAOYSA-N 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229940109738 hematin Drugs 0.000 description 1
- 229960003569 hematoporphyrin Drugs 0.000 description 1
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical compound CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 description 1
- 229940025294 hemin Drugs 0.000 description 1
- 125000006341 heptafluoro n-propyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004404 heteroalkyl group Chemical group 0.000 description 1
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-O hydron;pyrimidine Chemical compound C1=CN=C[NH+]=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-O 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000004037 isobacteriochlorins Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- VFQXVTODMYMSMJ-UHFFFAOYSA-N isonicotinamide Chemical compound NC(=O)C1=CC=NC=C1 VFQXVTODMYMSMJ-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- VGYDTVNNDKLMHX-UHFFFAOYSA-N lithium;manganese;nickel;oxocobalt Chemical compound [Li].[Mn].[Ni].[Co]=O VGYDTVNNDKLMHX-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052960 marcasite Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 238000001393 microlithography Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910001317 nickel manganese cobalt oxide (NMC) Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000007524 organic acids Chemical group 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 125000003431 oxalo group Chemical group 0.000 description 1
- WYURNTSHIVDZCO-SVYQBANQSA-N oxolane-d8 Chemical compound [2H]C1([2H])OC([2H])([2H])C([2H])([2H])C1([2H])[2H] WYURNTSHIVDZCO-SVYQBANQSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000002097 pentamethylcyclopentadienyl group Chemical group 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- ASBFNPBREVZDOE-UHFFFAOYSA-N phenanthrene-9,10-diimine Chemical compound C1=CC=C2C(=N)C(=N)C3=CC=CC=C3C2=C1 ASBFNPBREVZDOE-UHFFFAOYSA-N 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- MTKLVWMDKKAGQI-UHFFFAOYSA-O phosphanium;nitrate Chemical compound [PH4+].[O-][N+]([O-])=O MTKLVWMDKKAGQI-UHFFFAOYSA-O 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229950003776 protoporphyrin Drugs 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- CVSGFMWKZVZOJD-UHFFFAOYSA-N pyrazino[2,3-f]quinoxaline Chemical compound C1=CN=C2C3=NC=CN=C3C=CC2=N1 CVSGFMWKZVZOJD-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 229910052683 pyrite Inorganic materials 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910021481 rutherfordium Inorganic materials 0.000 description 1
- YGPLJIIQQIDVFJ-UHFFFAOYSA-N rutherfordium atom Chemical compound [Rf] YGPLJIIQQIDVFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229940045105 silver iodide Drugs 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- JUDUFOKGIZUSFP-UHFFFAOYSA-M silver;4-methylbenzenesulfonate Chemical compound [Ag+].CC1=CC=C(S([O-])(=O)=O)C=C1 JUDUFOKGIZUSFP-UHFFFAOYSA-M 0.000 description 1
- RAVDHKVWJUPFPT-UHFFFAOYSA-N silver;oxido(dioxo)vanadium Chemical compound [Ag+].[O-][V](=O)=O RAVDHKVWJUPFPT-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000009662 stress testing Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000000858 thiocyanato group Chemical group *SC#N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- QGPWMPVOXJEOHH-UHFFFAOYSA-M triethyl(methyl)phosphanium;iodide Chemical compound [I-].CC[P+](C)(CC)CC QGPWMPVOXJEOHH-UHFFFAOYSA-M 0.000 description 1
- WUGKRSAUUCWQLX-UHFFFAOYSA-N triethyl(methyl)phosphanium;nitrate Chemical compound [O-][N+]([O-])=O.CC[P+](C)(CC)CC WUGKRSAUUCWQLX-UHFFFAOYSA-N 0.000 description 1
- VXDBZKGRGPBUOE-UHFFFAOYSA-M triethyl(propyl)phosphanium;bromide Chemical compound [Br-].CCC[P+](CC)(CC)CC VXDBZKGRGPBUOE-UHFFFAOYSA-M 0.000 description 1
- NKKDYOFUNUWUTQ-UHFFFAOYSA-M triethyl(propyl)phosphanium;iodide Chemical compound [I-].CCC[P+](CC)(CC)CC NKKDYOFUNUWUTQ-UHFFFAOYSA-M 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004832 voltammetry Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/535—Organo-phosphoranes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/54—Quaternary phosphonium compounds
- C07F9/5407—Acyclic saturated phosphonium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/54—Quaternary phosphonium compounds
- C07F9/5442—Aromatic phosphonium compounds (P-C aromatic linkage)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6568—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
- C07F9/65688—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphonium compound
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6571—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
- C07F9/6574—Esters of oxyacids of phosphorus
- C07F9/65742—Esters of oxyacids of phosphorus non-condensed with carbocyclic rings or heterocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6571—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
- C07F9/6574—Esters of oxyacids of phosphorus
- C07F9/65748—Esters of oxyacids of phosphorus the cyclic phosphorus atom belonging to more than one ring system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the invention generally encompasses electrolyte compositions based on phosphonium ionic liquids, salts, compositions and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, high temperature reaction and/or extraction media, among other applications.
- electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory
- energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors
- electrolytic capacitors as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, high temperature reaction and/or extraction media, among other applications.
- the invention relates to phosphonium ionic liquids, salts, compositions and molecules possessing structural features, wherein the compositions exhibit desired combination of at least two or more of: thermodynamic stability, low volatility, wide liquidus range, and ionic conductivity.
- the invention further encompasses methods of making such phosphonium ionic liquids, salts, compositions and molecules, and operational devices and systems comprising the same.
- Ionic liquids have received significant attention due in part to their wide potential use and application.
- the term "ionic liquid” is commonly used for salts whose melting point is relatively low (at and below 100 °C). Salts that are liquid at room temperature are commonly called room-temperature ionic liquids.
- Early investigators employed ionic liquids based on dialkylimidazolium salts. For example, Wilkes et. al developed ionic liquids based on dialkylimidazolium salts for use with an aluminum metal anode and chlorine cathode in an attempt to create a battery. J. Wilkes, J. Levisky, R. Wilson, C. Hussey, Inorg. Chem, 21, 1263 (1982).
- ionic liquids are based on pyridinium salts, with N- alkylpyridinium and ⁇ , ⁇ '- dialkylimidazolium finding significant use.
- Pyridinium based ionic liquids including N-alkyl- pyridinium and N,N- dialkylimidazolium, and nitrogen-based ionic liquids generally possess thermodynamic stabilities limited to 300 °C , or less, are readily distillable, and tend to have measurable vapor pressures at temperatures significantly less than 200 °C. Such properties limit their usefulness, as well as their applications.
- such ionic liquids are susceptible to decomposition during back end of line (BEOL) thermal processing. Additionally, such ionic liquids are also decomposed during other heat-transfer processing steps which often subject the ionic liquids to continuous thermal cycling to temperatures exceeding 300 °C.
- BEOL back end of line
- the invention broadly encompasses phosphonium ionic liquids, salts, compositions and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye- sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, high temperature reactions and/or extraction media, among other applications.
- electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory
- energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors
- electrolytic capacitors as electrolytes in dye- sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, high temperature reactions and/or extraction media, among other applications.
- the invention relates to phosphonium ionic liquids, salts, compositions and molecules possessing structural features, wherein the compositions exhibit desired combinations of at least two or more of: thermodynamic stability, low volatility, wide liquidus range and ionic conductivity.
- an ionic liquid composition comprising: one or more phosphonium based cations of the general formula:
- R'R 2 R 3 R 4 P wherein: R 1 , R 2 , R 3 and R 4 are optional and each independently a substituent group; and one or more anions.
- R 1 , R 2 , R 3 and R 4 are each independently a different alkyl group comprised of 2 to 14 carbon atoms.
- at least one of R', R 2 , R 3 and R 4 is an aliphatic, heterocyclic moiety.
- at least one of R 1 , R 2 , R 3 and R 4 is an aromatic, heterocyclic moiety.
- R and R "* are the same and are comprised of: tetramethylene phospholane, pentamethylele phosphorinane, tetramethinyl phosphole, phospholane or phosphorinane.
- R 2 , R 3 and R 4 are the same and are comprised of: phospholane, phosphorinane or phosphole.
- an ionic liquid composition comprising one or more phosphonium based cations, and one or more anions, wherein the ionic liquid
- composition exhibits thermodynamic stability greater than 375 °C, a liquidus range greater than 400 °C, and ionic conductivity up to 10 mS/cm at room temperature
- the invention encompasses electrolyte compositions comprised of phosphonium based cations with suitable anions.
- electrolyte or “electrolyte solution” or “electrolyte composition” or “ionic electrolyte” or “ion conducting electrolyte” or “ion conducting composition” or “ionic composition” is used and is herein defined as any one or more of: (a) an ionic liquid, (b) a room temperature ionic liquid, (c) one or more salts dissolved in at least one solvent, and (d) one or more salts dissolved in at least one solvent together with at least one polymer to form a gel electrolyte.
- the one or more salts are defined to include: (a) one or more salts that are a solid at a temperature of 100 °C and below, and (b) one or more salts that are a liquid at a temperature of 100 °C and below.
- electrolyte compositions are provided and are comprised of : one or more salts dissolved in a solvent, the one or more salts comprising one or more phosphonium based cations of the general formula: R'R 2 R 3 R 4 P (1) and one or more anions, and wherein: R 1 , R 2 , R 3 and R 4 are each independently a substituent group, such as but not limited to an alkyl group as described below.
- R , R J and R" are each independently an alkyl group comprised of 1 to 6 carbon atoms, more usually 1 to 4 carbon atoms. Any one or more of the salts may be liquid or solid at a temperature of 100 °C and below.
- a salt is comprised of one cation and one anion pair.
- a salt is comprised of one cation and multiple anions.
- a salt is comprised of one anion and multiple cations.
- a salt is comprised of multiple cations and multiple anions.
- the electrolyte composition further comprises one or more conventional, non-phosphonium salts.
- the electrolyte composition may be comprised of conventional salts, and wherein the phosphonium based ionic liquids or salts disclosed herein are additives.
- electrolyte composition is comprised of phosphonium based ionic liquids or salts and one or more conventional salts, present at a mole (or molar) ratio in the range of 1 : 100 to 1 : 1 , phosphonium based ionic liquid or salt:
- conventional salt examples include but are not limited to salts which are comprised of one or more cations selected from the group consisting of:
- tetraalkylammonium such as (CH 3 CH 2 ) 4 N + , (CH 3 CH 2 ) 3 (CH 3 )N + , (CH 3 CH 2 ) 2 (CH 3 ) 2 N + , (CH 3 CH 2 )(CH 3 ) 3 N + , (CH 3 ) 4 N + , imidazolium, pyrazolium, pyridinium, pyrazinium, pyrimidinium, pyridazinium, pyrrolidinium and one or more anions selected from the group consisting of: C10 4 " , BF “ , CF 3 S0 3 " , PF 6 " , AsF 6 " , SbF 6 “ , (CF 3 S0 2 ) 2 N “ , (CF3CF 2 S0 2 ) 2 N “ , (CF 3 S0 2 ) 3 C " .
- the one or more conventional salts include but not limited to: tetraethylammonium tetrafluorborate (TEABF 4 ), triethylmethylammonium tetrafluoroborate (TEMABF 4 ), l-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF 4 ), 1-ethyl-l- methylpyrrolidinium tetrafluoroborate (EMPBF 4 ), l-ethyl-3-methylimidazolium
- EMIIm bis(trifluoromethanesulfonyl)imide
- the one or more conventional salts are lithium based salts including but not limited to: lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiC10 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium trifluoromethanesulfonate or lithium triflate (LiCF 3 S0 3 ), lithium bis(trifluoromethanesulfonyl)imide (Li(CF 3 S0 2 )2N or Lilm), and lithium lithium based salts including but not limited to: lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiC10 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium trifluoromethanesulfonate or lithium triflate (LiCF 3 S0 3 ),
- Li(CF3CF 2 S0 2 ) 2 N or LiBETI bis(pentafluoromethanesulfonyl)imide
- a battery comprising: a positive electrode, a negative electrode, a separator between said positive and negative electrode; and an electrolyte.
- the electrolyte is comprised of an ionic liquid composition or one or more salts dissolved in a solvent, comprising: one or more phosphonium based cations of the general formula:
- the electrolyte is comprised of an ionic liquid having one or more phosphonium based cations, and one or more anions, wherein the ionic liquid composition exhibits thermodynamic stability up to 375 °C, a liquidus range greater than 400 °C, and ionic conductivity of at least 1 mS/cm, or at least 5 mS/cm, or at least 10 mS/cm at room
- the electrolyte is comprised of one or more salts having one or more phosphonium based cations, and one or more anions dissolved in a solvent, wherein the electrolyte composition exhibits ionic conductivity of at least 5 mS/cm, or at least 10 mS/cm, or at least 15 mS/cm, or at least 20 mS/cm, or at least 30 mS/cm, or at least 40 mS/cm, or at least 50 mS/cm, or at least 60 mS/cm at room temperature.
- the phosphonium electrolyte exhibits reduced flammability as compared to conventional electrolytes, and thus improves the safety of battery operation.
- the phosphonium ionic liquid or salt can be used as an additive to facilitate the formation of a solid electrolyte interphase (SEI) layer or electrode protective layer.
- SEI solid electrolyte interphase
- the SEI layer may widen the electrochemical stability window, suppress battery degradation or decomposition reactions and hence improve battery cycle life.
- an electrochemical double layer capacitor comprising: a positive electrode, a negative electrode, a separator between said positive and negative electrode; and an electrolyte.
- the electrolyte is comprised of an ionic liquid composition or one or more salts dissolved in a solvent, comprising: one or more phosphonium based cations of the general formula:
- the electrolyte is comprised of an ionic liquid having one or more phosphonium based cations, and one or more anions, wherein the ionic liquid composition exhibits thermodynamic stability up to 375 °C, a liquidus range greater than 400 °C, and ionic conductivity of at least 1 mS/cm, or at least 5 mS/cm, or at least 10 mS/cm at room
- the electrolyte is comprised of one or more salts having one or more phosphonium based cations, and one or more anions dissolved in a solvent, wherein the electrolyte composition exhibits ionic conductivity of at least at least 5 mS/cm, or at least 10 mS/cm, or at least 15 mS/cm, or at least 20 mS/cm, or at least 30 mS/cm, or at least 40 mS/cm, or at least 50 mS/cm, or at least 60 mS/cm at room temperature.
- the phosphonium electrolyte exhibits reduced flammability as compared to conventional electrolytes, and thus improves the safety of EDLC operation.
- the phosphonium ionic liquid or salt can be used as an additive to facilitate the formation of a solid electrolyte interphase (SEI) layer or electrode protective layer.
- SEI solid electrolyte interphase
- electrochemical stability window suppress EDLC degradation or decomposition reactions and hence improve EDLC cycle life.
- Embodiments of the present invention further provide a heat transfer medium, comprising an ionic liquid composition or one or more salts dissolved in a solvent, comprising: one or more phosphonium based cations, and one or more anions, wherein the heat transfer medium exhibits thermodynamic stability at temperatures greater than 375 °C, a liquidus range of greater than 400 °C.
- phosphonium ionic liquid compositions and salts are useful in forming a variety of hybrid electrical devices.
- a device comprising a first electrode, a second electrode; and an electrolyte comprised of an ionic liquid composition or one or more salts dissolved in a solvent, comprising: one or more phosphonium based cations of the general formula:
- R'R 2 R 3 R 4 P where R 1 , R 2 , R 3 and R 4 are each independently a substituent group; and one or more anions, and wherein said electrolyte is electrically coupled to at least one of said first and second electrodes.
- the first electrode is comprised of redox active molecules (ReAMs).
- a molecular storage device comprising a working electrode and a counter electrode configured to afford electrical capacitance; and an ion conducting composition comprising: one or more phosphonium based cations of the general formula above and wherein the ion conducting composition is electrically coupled to at least the working and counter electrodes.
- the invention encompasses a molecular memory element that includes a switching device, a bit line and a word line coupled to the switching device and a molecular storage device accessible through the switching device.
- the molecular storage device is capable of being placed in two or more discrete states, wherein the molecular storage device is placed in one of the discrete states by signals applied to the bit and word line.
- the molecular storage device comprises a first electrode, a second electrode and an electrolyte of phosphonium based cations and suitable anions between the first and second electrode.
- Another embodiment encompasses molecular memory arrays comprising a plurality of molecular storage elements where each molecular storage element is capable of being placed in two or more discrete states.
- a plurality of bit lines and word lines are coupled to the plurality of molecular storage elements such that each molecular storage element is coupled to and addressable by at least one bit line and at least one word line.
- FIG. 1 is cross-sectional view of an electrochemical double layer capacitor (EDLC) according to one embodiment of the present invention
- FIGS. 2 A and 2B are cross-sectional views of bipolar electrode and multi-cell stack structures of an EDLC according to one embodiment of the present invention
- FIG. 3 depicts one reaction scheme to form a phosphonium ionic liquid according to some embodiments of the present invention
- FIG. 4 depicts another reaction scheme to form other embodiments of a phosphonium ionic liquid of the present invention
- FIG. 5 depicts another reaction scheme to form a phosphonium ionic liquid according to other embodiments of the present invention.
- FIG. 6 depicts another reaction scheme to form a phosphonium ionic liquid according to further embodiments of the present invention.
- FIG. 7 is a thermogravimetric analysis (TGA) graph performed on exemplary embodiments of phosphonium ionic liquids prepared according to Example 1 ;
- FIG. 8A depicts a reaction scheme
- FIGS. 8B and 8C illustrate thermogravimetric analysis (TGA) and evolved gas analysis (EGA) graphs, respectively, for exemplary embodiments of phosphonium ionic liquids prepared according to Example 2;
- FIG. 9A and 9B are graphs illustrating thermogravimetric analysis (TGA) and evolved gas analysis (EGA), respectively, for exemplary embodiments of phosphonium ionic liquids prepared according to Example 3;
- FIG. 10A depicts a reaction scheme
- FIG. 10B shows the ⁇ NMR spectrum for exemplary embodiments of phosphonium ionic liquids prepared as described in FIG. 4 and Example 4;
- FIG. 11A is a reaction scheme
- FIG. 1 IB is a graph showing thermogravimetric analysis (TGA) results for exemplary embodiments of phosphonium ionic liquids prepared according to Example 5;
- FIG. 12 is a graph showing thermogravimetric analysis (TGA) results for exemplary embodiments of phosphonium ionic liquids prepared according to Example 6;
- FIG. 13 is a graph showing thermogravimetric analysis (TGA) results for exemplary embodiments of phosphonium ionic liquids prepared according to Example 7;
- FIG. 14A depicts a reaction scheme, and
- FIG. 14B is a graph showing thermogravimetric analysis (TGA) results for exemplary embodiments of phosphonium ionic liquids prepared according to Example 8;
- FIG. 15A and FIG. 15B show the ⁇ and 3 I P NMR spectra respectively for exemplary embodiments of phosphonium salt prepared as described in Example 9;
- FIG. 16 is a graph showing thermogravimetric analysis (TGA) results for exemplary embodiments of phosphonium salt prepared according to Example 9;
- FIG. 17A and FIG. 17B show the ⁇ and 31 P NMR spectra respectively for exemplary embodiments of phosphonium salt prepared as described in Example 10;
- FIG. 18 is a graph showing thermogravimetric analysis (TGA) results for exemplary embodiments of phosphonium salt prepared according to Example 10.
- FIG. 19A and FIG. 19B show the ⁇ and 31 P NMR spectra respectively for exemplary embodiments of phosphonium salt prepared as described in Example 11 ;
- FIG. 20 is a graph showing thermogravimetric analysis (TGA) results for exemplary embodiments of phosphonium salt prepared according to Example 1 1 ;
- FIG. 21A and FIG. 21B are graphs showing differential scanning calorimetry (DSC) results for exemplary embodiments of phosphonium ionic liquids prepared according to Example 12;
- FIG. 22 depicts ionic conductivity as a function of ACN/salt volume ratio for phosphonium salt (CH 3 CH 2 CH 2 )(CH3CH2)(CH3) 2 PC(CN) 3 in acetonitrile (ACN) as described in Example 14;
- FIG. 23 depicts ionic conductivity as a function of PC/salt volume ratio for phosphonium salt (CH 3 CH 2 CH 2 )(CH 3 CH 2 )(CH 3 ) 2 PC(CN) 3 in propylene carbonate (PC) as described in Example 15;
- FIG. 24 depicts ionic conductivity as a function of molar concentration of phosphonium salts compared to an ammonium salt in propylene carbonate as described in Examples 42-45;
- FIG. 25 depicts vapor pressure as a function of temperature for acetonitrile, acetonitrile with 1.0 M ammonium salt, and acetonitrile with 1.0 M phosphonium salt as described in Example 46;
- FIG. 26 shows the impact of phosphonium salt
- FIG. 27 shows the impact of phosphonium salt
- FIG. 28 is cross sectional view of an EDLC coin cell according to one embodiment of the present invention as described in Example 53;
- FIG. 29 shows the charge - discharge curve for a coin cell with 1.0 M phosphonium salt - (CH 3 CH 2 CH 2 )(CH 3 CH 2 )(CH3) 2 CF3F3 in propylene carbonate as described in Example 53;
- FIG. 30A is cross sectional view of an EDLC pouch cell according to one embodiment of the present invention as described in Examples 54-57;
- FIG. 30B illustrates the fabrication process of an EDLC pouch cell according to one embodiment of the present invention as described in Examples 54-57;
- FIG. 31A shows the charge - discharge curve for a pouch cell with 1.0 M phosphonium salt - (CH3CH 2 CH 2 )(CH 3 CH 2 )(CH3) 2 CF 3 F3 in propylene carbonate as described in Examples 54-57;
- FIG. 3 IB shows the resolved electrode potential at the positive and negative carbon electrodes measured with a silver reference electrode as described in Examples 54-57;
- FIG. 32 is exploded view of an EDLC cylindrical cell according to one embodiment of the present invention as described in Example 58;
- FIG. 33 shows the charge - discharge curve for a cylindrical cell with 1.0 M
- FIG. 34 shows capacitance retention at 2.7 V and 70 °C for pouch cells with 1.0 M phosphonium salts compared to an ammonium salt in propylene carbonate as described in Examples 59-61 ;
- FIG. 35 shows capacitance retention at different temperatures for pouch cells with 1.0 M phosphonium salt compared to an ammonium salt in propylene carbonate as described in Example 62.
- the present invention is generally directed to phosphonium ionic liquids, salts, and compositions and their use in many applications.
- the invention encompasses novel phosphonium ionic liquids, salts, compositions and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in batteries, electrochemical double layer capacitors, electrolytic capacitors, fuel cells, dye-sensitized solar cells, and electrochromic devices. Additional applications include use as a heat transfer medium, high temperature reaction and/or extraction media, among other applications.
- the invention relates to phosphonium ionic liquids, salts, compositions and molecules possessing structural features, wherein the composition exhibits desirable combination of at least two or more of: thermodynamic stability, low volatility, wide liquidus range, ionic conductivity, and electrochemical stability.
- the invention further encompasses methods of making such phosphonium ionic liquids, compositions and molecules, and operational devices and systems comprising the same.
- embodiments of the present invention provide devices having an electrolyte comprised of phosphonium ionic liquid compositions or one or more salts dissolved in a solvent.
- embodiments of the present invention provide a battery comprising an electrolyte comprised of phosphonium ionic liquid compositions or one or more salts dissolved in a solvent.
- embodiments of the present invention provide an electrochemical double layer capacitor (EDLC) comprising an electrolyte comprised of phosphonium ionic liquid compositions or one or more salts dissolved in a solvent.
- EDLC electrochemical double layer capacitor
- the advantageous properties of the phosphonium ionic liquid compositions make them particularly suited for applications as an electrolyte in electronic devices, batteries, EDLC's, fuel cells, dye-sensitized solar cells (DSSCs), and electrochromic devices.
- a heat transfer medium comprised of phosphonium ionic liquid compositions or one or more salts dissolved in a solvent.
- the advantageous properties of the compositions of the present invention are well suited as a heat transfer medium, and useful in processes and systems where a heat transfer medium is employed such as in heat extraction process and high temperature reactions.
- electrolyte or “electrolyte solution” or “electrolyte composition” or “ionic electrolyte” or “ion conducting electrolyte” or “ion conducting composition” or “ionic composition” is used and is herein defined as any one or more of: (a) an ionic liquid, (b) a room temperature ionic liquid, (c) one or more salts dissolved in at least one solvent, and (d) one or more salts dissolved in at least one solvent together with at least one polymer to form a gel electrolyte.
- the one or more salts are defined to include: (a) one or more salts that are a solid at a temperature of 100 °C and below, and (b) one or more salts that are a liquid at a temperature of 100 °C and below.
- acyl refers to an organic acid group in which the OH of the carboxyl group is replaced by some other substituent (RCO-), such as described herein as “R” substituent groups. Examples include, but are not limited to, halo, acetyl, and benzoyl.
- alkoxy group means an -O- alkyl group, wherein alkyl is as defined herein.
- An alkoxy group can be unsubstituted or substituted with one, two or three suitable substituents.
- the alkyl chain of an alkoxy group is from 1 to 6 carbon atoms in length, referred to herein, for example, as "(CI - C6) alkoxy.”
- alkyl by itself or as part of another substituent, refers to a saturated or unsaturated, branched, straight-chain or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane, alkene or alkyne.
- cycloalkyl groups such as C5, C6 or other rings, and heterocyclic rings with nitrogen, oxygen, sulfur or phosphorus (heterocycloalkyl).
- Alkyl also includes heteroalkyl, with heteroatoms of sulfur, oxygen, nitrogen, phosphorous, and silicon finding particular use in certain
- Alkyl groups can be optionally substituted with R groups, independently selected at each position as described below.
- alkyl groups include, but are not limited to, (C1 -C6) alkyl groups, such as methyl, ethyl, propyl, isopropyl, 2-methyl-l -propyl, 2-methyl-2-propyl, 2 -methyl- 1 -butyl, 3- methyl-1 -butyl, 2-methyl-3-butyl, 2,2-dimethyl-l -propyl, 2-methyl-l -pentyl, 3-methyl-l - pentyl, 4-methyl-l -pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2- dimethyl-l -butyl, 3, 3 -dimethyl- 1 -butyl, 2-ethyl-l -butyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, and hexyl,
- alkyl is specifically intended to include groups having any degree or level of saturation, i.e., groups having exclusively carbon-carbon single bonds, groups having one or more carbon-carbon double bonds, groups having one or more carbon-carbon triple bonds and groups having mixtures of single, double and triple carbon-carbon bonds. Where a specific level of saturation is intended, the expressions “alkanyl,” “alkenyl,” and “alkynyl” are used.
- Alkanyl by itself or as part of another substituent, refers to a saturated branched, straight-chain or cyclic alkyl radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane.
- Heteroalkanyl is included as described above.
- alkenyl by itself or as part of another substituent, refers to an unsaturated branched, straight-chain or cyclic alkyl radical having at least one carbon-carbon double bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkene.
- the group may be in either the cis or trans conformation about the double bond(s).
- Suitable alkenyl groups include, but are not limited to (C2-C6) alkenyl groups, such as vinyl, allyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl, 2-ethylhexenyl, 2-propyl-2-butenyl, 4-(2-methyl- 3-butene)-pentenyl.
- An alkenyl group can be unsubstituted or substituted with one or more independently selected R groups.
- Alkynyl by itself or as part of another substituent, refers to an unsaturated branched, straight-chain or cyclic alkyl radical having at least one carbon-carbon triple bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkyne.
- alkyl also included within the definition of “alkyl” is “substituted alkyl”. “Substituted” is usually designated herein as “R”, and refers to a group in which one or more hydrogen atoms are independently replaced with the same or different substituent(s).
- R substituents can be independently selected from, but are not limited to, hydrogen, halogen, alkyl (including substituted alkyl (alkylthio, alkylamino, alkoxy, etc.), cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, and substituted cycloheteroalkyl), aryl (including substituted aryl, heteroaryl or substituted heteroaryl), carbonyl, alcohol, amino, amido, nitro, ethers, esters, aldehydes, sulfonyl, sulfoxyl, carbamoyl, acyl, cyano, thiocyanato, silicon moieties, halogens, sulfur containing moieties, phosphorus containing moieties, etc.
- R substituents include redox active moieties (ReAMs).
- ReAMs redox active moieties
- R and R together with the atoms to which they are bonded form a cycloalkyl (including cycloheteroalkyl) and/or cycloaryl (including cycloheteroaryl), which can also be further substituted as desired.
- R is hydrogen when the position is unsubstituted. It should be noted that some positions may allow two or three substitution groups, R, R', and R", in which case the R, R', and R" groups may be either the same or different.
- the R groups are used to adjust the redox potential(s) of the subject compound.
- an R group such as a redox active subunit can be added to a macrocycle, particularly a porphyrinic macrocycle to alter its redox potential.
- Certain preferred substituents include, but are not limited to, 4-chlorophenyl, 3-acetamidophenyl, 2,4-dichloro-4-trifluoromethyl, and ferrocene (including ferrocene derivatives).
- substituents When the substituents are used for altering redox potentials, preferred substituents provide a redox potential range of less than about 5 volts, preferably less than about 2 volts, more preferably less than about 1 volt.
- the R groups are as defined and depicted in the figures and the text from U.S. Provisional Ser. No. 60/687,464 which is incorporated herein by reference.
- a number of suitable proligands and complexes, as well as suitable substituents, are outlined in U.S. Pat. Nos.
- aryl or grammatical equivalents herein is meant an aromatic monocyclic or polycyclic hydrocarbon moiety generally containing 5 to 14 carbon atoms (although larger polycyclic rings structures may be made) and any carbocyclic ketone, imine, or thioketone derivative thereof, wherein the carbon atom with the free valence is a member of an aromatic ring.
- Aromatic groups include arylene groups and aromatic groups with more than two atoms removed. For the purposes of this application aryl includes heteroaryl.
- Heteroaryl means an aromatic group wherein 1 to 5 of the indicated carbon atoms are replaced by a heteroatom chosen from nitrogen, oxygen, sulfur, phosphorus, boron and silicon wherein the atom with the free valence is a member of an aromatic ring, and any heterocyclic ketone and thioketone derivative thereof.
- heterocycle includes both single ring and multiple ring systems, e.g. thienyl, furyl, pyrrolyl, pyrimidinyl, indolyl, purinyl, quinolyl, isoquinolyl, thiazolyl, imidazolyl, naphthalene, phenanthroline, etc.
- aryl is substituted aryl, with one or more substitution groups "R" as defined herein and outlined above and herein.
- substitution groups "R” as defined herein and outlined above and herein.
- perfluoroaryl refers to an aryl group where every hydrogen atom is replaced with a fluorine atom.
- oxalyl is also included within the definition of aryl.
- halogen refers to one of the electronegative elements of group VIIA of the periodic table (fluorine, chlorine, bromine, iodine, and astatine).
- nitro refers to the -N0 2 group.
- amino groups or grammatical equivalents herein is meant -NH2, -NHR and -NRR' groups, with R and R' independently being as defined herein.
- pyridyl refers to an aryl group where one CH unit is replaced with a nitrogen atom.
- cyano refers to the -CN group.
- thiocyanato refers to the -SCN group.
- sulfoxyl refers to a group of composition RS(O)- where R is a substitution group as defined herein, including alkyl, (cycloalkyl, perfluoroalkyl, etc.), or aryl (e.g., perfluoroaryl group). Examples include, but are not limited to methylsulfoxyl, phenylsulfoxyl, etc.
- sulfonyl refers to a group of composition RS02- where R is a substituent group, as defined herein, with alkyl, aryl, (including cycloalkyl, perfluoroalkyl, or perfluoroaryl groups). Examples include, but are not limited to methylsulfonyl, phenylsulfonyl, p- toluenesulfonyl, etc.
- the tem “carbamoyl” refers to the group of composition R(R')NC(0)- where R and R' are as defined herein, examples include, but are not limited to N-ethylcarbamoyl, N,N- dimethylcarbamoyl, etc.
- amido refers to the group of composition RiCONR 2 - where R ⁇ and R 2 are substituents as defined herein. Examples include, but are not limited to acetamido, N- ethylbenzamido, etc.
- a metal when a metal is designated, e.g., by "M” or “M n ", where n is an integer, it is recognized that the metal can be associated with a counterion.
- the term “amperometric device” is a device capable of measuring the current produced in an electrochemical cell as a result of the application of a specific field potential ("voltage").
- aryloxy group means an -O- aryl group, wherein aryl is as defined herein.
- An aryloxy group can be unsubstituted or substituted with one or two suitable substituents.
- the aryl ring of an aryloxy group is a monocyclic ring, wherein the ring comprises 6 carbon atoms, referred to herein as "(C6) aryloxy.”
- benzyl means -CH2-phenyl.
- carbonyl is a divalent group of the formula -C(O)-.
- the term “coulometric device” is a device capable of measuring the net charge produced during the application of a potential field ("voltage”) to an electrochemical cell.
- cyano refers to the -CN group.
- the term "different and distinguishable" when referring to two or more oxidation states means that the net charge on the entity (atom, molecule, aggregate, subunit, etc.) can exist in two different states.
- the states are said to be "distinguishable” when the difference between the states is greater than thermal energy at room temperature.
- the term “electrically coupled” when used with reference to a storage molecule and/or storage medium and electrode refers to an association between that storage medium or molecule and the electrode such that electrons move from the storage medium/molecule to the electrode or from the electrode to the storage medium/molecule and thereby alter the oxidation state of the storage medium/molecule.
- Electrical coupling can include direct covalent linkage between the storage medium/molecule and the electrode, indirect covalent coupling (e.g. via a linker), direct or indirect ionic bonding between the storage medium/molecule and the electrode, or other bonding (e.g. hydrophobic bonding).
- no actual bonding may be required and the storage medium/molecule may simply be contacted with the electrode surface.
- the term “electrochemical cell” consists minimally of a reference electrode, a working electrode, a redox-active medium (e.g. a storage medium), and, if necessary, some means (e.g., a dielectric) for providing electrical conductivity between the electrodes and/or between the electrodes and the medium.
- a redox-active medium e.g. a storage medium
- some means e.g., a dielectric
- the dielectric is a component of the storage medium.
- electrode refers to any medium capable of transporting charge (e.g. , electrons) to and/or from a storage molecule.
- Preferred electrodes are metals or conductive organic molecules.
- the electrodes can be manufactured to virtually any 2-dimensional or 3-dimensional shape (e.g. , discrete lines, pads, planes, spheres, cylinders, etc.).
- the term "fixed electrode” is intended to reflect the fact that the electrode is essentially stable and unmovable with respect to the storage medium. That is, the electrode and storage medium are arranged in an essentially fixed geometric relationship with each other. It is of course recognized that the relationship alters somewhat due to expansion and contraction of the medium with thermal changes or due to changes in conformation of the molecules comprising the electrode and/or the storage medium. Nevertheless, the overall spatial arrangement remains essentially invariant.
- linker is a molecule used to couple two different molecules, two subunits of a molecule, or a molecule to a substrate.
- R groups include, but are not limited to, hydrogen, alkyl, alcohol, aryl, amino, amido, nitro, ethers, esters, aldehydes, sulfonyl, silicon moieties, halogens, cyano, acyl, sulfur containing moieties, phosphorus containing moieties, Sb, imido, carbamoyl, linkers, attachment moieties, ReAMs and other subunits .
- R and R' may be either the same or different, and it is generally preferred that one of the substitution groups be hydrogen.
- the R groups are as defined and depicted in the figures and the text from U.S A number of suitable proligands and complexes, as well as suitable substituents, are outlined in U.S. Pat. Nos. 6,212,093; 6,728,129; 6,451 ,942; 6,777,516; 6,381 ,169; 6,208,553; 6,657,884; 6,272,038; 6,484,394; and U.S. Ser. Nos.
- subunit refers to a redox- active component of a molecule.
- embodiments of novel phosphonium ionic liquids, salts, and compositions of the present invention exhibit desirable properties and in particular a combination of at least two or more of: high thermodynamic stability, low volatility, wide liquidus range, high ionic conductivity, and wide electrochemical stability window.
- the combination of up to, and in some embodiments, all of these properties at desirable levels in one composition was unexpected and not foreseen, and provides a significant advantage over known ionic compositions.
- Embodiments of phosphonium compositions of the present invention exhibiting such properties enable applications and devices not previously available.
- phosphonium ionic liquids of the present invention comprise phosphonium cations of selected molecular weights and substitution patterns, coupled with selected anion(s), to form ionic liquids with tunable combinations of thermodynamic stability, ionic conductivity, liquidus range, and low volatility properties.
- ionic liquid herein is meant a salt that is in the liquid state at and below 100 °C.
- Room temperature ionic liquid is further defined herein in that it is in the liquid state at and below room temperature.
- the term “electrolyte” “or “electrolyte solution” or “electrolyte composition” or “ionic electrolyte” or “ion conducting electrolyte” or “ion conducting composition” or “ionic composition” is used and is herein defined as any one or more of: (a) an ionic liquid, (b) a room temperature ionic liquid, (c) one or more salts dissolved in at least one solvent, and (d) one or more salts dissolved in at least one solvent together with at least one polymer to form a gel electrolyte.
- the one or more salts are defined to include: (a) one or more salts that are a solid at a temperature of 100 °C and below, and (b) one or more salts that are a liquid at a temperature of 100 °C and below.
- the present invention comprises phosphonium ionic liquids and phosphonium electrolytes that exhibit thermodynamic stability up to temperatures of approximately 400 °C, and more usually up to temperatures of approximately 375 °C.
- Embodiments of phosphonium ionic liquids and phosphonium electrolytes of the present invention further exhibit ionic conductivity of at least of at least 1 mS/cm, or at least 5 mS/cm, or at least 10 mS/cm, or at least 15 mS/cm, or at least 20 mS/cm, or at least 30 mS/cm, or at least 40 mS/cm, or at least 50 mS/cm, or at least 60 mS/cm at room temperature.
- Embodiments of phosphonium ionic liquids and phosphonium electrolytes of the present invention exhibit volatilities that are about 20 % lower compared to their nitrogen-based analogs. This combination of high thermal stability, high ionic conductivity, wide liquidus range, and low volatility, is highly desirable and was unexpected. Generally, in the prior art it is found that thermal stability and ionic conductivity of ionic liquids exhibit an inverse relationship.
- phosphonium ionic liquids and phosphonium electrolytes are comprised of cations having molecular weight of up to 500 Daltons. In other embodiments, phosphonium ionic liquids and phosphonium electrolytes are comprised of cations having molecular weight in the range of 200 to 500 Daltons for ionic liquids at the lower thermal stability ranges.
- Phosphonium ionic compositions of the present invention are comprised of phosphonium based cations of the general formula:
- R or R are comprised of phenyl or substituted alkylphenyl.
- R and R are the same and are comprised of tetramethylene
- R and R are the same and are comprised of tetramethinyl (phosphole).
- R 1 and R 2 are the same and are comprised of phospholane or phosphorinane.
- R 2 R 3 and R 4 are the same and are comprised of phospholane, phosphorinane or phosphole.
- At least one, more, of or all of R', R 2 , R 3 and R 4 are selected such that each does not contain functional groups that would react with the redox active molecules (ReAMs) described below.
- ReAMs redox active molecules
- at least one, more, of or all of R 1 , R 2 , R 3 and R 4 do not contain halides, metals or O, N, P, or Sb.
- the alkyl group comprises from 1 to 7 carbon atoms. In other embodiments the total carbon atoms from all alkyl groups is 12 or less. In yet other
- the alkyl groups are each independently comprised of 1 to 6 carbon atoms, more typically, from 1 to 5 carbon atoms.
- phosphonium ionic compositions are provided and are comprised of: one or more salts dissolved in a solvent, the one or more salts comprising one or more phosphonium based cations of the general formula:
- R'R 2 R 3 R 4 P (1) and one or more anions and wherein: R 1 , R 2 , R 3 and R 4 are each independently a substituent group, such as but not limited to an alkyl group as described below.
- R 1 , R , R J and R" are each independently an alkyl group comprised of 1 to 6 carbon atoms, more usually 1 to 4 carbon atoms.
- one or more of the hydrogen atoms in one or more of the R groups are substituted by fluorine.
- Any one or more of the salts may be liquid or solid at a temperature of 100 °C and below.
- a salt is comprised of one cation and one anion.
- a salt is comprised of one cation and multiple anions. In other embodiments, a salt is comprised of one anion and multiple cations. In further embodiments, a salt is comprised of multiple cations and multiple anions.
- suitable solvents include, but are not limited to, one or more of the following: acetonitrile, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC) or methyl ethyl carbonate (MEC), methyl propionate (MP), , fluoroethylene carbonate (FEC), fluorobenzene (FB), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), phenylethylene carbonate (PhEC), propylmethyl carbonate (PMC), diethoxyethane (DEE), dimethoxyethane (DME), tetrahydro
- phosphonium cations are comprised of the following formula:
- phosphonium cations are comprised of the following formula:
- phosphonium cations are comprised of the following formula:
- phosphonium cations are comprised of the following formula:
- phosphonium cations are comprised of the following formula:
- phosphonium cations are comprised of the following formula:
- phosphonium cations are comprised of the following formula:
- phosphonium cations are comprised of the following formula:
- phosphonium cations are comprised of the following formula:
- phosphonium cations are comprised of the following formula:
- phosphonium cations are comprised of the following formula:
- Another exemplary provides phosphonium cations comprised of the following
- examples of suitable phosphonium cations include but are not limited to: di-n-propyl ethyl phosphonium; n-butyl n-propyl ethyl phosphonium; n-hexyl n- butyl ethyl phosphonium; and the like.
- examples of suitable phosphonium cations include but are not limited to: ethyl phospholane; n-propyl phospholane; n-butyl phospholane; n-hexyl
- examples of suitable phosphonium cations include but are not limited to: ethyl phosphole; n-propyl phosphole; n-butyl phosphole; n-hexyl phophole; and phenyl phosphole.
- examples of suitable - phosphonium cations include but are not limited to: 1 -ethyl phosphacyclohexane; n-propyl phosphacyclohexane; n-butyl phosphacyclohexane; n-hexyl phophacyclohexane; and phenyl phosphacyclohexane.
- Phosphonium ionic liquids or salts of the present invention are comprised of cations and anions. As will be appreciated by those of skill in the art, there are a large variety of possible cation and anion combinations. Phosphonium ionic liquids or salts of the present invention comprise cations as described above with anions that are generally selected from compounds that are easily ion exchanged with reagents or solvents of the general formula:
- C + is a cation and A + is an anion.
- C + is preferably Li + , K + , Na + , NH 4 + or Ag + .
- C+ is preferably Ag + .
- anions may be selected.
- the anion is bis- perfluoromethyl sulfonyl imide.
- suitable anions include, but are not limited to, any one or more of: N0 3 ⁇ , 0 3 SCF 3 " , N(S0 2 CF 3 ) 2 ⁇ PF 6 " , 0 3 SC 6 H 4 CH 3 " ,
- phosphonium ionic liquids or salts of the present invention are comprised of a single cation-anion pair.
- two or more phosphonium ionic liquids or salts may be used to form common binaries, mixed binaries, common ternaries, mixed ternaries, and the like.
- Composition ranges for binaries, ternaries, etc. include from 1 ppm, up to 999,999 ppm for each component cation and each component anion.
- phosphonium electrolytes are comprised of one or more salts dissolved in a solvent, and the salts may be liquid or solid at a temperature of 100 °C.
- a salt is comprised of a single cation-anion pair.
- a salt is comprised of a one cation and multiple anions.
- a salt is comprised of one anion and multiple cations.
- a salt is comprised of multiple cations and multiple anions.
- Electrolyte compositions according to some embodiments of the present invention are further described in co-pending United States Patent application serial number (attorney docket no. 057472-058), filed concurrently herewith, the entire disclosure of which is hereby incorporated by reference.
- phosphonium ionic liquid compositions are comprised of cation and anion combinations as shown in Tables 1A and IB, below.
- phosphonium electrolytes are comprised of cation and anion combinations shown in Tables 1C, I D, IE, and IF below. For clarity, signs of charge have been omitted in the formulas.
- Table 1A illustrates examples of anion binaries with a common cation:
- IB illustrates examples of cation and anion combinations
- phosphonium electrolytes are comprised of salts having cations as shown in Tables lC-1 to lC-3 below: Table lC-1:
- phosphonium electrolytes are comprised of salts having anions as shown in Tables lD-1 to 1D-4 below:
- phosphonium electrolyte compositions are comprised of salts having cation and anion combinations as shown in Tables ⁇ -lto 1E-4 below:
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, where the salt is comprised of: one or more cations of the formula:
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, wherein the salt is comprised of: one or more cations of the formula:
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, wherein the salt is comprised of: one or more cations of the formula:
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, where the salt is comprised of one or more anions selected from the group consisting of: PF 6 , (CF 3 ) 3 PF 3 , (CF 3 ) 4 PF 2 , (CF 3 CF 2 ) 4 PF 2 , (CF 3 CF 2 CF 2 ) 4 PF 2 , (-OCOCOO-)PF 4 ,
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, where the salt is comprised of: a cation of the formula:
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, where the salt is comprised of : a cation of the formula (CH 3 )(CH 3 CH 2 ) 3 P + and an anion of any one or more of the formula BF 4 " , PF 6 “ , CF 3 BF 3 “ ,(-OCOCOO-)BF 2 " ,
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, where the salt is comprised of : a cation of the formula
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, where the salt is comprised of : a cation of the formula (CH 3 CH 2 CH 2 ) 3 (CH 3 )P + and an anion of any one or more of the formula BF 4 " , PF 6 " , CF 3 BF 3 " , (-OCOCOO-)BF 2 " , (-OCOCOO-)(CF 3 ) 2 B “ , (-OCOCOO-) 2 B “ , CF 3 S0 3 " , C(CN) 3 " , (CF 3 S0 2 ) 2 N " or combinations thereof.
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, where the salt is comprised of : a cation of the formula
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, where the salt is comprised of : a cation of the formula (CH 3 CH 2 CH2)2(CH 3 CH2) (CH 3 )P + and an anion of any one or more of the formula BF 4 " , PF 6 " , CF3BF3 " ,
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, where the salt is comprised of : a cation of the formula (CH 3 CH 2 )4P + and an anion of any one or more of the formula BF 4 ⁇ PF 6 ⁇ CF 3 BF 3 " , (-OCOCOO-)BF 2 " ,
- the phosphonium electrolyte is comprised of a salt dissolved in a solvent, where the salt is comprised of: a cation of the formula 1 :3: 1 mole ratio of (CH 3 CH 2 CH2)(CH 3 ) 3 P/(CH 3 CH2CH2)(CH 3 CH 2 )(CH 3 )2P /(CH 3 CH 2 CH 2 )(CH 3 CH 2 ) 2 (CH 3 )P and an anion of any one or more of the formula BF 4 " , PF 6 ⁇ CF 3 BF 3 " , (-OCOCOO-)BF 2 " ,
- the anions are comprised of a mixture of BF 4 " and CF 3 BF 3 " at a concentration of [BF 4 _ ]:[CF 3 BF 3 " ] mole ratio in the range of 100/1 to 1/1.
- the anions are comprised of a mixture of PF 6 " and CF 3 BF 3 " at a concentration of [PF 6 " ]:[CF 3 BF 3 " ] mole ratio in the range of 100/1 to 1/1.
- the anions are comprised of a mixture of PF 6 " and BF 4 " at a concentration of [PF 6 " ]: [BF 4 " ] mole ratio in the range of 100/1 to 1/1.
- phosphonium ionic liquid compositions are comprised of cation and anion combinations as shown in Table 2 below: Table 2
- phosphonium ionic liquid compositions are comprised of cation and anion combinations as shown in Table 3 below:
- phosphonium ionic liquid compositions are comprised of the cation and anion combinations as shown in Table 4 below:
- phosphonium ionic liquid compositions are comprised of the cation and anion combinations as shown in Table 5 below: Table 5
- phosphonium ionic liquid compositions are comprised of the cation and anion combinations as shown in Table 6 below:
- phosphonium ionic liquid compositio comprised of cation and anion combinations as shown in Table 7 below: Table 7
- phosphonium ionic liquid compositions are comprised of cation and anion combinations as shown in Table 8 below:
- phosphonium ionic liquid compositions are comprised of cation and anion combinations as shown in Table 9 below: Table 9
- phosphonium ionic liquid compositions are comprised of cation and anion combinations as shown in Table 10 below:
- Additional preferred embodiments include phosphonium ionic liquid compositions are comprised of cation and anion combinations as shown in Table 1 1 below:
- Another preferred exemplary embodiment includes phosphonium ionic liquid compositions comprised of cation and anion combinations as shown in Table 13 below: Table 13
- suitable phosphonium ionic liquid compositions include but are not limited to: di-n-propyl ethyl methyl phosphonium bis- (trifluoromethyl sulfonyl) imide; n-butyl n-propyl ethyl methyl phosphonium bis- (trifluoromethyl sulfonyl) imide; n-hexly n-butyl ethyl methyl phosphonium bis- (trifluoromethyl sulfonyl) imide; and the like.
- Illustrative examples of suitable phosphonium ionic liquid compositions further include but are not limited to: 1 -ethyl- 1 -methyl phospholanium bis-(trifluoromethyl sulfonyl) imide; n-propyl methyl phospholanium bis-(trifluoromethyl sulfonyl) imide; n-butyl methyl phospholanium bis-(trifluoromethyl sulfonyl) imide; n-hexyl methyl phopholanium bis- (trifluoromethyl sulfonyl) imide; and phenyl methyl phospholanium bis-(trifluoromethyl sulfonyl) imide.
- examples of suitable phosphonium ionic liquid compositions include but are not limited to: 1 -ethyl- 1 -methyl phospholanium bis-(trifluoromethyl sulfonyl) imide; n-propyl methyl phospholanium bis-(trifluoromethyl sulfonyl) imide; n-butyl methyl phospholanium bis-(trifluoromethyl sulfonyl imide; n-hexyl methyl phopholanium bis- (trifluoromethyl sulfonyl) imide; and phenyl methyl phospholanium bis-(trifluoromethyl sulfonyl) imide.
- suitable phosphonium ionic liquid compositions include but are not limited to: 1 -ethyl- 1 -methyl phosphacyclohexane bis-(trifluoromethyl sulfonyl) imide; n-propyl methyl phosphacyclohexane bis-(trifluoromethyl sulfonyl) imide; n-butyl methyl phosphacyclohexane bis-(trifluoromethyl sulfonyl) imide; n-hexyl methyl phosphacyclohexane bis-(trifluoromethyl sulfonyl) imide; and phenyl methyl
- Phosphonium ionic liquids of the present invention may also form a eutectic from one or more solids, or from a solid and a liquid, according to some embodiments.
- the term "ionic liquid” is further defined to include ionic liquid that are eutectics from ionic solids, or from an ionic liquid and an ionic solid, such as binaries, ternaries, and the like.
- Phosphonium ionic liquids of the present invention described herein can be employed to synthesize a wide range of hybrid components and/or devices, such as for example memory devices and elements.
- phosphonium ionic liquids herein are used to form molecular memory devices where information is stored in a redox-active information storage molecule.
- Redox-active molecule herein is meant to refer to a molecule or component of a molecule that is capable of being oxidized or reduced, e.g., by the application of a suitable voltage.
- ReAMs can include, but are not limited to macrocycles including porphyrin and porphyrin derivatives, as well as non-macrocyclic compounds, and includes sandwich compounds, e.g. as described herein.
- ReAMs can comprise multiple subunits, for example, in the case of dyads or triads.
- ReAMs can include ferrocenes, Bipys, PAHs, viologens, and the like.
- suitable proligands and complexes, as well as suitable substituents are outlined in U.S. Patent Nos.
- Suitable proligands fall into two categories: ligands which use nitrogen, oxygen, sulfur, carbon or phosphorus atoms (depending on the metal ion) as the coordination atoms (generally referred to in the literature as sigma ( ⁇ ) donors) and organometallic ligands such as metallocene ligands (generally referred to in the literature as pi ( ⁇ ) donors, and depicted herein as Lm).
- a single Re AM may have two or more redox active.
- Figure 13A of U. S. Publication No. 2007/0108438 shows two redox active subunits, a porphyrin (shown in the absence of a metal), and ferrocene.
- sandwich coordination compounds are considered a single ReAM. This is to be distinguished from the case where these ReAMs are polymerized as monomers.
- the metal ions/complexes of the invention may be associated with a counterion, not generally depicted herein.
- the ReAM is a macrocyclic ligand, which includes both macrocyclic proligands and macrocyclic complexes.
- macrocyclic proligand herein is meant a cyclic compound which contain donor atoms (sometimes referred to herein as
- coordination atoms oriented so that they can bind to a metal ion and which are large enough to encircle the metal atom.
- the donor atoms are heteroatoms including, but not limited to, nitrogen, oxygen and sulfur, with the former being especially preferred.
- different metal ions bind preferentially to different heteroatoms, and thus the heteroatoms used can depend on the desired metal ion.
- a single macrocycle can contain heteroatoms of different types.
- a "macrocyclic complex” is a macrocyclic proligand with at least one metal ion; in some embodiments the macrocyclic complex comprises a single metal ion, although as described below, polynucleate complexes, including polynucleate macrocyclic complexes, are also contemplated.
- macrocyclic ligands find use in the present invention, including those that are electronically conjugated and those that may not be; however, the macrocyclic ligands of the invention preferably have at least one, and preferably two or more oxidation states, with 4, 6 and 8 oxidation states being of particular significance.
- FIG. 1 1 and 14 A broad schematic of suitable macrocyclic ligands are shown and described in Figures 1 1 and 14 of U.S. Publication No. 2007/0108438, all of which is incorporated by reference herein in addition to Figures 1 1 and 14.
- a 16 member ring when the— X— moiety contains a single atom, either carbon or a heteroatom
- 17 membered rings where one of the -X— moieties contains two skeletal atoms
- 18 membered rings where two of the -X— moieties contains two skeletal atoms
- 19 membered rings where three of the -X— moieties contains two skeletal atoms
- 20 membered rings where all four of the -X— moieties contains two skeletal atoms
- Each -X— group is independently selected.
- the rings, bonds and substituents are chosen to result in the compound being electronically conjugated, and at a minimum to have at least two oxidation states.
- the macrocyclic ligands of the invention are selected from the group consisting of porphyrins (particularly porphyrin derivatives as defined below), and eye 1 en derivatives.
- porphyrins including porphyrin derivatives.
- Such derivatives include porphyrins with extra rings ortho- fused, or orfho-perifused, to the porphyrin nucleus, porphyrins having a replacement of one or more carbon atoms of the porphyrin ring by an atom of another element (skeletal replacement), derivatives having a replacement of a nitrogen atom of the porphyrin ring by an atom of another element (skeletal replacement of nitrogen), derivatives having substituents other than hydrogen located at the peripheral (meso-, (3- or core atoms of the porphyrin, derivatives with saturation of one or more bonds of the porphyrin (hydroporphyrins, e.g., chlorins,
- bacteriochlorins bacteriochlorins, isobacteriochlorins, decahydroporphyrins, corphins, pyrrocorphins, etc.
- derivatives having one or more atoms including pyrrolic and pyrromethenyl units, inserted in the porphyrin ring (expanded porphyrins), derivatives having one or more groups removed from the porphyrin ring (contracted porphyrins, e.g., corrin, corrole) and combinations of the foregoing derivatives (e.g. phthalocyanines, sub-phthalocyanines, and porphyrin isomers).
- porphyrin derivatives include, but are not limited to the chlorophyll group, including etiophyllin, pyrroporphyrin, rhodoporphyrin, phylloporphyrin, phylloerythrin, chlorophyll a and b, as well as the hemoglobin group, including deuteroporphyrin,
- each unsaturated position can include one or more substitution groups as defined herein, depending on the desired valency of the system.
- the redox-active molecule may be a metallocene, which can be substituted at any appropriate position, using R groups independently selected herein.
- a metallocene which finds particular use in the invention includes ferrocene and its derivatives.
- preferred substituents include, but are not limited to, 4chlorophenyl, 3- acetamidophenyl, 2,4-dichloro-4-trifluoromethyl. Preferred substituents provide a redox potential range of less than about 2 volts.
- FIG. 12H of U.S. Publication No. 2007/018438 Another example of a redox-active molecule comprised of a porphyrin is shown in Figure 12H of U.S. Publication No. 2007/018438 where F is a redox-active subunit (such as ferrocene, a substituted ferrocene, a metalloporphyrin, or a metallochlorin, and the like), Jl is a linker, M is a metal (such as Zn, Mg, Cd, Hg, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Mn, B, Al, Ga, Pb and Sn) S I and S2 are independently selected from the group of aryl, phenyl, cyclalkyl, alkyl, halogen, alkoxy, alkythio, perfluoroalkyl, perfluoroaryl, pyridyl, cyano, thiocyanato, nitro
- hole-storage properties depend on the oxidation potential of the redox-active units or subunits that are themselves or are that are used to assemble the storage media used in the devices of this invention.
- the hole-storage properties and redox potential can be tuned with precision by choice of base molecule(s), associated metals and peripheral substituents (Yang et al. (1999) J. Porphyrins Phthalocyanines, 3: 1 17-147), the disclosure of which is herein incorporated by this reference.
- Mg porphyrins are more easily oxidized than Zn porphyrins, and electron withdrawing or electron releasing aryl groups can modulate the oxidation properties in predictable ways.
- Hole-hopping occurs among isoenergetic porphyrins in a nanostructure and is mediated via the covalent linker joining the porphyrins (Seth et al. (1994) J. Am. Chem. Soc, 1 16: 10578-10592, Seth et al (1996) J. Am. Chem. Soc, 1 18:
- Electrochemistry of the Elements Moreover, in general, the effects of various substituents on the redox potentials of a molecule are generally additive. Thus, a theoretical oxidation potential can be readily predicted for any potential data storage molecule. The actual oxidation potential, particularly the oxidation potential of the information storage molecule(s) or the information storage medium can be measured according to standard methods. Typically the oxidation potential is predicted by comparison of the experimentally determined oxidation potential of a base molecule and that of a base molecule bearing one substituent in order to determine the shift in potential due to that particular substituent. The sum of such substituent-dependent potential shifts for the respective substituents then gives the predicted oxidation potential.
- redox-active molecules for use in the methods of this invention can readily be determined.
- the molecule(s) of interest are simply polymerized and coupled to a surface (e.g., a hydrogen passivated surface) according to the methods of this invention.
- sinusoidal voltammetry can be performed (e.g., as described herein or in U.S. Patents, 6,272,038; 6,212,093; and 6,208,553, PCT Publication WO 01/03126, or by (Roth et al. (2000) Vac. Sci. Technol. B 18:2359-2364; Roth et al. (2003) J.Am. Chem. Soc.
- 125:505- 517) to evaluate 1) whether or not the molecule(s) coupled to the surface, 2) the degree of coverage (coupling); 3) whether or not the molecule(s) are degraded during the coupling procedure, and 4) the stability of the molecule(s) to multiple read/write operations.
- porphyrin included within the definition of “porphyrin” are porphyrin complexes, which comprise the porphyrin proligand and at least one metal ion. Suitable metals for the porphyrin compounds will depend on the heteroatoms used as coordination atoms, but in general are selected from transition metal ions.
- transition metals typically refers to the 38 elements in groups 3 through 12 of the periodic table. Typically transition metals are characterized by the fact that their valence electrons, or the electrons they use to combine with other elements, are present in more than one shell and consequently often exhibit several common oxidation states.
- the transition metals of this invention include, but are not limited to one or more of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, rutherfordium, and/or oxides, and/or nitrides, and/or alloys, and/or mixtures thereof.
- At least one R group is a redox active subunit, preferably electronically conjugated to the metal. In some embodiments, including when at least one R group is a redox active subunit, two or more neighboring R2 groups form cycle or an aryl group.
- macrocyclic complexes relying organometallic ligands are used.
- organometallic ligands include organic compounds for use as redox moieties, and various transition metal coordination complexes with ⁇ -bonded organic ligand with donor atoms as heterocyclic or exocyclic substituents, there is available a wide variety of transition metal organometallic compounds with ⁇ -bonded organic ligands (see Advanced Inorganic Chemistry, 5th Ed., Cotton & Wilkinson, John Wiley & Sons, 1988, chapter 26;
- organometallic ligands include cyclic aromatic compounds such as the cyclopentadienide ion [C5H5(-1)] and various ring substituted and ring fused derivatives, such as the indenylide (-1) ion, that yield a class of bis(cyclopentadieyl)metal compounds, (i.e.
- Metallocene derivatives of a variety of the first, second and third row transition metals are useful as redox moieties (and redox subunits).
- organometallic ligands include cyclic arenes such as benzene, to yield bis(arene)metal compounds and their ring substituted and ring fused derivatives, of which bis(benzene)chromium is a prototypical example,
- Other acyclic ⁇ -bonded ligands such as the allyl(-l) ion, or butadiene yield potentially suitable organometallic compounds, and all such ligands, in conjunction with other ⁇ -bonded and ⁇ -bonded ligands constitute the general class of organometallic compounds in which there is a metal to carbon bond.
- the co-ligands When one or more of the co-ligands is an organometallic ligand, the ligand is generally attached via one of the carbon atoms of the organometallic ligand, although attachment may be via other atoms for heterocyclic ligands.
- organometallic ligands include metallocene ligands, including substituted derivatives and the metalloceneophanes (see page 1 174 of Cotton and Wilkenson, supra).
- metallocene ligands such as methylcyclopentadienyl, with multiple methyl groups being preferred, such as pentamethylcyclopentadienyl, can be used to increase the stability of the metallocene.
- the metallocene is derivatized with one or more substituents as outlined herein, particularly to alter the redox potential of the subunit or moiety.
- any combination of ligands may be used.
- Preferred combinations include: a) all ligands are nitrogen donating ligands; b) all ligands are organometallic ligands.
- the ReAMs are sandwich coordination complexes.
- the terms "sandwich coordination compound” or “sandwich coordination complex” refer to a compound of the formula L-Mn-L, where each L is a heterocyclic ligand (as described below), each M is a metal, n is 2 or more, most preferably 2 or 3, and each metal is positioned between a pair of ligands and bonded to one or more hetero atom (and typically a plurality of hetero atoms, e.g., 2, 3, 4, 5) in each ligand (depending upon the oxidation state of the metal).
- sandwich coordination compounds are not organometallic compounds such as ferrocene, in which the metal is bonded to carbon atoms.
- the ligands in the sandwich coordination compound are generally arranged in a stacked orientation (i.e., are generally cofacially oriented and axially aligned with one another, although they may or may not be rotated about that axis with respect to one another) (see, e.g., Ng and Jiang (1997) Chemical Society Reviews 26: 433-442) incorporated by reference.
- Sandwich coordination complexes include, but are not limited to "double-decker sandwich coordination compound” and "triple-decker sandwich coordination compounds". The synthesis and use of sandwich coordination compounds is described in detail in U.S. Patents 6,212,093; 6,451 ,942; 6,777,516; and polymerization of these molecules is described in U.S. Publication No.
- double-decker sandwich coordination compound refers to a sandwich coordination compound as described above where n is 2, thus having the formula L'-M'-LZ, wherein each of LI and LZ may be the same or different (see, e.g., Jiang et al. (1999) J.
- Porphyrins Phthalocyanines 3 : 322-328) and U.S. Patent No. 6,212,093; 6,451 ,942; 6,777,516; and polymerization of these molecules is described in U.S. Publication No. 2007/0123618, hereby incorporated by reference in its entirety.
- triple-decker sandwich coordination compound refers to a sandwich coordination compound as described above where n is 3, thus having the formula L'-M' LZ- MZ-L3, wherein each of LI, LZ and L3 may be the same or different, and Ml and MZ may be the same or different (see, e.g., Arnold et al. (1999) Chemistry Letters 483-484), and U.S. Patent Nos. 6,212,093; 6,451 ,942; 6,777,516; and polymerization of these molecules is described in U.S. Publication No. 2007/0123618, hereby incorporated by reference in their entirety.
- polymers of these sandwich compounds are also of use; this includes “dyads” and “triads” as described in U.S. S.N 6,212,093; 6,451,942; 6,777,516; and
- ReAMs comprising non-macrocyclic chelators are bound to metal ions to form non-macrocyclic chelate compounds, since the presence of the metal allows for multiple proligands to bind together to give multiple oxidation states.
- nitrogen donating proligands are used.
- Suitable nitrogen donating proligands are well known in the art and include, but are not limited to, NH2; NHR; NRR'; pyridine; pyrazine; isonicotinamide; imidazole; bipyridine and substituted derivatives of bipyridine; terpyridine and substituted derivatives; phenanthrolines, particularly 1,10- phenanthroline (abbreviated phen) and substituted derivatives of phenanthrolines such as 4,7- dimethylphenanthroline and dipyridol[3,2-a:2',3'-c]phenazine (abbreviated dppz);
- dipyridophenazine 1 ,4,5,8,9, 12-hexaazatriphenylene (abbreviated hat); 9,10- phenanthrenequinone diimine (abbreviated phi); 1 ,4,5,8-tetraazaphenanthrene (abbreviated tap); 1,4,8,1 1 -tetra-azacyclotetradecane (abbreviated cyclam) and isocyanide.
- Substituted derivatives, including fused derivatives may also be used.
- macrocylic ligands that do not coordinatively saturate the metal ion, and which require the addition of another proligand, are considered non-macrocyclic for this purpose.
- Suitable sigma donating ligands using carbon, oxygen, sulfur and phosphorus are known in the art.
- suitable sigma carbon donors are found in Cotton and
- oxygen, sulfur, phosphorus and nitrogen-donating ligands are attached in such a manner as to allow the heteroatoms to serve as coordination atoms.
- polydentate ligands that are polynucleating ligands, e.g. they are capable of binding more than one metal ion. These may be macrocyclic or non-macrocyclic.
- the term "memory element,” “memory cell,” or “storage cell” refer to an electrochemical cell that can be used for the storage of information.
- Preferred “storage cells” are discrete regions of storage medium addressed by at least one and preferably by two electrodes (e.g., a working electrode and a reference electrode).
- the storage cells can be individually addressed ⁇ e.g., a unique electrode is associated with each memory element) or, particularly where the oxidation states of different memory elements are distinguishable, multiple memory elements can be addressed by a single electrode.
- the memory element can optionally include a dielectric (e.g., a dielectric impregnated with counter ions).
- electrode refers to any medium capable of transporting charge (e.g., electrons) to and/or from a storage molecule.
- Preferred electrodes are metals and conductive organic molecules, including, but not limited to, Group III elements (including doped and oxidized Group III elements), Group IV elements (including doped and oxidized Group IV elements), Group V elements (including doped and oxidized Group V elements) and transition metals (including transition metal oxides and transition metal nitrides).
- the electrodes can be manufactured to virtually and 2-dimensional or 3-dimensional shape (e.g., discrete lines, pads, planes, spheres, cylinders).
- the term “multiple oxidation states” means more than one oxidation state.
- the oxidation states may reflect the gain of electrons (reduction) or the loss of electrons (oxidation).
- multiporphyrin array refers to a discrete number of two or more covalently-linked porphyrinic macrocycles.
- the multiporphyrin arrays can be linear, cyclic, or branched.
- output of an integrated circuit refers to a voltage or signal produced by one or more integrated circuit(s) and/or one or more components of an integrated circuit.
- the term “present on a single plane,” when used in reference to a memory device of this invention refers to the fact that the component(s) (e.g. storage medium, electrode(s), etc.) in question are present on the same physical plane in the device (e.g. are present on a single lamina). Components that are on the same plane can typically be fabricated at the same time, e.g., in a single operation. Thus, for example, all of the electrodes on a single plane can typically be applied in a single (e.g., sputtering) step (assuming they are all of the same material).
- a potentiometric device is a device capable of measuring potential across an interface that results from a difference in the equilibrium concentrations of redox molecules in an electrochemical cell.
- oxidation refers to the loss of one or more electrons in an element, compound, or chemical substituent/subunit.
- electrons are lost by atoms of the element(s) involved in the reaction. The charge on these atoms must then become more positive. The electrons are lost from the species undergoing oxidation and so electrons appear as products in an oxidation reaction.
- An oxidation taking place in the reaction Fe 2+ (aq) - Fe 3+ (aq) + e because electrons are lost from
- oxidation state refers to the electrically neutral state or to the state produced by the gain or loss of electrons to an element, compound, or chemical substituent/subunit.
- oxidation state refers to states including the neutral state and any state other than a neutral state caused by the gain or loss of electrons (reduction or oxidation).
- the term “read” or “interrogate” refer to the determination of the oxidation state(s) of one or more molecules (e.g. molecules comprising a storage medium).
- redox-active unit or “redox- active subunit” refers to a molecule or component of a molecule that is capable of being oxidized or reduced by the application of a suitable voltage.
- the term “refresh” when used in reference to a storage molecule or to a storage medium refers to the application of a voltage to the storage molecule or storage medium to re-set the oxidation state of that storage molecule or storage medium to a predetermined state (e.g., the oxidation state the storage molecule or storage medium was in immediately prior to a read).
- the term “reference electrode” is used to refer to one or more electrodes that provide a reference (e.g., a particular reference voltage) for measurements recorded from the working electrode. In preferred embodiments, the reference electrodes in a memory device of this invention are at the same potential although in some embodiments this need not be the case.
- a "sinusoidal voltammeter” is a voltammetric device capable of determining the frequency domain properties of an
- the term “storage density” refers to the number of bits per volume and/or bits per molecule that can be stored. When the storage medium is said to have a storage density greater than one bit per molecule, this refers to the fact that a storage medium preferably comprises molecules wherein a single molecule is capable of storing at least one bit of information.
- the term “storage location” refers to a discrete domain or area in which a storage medium is disposed. When addressed with one or more electrodes, the storage location may form a storage cell. However if two storage locations contain the same storage media so that they have essentially the same oxidation states, and both storage locations are commonly addressed, they may form one functional storage cell.
- the term “storage medium” refers to a composition comprising a storage molecule of the invention, preferably bonded to a substrate.
- a substrate is a, preferably solid, material suitable for the attachment of one or more molecules.
- Substrates can be formed of materials including, but not limited to glass, plastic, silicon, minerals (e.g., quartz), semiconducting materials, ceramics, metals, etc.
- the term “voltammetric device” is a device capable of measuring the current produced in an electrochemical cell as a result of the application of a voltage or change in voltage.
- a voltage source is any source (e.g. molecule, device, circuit, etc.) capable of applying a voltage to a target (e.g., an electrode).
- a target e.g., an electrode
- the term "working electrode” is used to refer to one or more electrodes that are used to set or read the state of a storage medium and/or storage molecule.
- a device comprising a first electrode, a second electrode; and an electrolyte comprised of an ionic liquid composition, the ionic liquid composition comprising: one or more phosphonium based cations of the general formula:
- R'R 2 R 3 R 4 P where R 1 , R 2 , R 3 and R 4 are each independently a substituent group; and one or more anions, and wherein said electrolyte is electrically coupled to at least one of said first and second electrodes.
- the first electrode is comprised redox active molecules (ReAMs) as described in detail above.
- a molecular storage device comprising a working electrode and a counter electrode configured to afford electrical capacitance; and an ion conducting composition comprising: one or more phosphonium based cations of the general formula above and wherein the ion conducting composition is electrically coupled to at least the working and counter electrodes.
- the invention encompasses a molecular memory element that includes a switching device, a bit line and a word line coupled to the switching device and a molecular storage device accessible through the switching device.
- the molecular storage device is capable of being placed in two or more discrete states, wherein the molecular storage device is placed in one of the discrete states by signals applied to the bit and word line.
- the molecular storage device comprises a first electrode, a second electrode and an electrolyte of phosphonium based cations and suitable anions between the first and second electrode.
- Another embodiment encompasses molecular memory arrays comprising a plurality of molecular storage elements where each molecular storage element is capable of being placed in two or more discrete states.
- a plurality of bit lines and word lines are coupled to the plurality of molecular storage elements such that each molecular storage element is coupled to and addressable by at least one bit line and at least one word line.
- the molecular memory device may include an addressable array of molecular storage elements.
- An address decoder receives a coded address and generates word line signals corresponding to the coded address.
- a word line driver is coupled to the address decoder and produces amplified word line signals.
- the amplified word line signals control switches that selectively couple members of the array of molecular storage elements to bit lines.
- Read/write logic coupled to the bit lines determines whether the molecular memory device is in a read mode or a write mode. In a read mode, sense amplifiers coupled to each bit line detect an electronic state of the selectively coupled molecular storage elements and produce a data signal on the bit line indicative of the electronic state of the selectively coupled molecular storage elements. In a write mode, the read/write logic drives a data signal onto the bit lines and the selectively coupled molecular storage elements.
- Another embodiment encompasses devices including logic integrated with embedded molecular memory devices such as application specific integrated circuit (ASIC) and system on chip (SOC) devices and the like.
- ASIC application specific integrated circuit
- SOC system on chip
- Such implementations comprise one or more functional components formed monolithically with and interconnected to molecular memory devices.
- the functional components may comprise solid state electronic devices and/or molecular electronic devices.
- the molecular storage device is implemented as a stacked structure formed subsequent to and above a semiconductor substrate having active devices formed therein.
- the molecular storage device is implemented as a micron or nanometer sized hole in a semiconductor substrate having active devices formed therein.
- the molecular storage device is fabricated using processing techniques that are compatible with the semiconductor substrate and previously formed active devices in the semiconductor substrate.
- the molecular storage device comprises, for example, an
- electrochemical cell having two or more electrode surfaces separated by an electrolyte (e.g., a ceramic or solid electrolyte).
- electrolyte e.g., a ceramic or solid electrolyte.
- Storage molecules e.g., molecules having one or more oxidation states that can be used for storing information
- Other embodiments of the invention include the use of components independently selected from transistor switching devices including field effect transistor; a row decoder coupled to the word line; a column decoder coupled to the bit line; a current preamplifier connected to the bit line; a sense amplifier connected to the bit line, an address decoder that receives a coded address and generates word line signals corresponding to the coded address, a line driver coupled to the address decoder wherein the line driver produces amplified word line signals (optionally wherein the amplified word line signals control switches that selectively couple members of the array of molecular storage elements to bit lines), read/write logic coupled to the bit lines, wherein the read/write logic determines whether the molecular memory devices is in a read mode or a write mode, sense amplifiers coupled to each bit line, wherein when the device is in a read mode, sense amplifiers coupled to each bit line detect an electronic state of the selectively coupled molecular storage elements and produce a data signal on the bit line indicative of the electronic state of the selectively
- FIG. 1 Further embodiments encompass the second electrode being coupled to ground, and the bit and word lines being either perpendicular or parallel.
- Additional embodiments have the memory arrays of the invention comprising volatile memory such as DRAM or SRAM, or non-volatile memory such as Flash or ferroelectric memory.
- a further embodiment provides arrays wherein the molecular storage device comprises an attachment layer formed on the first electrode, wherein the attachment layer comprises an opening and wherein the molecular material is in the opening and electronically coupled to the second electrode layer and an electrolyte layer formed on the attachment layer.
- Another embodiment encompasses a monolithically integrated device comprising logic devices configured to perform a particular function and embedded molecular memory devices of the invention coupled to the logic devices.
- the device may optionally comprise an application specific integrated circuit (ASIC), a system on chip (SOC), a solid state electronic devices or molecular electronic devices.
- ASIC application specific integrated circuit
- SOC system on chip
- solid state electronic devices or molecular electronic devices can be fabricated using standard methods well known to those of skill in the art.
- the electrode layer(s) are applied to a suitable substrate (e.g., silica, glass, plastic, ceramic, etc.) according to standard well known methods (see, e.g., Rai-Choudhury (1997) The Handbook of Microlithography, Micromachining, and Microfabrication, SPIE Optical Engineering Press; Bard & Faulkner (1997) Fundamentals of Microfabrication).
- a suitable substrate e.g., silica, glass, plastic, ceramic, etc.
- 200701236108 all of which are expressly incorporated by reference, in particular for the fabrication techniques outlined therein.
- Memory devices are operated by receiving an N-bit row address into row address decoder and an M-bit column address into column address decoder.
- the row address decoder generates a signal on one word line.
- Word lines may include word line driver circuitry that drives a high current signal onto word lines. Because word lines tend to be long, thin conductors that stretch across much of the chip surface, it requires significant current and large power switches to drive a word lines signal. As a result, line driver circuits are often provided with power supply in addition to power supply circuits (not shown) that provide operating power for the other logic. Word line drivers, therefore, tend to involve large components and the high speed switching of large currents tends to create noise, stress the limits of power supplies and power regulators, and stress isolation structures.
- a conventional memory array there are more columns (bit lines) than rows (word lines) because during refresh operations, each word line is activated to refresh all of storage elements coupled to that word line. Accordingly, the fewer the number of rows, the less time it takes to refresh all of the rows.
- the molecular memory elements can be configured to exhibit significantly longer data retention than typical capacitors, in the order of tens, hundreds, thousands or effectively, unlimited seconds. Hence, the refresh cycle can be performed orders of magnitude less frequently or omitted altogether. Accordingly, refresh considerations that actually affect the physical layout of a memory array can be relaxed and arrays of various geometry can be implemented. For example, memory array can readily be manufactured with a larger number of word lines, which will make each word line shorter.
- word line driver circuits can be made smaller or eliminated because less current is required to drive each word line at a high speed.
- shorter word lines can be driven faster to improve read/write access times.
- each row of memory locations can be provided with multiple word lines to provide a mechanism for storing multiple states of information in each memory location.
- Sense amplifiers are coupled to each bit line and operate to detect signals on bit lines 109 that indicate the state of a memory element coupled to that bit line, and amplify that state to an appropriate logic level signal.
- sense amplifiers may be implemented with substantially conventional designs as such conventional designs will operate to detect and amplify signals from a molecular memory element.
- some molecular storage elements provide very distinct signals indicating their state. These distinct signals may reduce the need for conventional sense amplifier logic as the state signal from a molecular storage device can be more readily and reliably latched into buffers of read/write logic than can signals stored in conventional capacitors. That is, the present invention can provide devices which are sufficiently large as to obviate the need for a sense amplifier.
- Read/write logic includes circuitry for placing the memory device in a read or write state.
- a read state data from molecular array is placed on bit lines (with or without the operation of sense amplifiers), and captured by buffers/latches in read/write logic.
- Column address decoder will select which bit lines are active in a particular read operation.
- read/write logic drives data signals onto the selected bit lines such that when a word line is activated, that data overwrites any data already stored in the addressed memory element(s).
- a refresh operation is substantially similar to a read operation; however, the word lines are driven by refresh circuitry (not shown) rather than by externally applied addresses.
- sense amplifiers if used, drive the bit lines to signal levels indicating the current state of the memory elements and that value is automatically written back to the memory elements.
- the state of bit lines is not coupled to read/write logic during a refresh. This operation is only required if the charge retention time of the molecules used is less than the operational life of the device used, for example, on the order of 10 years for Flash memory.
- a memory bus couples a CPU and molecular memory device to exchange address, data, and control signals.
- embedded system may also contain conventional memory coupled to memory bus.
- Conventional memory may include random access memory (e.g., DRAM, SRAM, SDRAM and the like), or read only memory (e.g., ROM, EPROM, EEPROM and the like). These other types of memory may be useful for caching data molecular memory device, storing operating system or BIOS files, and the like.
- Embedded system may include one or more input/output (I/O) interfaces that enable CPU to communicate with external devices and systems.
- I/O interface may be implemented by serial ports, parallel ports, radio frequency ports, optical ports, infrared ports and the like. Further, interface may be configured to communicate using any available protocol including packet-based protocols.
- a battery comprising: a positive electrode, a negative electrode, a separator between said positive and negative electrode; and an electrolyte.
- the electrolyte is comprised of an ionic liquid composition or one or more ionic liquids or salts dissolved in a solvent, comprising: one or more phosphonium based cations of the general formula:
- the electrolyte is comprised of an ionic liquid having one or more phosphonium based cations, and one or more anions, wherein the ionic liquid composition exhibits thermodynamic stability up to 375 °C, a liquidus range greater than 400 °C, and ionic conductivity of at least 1 mS/cm, or at least 5 mS/cm, or at least 10 mS/cm at room
- the electrolyte is comprised of one or more salts having one or more phosphonium based cations, and one or more anions dissolved in a solvent, wherein the electrolyte composition exhibits ionic conductivity of at least at least 5 mS/cm, or at least 10 mS/cm, or at least 15 mS/cm, or at least 20 mS/cm, or at least 30 mS/cm, or at least 40 mS/cm, or at least 50 mS/cm, or at least 60 mS/cm at room temperature.
- a battery comprising electrolyte compositions according to embodiments of the present invention are further described in co-pending United States Patent application serial number (attorney docket no. 057472-060), filed concurrently herewith, the entire disclosure of which is hereby incorporated by reference.
- the electrolyte composition is comprised of, but not limited to one or more of the following solvents: acetonitrile, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC) or methyl ethyl carbonate (MEC), methyl propionate (MP), fluoroethylene carbonate (FEC), fluorobenzene (FB), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), phenylethylene carbonate (PhEC), propylmethyl carbonate (PMC), diethoxy ethane (DEE), dimethoxyethane (DME), tetrahydrofuran (THF), ⁇ -butyrolactone (GBL), and ⁇ -valerolactone (GVL).
- solvents acetonitrile, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate
- the electrolyte composition is comprised of one or more lithium salts having one or more anions selected from the group consisting of: PF 6 , (CF 3 ) 3 PF 3 , (CF 3 ) 4 PF 2 , (CF 3 CF 2 ) 4 PF 2 , (CF 3 CF 2 CF 2 ) 4 PF 2 , (-OCOCOO-)PF 4 , (-OCOCOO-)(CF 3 ) 3 PF, (-OCOCOO-) 3 P, BF 4 , CF 3 BF 3 , (CF 3 ) 2 BF 2 , (CF 3 ) 3 BF, (CF 3 ) 4 B, (-OCOCOO-)BF 2 ,
- the electrolyte composition is comprised of, but not limited to one or more of the following lithium salts: lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiC10 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium trifluoromethanesulfonate or lithium triflate (LiCF 3 S0 3 ), lithium
- Li(CF 3 S0 2 )2N or Lilm) bis(trifluoromethanesulfonyl)imide
- Li(CF 3 S0 2 )2N or Lilm bis(trifluoromethanesulfonyl)imide
- Li(CF3CF 2 S0 2 ) 2 N or LiBETI bis(pentafluoromethanesulfonyl)imide
- the phosphonium electrolyte has reduced fiammability and thus improves the safety of battery operation.
- the phosphonium ionic liquid or salt can be used as an additive to facilitate the formation of solid electrolyte interphase (SEI) layer or electrode protective layer.
- SEI solid electrolyte interphase
- the SEI layer helps widen the electrochemical stability window, suppress battery degradation or decomposition reactions and hence improve battery cycle life.
- Phosphonium ionic liquids, salts, and compositions according to embodiments of the present invention are well suited as electrolytes in a variety of batteries such as lithium primary batteries and lithium secondary batteries including lithium-ion batteries and rechargeable lithium metal batteries (sometimes collectively referred to herein as "lithium batteries").
- batteries such as lithium primary batteries and lithium secondary batteries including lithium-ion batteries and rechargeable lithium metal batteries (sometimes collectively referred to herein as "lithium batteries").
- lithium primary batteries include, but are not limited to: lithium/manganese dioxide (Li/Mn0 2 ), lithium/carbon monofluoride (Li/CFx), lithium/silver vanadium oxide (Li/Ag 2 V 4 0n), Li-(CF) X> lithium iron disulfide (Li/FeS 2 ), and lithium/copper oxide (Li/CuO).
- lithium-ion batteries include, but are not limited to: an anode of carbon, graphite, graphene, silicon(Si), tin (Sn), Si/Co doped carbon, and metal oxide such as lithium titanate oxide (LTO) and a cathode of lithium cobalt oxide (LCO) (LiCo0 2 ), lithium manganese oxide (LMO) (LiMn 2 0 4 ), lithium iron phosphate (LFP) (LiFeP0 4 ), lithium nickel manganese cobalt oxide (NMC) (Li(NiMnCo)0 2 ), lithium nickel cobalt aluminum oxide (NCA) (Li(NiCoAl)0 2 ), lithium nickel manganese oxide (LNMO) (Li 2 NiMn 3 0 8 ), and lithium vanadium oxide (LVO).
- LCO lithium cobalt oxide
- LMO lithium manganese oxide
- LFP lithium iron phosphate
- NMC nickel manganese cobalt oxide
- NMC lithium
- Examples of rechargeable lithium metal batteries include, but are not limited to: a lithium metal anode with a cathode of lithium cobalt oxide (LCO) (LiCo0 2 ), lithium manganese oxide (LMO) (Li/Mn 2 0 4 ), lithium iron phosphate (LFP) (LiFeP0 4 ), lithium nickel manganese cobalt (NMC) (Li(NiMnCo)0 2 ), lithium nickel cobalt aluminum (NCA) (Li(NiCoAl)0 2 ), lithium nickel manganese oxide (LNMO) (Li 2 NiMn 3 0 8 ), a lithium/sulfur battery, and a lithium/air battery.
- LCO lithium cobalt oxide
- LMO lithium manganese oxide
- LFP lithium iron phosphate
- NMC lithium nickel manganese cobalt
- NCA lithium nickel cobalt aluminum
- NCA lithium nickel manganese oxide
- LNMO lithium nickel manganese oxide
- Phosphonium ionic liquids, salts, and compositions according to embodiments of the present invention are well suited as electrolytes in electrochemical double layer capacitor (EDLCs), also called electrochemical capacitors or supercapacitors or ultracapacitors.
- EDLCs are energy storage devices which can store more energy than traditional capacitors and discharge this energy at higher rates than rechargeable batteries.
- the cycle life of electrochemical capacitors should far exceed that of a battery system.
- EDLCs are attractive for potential applications in emerging technology areas that require electric power in the form of pulses. Examples of such applications include digital communication devices that require power pulses in the millisecond range, and traction power systems in an electric vehicle where the high power demand can last from seconds up to minutes.
- a capacitor-battery combination has been proposed where the capacitor handles the peak power and the battery provides the sustained load between pulses.
- Such a hybrid power system can improve the overall power performance and extend battery cycle life without increase in size or weight of the system.
- An EDLC is basically the same as a battery in terms of general design, the difference being that the nature of charge storage in the electrode active material is capacitive; i.e., the charge and discharge processes involve only the movement of electronic charge through the solid electronic phase and ionic movement through the electrolyte solution phase. Compared to batteries, higher power densities and longer cycle life can be achieved because no rate- determining and life-limiting phase transformations take place at the electrode/electrolyte interface in an EDLC device.
- the dominant EDLC technology has been based on double-layer type charging at high surface area carbon electrodes, where a capacitor is formed at the carbon/electrolyte interface by electronic charging of the carbon surface with counter-ions in the solution phase migrating to the carbon surface in order to counterbalance that charge.
- Another technology is based on pseudocapacitance type charging at electrodes of conducting polymers and certain metal oxides.
- Conducting polymers have been investigated for use in EDLCs. Higher energy densities can be achieved because charging occurs through the volume of the active polymer material rather than just at the outer surface.
- Metal oxides also have been investigated for use in EDLCs. Charging in such active material has been reported to take place through the volume of the material and, as a result, the charge and energy densities observed are comparable with, or even higher than, those obtained for conducting polymers.
- an EDLC device comprises a single cell.
- FIG. 1 there is shown a schematic cross-sectional view of a single-cell EDLC 10, which includes a pair of electrodes 12,12' bonded to current collector plates 14,14', a separator film or membrane 16 sandwiched between the two electrodes, and an electrolyte solution 18 (not shown) which permeates and fills the pores of the separator and one or more of the electrodes.
- the capacitor electrode can be fabricated into a bipolar arrangement 20 where two electrodes 22, 24 are attached on both sides of a "bipolar" current collector 26.
- Multi-cell EDLCs can be fabricated by arranging a number of single cells into a bipolar stack in order to provide needed higher voltage (and power).
- An exemplary multi-cell EDLC 30 is shown in FIG. 2B where the bipolar stack consists of four unit cells from 32 to 38. Each cell has a structure the same as that of the single cell 10 in FIG. 1.
- each cell is separated from its neighboring cell with a single current collector plate that also acts as an ionic barrier between cells.
- Such a design optimizes the current path through the cell, reduces ohmic losses between cells, and minimizes the weight of packaging due to current collection. The result is an efficient capacitor with higher energy and power densities.
- the EDLCs are formed with electrode/separator/electrode assembly in planar or flat structures. In other embodiments, the EDLCs are formed with electrode/separator/electrode assembly in wound spiral structures such as cylindrical and prismatic structures.
- the electrodes are made from high surface area micro- or nano- particles of active materials, which are held together by a binder material to form a porous structure.
- active materials can be fabricated in other forms such as fibers, woven fibers, felts, foams, cloth, arogels, and mesobeads.
- the active materials include but are not limited to: carbons such as carbon blacks, graphite, graphene; carbon-metal composites; conducting polymers such as polyaniline, polypyrrole, polythiophene; oxides, chlorides, bromides, sulfates, nitrates, sulfides, hydrides, nitrides, phosphides, or selenides of lithium, ruthenium, tantalum, rhodium, iridium, cobalt, nickel, molybdenum, tungsten or vanadium, and combinations thereof.
- carbons such as carbon blacks, graphite, graphene
- carbon-metal composites such as conducting polymers such as polyaniline, polypyrrole, polythiophene
- oxides chlorides, bromides, sulfates, nitrates, sulfides, hydrides, nitrides, phosphides, or selenides of lithium, ruthenium, tantalum
- the electrode binder materials are selected from but not limited to one or more of the following: polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polyacrylate, acrylate-type copolymer (ACM), carboxymethyl cellulose (CMC), polyacrylic acid (PAA), polyamide, polyimide, polyurethane, polyvinyl ether (PVE), or combinations thereof.
- PVdF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- SBR styrene-butadiene rubber
- PAN polyacrylonitrile
- ACM acrylate-type copolymer
- CMC carboxymethyl cellulose
- PAA polyacrylic acid
- PVE polyamide
- PVDF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- SBR st
- the separator materials are selected from but not limited to one or more of the following: films or membranes of micro porous polyolefin such as polyethylene (PE) and polypropylene (PP), polyvinylidene fluoride (PVdF), PVdF coated polyolefin, polytetrafluoroethylene (PTFE), polyvinyl chloride, resorcinol formaldehyde polymer, cellulose paper, non-woven polystyrene cloth, acrylic resin fibers, non-woven polyester film, polycarbonate membrane, and fiberglass paper, or combinations thereof.
- micro porous polyolefin such as polyethylene (PE) and polypropylene (PP), polyvinylidene fluoride (PVdF), PVdF coated polyolefin, polytetrafluoroethylene (PTFE), polyvinyl chloride, resorcinol formaldehyde polymer, cellulose paper, non-woven polystyrene cloth, acrylic resin fibers, non-woven polyester film, polycarbon
- the electrolyte is comprised of an ionic liquid composition or one or more ionic liquids or salts dissolved in a solvent, comprising: one or more phosphonium based cations of the general formula:
- R'R 2 R 3 R 4 P and one or more anions and wherein: R 1 , R 2 , R 3 and R 4 are each independently a substituent group, such as but not limited to an alkyl group as described below. In some embodiments R 1 , R 2 , R 3 and R 4 are each independently an alkyl group comprised of 1 to 6 carbon atoms, more usually 1 to 4 carbon atoms. Any one or more of the salts may be liquid or solid at a temperature of 100 °C and below. In some embodiments, a salt is comprised of one cation and one anion pair. In other embodiments, a salt is comprised of one cation and multiple anions. In other embodiments, a salt is comprised of one anion and multiple cations.
- a salt is comprised of multiple cations and multiple anions.
- the electrolyte is comprised of an ionic liquid having one or more phosphonium based cations, and one or more anions, wherein the ionic liquid composition exhibits thermodynamic stability up to 375 °C, a liquidus range greater than 400 °C, and ionic conductivity of at least 1 mS/cm, or at least 5 mS/cm, or at least 10 mS/cm at room
- the electrolyte is comprised of one or more salts having one or more phosphonium based cations, and one or more anions dissolved in a solvent, wherein the electrolyte composition exhibits ionic conductivity of at least at least 5 mS/cm, or at least 10 mS/cm, or at least 15 mS/cm, or at least 20 mS/cm, or at least 30 mS/cm, or at least 40 mS/cm, or at least 50 mS/cm, or at least 60 mS/cm at room temperature.
- the electrolyte composition further comprises one or more conventional, non-phosphonium salts.
- the electrolyte composition may be comprised of conventional salts, and wherein the phosphonium based ionic liquids or salts disclosed herein are additives.
- electrolyte composition is comprised of phosphonium based ionic liquids or salts and one or more conventional salts, present at a mole (or molar) ratio in the range of 1 : 100 to 1 : 1 , phosphonium based ionic liquid or salt:
- conventional salt examples include but are not limited to salts which are comprised of one or more cations selected from the group consisting of:
- the one or more conventional salts include but not limited to: tetraethylammonium tetrafluorboride
- EMIIm bis(trifluoromethanesulfonyl)imide
- the one or more conventional salts are lithium based salts including but not limited to: lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiC10 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium trifluoromethanesulfonate or lithium triflate (LiCF 3 S0 3 ), lithium bis(trifluoromethanesulfonyl)imide (Li(CF 3 S0 2 )2N or Lilm), and lithium lithium based salts including but not limited to: lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiC10 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium trifluoromethanesulfonate or lithium triflate (LiCF 3 S0 3 ),
- Li(CF3CF 2 S0 2 ) 2 N or LiBETI bis(pentafluoromethanesulfonyl)imide
- the electrolyte composition is further comprised of, but not limited to one or more of the following solvents: acetonitrile, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC) or methyl ethyl carbonate (MEC), methyl propionate (MP), fluoroethylene carbonate (FEC), fluorobenzene (FB), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), phenylethylene carbonate (PhEC), propylmethyl carbonate (PMC), diethoxyethane (DEE), dimethoxyethane (DME), tetrahydrofuran (THF), ⁇ -butyrolactone (GBL), and ⁇ -valerolactone (GVL).
- solvents acetonitrile, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate
- the phosphonium electrolyte composition disclosed herein may be applied onto the porous electrodes and separator prior to the cell assembly by any suitable means, such as by soaking, spray, screen printing, and the like.
- the phosphonium electrolyte composition disclosed herein may be applied onto the porous electrodes and separator after the cell assembly by any suitable means, such as by using a vacuum injection apparatus.
- the phosphonium electrolyte composition disclosed herein may be formed into a polymer gel electrolyte film or membrane. Alternatively, the polymer gel electrolyte may be applied onto the electrodes directly.
- both of such freestanding gel electrolyte films or gel electrolyte coated electrodes are particularly suitable for high volume and high throughput manufacturing process, such as roll-to-roll winding process.
- Another advantage of such electrolyte film can function not only as the electrolyte but also as a separator.
- Such electrolyte films may also be used as an electrolyte delivery vehicle to precisely control the amount and distribution of the electrolyte solution thus improving cell assembly consistency and increasing product yield.
- the electrolyte film is comprised of a membrane as described in co-pending Patent Application Serial No. 12/027,924 filed on February 7, 2008, the entire disclosure of which is hereby incorporated by reference.
- the current collectors are selected from but not limited to one or more of the following: plates or foils or films of aluminum, carbon coated aluminum, stainless steel, carbon coated stainless steel, gold, platinum, silver, highly conductive metal or carbon doped plastics, or combinations thereof.
- both electrodes 12, 12' of a single-cell EDLC 10 can be fabricated with the same type of active material, to provide a symmetric electrode configuration.
- an EDLC may have an asymmetric electrode configuration, in which each electrode is formed of a different type of active material.
- a symmetric EDLC the preferred embodiment, is easier to fabricate than an asymmetric EDLC.
- the symmetric EDLC also allows the polarity of the two electrodes to be reversed, a possible advantage for continuous high performance during long-term charge cycling.
- an asymmetric EDLC may be selected where the choice of electrode material is determined by cost and performance.
- an EDLC device comprises a pair of porous electrodes made of activated carbon bonded to aluminum current collectors, a NKK cellulose separator sandwiched between the two electrodes, and a phosphonium electrolyte disclosed herein which permeates and fills the pores of the separator and the electrodes.
- an EDLC is made as a stack of cell components. Electrode active materials of activated carbon particles and binders are adhered to one side of a current collector to form a single-side electrode or on both sides of a "bipolar" current collector to form a bipolar or double-sided electrode as illustrated in FIGS. 2A and 2B.
- a multi-cell stack is made by positioning a first NKK cellulose separator on top of the a first single-sided electrode, a first bipolar electrode on top of the first separator, a second separator on top of the first bipolar electrode, a second bipolar electrode on top of the second separator, a third separator on top of the second bipolar electrode, a third bipolar electrode on top of the third separator, a fourth separator on top of the third bipolar electrode, and a second single-sided electrodeon top of the fourth separator to form a 4-cell stack.
- An EDLC that includes many more cells can be made first forming muti-cell modules as described above. The modules are then stacked one on top of another until a desired number of modules has been reached.
- the electrode/separator/electrode assembly is sealed partially around the edges. A sufficient amount of a phosphonium electrolyte disclosed herein is added to the assembly to fill the pores of the separator and the electrodes before the edges are sealed completely.
- a spiral-wound EDLC is formed. Electrode active materials of activated carbon particles and binders are adhered to both sides of a current collector to form a double-sided electrode similar to the structure as illustrated in FIGS. 2A and 2B.
- An electrode/separator stack or assembly is made by positioning a first electrode on top of a first Celgard® polypropylene/polyethylene separator, a second separator on top of the first electrode, and a second electrode on top of the second separator.
- the stack is wound into a tight cell core of either a round spiral to form a cylindrical structure or a flattened spiral to form a prismatic structure.
- the stack is then either partially sealed at the edges or placed into a can. A sufficient amount of any of the electrolytes described herein is added to the pores of the separator and the electrodes of the stack before final sealing.
- an EDLC device may be built using the phosphonium electrolyte composition disclosed herein and a conducting polymer as the electrode active material on one or both electrodes, in order to increase the total storage density of the device.
- the conducting polymer may be chosen from any of the classes of conducting organic materials, including polyanilines, polypyrroles, and polythiophenes. Of particular interest are polythiophenes such as poly(3-(4-fluorophenyl)thiophene) (PFPT), which are known to have good stability to electrochemical cycling, and can be processed readily.
- an EDLC device may be built using the phosphonium electrolyte composition disclosed herein, a cathode (positive electrode) made of high surface area activated carbon and an anode (negative electrode) made of lithium ion intercalated graphite.
- the EDLC formed is an asymmetric hybrid capacitor, called lithium ion capacitor (LIC).
- ESR cell equivalent series resistance
- a phosphonium electrolyte composition disclosed herein replaces a conventional electrolyte or when a phosphonium salt is used as an additive with a conventional electrolyte, the ionic conductivity is significantly increased; and the performance stability of the EDLC device is greatly improved, as can be seen in the Examples below.
- the phosphonium ionic liquid [0277] In another exemplary embodiment, the phosphonium ionic liquid
- various phosphonium salts are dissolved in acetonitrile (ACN) solvent at 1.0 M concentration.
- ACN acetonitrile
- the resulting electrolytes exhibit ionic conductivity at room temperature greater than about 28 mS/cm, or greater than about 34 mS/cm, or greater than about 41 mS/cm, or greater than about 55 mS/cm, or greater than about 61 mS/cm.
- a phosphonium salt (CH 3 CH 2 CH 2 )(CH3CH 2 )(CH 3 ) 2 PC(CN) 3 is added at 10 w%.
- the ionic conductivity of the electrolyte is increased by 109% at -30°C, and about 25% at +20°C and +60°C with the addition of the phosphonium additive.
- ionic conductivity of the conventional electrolyte solution increased by at least 25% as a result of the phosphonium additive.
- a phosphonium salt (CH 3 CH 2 CH 2 )(CH 3 CH 2 )(CH 3 ) 2 PCF 3 BF 3 is added at 10 w%.
- the ionic conductivity of the electrolyte is increased by 36% at 20°C, 26% at 60°C, and 38% at 90°C with the addition of the phosphonium additive.
- ionic conductivity of the conventional electrolyte solution is increased by at least 25% as a result of the phosphonium additive.
- the separator is the largest single source of cell ES . Therefore a suitable separator needs to have high ionic conductivity when soaked with electrolyte and has minimum thickness.
- the separator is less than about 100 ⁇ thick. In another embodiment, the separator is less than about 50 ⁇ thick. In another embodiment, the separator is less than about 30 ⁇ thick. In yet another embodiment, the separator is less than about 10 ⁇ thick.
- novel phosphonium electrolyte compositions either as replacements or using phosphonium salts as additives in conventional electrolytes, disclosed herein is that they exhibit wider electrochemical voltage stability window compared to the conventional electrolytes.
- various phosphonium salts are dissolved in acetonitrile (ACN) solvent to form electrolyte solutions at 1.0 M concentration.
- ACN acetonitrile
- the electrochemical voltage window is determined in cells with a Pt working electrode and a Pt counter electrode and an Ag/Ag+ reference electrode.
- the stable voltage window is between about -3.0 V and +2.4 V.
- the voltage window is between about -3.2 V and +2.4 V.
- the voltage window is between about -2.4 V and +2.5 V.
- the voltage window is between about -1.9 V and +3.0 V.
- single-cell EDLCs are comprised of two carbon electrodes, a cellulose separator sandwiched between the two electrodes, and an electrolyte solution of various phosphonium salts dissolved in a solvent of propylene carbonate (PC) at 1.0 M concentration.
- the EDLC can be charged and discharged from 0 V to 3.9 V.
- the EDLC can be charged and discharged from 0 V to 3.6 V.
- the EDLC can be charged and discharged from 0 V to 3.3 V.
- the EDLC can be operated between -3.9 V and +3.9 V, or between -3.6 V and +3.6 V, or between -3.3 V to +3.3 V.
- phosphonium electrolyte compositions disclosed herein either as replacements or using phosphonium salts as additives in a conventional electrolyte of an EDLC is that they exhibit reduced vapor pressure and therefore fiammability as compared to conventional electrolytes, and thus improve the safety of EDLC operation.
- conventional electrolytes which contain conventional, non- phosphonium salts
- the phosphonium salt and the conventional salt are present in the electrolyte at a mole ratio in the range of 1/100 to 1/1, phosphonium salt/conventional salt.
- conventional salts include, but are not limited to: tetraethylammonium tetrafluorborate (TEABF 4 ),
- EMIBF 4 triethylmethylammonium tetrafluoroborate
- EMIBF 4 l-ethyl-3-methylimidazolium tetrafluoroborate
- EMIIm l-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide
- EMIPF 6 l-ethyl-3-methylimidazolium hexafluorophosphate
- an electrolyte was formed by dissolving phosphonium salt- (CH 3 CH 2 CH2)(CH3CH2)(CH3) 2 PCF 3 BF 3 in a solvent of acetonitrile (ACN) to 1.0 M concentration.
- ACN acetonitrile
- the vapor pressure of ACN was lowered by about 39% at 25 °C, and by 38% at 105 °C.
- the significant suppression in vapor pressure by phosphonium salt is an advantage in reducing the flammability of the electrolyte solution, thus improving the safety of device operation.
- the phosphonium salt (CH 3 CH 2 CH 2 )(CH 3 CH 2 )(CH 3 ) 2 PC(CN) 3 was added to the standard electrolyte solution at 20 w%.
- the fire self-extinguishing time was reduced by 53% with the addition of the phosphonium additive to the conventional electrolyte. This is an indication that the safety and reliability of energy storage devices can be substantially improved by using the phosphonium salt as an additive in the conventional electrolytes.
- a further important advantage of the EDLCs formed according to the present invention compared to the prior art is their wide temperature range.
- the EDLCs made with the novel phosphonium electrolytes disclosed herein can be operated in a temperature range between about ⁇ 50°C and +120°C, or between about -40 °C and +105 °C, or between -20 °C and +85 °C, or between -10 °C and +65 °C.
- the EDLCs are designed to operate at different voltage and temperature combinations.
- the EDLC can be operated at 2.5 V and 120 °C.
- the EDLC can be operated or at 2.7 V and 105 °C.
- the EDLC can be operated or at 2.8 V and 85 °C.
- the EDLC can be operated at 3.0 V and 70 °C.
- the EDLC can be operated at 3.5 V at 60 °C,
- the above approaches to energy storage may be combined with batteries to form a capacitor-battery hybrid energy storage system comprising an array of batteries and EDLCs.
- Phosphonium ionic liquids, salts, and compositions according to embodiments of the present invention are well suited as electrolytes in electrolytic capacitors.
- an electrolytic capacitor provided comprising: a positive electrode, a negative electrode, a separator between said positive and negative electrode; and an electrolyte.
- the electrolyte is comprised of an ionic liquid composition or one or more ionic liquids or salts dissolved in a solvent, comprising: one or more phosphonium based cations of the general formula:
- R'R 2 R 3 R 4 P wherein: R 1 , R 2 ,R 3 and R 4 are each independently a substituent group; and one or more anions.
- the electrolyte is comprised of an ionic liquid having one or more phosphonium based cations, and one or more anions, wherein the ionic liquid composition exhibits thermodynamic stability up to 375 °C, a liquidus range greater than 400 °C, and ionic conductivity of at least 1 mS/cm, or at least 5 mS/cm, or at least 10 mS/cm at room
- the electrolyte is comprised of one or more salts having one or more phosphonium based cations, and one or more anions dissolved in a solvent, wherein the electrolyte composition exhibits ionic conductivity of at least at least 5 mS/cm, or at least 10 mS/cm, or at least 15 mS/cm, or at least 20 mS/cm, or at least 30 mS/cm, or at least
- the electrolyte composition is comprised of, but not limited to one or more of the following solvents: acetonitrile, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC) or methyl ethyl carbonate (MEC), methyl propionate (MP), fluoroethylene carbonate (FEC), fluorobenzene (FB), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), phenylethylene carbonate (PhEC), propylmethyl carbonate (PMC), diethoxyethane (DEE), dimethoxyethane (DME), tetrahydrofuran (THF), ⁇ -butyrolactone (GBL), and ⁇ -valero lac
- solvents acetonitrile, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbon
- the positive electrode - the anode is typically an aluminum foil with thin oxide film formed by electrolytic oxidation or anodization. While aluminum is the preferred metal for the anode, other metals such as tantalum, magnesium, titanium, niobium, zirconium and zinc may be used.
- the negative electrode - the cathode is usually an etched an etched aluminum foil.
- the phosphonium electrolyte exhibits reduced flammability as compared to conventional electrolytes, and thus improves the safety of the electrolytic capacitor operation.
- a DSSC comprising: a dye molecule attached anode, an electrolyte containing a redox system, and a cathode.
- the electrolyte is comprised of an ionic liquid composition or one or more ionic liquids or salts dissolved in a solvent, comprising: one or more phosphonium based cations of the general formula:
- R 1 , R 2 , R 3 and R 4 are each independently a substituent group; and one or more anions.
- the electrolyte is characterized as having one or more phosphonium based cations, and one or more anions, wherein the electrolyte composition exhibits least two or more of: thermodynamic stability, low volatility, wide liquidus range, ionic conductivity, chemical stability, and electrochemical stability.
- the electrolyte is characterized as having one or more phosphonium based cations, and one or more anions, wherein the electrolyte composition exhibits thermodynamic stability up to a temperature of approximately 375 °C or greater, and ionic conductivity of at least 5 mS/cm, or at least 10 mS/cm, or at least 15 mS/cm. Electrolytic Films
- Phosphonium ionic liquids, salts, and compositions according to embodiments of the present invention are well suited as electrolytic or electrolyte films.
- an electrolytic film comprising: a phosphonium ionic liquid composition applied to a substrate.
- an electrolytic film is provided comprising: one or more phosphonium ionic liquids or salts dissolved in a solvent applied to a substrate.
- one or more phosphonium ionic liquids or salts are dissolved in a solvent to form a coating solution. The solution is applied to a substrate by any suitable means, such as by spray, spin coating, and the like.
- the substrate is then heated to partially or completely remove the solvent, forming the electrolyte or ion-conducting film.
- solutions of ionic liquids, salts, and polymers, dissolved in suitable solvents are coated onto substrates, such as by spray or spin coating, and then the solvents -are partially or completely evaporated. This results in the formation of ion-conducting polymer gels/films.
- Such films are particularly suitable as electrolytes for batteries, EDLCs, and DSSCs, and as fuel cell membranes.
- thermodynamic stability low volatility and wide liquidus range of the phosphonium ionic liquids of the present invention are well suited as heat transfer medium.
- Some embodiments of the present invention provide a heat transfer medium, comprising an ionic liquid composition or one or more salts dissolved in a solvent comprising: one or more phosphonium based cations, and one or more anions, wherein the heat transfer medium exhibits thermodynamic stability up to a temperature of approximately 375 °C, a liquidus range of greater than 400 °C.
- the heat transfer medium of the invention is a high temperature reaction media.
- the heat transfer medium of the invention is a heat extraction media.
- the phosphonium ionic liquids of the present invention find use in additional applications.
- an embedded capacitor is proved.
- the embedded capacitor is comprised of a dielectric disposed between two electrodes, where the dielectric is comprised of an electrolytic film of a phosphonium ionic composition as described above.
- the embedded capacitor of the present invention may be embedded in an integrated circuit package. Further embodiments include "on-board" capacitor arrangements.
- phosphonium ionic liquids were prepared by either metathesis reactions of the appropriately substituted phosphonium salt with the appropriately substituted metal salt, or by reaction of appropriately substituted phosphine precursors with an appropriately substituted anion precursor.
- FIGs. 3 to 6 illustrate reaction schemes to make four exemplary embodiments of phosphonium ionic liquids of the present invention.
- Phosphonium ionic liquids were prepared. AgS0 3 CF3 was charged into a 50 ml round bottom (Rb) flask and assembled to a 3 cm swivel frit. The flask was evacuated and brought into a glove box. In the glove box, di-n-proply ethyl methyl phosphonium iodide was added and the flask re-assembled, brought to the vacuum line, evacuated, and anydrous THF was vacuum transferred in. The flask was allowed to warm to room temperature and was then heated to 40 °C for 2 hours. This resulted in the formation of a light green bead-like solid. This solid was removed by filtration.
- Thermogravimetric Analysis was performed on the material and the results are shown in FIG. 9A.
- Evolved Gas Analysis was also performed and the results are shown in FIG. 9B.
- TGA Thermogravimetric Analysis
- the water is removed under vacuum on a rotary evaporator to leave a white solid residue, which is recrystallized from a 3: 1 mixture of ethyl acetate and acetonitrile to give triethylmethylphosphonium nitrate. Yield: 176 mg, 94%.
- the phosphonium nitrate salt (176 mg, 0.90 mmol) is dissolved in 5 mL anhydrous acetonitrile. 1 13 mg (0.90 mmol) potassium tetrafluoroborate dissolved in 5 mL anhydrous acetonitrile is added to the phosphonium salt and after stirring 5 minutes the solids are removed by filtration.
- the filtrate was cooled to obtain white crystals which were collected by filtration. Yield: 744 mg, 70%.
- the composition is confirmed by the ⁇ NMR spectrum as shown in FIG. 19A and the 31 P NMR spectrum shown in FIG. 19B.
- Thermogravimetric Analysis (TGA) was performed on the material and the results are shown in FIG. 20.
- a ternary phosphonium ionic liquid composition comprising 1 :3: 1 mole ratio of (CH3CH2CH 2 )(CH3) 3 PCF3BF3/(CH 3 CH 2 CH2)(CH3CH2)(CH3) 2 P CF 3 BF 3
- phosphonium salt (CH 3 CH 2 CH2)(CH3CH 2 )(CH3)2PC(CN)3 was prepared.
- This salt exhibits a low viscosity of 19.5 cP at 25 °C, melting point of-10.0 °C, onset decomposition temperature of 396.1 °C, liquid range of 407 °C, ionic conductivity of 15.2 mS/cm, and electrochemical voltage window of -1.5 5o +1.5 V when measured in an electrochemical cell with a Pt working electrode and a Pt counter electrode and an Ag/Ag + reference electrode.
- Table 14 The results are summarized in Table 14 below.
- phosphonium salt (CH 3 CH 2 CH 2 )(CH 3 CH2)(CH 3 ) 2 PC(CN)3 was prepared.
- the salt was dissolved in a solvent of acetonitrile (ACN) with ACN/salt volume ratios ranging from 0 to 4.
- ACN acetonitrile
- the ionic conductivities of the resulting electrolyte solution were measured at room temperature and the results are shown in FIG. 22. As FIG. 22 shows, the ionic conductivity increases with the increase of ACN/salt ratio from 13.9 mS/cm at zero ratio (neat ionic liquid) to a peak value of 75 mS/cm at ratios between 1.5 and 2.0.
- phosphonium salt (CH 3 CH 2 CH 2 )(CH 3 CH 2 )(CH 3 ) 2 PC(CN) 3 was prepared.
- the salt was dissolved in a solvent of propylene carbonate (PC) with PC/salt volume ratios ranging from 0 to 2.3.
- PC propylene carbonate
- the ionic conductivities of the resulting electrolyte solution were measured at room temperature and the results are shown in FIG. 23. As FIG. 23 shows, the ionic conductivity increases with the increase of PC/salt ratio from 13.9 mS/cm at zero ratio (neat ionic liquid) to a peak value of 22 mS/cm at ratios between 0.75 and 1.25.
- the electrochemical stable voltage window (Echem Window) was determined in an electrochemical cell with a Pt working electrode and a Pt counter electrode and an Ag/Ag+ reference electrode. The results are summarized in Table 15. The electrolytes exhibited ionic conductivity at room temperature greater than about 28 mS/cm, or greater than about 34 mS/cm, or greater than about 41 mS/cm, or greater than about 55 mS/cm, or greater than about 61 mS/cm. In one arrangement, the Echem window was between about -3.2 V and +2.4 V. In another arrangement, the Echem window was between about -3.0 V and +2.4 V. In yet another arrangement, the Echem window was between about -2.0 V and +2.4 V.
- phosphonium salt- (CH 3 CH 2 CH 2 )(CH 3 CH 2 )(CH 3 ) 2 PCF 3 BF 3 was prepared and compared to an ammonium salt (CH 3 CH 2 ) 3 (CH 3 )NBF 4 as control.
- the salts were dissolved in a solvent of acetonitrile (ACN) to form electrolyte solutions at 1.0 M concentration.
- the vapor pressures of the solutions were measured by pressure Differential Scanning Calorimeter (DSC) at temperatures from 25 to 105 °C.
- the ionic conductivities of the resulting electrolyte solutions were measured at room temperature. As illustrated in FIG.
- the vapor pressure of ACN is lowered by 39% with the phosphonium salt compared to 27% with the ammonium salt at 25 °C, 38% with the phosphonium salt compared to 13% for the ammonium salt at 105 °C.
- the significant suppression in vapor pressure by phosphonium salt is an advantage in reducing the flammability of the electrolyte solution thus improving the safety of EDLC operation.
- phosphonium salt was used as an additive in a lithium battery conventional electrolyte solution.
- a conventional electrolyte solution of 1.0 M LiPF 6 in a mixed solvent of EC (ethylene carbonate) and DEC (diethyl carbonate) at 1 : 1 weight ratio, noted as EC:DEC 1 : 1 was provided by Novolyte Technologies (part of BASF Group).
- the phosphonium salt was provided by Novolyte Technologies (part of BASF Group).
- phosphonium salt was used as an additive in a lithium battery standard electrolyte solution.
- a standard electrolyte solution of 1.0 M LiPF 6 in a mixed solvent of EC (ethylene carbonate) and DEC (diethyl carbonate) at 1 : 1 weight ratio, noted as EC:DEC 1 : 1 was provided by Novolyte Technologies (part of BASF Group).
- the phosphonium salt (CH 3 CH 2 CH2)(CH 3 CH2)(CH 3 )2PC(CN) 3 was added to the standard electrolyte solution at 10 w%.
- the ionic conductivities of both the standard electrolyte solution and the solution with phosphonium additive were measured at different temperatures from -30 to 60 °C. As illustrated in FIG. 26, the phosphonium additive improves the ionic conductivity of the electrolyte solution in a broad temperature range. At - 30°C, the ionic conductivity is increased by 109% as a result of the phosphonium additive. At +20°C, the ionic conductivity is increased by 23%o as a result of the phosphonium additive. At +60°C, the ionic conductivity is increased by about 25% as a result of the phosphonium additive. In general, ionic conductivity of the standard electrolyte solution increased by at least 25% as a result of the phosphonium additive
- phosphonium salt was used as an additive in a lithium battery standard electrolyte solution.
- a standard electrolyte solution of 1.0 M LiPF 6 in a mixed solvent of EC (ethylene carbonate), DEC (diethyl carbonate) and EMC (ethylmethyl carbonate) at 1 : 1 : 1 weight ratio noted as
- EC:DEC:EMC 1 : 1 : 1 was provided by Novolyte Technologies (part of BASF Group).
- the phosphonium salt (CH 3 CH 2 CH 2 )(CH 3 CH 2 )(CH 3 ) 2 PCF 3 BF 3 was added to the standard electrolyte solution at 10 w%.
- the ionic conductivities of both the standard electrolyte solution and the solution with phosphonium additive were measured at different temperatures from 20 to 90 °C. As illustrated in FIG. 27, the phosphonium additive improves the ionic conductivity of the electrolyte solution in a broad temperature range. At 20°C, the ionic conductivity is increased by about 36% as a result of the phosphonium additive.
- the ionic conductivity is increased by about 26% as a result of the phosphonium additive.
- the ionic conductivity is increased by about 38% as a result of the phosphonium additive.
- ionic conductivity of the standard electrolyte solution increased by at least 25% as a result of the phosphonium additive.
- a coin cell is comprised of two disk- shaped carbon electrodes of 14 mm diameter, a separator of 19 mm diameter sandwiched between the two electrodes, and an impregnating electrolyte solution.
- two carbon electrodes of 100 ⁇ thickness were prepared from activated carbon (Kuraray YP-50F, 1500 - 1800 m " /g), mixed with a binder and each bounded to a 30 ⁇ thick aluminum current collector.
- the separator was prepared from 35 ⁇ NKK cellulose separator (TF40-35).
- Both the carbon electrodes and the separator were impregnated with an electrolyte solution containing 1.0 M phosphonium salt in either acetonitrile or propylene carbonate.
- the assembly was placed into a 2032 coin cell case and sealed by applying appropriate pressure using a crimper.
- the finished cell had a diameter of 20 mm and a thickness of 3.2 mm.
- the entire assembly process was carried out in a nitrogen-filled glove box.
- the finished cell was characterized with a CHI potentiostat by charging and discharging at a constant current.
- a pouch cell is comprised of two carbon electrodes of 15 mm x 15 mm, a separate of 20 mm x 20 mm sandwiched between the two electrodes, and an impregnating electrolyte solution.
- the pouch cell includes a third electrode - a reference electrode such as a silver electrode so that the potential at each carbon electrode can be determined.
- two carbon electrodes of 100 ⁇ thickness were prepared from activated carbon (Kuraray YP-50F, 1500 - 1800 m 2 /g), mixed with a binder and each bounded to a 30 ⁇ thick aluminum current collector.
- the separator was prepared from 35 ⁇ NKK cellulose separator (TF40-35). Both the carbon electrodes and the separator were impregnated with an electrolyte solution containing 1.0 M phosphonium salt in either acetonitrile or propylene carbonate. Once the assembly was aligned the two current collector tabs were held together using a hot melt adhesive tape to prevent leaking around the tabs. The assembly was then vacuumed sealed in an aluminum laminate pouch bag. The finished cell had dimensions of 70 mm x 30 mm and a thickness of 0.3 mm. The entire assembly process was carried out in a nitrogen-filled glove box. The finished cell was characterized with a CHI potentiostat by charging and discharging at a constant current density. FIG.
- FIG. 31A shows the charge - discharge curve for a pouch cell with 1.0 M (CH 3 CH 2 CH 2 )(CH 3 CH 2 )(CH 3 ) 2 CF 3 F 3 in propylene carbonate. The cell was charged and discharged between 0 and 2.7 V at 10 mA.
- FIG. 31B shows the resolved electrode potential at the positive and negative carbon electrodes measured with a silver reference electrode. In some cases, the pouch cell could be fully charged to high voltages up to 3.9 V. The results are summarized in Table 19 below.
- the EDLC can be charged and discharged from 0 V to 3.9 V.
- the EDLC can be charged and discharged from 0 V to 3.6 V.
- the EDLC can be charged and discharged from 0 V to 3.3 V.
- a cylindrical cell is comprised of a first separator strip of 6 cm x 50 cm, a first carbon electrode strip of 5.8 cm x 50 cm placed on top of the first separator, a second separator strip of 6 cm x 50 cm placed on top of the first carbon electrode, and a second carbon electrode strip of 5.8 cm x 50 cm placed on top of the second separator.
- the electrode/separator assembly was wound in a jellyroll fashion into a tight cell core.
- carbon electrodes of 100 ⁇ thickness were prepared from activated carbon (Kuraray YP-50F, 1500 - 1800 m 2 /g) mixed with a binder and bounded to both sides of a 30 ⁇ thick aluminum current collector resulting in a double- sided electrode structure.
- the separator was prepared from 35 ⁇ NKK cellulose separator (TF40-35).
- the jellyroll core was placed into an 18650 cylindrical cell case.
- An electrolyte solution containing 1.0 M phosphonium salt in either acetonitrile or propylene carbonate was added using a vacuum injection apparatus to ensure that the electrolyte permeated and completely filled the porosity of the separators and carbon electrodes.
- FIG. 33 shows the charge - discharge curve for such a cylindrical cell with an electrolyte solution of 1M
- electrolytes disclosed herein can be operated in a temperature range between -40 °C and +80 °C. It is expected that the EDLCs made with the phosphonium electrolytes disclosed herein can be operated in a temperature range between about -50 °C and +120 °C. Thus, with the materials and structures disclosed herein, it is now possible to make EDLCs that can function in extended temperature ranges. This makes it possible to implement these devices into broad applications that experience a wide temperature range during fabrication and/or operation.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Primary Cells (AREA)
- Hybrid Cells (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/706,233 US8907133B2 (en) | 2008-07-14 | 2012-12-05 | Electrolyte compositions and electrochemical double layer capacitors formed there from |
PCT/US2013/065788 WO2014088712A1 (en) | 2012-12-05 | 2013-10-18 | Electrolyte compositions and electrochemical double layer capacitors formed there from |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2929553A1 true EP2929553A1 (en) | 2015-10-14 |
EP2929553A4 EP2929553A4 (en) | 2016-09-07 |
Family
ID=50883860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13860380.8A Withdrawn EP2929553A4 (en) | 2012-12-05 | 2013-10-18 | Electrolyte compositions and electrochemical double layer capacitors formed there from |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2929553A4 (en) |
JP (1) | JP2016507888A (en) |
KR (1) | KR20150093204A (en) |
CN (1) | CN105164777A (en) |
WO (1) | WO2014088712A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9558894B2 (en) | 2011-07-08 | 2017-01-31 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
WO2013009720A2 (en) | 2011-07-08 | 2013-01-17 | Fastcap Systems Corporation | High temperature energy storage device |
US10872737B2 (en) | 2013-10-09 | 2020-12-22 | Fastcap Systems Corporation | Advanced electrolytes for high temperature energy storage device |
US9870874B2 (en) * | 2014-06-26 | 2018-01-16 | Shenzhen Capchem Technology Co., Ltd. | Electrolyte solute, electrolyte, and high-voltage supercapacitor |
JP2016110075A (en) * | 2014-10-03 | 2016-06-20 | 株式会社半導体エネルギー研究所 | Light-emitting device, module, and electronic device |
KR102668693B1 (en) | 2015-01-27 | 2024-05-27 | 패스트캡 시스템즈 코포레이션 | Wide temperature range ultracapacitor |
CN105762168B (en) * | 2016-04-18 | 2018-08-21 | 华中科技大学 | A kind of perovskite solar cell and ultracapacitor integration member and preparation method thereof |
US11424083B2 (en) * | 2019-09-30 | 2022-08-23 | Massachusetts Institute Of Technology | Metal-organic frameworks for supercapacitor electrodes |
KR102429821B1 (en) * | 2020-10-13 | 2022-08-08 | 서울시립대학교 산학협력단 | High-performance and reliable electrochromic device and method for preparing the same |
WO2023173027A1 (en) * | 2022-03-09 | 2023-09-14 | Lyten, Inc. | Tab-less cylindrical cell |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0230907A3 (en) * | 1986-01-17 | 1989-05-31 | Asahi Glass Company Ltd. | Electric double layer capacitor having high capacity |
US7342769B2 (en) * | 2002-08-23 | 2008-03-11 | Nisshinbo Industries, Inc. | Electric double-layer capacitor |
EP1715496A4 (en) * | 2004-02-03 | 2010-03-31 | Nisshin Spinning | Electric double layer capacitor |
FR2933814B1 (en) * | 2008-07-11 | 2011-03-25 | Commissariat Energie Atomique | IONIC LIQUID ELECTROLYTES COMPRISING A SURFACTANT AND ELECTROCHEMICAL DEVICES SUCH AS ACCUMULATORS COMPRISING SAME |
US8778534B2 (en) * | 2008-07-14 | 2014-07-15 | Esionic Es, Inc. | Phosphonium ionic liquids, compositions, methods of making and batteries formed there from |
US7679884B2 (en) * | 2008-07-29 | 2010-03-16 | Wisconsin Alumni Research Foundation | Organosilicon phosphorus-based electrolytes |
EE05629B1 (en) * | 2010-09-06 | 2013-02-15 | O� Skeleton Technologies | Method for the preparation of an electrochemical system of a high power and energy density supercapacitor, a corresponding supercapacitor and a method for making it |
TW201220582A (en) * | 2010-09-30 | 2012-05-16 | Basf Se | Li-based anode with ionic liquid polymer gel |
-
2013
- 2013-10-18 JP JP2015546468A patent/JP2016507888A/en active Pending
- 2013-10-18 KR KR1020157017819A patent/KR20150093204A/en not_active Application Discontinuation
- 2013-10-18 WO PCT/US2013/065788 patent/WO2014088712A1/en active Application Filing
- 2013-10-18 EP EP13860380.8A patent/EP2929553A4/en not_active Withdrawn
- 2013-10-18 CN CN201380072274.5A patent/CN105164777A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2016507888A (en) | 2016-03-10 |
CN105164777A (en) | 2015-12-16 |
WO2014088712A1 (en) | 2014-06-12 |
WO2014088712A8 (en) | 2015-07-30 |
KR20150093204A (en) | 2015-08-17 |
EP2929553A4 (en) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8907133B2 (en) | Electrolyte compositions and electrochemical double layer capacitors formed there from | |
US20130095392A1 (en) | Electrolyte Compositions, Methods Of Making And Battery Devices Formed There From | |
US8927775B2 (en) | Phosphonium ionic liquids, salts, compositions, methods of making and devices formed there from | |
WO2014088711A1 (en) | Electrolyte compositions, methods of making and battery devices formed there from | |
WO2014088712A1 (en) | Electrolyte compositions and electrochemical double layer capacitors formed there from | |
US8525155B2 (en) | Phosphonium ionic liquids, compositions, methods of making and electronic devices formed there from | |
EP2929587A1 (en) | Phosphonium ionic liquids, salts, compositions, methods of making and devices formed there from | |
US20140266075A1 (en) | Methods Of Enhancing Electrochemical Double Layer Capacitor (EDLC) Performance And EDLC Devices Formed Therefrom | |
WO2016073430A1 (en) | Electrolytic compositions base on mixed alkyl quartenary ammonium or phosphonium salts for electric energy storage and generation devices | |
WO2010009083A1 (en) | Phosphonium ionic liquids, compositions, methods of making and devices formed there from | |
EP3188203A1 (en) | Electrolyte solution and electrochemical device | |
US20150263543A1 (en) | Methods Of Enhancing Electrochemical Double Layer Capacitor (EDLC) Performance And EDLC Devices Formed Therefrom | |
JP5063172B2 (en) | Electrolyte for electric double layer capacitor | |
KR101583525B1 (en) | electrolytic solution for supercapacitor and supercapacitor use the same | |
JP2008130623A (en) | Electrolyte for electrochemical device using room temperature molten salt, and electrochemical device | |
CN115668423A (en) | Wide temperature range electrolyte | |
WO2015139049A1 (en) | Methods of enhancing edlc performance | |
JP2006332298A (en) | Electrochemical device and electrolyte therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150630 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160808 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01G 11/54 20130101AFI20160802BHEP Ipc: H01B 1/06 20060101ALI20160802BHEP Ipc: C07F 9/54 20060101ALI20160802BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20161121 |