SE1100333A1 - Composites of biopolymers - Google Patents

Composites of biopolymers Download PDF

Info

Publication number
SE1100333A1
SE1100333A1 SE1100333A SE1100333A SE1100333A1 SE 1100333 A1 SE1100333 A1 SE 1100333A1 SE 1100333 A SE1100333 A SE 1100333A SE 1100333 A SE1100333 A SE 1100333A SE 1100333 A1 SE1100333 A1 SE 1100333A1
Authority
SE
Sweden
Prior art keywords
electrolyte
materials
biopolymer
lignin
conjugated polymer
Prior art date
Application number
SE1100333A
Other languages
Swedish (sv)
Inventor
Olle Inganaes
Grzegorz Milczarek
Original Assignee
Epipolysteme Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epipolysteme Ab filed Critical Epipolysteme Ab
Priority to SE1100333A priority Critical patent/SE1100333A1/en
Priority to PCT/SE2012/050451 priority patent/WO2012150900A1/en
Publication of SE1100333A1 publication Critical patent/SE1100333A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • H01M4/0466Electrochemical polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Uppfinningen består i syntes och användning av kompositer av elektroaktiva polymerer med lignin och derivat av lignin vilka är redoxaktiva. Kompositerna framställes genom elektrokemisk eller kemisk polymerisation av konjugerade monomerer i närvaro av lignin eller ligninderivat, och användes för lagring av laddning och energi i elektrokemiska system.The invention consists in the synthesis and use of composites of electroactive polymers with lignin and derivatives of lignin which are redox active. The composites are prepared by electrochemical or chemical polymerization of conjugated monomers in the presence of lignin or lignin derivatives, and are used for storage of charge and energy in electrochemical systems.

Description

Den elektrokemiska tillgängligheten hos kinongruppen i kompositrnaterialet kan modifieras med hjälp av materialets stökiometri och nanostruktur. Ett cykliskt voltammogram (fig.2) visar hur tillgängligheten ökar med ökande antal cykler. The electrochemical availability of the quinone group in the composite material can be modified using the stoichiometry and nanostructure of the material. A cyclic voltammogram (fi g.2) shows how availability increases with increasing number of cycles.

Koncentrationen av kinonen kommer också att vara beroende av den biologiska ursprunget till ligninet och dess processing; detta påverkar laddningskapaciteten.The concentration of the quinone will also depend on the biological origin of the lignin and its processing; this affects the charging capacity.

Materialen kan bildas genom elektrokemisk eller kemisk oxidation av den konjugerade monomer som bildar en konjugerad polymer, i närvaro av ett ligninderivat. Oxidationen kan ske vid fix potential eller strömtäthet, eller genom att förändra dessa parametrar i pulser eller i svep.The materials can be formed by electrochemical or chemical oxidation of the conjugated monomer forming a conjugated polymer, in the presence of a lignin derivative. The oxidation can take place at fi x potential or current density, or by changing these parameters in pulses or in sweeps.

Oxidation kan också ske på kemisk väg, exempelvis genom tillsats av den klassiska oxidanten Fey", eller med hjälp av katalytiska mängder av Fe3+ i kombination med en primär oxidant i överskott. Detta sker i närvaro av ligninderivat.Oxidation can also take place chemically, for example by the addition of the classical oxidant Fey ", or by means of catalytic amounts of Fe3 + in combination with a primary oxidant in excess. This takes place in the presence of lignin derivatives.

De syntetiserade materialen kan användas som elektroder fór laddnings och energilagring i superkondensatorer, sekundära batterier och andra elektrokemiska anordningar. I dessa tillämpningar befinner sig elektroderna i kontakt med en elektrolyt, i form av vätska eller fast substans, med förmåga att leda joner. Beroende på den elektrokemiska reaktion som skall utnyttjas kan detta vara vattenbaserade elektrolyter, organiska elektrolyter, joniska vätskor, fasta polymera jonledare, joniska glaser.The synthesized materials can be used as electrodes for charging and energy storage in supercapacitors, secondary batteries and other electrochemical devices. In these applications, the electrodes are in contact with an electrolyte, in the form of a liquid or solid, capable of conducting ions. Depending on the electrochemical reaction to be utilized, these may be aqueous electrolytes, organic electrolytes, ionic liquids, solid polymeric ion conductors, ionic glasses.

Exempel 1. Lignosulfonat från mjuka nordiska träslag (tall) (MW 48,000) upplöses i 0.04 M LiBF4 i en koncentration av 2 g/L och 0.5 ml pyrrol tillsättes.Example 1. Lignosulfonate from soft Nordic woods (pine) (MW 48,000) is dissolved in 0.04 M LiBF4 at a concentration of 2 g / L and 0.5 ml pyrrole is added.

Polymerisation av pyrrol på en platinaelektrod gav en svart elektroaktiv produkt. 2. Lignosulfonat fiån mjuka nordiska träslag (tall) (MW 48,000) upplöses i 0.1 M HClO i en koncentration av 5 g/L och 0.5 ml pyrrol tillsättes.Polymerization of pyrrole on a platinum electrode gave a black electroactive product. 2. Lignosulfonate from soft Nordic woods (pine) (MW 48,000) is dissolved in 0.1 M HClO at a concentration of 5 g / L and 0.5 ml pyrrole is added.

Elektrokemisk syntes sker via galvanostatisk polarisering vid 25 mA/dmz, och en film deponeras på elektroden. Efier avsköljning i destillerat vatten överfóres elektroden till 0.1 M HClO . Genom cyklisk voltammetri mellan 0 och 0.8 V vs Ag/AgCl utvecklas redoxsignaturema fiån kinongrupper. Den specifika kapaciteten i materialet var 65 mAh/g.Electrochemical synthesis takes place via galvanostatic polarization at 25 mA / dmz, and one m lm is deposited on the electrode. After rinsing in distilled water, the electrode is transferred to 0.1 M HClO. Through cyclic voltammetry between 0 and 0.8 V vs Ag / AgCl, the redox signatures develop from quinone groups. The specific capacity of the material was 65 mAh / g.

Kvoten mellan injicerad laddning vid polymerisation och deponerat material var 5.2 104 g/C vid denna syntes. Mikro och nanostrukturl material visas i Figur E 1. Elektrokemisk karakterisering av materialet visas i figur E2-E4. 3. Natriumsalt av lignosulfonat fi'ån hårda träslag (MW 5,500) upplöses i 0.1 M HClO i en koncentration av 5 g/L och 0.5 ml pyrrol tillsättes. Elektrokemisk syntes sker via galvanostatisk polarisering vid 25 mA/dmz, och en film deponeras på elektroden. Efter avsköljning I destillerat vatten överiöres elektroden till 0.1 M HClO . Genom cyklisk voltammetri mellan 0 och 0.8 V vs Ag/AgCl utvecklas redoxsignaturema från kinongrupper. Den specifika kapaciteten i materialet var 58 mAh/g. 4. Kalciumsalt av lignosulfonat från mjuka nordiska träslag (tall) (MW 48,000) upplöses i 0.1 M HClO i en koncentration av 5 g/L och 0.5 ml pyrrol tillsättes. Elektrokemisk syntes sker via galvanostatisk polarisering vid 25 mA/dmz, och en film deponeras på elektroden. Efter avsköljning I destillerat vatten överfóres elektroden till 0.1 M HClO . Genom cyklisk voltammetri mellan 0 och 0.8 V vs Ag/AgCl utvecklas redoxsignaturema från kinongrupper. Den specifika kapaciteten i materialet var 53 mAh/g. 5. Sulfometylerad Krañ lignin (MW 12,000) upplöses i 0.1 M HClO i en koncentration av 5 g/L och 0.5 ml pyrrol tillsättes. Elektrokemisk syntes sker via galvanostatisk polarisering vid 25 mA/dmz, och en film deponeras på elektroden. Efter avsköljning I destillerat vatten överfóres elektroden till 0.1 M HClO . Genom cyklisk voltammetn' mellan 0 och 0.8 V vs Ag/AgCl utvecklas redoxsignaturema från kinongrupper. Den specifika kapaciteten i materialet var 45 mAh/g.The ratio between injected charge during polymerization and deposited material was 5.2 104 g / C at this synthesis. Micro and nanostructural materials are shown in Figure E 1. Electrochemical characterization of the material is shown in Figures E2-E4. 3. Sodium salt of lignosulfonate å 'from hardwoods (MW 5,500) is dissolved in 0.1 M HClO at a concentration of 5 g / L and 0.5 ml of pyrrole is added. Electrochemical synthesis takes place via galvanostatic polarization at 25 mA / dmz, and one m lm is deposited on the electrode. After rinsing in distilled water, the electrode is transferred to 0.1 M HClO. Through cyclic voltammetry between 0 and 0.8 V vs Ag / AgCl, the redox signatures develop from quinone groups. The specific capacity of the material was 58 mAh / g. 4. Calcium salt of lignosulfonate from soft Nordic woods (pine) (MW 48,000) is dissolved in 0.1 M HClO at a concentration of 5 g / L and 0.5 ml of pyrrole is added. Electrochemical synthesis takes place via galvanostatic polarization at 25 mA / dmz, and one m lm is deposited on the electrode. After rinsing in distilled water, the electrode was transferred to 0.1 M HClO. Through cyclic voltammetry between 0 and 0.8 V vs Ag / AgCl, the redox signatures develop from quinone groups. The specific capacity of the material was 53 mAh / g. Sulfomethylated Krañ lignin (MW 12,000) is dissolved in 0.1 M HClO at a concentration of 5 g / L and 0.5 ml of pyrrole is added. Electrochemical synthesis takes place via galvanostatic polarization at 25 mA / dmz, and one m lm is deposited on the electrode. After rinsing in distilled water, the electrode was transferred to 0.1 M HClO. Through the cyclic voltage between 0 and 0.8 V vs Ag / AgCl, the redox signatures develop from quinone groups. The specific capacity of the material was 45 mAh / g.

Referenser 1. 2. 11. 14.References 1. 2. 11. 14.

Novak P, Muller K, Santhanam KSV, & Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chemical Reviews 97(1):207-281.Novak P, Muller K, Santhanam KSV, & Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chemical Reviews 97 (1): 207-281.

Piro B, et al. (1998) A new conducting poly(aminoquinone) film with perspective for energy storage. Journal De Chimie Physique Et De Physico- Chimie Biologique 95(6): 1522-1525.Piro B, et al. (1998) A new conducting poly (aminoquinone) m lm with perspective for energy storage. Journal of Physical Chemistry and Physico- Biological Chemistry 95 (6): 1522-1525.

Haringer D, Novak P, Haas O, Piro B, & Pham MC (1999) Poly(5-amino-1,4- naphthoquinone), a novel lithium-inserting electroactive polymer with high specific charge. Journal of The Electrochemical Society 146(7):2393-2396.Haringer D, Novak P, Haas O, Piro B, & Pham MC (1999) Poly (5-amino-1,4-naphthoquinone), a novel lithium-inserting electroactive polymer with high specific charge. Journal of The Electrochemical Society 146 (7): 2393-2396.

Naoi K, Suematsu S, & Manago A (2000) Electrochemistry of poly(1 ,5- diaminoanthraquinone) and its application in clectrochemical capacitor materials. Journal of The Electrochemical Society 147(2):420-426.Naoi K, Suematsu S, & Manago A (2000) Electrochemistry of poly (1, 5-diaminoanthraquinone) and its application in clectrochemical capacitor materials. Journal of The Electrochemical Society 147 (2): 420-426.

Hashmi SA, Suematsu S, & Naoi K (2004) All solid-state redox supercapacitors based on supramolecular LS-diaminoanthraquinone oligomeric electrode and polymexic electrolytes. Journal of Power Sources 137(1);14s-151.Hashmi SA, Suematsu S, & Naoi K (2004) All solid-state redox supercapacitors based on supramolecular LS-diaminoanthraquinone oligomeric electrode and polymexic electrolytes. Journal of Power Sources 137 (1); 14s-151.

Zinger B (1989) ELECTROCHEMISTRY OF QUINOID DOPAN TS IN CONDUCTING POLYMERS. Synthetic Metals 30(2):209-225.Zinger B (1989) ELECTROCHEMISTRY OF QUINOID DOPAN TS IN CONDUCTING POLYMERS. Synthetic Metals 30 (2): 209-225.

Yoneyama H, Ii Y, & Kuwabata S (1992) CHARGE-DISCHARGE CHARACTERISTICS OF POLYPYRROLE FILMS CONTAINING INCORPORATED AN THRAQUINONE-1-SULFONATE. Journal of The Electrochemical Society 139(1):28-32.Yoneyama H, Ii Y, & Kuwabata S (1992) CHARGE-DISCHARGE CHARACTERISTICS OF POLYPYRROLE FILMS CONTAINING INCORPORATED AN THRAQUINONE-1-SULFONATE. Journal of The Electrochemical Society 139 (1): 28-32.

Cosnier S, Innocent C, Moutet JC, & Tennah F (1994) ELECTROCHEMICALLY CONTROLLED-RELEASE OF CHEMICALS FROM REDOX-ACTIVE POLYMER-FILMS. Journal of Electroanalytical Chemistry 375(1-2):233-241.Cosnier S, Innocent C, Moutet JC, & Tennah F (1994) ELECTROCHEMICALLY CONTROLLED-RELEASE OF CHEMICALS FROM REDOX-ACTIVE POLYMER FILMS. Journal of Electroanalytical Chemistry 375 (1-2): 233-241.

Song HK & Palmore GTR (2006) Redox-active polypyrrole: Toward polymer- based batteries. Advanced Materials 18(13): 1 764-+.Song HK & Palmore GTR (2006) Redox-active polypyrrole: Toward polymer-based batteries. Advanced Materials 18 (13): 1 764- +.

Jiang L, Xie QJ, Li ZL, Li YL, & Yao SZ (2005) A study on tannic acid- doped polypyrrole films on gold electrodes for selective electrochemical detection of dopamine. Sensors 5(4-5):199-208.Jiang L, Xie QJ, Li ZL, Li YL, & Yao SZ (2005) A study on tannic acid- doped polypyrrole fi lms on gold electrodes for selective electrochemical detection of dopamine. Sensors 5 (4-5): 199-208.

Sasso C, Fenoll M, Stephan O, & Beneventi D (2008) USE OF WOOD DERIVATIVES AS DOPING/DISPERSING AGENTS IN THE PREPARATION OF POLYPYRROLE AQUEOUS DISPERSIONS.Sasso C, Fenoll M, Stephan O, & Beneventi D (2008) USE OF WOOD DERIVATIVES AS DOPING / DISPERSING AGENTS IN THE PREPARATION OF POLYPYRROLE AQUEOUS DISPERSIONS.

Bioresources 3(4):1 187-1 195.Bioresources 3 (4): 1 187-1 195.

Yang C & Liu P (2009) Water-Dispersed Conductive Polypyrroles Doped with Lignosulfonate and the Weak Temperature Dependence of Electrical Conductivity. Industrial & Engineering Chemistry Research 48(21):9498- 9503.Yang C & Liu P (2009) Water-Dispersed Conductive Polypyrroles Doped with Lignosulfonate and the Weak Temperature Dependence of Electrical Conductivity. Industrial & Engineering Chemistry Research 48 (21): 9498- 9503.

Bjorklund RB & Liedberg B (1986) ELECTRICALLY CONDUCTING COMPOSITES OF COLLOIDAL POLYPYRROLE AND METHYLCELLULOSE. Journal of the Chemical Society-Chemical Communications (16): 1293-1295.Bjorklund RB & Liedberg B (1986) ELECTRICALLY CONDUCTING COMPOSITES OF COLLOIDAL POLYPYRROLE AND METHYLCELLULOSE. Journal of the Chemical Society-Chemical Communications (16): 1293-1295.

Bjorklund RB & Lundstrom I (1984) SOME PROPERTIES OF POLYPYRROLE-PAPER COMPOSITES. Journal of Electronic Materials 13(1):2l1-230.Bjorklund RB & Lundstrom I (1984) SOME PROPERTIES OF POLYPYRROLE PAPER COMPOSITES. Journal of Electronic Materials 13 (1): 2l1-230.

Novak P & Inganas O (1988) SELF-DISCHARGE RATE OF THE POLYPYRROLE-POLYETHYLENE OXIDE COMPOSITE ELECTRODE.Novak P & Inganas O (1988) SELF-DISCHARGE RATE OF THE POLYPYRROLE-POLYETHYLENE OXIDE COMPOSITE ELECTRODE.

Journal of The Electrochemical Society 135(10):2485-2490.Journal of The Electrochemical Society 135 (10): 2485-2490.

Novak P, Inganas O, & Bjorklund R (1987) CYCLING BEHAVIOR OF THE POLYPYRROLE POLYETHYLENE OXIDE COMPOSITE ELECTRODE.Novak P, Inganas O, & Bjorklund R (1987) CYCLING BEHAVIOR OF THE POLYPYRROLE POLYETHYLENE OXIDE COMPOSITE ELECTRODE.

Journal of Power Sources 21(1): 17-24.Journal of Power Sources 21 (1): 17-24.

Novak P, Inganas O, & Bjorklund R (1987) COMPOSITE POLYMER POSITIVE ELECTRODES IN SOLID-STATE LITHIUM SECONDARY BATTERIES. Journal of The Electrochemical Society 134(6): 1341-1345.Novak P, Inganas O, & Bjorklund R (1987) COMPOSITE POLYMER POSITIVE ELECTRODES IN SOLID-STATE LITHIUM SECONDARY BATTERIES. Journal of The Electrochemical Society 134 (6): 1341-1345.

Nystrom G, et al. (2010) A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood. Journal of Physical Chemistry B 114(12):4178-4182.Nystrom G, et al. (2010) A Nanocellulose Polypyrrole Composite Based on Micro fi brillated Cellulose from Wood. Journal of Physical Chemistry B 114 (12): 4178-4182.

Nystrom G, Razaq A, Stromme M, Nyholm L, & Mihranyan A (2009) Ultrafast All-Polymer Paper-Based Batteries. Nano Letters 9(10):3635-3639.Nystrom G, Razaq A, Stromme M, Nyholm L, & Mihranyan A (2009) Ultrafast All-Polymer Paper-Based Batteries. Nano Letters 9 (10): 3635-3639.

Figurförteckning Figur I Elektrokemisk mechanism i KP/L elektroder Figur 2 Cyklisk voltammetri med en KP/L elektrod. (A) Voltammograms mellan 0.1 and 0.4 V. (B) Voltammogram mellan 0.1 and 0.75 V. Svephastighet - 5 till 25 mV s'l (med ökande ström). (C) Toppströmmarnas beroende av svephastighet .List of figures Figure I Electrochemical mechanism in KP / L electrodes Figure 2 Cyclic voltammetry with a KP / L electrode. (A) Voltammograms between 0.1 and 0.4 V. (B) Voltammograms between 0.1 and 0.75 V. Sweep rate - 5 to 25 mV s'l (with increasing current). (C) Dependence of peak currents on sweep rate.

Elektrodens tjocklek - 0.5 um.Electrode thickness - 0.5 μm.

Figur 3 Cyklisk voltammetri med en KP/L elektrod. (A) Voltammograms mellan 0.1 and 0.4 V. (B) Voltammogram mellan 0.1 and 0.75 V. Svephastighet - 5 till 25 mV s* (med ökande ström). (B) Toppströmmamas beroende av roten av svephastighet . (C) Dekonvoluering av ett differentialpulsvoltammogram med Gaussiska element. Elektrodens tjocklek ~ 1.9 um.Figure 3 Cyclic voltammetry with a KP / L electrode. (A) Voltammograms between 0.1 and 0.4 V. (B) Voltammograms between 0.1 and 0.75 V. Sweep rate - 5 to 25 mV s * (with increasing current). (B) The dependence of peak currents on the root of sweeping velocity. (C) Deconvolution of a differential pulse voltammogram with Gaussian elements. Electrode thickness ~ 1.9 μm.

Figur 4 Elektronmikroskopibilder av tunna filmer av polypyrrol/lignin Figur 5 Galvanostatiska urladdningskurvor för (a) tunna (0.5 um) och (B) tjocka (1.9 pm) filmer av polypyrrole/ligliin komposit. Två sektioner kan identifieras, och är förbundna med elektrokemiska reaktioner i polypyrrol respective kínoner från lignin.Figure 4 Electron microscopy images of thin films of polypyrrole / lignin Figure 5 Galvanostatic discharge curves for (a) thin (0.5 μm) and (B) thick (1.9 μm) films of polypyrrole / ligline composite. Two sections can be identified, and are associated with electrochemical reactions in polypyrrole and lignin quinones, respectively.

Linjära regressionskurvor användes för att bestämma kapacitansen I elektroderna.Linear regression curves were used to determine the capacitance of the electrodes.

Figur 6 Kapacitans per massa för tunna och tjockare elektroder av polypyrrol(lignin), utvärderade från data fiån urladdningskurvor i F ig.5.Figure 6 Capacitance per mass for thin and thicker electrodes of polypyrrole (lignin), evaluated from the data from the discharge curves in Fig. 5.

Figur 7 Upprepade laddnings och urladdningscykler av material syntetiserats enligt Exempel 1.Figure 7 Repeated charge and discharge cycles of materials synthesized according to Example 1.

Figur 8 Förlust av laddningskapacitet versus tid, i material syntetiserats enligt Exempel 1Figure 8 Loss of charge capacity versus time, in materials synthesized according to Example 1

Claims (10)

1. Patentkrav l. #9* Redoxaktiva organiska material, där en konjugerad polymer kombineras med lignin eller derivat av lignin med redox aktiva funktionella grupper på l skala, och där biopolymeren fungerar både som dopjon till den konjugerade polymeren och som redoxfórening.Claim 1. # 9 * Redox-active organic materials, in which a conjugated polymer is combined with lignin or derivatives of lignin with redox active functional groups on a scale, and in which the biopolymer acts both as a dopion to the conjugated polymer and as a redox compound. 2. Material enligt Krav l, där den konjugerade polymeren är baserad på monomerer från gruppen pyrrol, anilin, tiofen, etylendioxytiofen, furan i substituterad eller osubstituerad form.Material according to Claim 1, wherein the conjugated polymer is based on monomers from the group of pyrrole, aniline, thiophene, ethylenedioxytiophene, furan in substituted or unsubstituted form. 3. Material enligt Krav 1, där materialen bildas genom elektropolymerisering för att bilda den konjugerade polymeren från monomerer, och där biopolymer eller deriverat av biopolymeren är närvarande i elektrolyten vid elektropolymerisation av monomeren.Material according to Claim 1, wherein the materials are formed by electropolymerization to form the conjugated polymer from monomers, and wherein biopolymer or derivative of the biopolymer is present in the electrolyte upon electropolymerization of the monomer. 4. Material enligt Krav 1, där materialen bildas genom kemisk polymerisering för att bilda den konjugerade polymeren från monomerer, och där biopolymer eller deriverat av biopolymer är närvarande i lösningen vid kemisk polymerisation av monomeren.Material according to Claim 1, wherein the materials are formed by chemical polymerization to form the conjugated polymer from monomers, and wherein biopolymer or derivative of biopolymer is present in the solution in chemical polymerization of the monomer. 5. Användning av material enligt Krav 1, där laddningslagring sker genom redoxprocesser i materialet under utbyte av joner med en angränsande elektrolyt.Use of materials according to Claim 1, wherein charge storage takes place by redox processes in the material during the exchange of ions with an adjacent electrolyte. 6. Användning av material enligt Krav 5, där elektrolyten är en fast elektrolyt.Use of materials according to Claim 5, wherein the electrolyte is a solid electrolyte. 7. Användning av material enligt Krav 5, där elektrolyten är en fast elektrolyt med protonledning.Use of materials according to Claim 5, wherein the electrolyte is a solid electrolyte with proton conduction. 8. Användning av material enligt Krav 5, där elektrolyten är en fast eller flytande jonvätska, organisk eller vattenbaserad.Use of materials according to Claim 5, wherein the electrolyte is a solid or fl-liquid ionic liquid, organic or water-based. 9. Användning av material enligt Krav 5, där elektrolyten är en fast elektrolyt med dominerande ledning av endast anj on eller endast katjon.Use of materials according to Claim 5, wherein the electrolyte is a solid electrolyte with a dominant conduction of anion only or cation only. 10. Användning av material enligt Krav 5, där elektrolyten är flytande.Use of materials according to Claim 5, wherein the electrolyte is fl surface.
SE1100333A 2011-05-02 2011-05-02 Composites of biopolymers SE1100333A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE1100333A SE1100333A1 (en) 2011-05-02 2011-05-02 Composites of biopolymers
PCT/SE2012/050451 WO2012150900A1 (en) 2011-05-02 2012-05-02 Composites from biopolymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1100333A SE1100333A1 (en) 2011-05-02 2011-05-02 Composites of biopolymers

Publications (1)

Publication Number Publication Date
SE1100333A1 true SE1100333A1 (en) 2012-11-05

Family

ID=46210398

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1100333A SE1100333A1 (en) 2011-05-02 2011-05-02 Composites of biopolymers

Country Status (2)

Country Link
SE (1) SE1100333A1 (en)
WO (1) WO2012150900A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT6239B (en) 2015-04-17 2016-01-11 Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras Pyrrolo bio-polymerization using redox mediator
EP3786189B1 (en) * 2019-08-28 2022-03-09 Consejo Superior De Investigaciones Científicas Electrochemically active nanoparticulated polymer material
CN113097480B (en) * 2021-03-23 2022-04-05 五邑大学 Carbonyl polymer and synthesis method and application thereof

Also Published As

Publication number Publication date
WO2012150900A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
Xie et al. Nitroxide radical polymers for emerging plastic energy storage and organic electronics: fundamentals, materials, and applications
Na et al. Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors
Suriyakumar et al. Role of polymers in enhancing the performance of electrochemical supercapacitors: a review
EP2785442B1 (en) Redox flow cell comprising high molecular weight compounds as redox pair and semipermeable membrane for storage of electrical energy
Armand et al. Polymer solid electrolytes: Stability domain
Chen et al. Supramolecular hydrogels for high-voltage and neutral-pH flexible supercapacitors
Dziewoński et al. Towards TiO2-conducting polymer hybrid materials for lithium ion batteries
Li et al. Electrochemical energy storage in poly (dithieno [3, 2-b: 2′, 3′-d] pyrrole) bearing pendant nitroxide radicals
US20140038044A1 (en) Transition Metal Hexacyanometallate-Conductive Polymer Composite
Li et al. Electropolymerized polythiophenes bearing pendant nitroxide radicals
Xu et al. Recent progress in organic electrodes for zinc-ion batteries
Hatakeyama-Sato et al. Ultrafast charge/discharge by a 99.9% conventional lithium iron phosphate electrode containing 0.1% redox-active fluoflavin polymer
US8080327B1 (en) Electrical storage device utilizing pyrazine-based cyanoazacarbons and polymers derived therefrom
Rębiś et al. A comparative study on the preparation of redox active bioorganic thin films based on lignosulfonate and conducting polymers
Zhou et al. Sulfonic acid-and lithium sulfonate-grafted poly (vinylidene fluoride) electrospun mats as ionic liquid host for electrochromic device and lithium-ion battery
Zuo et al. Enhanced performance of a novel gel polymer electrolyte by dual plasticizers
Yu et al. Mixed ionic and electronic conduction in radical polymers
Lakshmi et al. Electrochemical, electrochromic behaviour and effects of supporting electrolyte on nano-thin film of poly (3, 4-ethylenedioxy thiophene)
Yang et al. Matching diethyl terephthalate with n-doped conducting polymers
SE512579C2 (en) Polymer gel electrode, and process for its preparation
US20090251849A1 (en) Energy Storage Device Having Novel Energy Storage Means
Basha et al. [Retracted] Spectroscopic and Electrochemical Properties of (1‐x)[PVA/PVP]: x [MgCl26H2O] Blend Polymer Electrolyte Films
Hatakeyama-Sato et al. Redox: Organic robust radicals and their polymers for energy conversion/storage devices
SE1100333A1 (en) Composites of biopolymers
Demirel et al. Fabrication and electrochemical properties of flexible ZnO doped PVA-Borax based solid-gel electrolytes

Legal Events

Date Code Title Description
NAV Patent application has lapsed