JP2014082403A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device Download PDF

Info

Publication number
JP2014082403A
JP2014082403A JP2012230566A JP2012230566A JP2014082403A JP 2014082403 A JP2014082403 A JP 2014082403A JP 2012230566 A JP2012230566 A JP 2012230566A JP 2012230566 A JP2012230566 A JP 2012230566A JP 2014082403 A JP2014082403 A JP 2014082403A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric elements
case
elements
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012230566A
Other languages
Japanese (ja)
Inventor
Hisashi Kano
久詞 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012230566A priority Critical patent/JP2014082403A/en
Publication of JP2014082403A publication Critical patent/JP2014082403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion device capable of enhancing intensity while facilitating miniaturization.SOLUTION: A thin-walled copper plate is drawn to form a lower side and an upper side cases having recess parts on their central parts and flange like outward flange parts around them. A plurality of dice like thermoelectric elements are arranged longitudinally and horizontally to form a rectangular thermoelectric module which are integrally formed with each other by an adhesive containing insulation particles, and the thermoelectric module is received in both opposing recess parts of both cases. Belt-like terminals connecting each of thermoelectric elements in series are provided on bottom surfaces of each recess parts, and lead lines are connected to dummy elements at two corners of thermoelectric modules. It is possible to downsize the whole, to reduce an area of bottom surface of the recess part provided on the case for receiving a plurality of thermoelectric elements and conductive relay members, and to enhance strength of the whole case because a space is not caused in a part where thermoelectric elements and conductive relay members are arranged in the case.

Description

本発明は、複数の熱電変換素子をケース内に並列に配設した熱電変換装置に関するものである。   The present invention relates to a thermoelectric conversion device in which a plurality of thermoelectric conversion elements are arranged in parallel in a case.

従来、熱電変換素子を用いた熱電変換装置として、トムソン効果、ペルチェ効果、ゼーベック効果等の熱電効果を利用することにより対象物の冷却を行うようにした冷却装置や、温度差を利用して発電させる発電装置が知られている。例えば、放熱側絶縁基板と吸熱側絶縁基板との間に複数の熱電素子を設け、吸熱側基板の上に設けた蓋と放熱側基板との間に枠を設け、密閉された箱型構造体としたものがある(例えば特許文献1参照)。   Conventionally, as a thermoelectric conversion device using a thermoelectric conversion element, a cooling device that cools an object by using a thermoelectric effect such as Thomson effect, Peltier effect, Seebeck effect, etc., or power generation using a temperature difference There are known power generators that can be used. For example, a plurality of thermoelectric elements are provided between the heat dissipation side insulating substrate and the heat absorption side insulating substrate, and a frame is provided between the lid provided on the heat absorption side substrate and the heat dissipation side substrate, and the sealed box structure (For example, refer to Patent Document 1).

特開2005−277206号公報JP-A-2005-277206

上記したような熱電変換装置では、複数の熱電素子を縦横に並べ、一端の熱電素子から順次隣り合う熱電素子間を上下の基板に設けた配線パターンにより交互に直列接続し、両端の熱電素子にそれぞれリード線を接続するようにしている。   In the thermoelectric conversion device as described above, a plurality of thermoelectric elements are arranged vertically and horizontally, and the adjacent thermoelectric elements are sequentially connected in series by the wiring pattern provided on the upper and lower substrates from the thermoelectric elements at one end, and the thermoelectric elements at both ends are connected. Each lead wire is connected.

上記特許文献1では、隣り合う熱電素子間を絶縁する必要があり、アルミナ材を格子状に加工した壁状の絶縁部材を設けている。各格子部分に熱電素子を配置する構造のため、格子を形成する壁状部分に厚さがあり、さらに入れ易くするために格子部分を広くすると、隣り合う熱電素子間の間隔が大きくなり、熱電素子に対応する平面部分の面積が広くなって、装置全体が大型化するとともに、平面部分の強度が低下するという問題がある。   In the said patent document 1, it is necessary to insulate between the thermoelectric elements which adjoin, and the wall-shaped insulation member which processed the alumina material into the grid | lattice form is provided. Due to the structure in which the thermoelectric elements are arranged in each grid part, the wall-shaped part forming the grid has a thickness, and if the grid part is widened to make it easier to insert, the interval between adjacent thermoelectric elements becomes large, and the thermoelectric elements There is a problem in that the area of the planar portion corresponding to the element is increased, the entire apparatus is enlarged, and the strength of the planar portion is reduced.

本発明は、このような従来技術の問題点を解消するべく案出されたものであり、その主な目的は、小型化しかつ強度を高めることができる熱電変換装置を提供することにある。   The present invention has been devised to solve such problems of the prior art, and a main object of the present invention is to provide a thermoelectric conversion device that can be reduced in size and increased in strength.

本発明の熱電変換装置は、複数の熱電素子と、前記複数の熱電素子を挟持する第1及び第2のケース分割体と、前記複数の熱電素子を直列接続するための複数の接続端子とを有する熱電変換装置であって、前記複数の熱電素子の前記直列接続の両端に接続され、かつ前記複数の熱電素子とともに前記第1及び第2のケース分割体間に挟持された外部接続用の導電性中継部材を有する構成とする。   The thermoelectric conversion device of the present invention includes a plurality of thermoelectric elements, first and second case division bodies sandwiching the plurality of thermoelectric elements, and a plurality of connection terminals for connecting the plurality of thermoelectric elements in series. A thermoelectric conversion device comprising: a plurality of thermoelectric elements connected to both ends of the series connection and electrically connected for external connection sandwiched between the first and second case divided bodies together with the plurality of thermoelectric elements. It is set as the structure which has a sex relay member.

本発明によれば、第1及び第2のケース分割体間に複数の熱電素子とともに導電性中継部材が挟持されるため、導電性中継部材を配置した部分(ケースの平面となる部分)の強度を確保することができ、ケース全体の強度を高めることができる。導電性中継部材を挟持しない構造の場合には、その部分に空間が生じ、ケースの対応する部分が凹む虞が生じるが、上記構造によりケース内の熱電素子及び導電性中継部材を配置する部分に空間が生じることがないため、ケース全体の強度が高まる。   According to the present invention, since the conductive relay member is sandwiched together with the plurality of thermoelectric elements between the first and second case division bodies, the strength of the portion where the conductive relay member is disposed (the portion that becomes the plane of the case) And the strength of the entire case can be increased. In the case of a structure in which the conductive relay member is not sandwiched, a space is generated in the portion, and there is a possibility that the corresponding portion of the case is recessed. However, the structure described above causes the thermoelectric element and the conductive relay member in the case to be disposed. Since no space is generated, the strength of the entire case is increased.

本発明による熱電変換装置1の外観の一例を示す全体斜視図Whole perspective view which shows an example of the external appearance of the thermoelectric conversion apparatus 1 by this invention 熱電変換装置の構成を示す分解組立斜視図An exploded perspective view showing the configuration of the thermoelectric converter (a)〜(c)は熱電モジュールの加工工程の一例を示す図(A)-(c) is a figure which shows an example of the process of a thermoelectric module 図1の矢印IV−IV線に沿って破断した一部を示す要部断面図Sectional drawing which shows the part fractured | ruptured along the arrow IV-IV line of FIG. 図1の矢印V−V線に沿って破断した一部を示す要部拡大断面図The principal part expanded sectional view which shows the part fractured | ruptured along the arrow VV line of FIG. 上側ケースの凹部の表面形状を示す要部拡大断面図The principal part expanded sectional view which shows the surface shape of the recessed part of an upper case (a)〜(e)は図4に対応する第1〜第5変形例をそれぞれ示す図(A)-(e) is a figure which respectively shows the 1st-5th modification corresponding to FIG. ダミー部材及び熱電素子の配線要領を示す要部拡大斜視図The principal part expansion perspective view which shows the wiring point of a dummy member and a thermoelectric element

前記課題を解決するためになされた第1の発明は、複数の熱電素子と、前記複数の熱電素子を挟持する第1及び第2のケース分割体と、前記複数の熱電素子を直列接続するための複数の接続端子とを有する熱電変換装置であって、前記複数の熱電素子の前記直列接続の両端に接続され、かつ前記複数の熱電素子とともに前記第1及び第2のケース分割体間に挟持された外部接続用の導電性中継部材を有する構成とする。   A first invention made to solve the above-described problem is to connect a plurality of thermoelectric elements, first and second case division bodies sandwiching the plurality of thermoelectric elements, and the plurality of thermoelectric elements in series. A plurality of connection terminals, connected to both ends of the series connection of the plurality of thermoelectric elements, and sandwiched between the first and second case divided bodies together with the plurality of thermoelectric elements It is set as the structure which has the electroconductive relay member for external connection made.

これによると、第1及び第2のケース分割体間に複数の熱電素子とともに導電性中継部材が挟持されるため、導電性中継部材を配置した部分(ケースの平面となる部分)の強度を確保することができ、ケース全体の強度を高めることができる。導電性中継部材を挟持しない構造の場合には、その部分に空間が生じ、ケースの対応する部分が凹む虞が生じるが、上記構造によりケース内の熱電素子及び導電性中継部材を配置する部分に空間が生じることがないため、ケース全体の強度が高まる。   According to this, since the conductive relay member is sandwiched with the plurality of thermoelectric elements between the first and second case division bodies, the strength of the portion where the conductive relay member is disposed (the portion that becomes the plane of the case) is ensured. And the strength of the entire case can be increased. In the case of a structure in which the conductive relay member is not sandwiched, a space is generated in the portion, and there is a possibility that the corresponding portion of the case is recessed. However, the structure described above causes the thermoelectric element and the conductive relay member in the case to be disposed. Since no space is generated, the strength of the entire case is increased.

また、第2の発明は、前記第1の発明において、前記熱電素子と前記導電性中継部材とは、互いに同一形状に形成され、かつ縦横複数列に並べて平面視で矩形の外形を形成するように配置されている構成とする。   Further, according to a second aspect, in the first aspect, the thermoelectric element and the conductive relay member are formed in the same shape as each other, and are arranged in a plurality of rows and columns to form a rectangular outer shape in plan view. It is set as the structure arrange | positioned.

これによると、熱電素子と導電性中継部材とが互いに同一形状であることから、それらを縦横複数列に並べて全体で矩形形状に形成することができ、例えば矩形の4つの角の2箇所に導電性中継部材を配置して外部接続用の一対のリード線と接続することができるとともに、少なくとも第1及び第2のケースのいずれかに矩形平面状の底面を有する凹部を形成し、凹部の底面の全面に熱電素子と導電性中継部材とを載置することにより、第1及び第2のケースによりそれらを挟持した場合に、両ケースの凹部の底面とその対向面との間に空間が生じないため、凹部の底面全体の強度を高めることができる。   According to this, since the thermoelectric element and the conductive relay member have the same shape, they can be arranged in a plurality of rows and columns to form a rectangular shape as a whole, for example, conductive at two corners of a rectangle. And a concave portion having a rectangular flat bottom surface is formed in at least one of the first and second cases, and the bottom surface of the concave portion can be connected to a pair of external connection lead wires. By placing the thermoelectric element and the conductive relay member on the entire surface of the case, when they are sandwiched between the first and second cases, a space is created between the bottom surface of the concave portion of both cases and the opposing surface. Therefore, the strength of the entire bottom surface of the recess can be increased.

また、第3の発明は、前記第1または第2の発明において、前記複数の熱電素子が、隣り合うもの同士間に充填された絶縁性接着物により互いに接着されて一体化されている構成とする。   According to a third aspect of the present invention, in the first or second aspect, the plurality of thermoelectric elements are bonded and integrated with each other by an insulating adhesive filled between adjacent ones. To do.

これによると、隣り合う熱電素子同士を接着し、複数の熱電素子を略隙間の無く一体化することにより、複数の熱電素子を配置する範囲が狭くなり、複数の熱電素子を受容するケースを小型化することができる。そのため、ケースの強度が高まり、薄肉の金属製板材によりケースを形成することができ、装置全体を小型化かつ軽量化し得る。   According to this, by adhering adjacent thermoelectric elements and integrating a plurality of thermoelectric elements without substantial gaps, the range in which the plurality of thermoelectric elements are arranged becomes narrower, and the case for receiving a plurality of thermoelectric elements can be made compact. Can be Therefore, the strength of the case is increased, the case can be formed of a thin metal plate material, and the entire apparatus can be reduced in size and weight.

また、第4の発明は、前記第3の発明において、前記絶縁性接着物が、絶縁性粒子を接着剤に混入したものである構成とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the insulating adhesive is obtained by mixing insulating particles in an adhesive.

これによると、絶縁性接着物として、例えばPTFE等のフッ素樹脂のような耐熱性の高い絶縁材により数μm〜20μm程度の粒径の絶縁性粒子をエポキシ樹脂系接着剤や熱硬化性接着剤等に混入した接着剤を用いることにより、絶縁材の粒径程度まで各熱電素子間の隙間を狭くすることができ、小型化をより一層促進し得る。   According to this, as an insulating adhesive, for example, an insulating particle having a particle size of about several μm to 20 μm is made of an epoxy resin adhesive or a thermosetting adhesive by an insulating material having high heat resistance such as a fluororesin such as PTFE. By using the adhesive mixed in, etc., the gap between the thermoelectric elements can be narrowed to the extent of the particle size of the insulating material, and the miniaturization can be further promoted.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明による熱電変換装置1の外観の一例を示す全体斜視図である。図に示されるように、熱電変換装置1は、矩形扁平形状のケース2と、ケース2の矩形状の一辺から外方に延出された2本の外部接続用のリード線3a・3bとを有する。リード線3a・3bは、外部の制御装置(図示省略)に接続される。   FIG. 1 is an overall perspective view showing an example of the appearance of a thermoelectric conversion device 1 according to the present invention. As shown in the figure, the thermoelectric conversion device 1 includes a rectangular flat case 2 and two external connection lead wires 3 a and 3 b extending outward from one side of the rectangular shape of the case 2. Have. The lead wires 3a and 3b are connected to an external control device (not shown).

図2は、図1の熱電変換装置1の構成を示す分解組立斜視図である。図に示されるように、ケース2は、下側ケース4と上側ケース5とにより構成される。下側ケース4と上側ケース5との間には、複数の熱電素子を縦横複数列に整列させて全体として矩形平板状になる熱電モジュール6が受容される。熱電モジュール6は、それぞれ同一の直方体形状に形成され、P型半導体からなる熱電素子6aとN型半導体からなる熱電素子6bとを有する。それら熱電素子6a・6bは交互に縦横複数列並べられて全体として矩形板状をなすように配置されているが、2箇所の角に相当する部分には、熱電素子6a・6bと同一形状の導電性中継部材としての例えば導電性金属製のダミー部材7が配置されている。各ダミー部材7にはリード線3a・3bがそれぞれ例えば半田付けにより接続される。   FIG. 2 is an exploded perspective view showing the configuration of the thermoelectric conversion device 1 of FIG. As shown in the figure, the case 2 includes a lower case 4 and an upper case 5. Between the lower case 4 and the upper case 5, a thermoelectric module 6 is received in which a plurality of thermoelectric elements are aligned in a plurality of rows and columns to form a rectangular flat plate as a whole. The thermoelectric module 6 is formed in the same rectangular parallelepiped shape, and includes a thermoelectric element 6a made of a P-type semiconductor and a thermoelectric element 6b made of an N-type semiconductor. The thermoelectric elements 6a and 6b are alternately arranged in a plurality of vertical and horizontal rows so as to form a rectangular plate as a whole. The portions corresponding to the two corners have the same shape as the thermoelectric elements 6a and 6b. For example, a dummy member 7 made of conductive metal is disposed as a conductive relay member. Lead wires 3a and 3b are connected to each dummy member 7 by, for example, soldering.

図3は、熱電モジュール6の加工工程の一例を示す図である。先ず図3(a)に示されるように、P型半導体のインゴット11とN型半導体のインゴット12とをそれぞれ破線で示されるように所定の同一厚さの板状部材11a、12aにそれぞれスライスし、それらを交互に並べ、各板状部材11a・12a間に絶縁性接着物としての接着剤13を塗布して直方体形状の積層体14を形成する。   FIG. 3 is a diagram illustrating an example of a processing process of the thermoelectric module 6. First, as shown in FIG. 3A, a P-type semiconductor ingot 11 and an N-type semiconductor ingot 12 are respectively sliced into plate-like members 11a and 12a having the same thickness as indicated by broken lines. These are arranged alternately, and an adhesive 13 as an insulating adhesive is applied between the plate-like members 11a and 12a to form a rectangular parallelepiped laminate 14.

次に、図3(b)に示されるように積層体14に対してその積層方向にスライスし、P型とN型との角棒状の各バー11b・12bが交互に並列に積層された板状積層体15を形成し、その板状積層体15を、図の破線で示されるように各バー11b・12bの積層方向に切断する。それにより、図3(c)に示されるようにP型とN型とが交互に直列に並んだ積層バー16が形成され、それら積層バー16を、P型及びN型が隣り合わないように並べる。その後、各積層バー16同士を上記接着剤13で接着し、各立方体状の熱電素子6a・6bが縦横方向に交互に並んだ板状の仮熱電モジュール17が形成される。   Next, as shown in FIG. 3 (b), the laminated body 14 is sliced in the direction of lamination, and P-type and N-type square bars 11b and 12b are alternately laminated in parallel. The laminated body 15 is formed, and the plate-like laminated body 15 is cut in the stacking direction of the bars 11b and 12b as indicated by broken lines in the figure. As a result, as shown in FIG. 3C, a stacked bar 16 in which P-type and N-type are alternately arranged in series is formed, and the stacked bar 16 is placed so that the P-type and N-type are not adjacent to each other. Line up. Thereafter, the laminated bars 16 are bonded to each other with the adhesive 13 to form a plate-like temporary thermoelectric module 17 in which the respective cubic thermoelectric elements 6a and 6b are alternately arranged in the vertical and horizontal directions.

そして、図3(c)に示されるように、仮熱電モジュール17の一辺の両端の熱電素子6a・6bをそれぞれダミー部材7と交換し、熱電モジュール6が形成される。なお、積層バー16の両端に互いに異なる熱電素子6a・6bが位置するように各熱電素子6a・6bを並べて積層バー16を形成し、各積層バー16の長手方向の向きを交互に180度変えて並べることにより、熱電モジュール6を形成することができる。また、最終的な熱電素子6a・6bの形状としては、図示例では立方体として描いているが、立方体に限られるものではなく、直方体であってもよく、その場合には図3(a)・(b)での各スライスや切断において切り出しの厚さを調整することで可能である。   Then, as shown in FIG. 3C, the thermoelectric elements 6a and 6b on both ends of one side of the temporary thermoelectric module 17 are respectively replaced with dummy members 7, and the thermoelectric module 6 is formed. The stacked bar 16 is formed by arranging the thermoelectric elements 6a and 6b so that different thermoelectric elements 6a and 6b are located at both ends of the stacked bar 16, and the longitudinal direction of each stacked bar 16 is alternately changed by 180 degrees. Thus, the thermoelectric module 6 can be formed. The final shape of the thermoelectric elements 6a and 6b is illustrated as a cube in the illustrated example, but is not limited to a cube, and may be a rectangular parallelepiped. This can be achieved by adjusting the thickness of the cut in each slice or cut in (b).

図4は、図1の矢印IV−IV線に沿って破断した一部を示す要部断面図である。図2及び図4に示されるように、下側ケース4は、例えば銅製の薄肉板材を絞り加工により、平面視で矩形状に凹設された凹部4aと、凹部4aの外周縁から外向きの鍔状に延出されかつ凹部4aの全周を略一定幅で外囲する外向フランジ部4bとを有する形状に形成されている。さらに、外向フランジ部4bの外周縁の全周に亘って、凹部4aとは反対方向に直角に立ち上がる外周壁部4cが形成されている。   FIG. 4 is a cross-sectional view of an essential part showing a part broken along the line IV-IV in FIG. As shown in FIGS. 2 and 4, the lower case 4 is formed by, for example, drawing a copper thin plate material into a rectangular shape in a plan view by drawing, and outwardly from the outer peripheral edge of the concave portion 4 a. It is formed in a shape having an outward flange portion 4b extending in a bowl shape and surrounding the entire circumference of the recess 4a with a substantially constant width. Furthermore, an outer peripheral wall portion 4c that rises at a right angle in a direction opposite to the concave portion 4a is formed over the entire outer peripheral edge of the outward flange portion 4b.

また、上側ケース5も、例えば銅製の薄肉板材を絞り加工により、平面視で矩形状に凹設された凹部5aと、凹部5aの外周縁から外向きの鍔状に延出されかつ凹部5aの全周を略一定幅で外囲する外向フランジ部5bとを有する形状に形成されている。なお、外向フランジ部5bは、下側ケース4の外向フランジ部4bに対して相似形かつ一回り小さく形成されている。なお、これらケース4・5の材質としては、銅に限られるものではなく、アルミニウム、亜鉛合金、ステンレス、真鍮などが適用可能である。   The upper case 5 is also formed by drawing a thin plate material made of copper, for example, into a concave shape 5a that is recessed in a rectangular shape in plan view, and extending outwardly from the outer peripheral edge of the concave portion 5a. It is formed in a shape having an outward flange portion 5b that surrounds the entire circumference with a substantially constant width. The outward flange portion 5b is formed in a similar shape and slightly smaller than the outward flange portion 4b of the lower case 4. The material of the cases 4 and 5 is not limited to copper, and aluminum, zinc alloy, stainless steel, brass, and the like can be applied.

下側ケース4の凹部4aの底面4dは全体で矩形の平面に形成されている。その底面4dには、絶縁体として例えば厚さ5μm程度のポリイミドフィルム21が凹部4aの底面全体に貼着され、そのフィルム21の表面に複数の例えば銅箔からなる接続端子としての帯状端子22が配置されている。帯状端子22の形状は、隣り合う熱電素子6a・6bの一端同士を交互に電気的に接続するために、隣り合う熱電素子6a・6bに跨る長さを有しかつ並べられた状態で隣り合う帯状端子22同士が接触しない大きさに形成されている。なお、帯状端子22は、銅箔に限られるものではなく、導電性を有し、薄い形状に形成可能なものであればよく、例えば導電性溶射材を用いた溶射や半田のリフローによって形成してもよい。   The bottom surface 4d of the recess 4a of the lower case 4 is formed in a rectangular plane as a whole. A polyimide film 21 having a thickness of, for example, about 5 μm is adhered to the entire bottom surface of the recess 4a on the bottom surface 4d, and a plurality of strip-like terminals 22 made of, for example, copper foil are provided on the surface of the film 21. Has been placed. The shape of the strip-shaped terminal 22 is adjacent to each other in a state of having a length straddling the adjacent thermoelectric elements 6a and 6b and arranged in order to electrically connect one end of the adjacent thermoelectric elements 6a and 6b alternately. The band-shaped terminals 22 are formed in a size that does not contact each other. The strip-like terminal 22 is not limited to copper foil, and may be any conductive material that can be formed into a thin shape. For example, the belt-like terminal 22 may be formed by thermal spraying using a conductive thermal spray material or solder reflow. May be.

図5は、図1の矢印V−V線に沿って破断した一部を示す要部拡大断面図である。図に示されるように、上側ケース5の凹部5aの底面5dも、下側ケース4の凹部4aの底面4dと同じように形成されており、その底面5dにも、同じくフィルム21が貼着され、かつフィルム21の表面に複数の帯状端子23が配置されている。そして、下側ケース4側の帯状端子22と上側ケース5側の帯状端子23とは、隣り合う熱電素子6a・6b同士間の接続を各熱電素子6a・6bの上下の面(上側ケース4側及び下側ケース5側に対する各面)に、熱電素子6a・6bの並び方向に対して交互に接続するように配置されている。このようにして、図5の中央の熱電素子6aにおいて、左側の熱電素子6bから上側の帯状端子23を介して流れてきた電流が下側の帯状端子22を介して右側の熱電素子6bに向けて流れるように、複数の熱電素子6a・6bの全体が直列接続されている。   FIG. 5 is an enlarged cross-sectional view of a main part showing a part broken along the line VV in FIG. As shown in the drawing, the bottom surface 5d of the concave portion 5a of the upper case 5 is also formed in the same manner as the bottom surface 4d of the concave portion 4a of the lower case 4, and the film 21 is also adhered to the bottom surface 5d. A plurality of strip-like terminals 23 are disposed on the surface of the film 21. The belt-like terminal 22 on the lower case 4 side and the belt-like terminal 23 on the upper case 5 side connect the adjacent thermoelectric elements 6a and 6b to the upper and lower surfaces of the thermoelectric elements 6a and 6b (upper case 4 side). And each surface with respect to the lower case 5 side) are arranged so as to be alternately connected in the arrangement direction of the thermoelectric elements 6a and 6b. In this manner, in the central thermoelectric element 6a of FIG. 5, the current flowing from the left thermoelectric element 6b through the upper band-shaped terminal 23 is directed to the right thermoelectric element 6b through the lower band-shaped terminal 22. The plurality of thermoelectric elements 6a and 6b are connected in series so as to flow.

各熱電素子6a・6bの隣り合うもの同士間には上記した接着剤13が充填され、各熱電素子6a・6bが互いに接着され、全体として矩形板状に一体化されている。接着剤13は、例えばPTFE等のフッ素樹脂のような耐熱性の高い絶縁材により数μm〜20μm程度の粒径の絶縁性粒子26をエポキシ樹脂系接着剤や熱硬化性接着剤等に混入したものである。このようにして絶縁性接着物が形成されている。なお、絶縁性接着物としては、接着剤に絶縁性粒子を混ぜたものに限られず、例えば両面に接着剤を塗布した絶縁紙であってもよい。   Adjacent ones of the thermoelectric elements 6a and 6b are filled with the above-described adhesive 13, and the thermoelectric elements 6a and 6b are bonded to each other and integrated into a rectangular plate shape as a whole. For the adhesive 13, for example, insulating particles 26 having a particle size of about several μm to 20 μm are mixed in an epoxy resin adhesive, a thermosetting adhesive, or the like with an insulating material having high heat resistance such as a fluororesin such as PTFE. Is. In this way, an insulating adhesive is formed. The insulating adhesive is not limited to an adhesive mixed with insulating particles, and may be, for example, insulating paper in which an adhesive is applied on both sides.

これにより、各熱電素子6a・6b間を、絶縁性粒子26の粒径程度まで狭めることができ、その状態で各熱電素子6a・6b間の電気的絶縁性が確保される。絶縁性粒子26の粒径が上記したような大きさの場合には隙間は微小となり、複数の熱電素子6a・6bを密着状態に一体化することができる。そのため、同じ大きさの熱電素子6a・6bを縦横方向に並べた場合の全体(熱電モジュール6)の大きさをできるだけ小さくすることができ、同じ伝熱能力の熱電変換装置を大幅に小型化でき、単位面積当たりの冷却量を増大することができる。   Thereby, between each thermoelectric element 6a * 6b can be narrowed to the particle size grade of the insulating particle 26, and the electrical insulation between each thermoelectric element 6a * 6b is ensured in the state. When the particle size of the insulating particles 26 is as described above, the gap is very small, and the plurality of thermoelectric elements 6a and 6b can be integrated in a close contact state. Therefore, when the thermoelectric elements 6a and 6b having the same size are arranged in the vertical and horizontal directions, the overall size (thermoelectric module 6) can be reduced as much as possible, and the thermoelectric conversion device having the same heat transfer capability can be greatly downsized The amount of cooling per unit area can be increased.

なお、図示例の熱電変換装置1では、図1・2の矢印Aに示されるように一方のリード線3aから供給される電流が、図2の矢印Aで示される方向に並ぶ各帯状端子22(23)を介して同じ方向に並ぶ各電熱素子6a・6bに流れ、リード線3aとは相反する側の端に位置する熱電素子6a(6b)から隣の列の横に位置する熱電素子6b(6a)に図2の矢印Bに示されるように流れ、今度は隣の列の各帯状端子22(23)を介して矢印Aとは逆方向に1列に流れ、リード線3a側の端に位置する熱電素子6a(6b)からさらに隣の列の横に位置する熱電素子6b(6a)に図2の矢印Cに示されるように流れ、以下これを繰り返し、図1・2の矢印Dに示されるように他方のリード線3bから外部回路に流れるようになっている。   In the illustrated thermoelectric conversion device 1, the currents supplied from one lead wire 3 a are arranged in the direction indicated by the arrow A in FIG. 2 as indicated by the arrow A in FIGS. 1 and 2. The thermoelectric element 6b located next to the next row from the thermoelectric element 6a (6b) located at the end opposite to the lead wire 3a flows to the electric heating elements 6a and 6b arranged in the same direction via (23). (6a) flows as shown by the arrow B in FIG. 2, and then flows in one row in the opposite direction to the arrow A via each strip-like terminal 22 (23) in the adjacent row, and ends at the lead wire 3a side. 2 flows from the thermoelectric element 6a (6b) located at the side of the adjacent row to the thermoelectric element 6b (6a) located next to the adjacent row as shown by an arrow C in FIG. As shown in FIG. 5, the other lead wire 3b flows to the external circuit.

また、図4に示されるように両ケース4・5間に挟んだ各熱電素子6a・6bと各帯状端子22・23とを密着させるために、両ケース4・5により熱電素子6を挟んだ状態で、両外向フランジ部4b・5bの間に隙間が生じるように各寸法が設定されている。そして両外向フランジ部4b・5bにより、隙間を略一杯に埋める厚さで矩形環状に形成されたタガ24が挟まれるように設けられている。   Further, as shown in FIG. 4, the thermoelectric elements 6 are sandwiched between the cases 4 and 5 in order to bring the thermoelectric elements 6a and 6b sandwiched between the cases 4 and 5 and the belt-like terminals 22 and 23 into close contact with each other. In the state, each dimension is set so that a gap is generated between the outward flange portions 4b and 5b. Further, the outer flange portions 4b and 5b are provided so that the tag 24 formed in a rectangular ring shape with a thickness that fills the gap substantially fully is sandwiched.

両外向フランジ部4b・5b間のタガ24により埋められていない空間には例えばシリコンゴム等のシール剤25が充填され、これにより、下側ケース4と上側ケース5とが一体化される。なお、図示例では下側の外向フランジ4bの外縁と上側の外向フランジ部5bの外縁との間に隙間が生じるとともに、その隙間にタガ24の一部が表出するようにされている。これにより、タガ24は、通気性を有する材質のもので形成されることにより、ケース2内の温度変化による内外間の空気の流れを確保するとともに、外部からの空気流入時の塵埃に対するフィルタ及び吸湿の役割を発揮することができる。   A space not filled with the tag 24 between the two outward flange portions 4b and 5b is filled with a sealing agent 25 such as silicon rubber, so that the lower case 4 and the upper case 5 are integrated. In the illustrated example, a gap is formed between the outer edge of the lower outward flange 4b and the outer edge of the upper outward flange portion 5b, and a part of the tag 24 is exposed in the gap. Accordingly, the tag 24 is formed of a material having air permeability, so that the air flow between the inside and outside due to the temperature change in the case 2 is secured, and a filter for dust when air flows in from the outside, and Can play a role of moisture absorption.

図6は、上側ケース5の凹部5aの表面形状を示す要部拡大断面図である。一方のリード線3aから他方のリード線3bへ電流を流した場合に、例えば上側ケース5の凹部5a側が低温になる。図に示されるように、凹部5aの外部側となる上面(表面)に凹凸形状による複数の凸状部分31が設けられている。また、各凸状部分31の突出方向端面31aは、図の二点鎖線32で示される同一面上に位置するように形成されている。複数の凸状部分31は、例えば上側ケース5を絞り加工する金型の形状を凸状部分31に対応する形状に形成しておくことで可能であり、または星打ち加工により形成するとよい。   FIG. 6 is an enlarged cross-sectional view showing a main part of the surface shape of the recess 5 a of the upper case 5. When a current is passed from one lead wire 3a to the other lead wire 3b, for example, the concave portion 5a side of the upper case 5 becomes low temperature. As shown in the drawing, a plurality of convex portions 31 having a concave and convex shape are provided on the upper surface (front surface) which is the outer side of the concave portion 5a. Moreover, the protrusion direction end surface 31a of each convex-shaped part 31 is formed so that it may be located on the same surface shown by the dashed-two dotted line 32 of a figure. The plurality of convex portions 31 can be formed, for example, by forming the shape of a die for drawing the upper case 5 into a shape corresponding to the convex portion 31, or may be formed by staring.

例えば銅板等の薄板金属で上側ケース5を凹状にプレス加工し、凹形状の底面となる部分を平面に形成した場合に、そのままでは平面度が悪くなることが知られている。そのため、プレス加工により形成された平面を熱伝達の相手となる外部部材に接触させた場合には、全面接触が困難となり、熱移動能力が低いという問題がある。   For example, when the upper case 5 is pressed into a concave shape with a thin metal such as a copper plate, and the portion that becomes the concave bottom surface is formed into a flat surface, it is known that the flatness deteriorates as it is. Therefore, when a flat surface formed by press working is brought into contact with an external member that is a heat transfer partner, there is a problem that the entire surface is difficult to contact and the heat transfer capability is low.

それに対して、上記した星打ち加工等により複数の凸状部分31を有しかつ凸状部分31間に微小な圧縮部分が生じる凹凸形状に加工した場合には、板状部分の平面度を高精度に確保できる。これにより、各突出方向端面31aを同一平面上に位置させることができ、外部部材の伝熱対象面に全突出方向端面31aを全面的に接触させることが可能となり、高い伝熱効率を確保し、熱移動能力を向上し得る。これにより、例えば熱電変換装置1により冷却対象物(図示せず)を冷却する場合に、外部部材としての冷却対象物を効率良く冷却し得る。   On the other hand, in the case of processing into a concavo-convex shape having a plurality of convex portions 31 and generating minute compressed portions between the convex portions 31 by the above-described star machining or the like, the flatness of the plate-like portion is increased. Accuracy can be ensured. Thereby, each protrusion direction end surface 31a can be located on the same plane, and it becomes possible to make the whole protrusion direction end surface 31a contact the heat transfer target surface of the external member entirely, ensuring high heat transfer efficiency, Heat transfer capability can be improved. Thereby, for example, when a cooling object (not shown) is cooled by the thermoelectric converter 1, the cooling object as an external member can be efficiently cooled.

図7はケース2の合わせ部分の図4に対応する各変形例を示す図である。なお、図4と同様の部分については同一の符号を付してその詳しい説明を省略する。   FIG. 7 is a view showing each modification corresponding to FIG. Note that portions similar to those in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.

図7(a)は、図4の下側ケース4に形成されている外周壁部4cを省略したものである。この第1変形例では上下の外向フランジ部4b・5b同士が互いに平行状態で延在しており、両外向フランジ部4b・5b間にシール剤25を介して挟持されたタガ24の外周面が両外向フランジ部4b・5b間からケース2外に露出している。これにより、上記と同様にケース2の内外間の空気の流れを確保し得る。   FIG. 7A is a view in which the outer peripheral wall 4c formed in the lower case 4 of FIG. 4 is omitted. In the first modification, the upper and lower outward flange portions 4b and 5b extend in parallel with each other, and the outer peripheral surface of the tag 24 sandwiched between the outward flange portions 4b and 5b via the sealant 25 is formed. It is exposed to the outside of the case 2 from between both the outward flange portions 4b and 5b. Thereby, the air flow between the inside and outside of the case 2 can be ensured in the same manner as described above.

図7(b)は、図4の上側ケース5の凹部5aを形成せず、1枚の板状体のままの形状で上側ケース33を形成したものである。この第2変形例では、上側ケース33の表面33aが、図4のように凹部5aを設けた場合の底面5dの面積よりも広くなるため、熱移動能力を高めることができる。   FIG. 7B shows a case where the upper case 33 is formed in the shape of a single plate-like body without forming the recess 5a of the upper case 5 of FIG. In the second modification, the surface 33a of the upper case 33 is wider than the area of the bottom surface 5d when the recess 5a is provided as shown in FIG.

図7(c)は、図4の下側及び上側ケース4・5の各外向フランジ部4b・5bを省略したものである。この第3変形例では、下側ケース34及び上側ケース35は、上記各凹部4a・5aに対応する各凹部34a・35aを有する。各凹部34a・35aの外周部分には、それぞれ互いに対向する向きに曲折された各外周壁部34b・35bが設けられている。この第3変形例では、外向フランジ部4b・5bを設けないことにより、ケース2をコンパクト化し得る。   FIG. 7C is a view in which the outward flange portions 4b and 5b of the lower and upper cases 4 and 5 of FIG. 4 are omitted. In the third modified example, the lower case 34 and the upper case 35 have respective recesses 34a and 35a corresponding to the respective recesses 4a and 5a. The outer peripheral portions of the concave portions 34a and 35a are provided with outer peripheral wall portions 34b and 35b that are bent in directions facing each other. In the third modification, the case 2 can be made compact by not providing the outward flange portions 4b and 5b.

図7(d)は、図7(c)の外周壁部34b・35bの先端部分をケース2の内側に曲成したものである。この第4変形例においても、下側ケース36及び上側ケース37は、それぞれ全体で上記各凹部4a・5aに対応する各凹部36a・37aを有する。各凹部36a・36bの外周部分には、それぞれ互いに対向する向きに曲折された各外周壁部36b・37bが設けられ、さらに各外周壁部36b・37bの立設方向端から凹部36a・37aの底面側に斜めに延出するように曲折された各内向鍔部36c・37cが設けられている。この第4変形例では、凹部36a(37a)の外部部材との接触面積を大きくすることによって熱移動能力を高めることができるとともに、外周壁部36b(37b)に対して曲折された内向鍔部36c(37c)により外周壁部36b(37b)の強度が高まる。これにより、凹部36a(37a)の底部分の平面度がより一層確保される。   FIG. 7D is a view in which the distal end portions of the outer peripheral wall portions 34b and 35b of FIG. Also in the fourth modified example, the lower case 36 and the upper case 37 have respective recesses 36a and 37a corresponding to the respective recesses 4a and 5a as a whole. The outer peripheral portions of the concave portions 36a and 36b are respectively provided with outer peripheral wall portions 36b and 37b that are bent in directions facing each other, and further from the end in the standing direction of the outer peripheral wall portions 36b and 37b. The inward flange portions 36c and 37c that are bent so as to extend obliquely toward the bottom surface side are provided. In the fourth modified example, the heat transfer capability can be increased by increasing the contact area of the recess 36a (37a) with the external member, and the inward flange portion bent with respect to the outer peripheral wall portion 36b (37b). The strength of the outer peripheral wall portion 36b (37b) is increased by 36c (37c). Thereby, the flatness of the bottom part of the recessed part 36a (37a) is further ensured.

図7(e)は、図7(d)の内向縁部36c・37cをさらに折り返して波形に曲成したものである。この第5変形例においても、下側ケース38及び上側ケース39は、それぞれ全体で上記各凹部4a・5aに対応する各凹部38a・39aを有する。各凹部36a・36bの外周部分には、上記各外周壁部36b・37bと同様に各外周壁部38b・39bが設けられ、各外周壁部38b・39bの立設方向端からケース2内に向けて曲折された各内向鍔部38c・39cが設けられている。各内向鍔部38c・39cは、図に示されるように凹部38a・39aの底面側に斜めに向かってから底面とは反対側に斜めに向かう全体として波状に形成されている。この第5変形例においても、上記第4変形例と同じ効果を有する。さらに、内向鍔部38c(39c)がV字状に曲折されており、より一層強度が高まる。   FIG. 7E shows the inward edges 36c and 37c shown in FIG. Also in the fifth modification, the lower case 38 and the upper case 39 respectively have the recesses 38a and 39a corresponding to the recesses 4a and 5a as a whole. Similar to the outer peripheral wall portions 36b and 37b, the outer peripheral wall portions 38b and 39b are provided on the outer peripheral portions of the concave portions 36a and 36b, respectively. Each of the inwardly directed flange portions 38c and 39c is provided. As shown in the drawing, the inwardly facing portions 38c and 39c are formed in a wave shape as a whole toward the bottom surface side of the recesses 38a and 39a obliquely toward the opposite side of the bottom surface. This fifth modification also has the same effect as the fourth modification. In addition, the inward flange 38c (39c) is bent in a V shape, and the strength is further increased.

図8は、ダミー部材7及び熱電素子6a・6bの配線要領を示す要部拡大斜視図である。図に示されるように、リード線3aの被覆を取り除いて露出させた芯線を、半田40によりダミー部材7の側面7aに半田付けする。なお、リード線3bについては、同様であり、その図示を省略する。   FIG. 8 is an enlarged perspective view of a main part showing the wiring procedure of the dummy member 7 and the thermoelectric elements 6a and 6b. As shown in the figure, the core wire exposed by removing the covering of the lead wire 3 a is soldered to the side surface 7 a of the dummy member 7 by the solder 40. The lead wire 3b is the same, and its illustration is omitted.

ダミー部材7は、矩形状の熱電モジュール6の一角に配置されており、その半田付けする側面7aは熱電モジュール6の外方に向いた面であってよい。なお、側面7aから半田40が盛り上がっているが、ケース2に熱電モジュール6が受容された状態において、各凹部4a・5aの内周壁面との間には隙間があり、その隙間に半田40が収まり得る。また、半田40及びリード線3aの芯線が露出している部分は絶縁物質(図示省略)により覆われている。   The dummy member 7 is disposed at one corner of the rectangular thermoelectric module 6, and the side surface 7 a to be soldered may be a surface facing outward of the thermoelectric module 6. Although the solder 40 swells from the side surface 7a, in the state where the thermoelectric module 6 is received in the case 2, there is a gap between the inner peripheral wall surfaces of the recesses 4a and 5a, and the solder 40 is in the gap. Can fit. Further, the exposed portions of the solder 40 and the lead wires 3a are covered with an insulating material (not shown).

本実施の形態ではダミー部材7を熱電素子6a・6bと同一形状に形成しており、ダミー部材7を配置する位置にも略正方形の帯状端子22aを設けて高さを合わせている。または、ダミー部材7を帯状端子22aの厚さ分だけ大きく形成し、帯状端子22aの配置を省略してもよい。   In the present embodiment, the dummy member 7 is formed in the same shape as the thermoelectric elements 6a and 6b, and a substantially square strip-shaped terminal 22a is provided at the position where the dummy member 7 is arranged to match the height. Alternatively, the dummy member 7 may be formed larger by the thickness of the band-shaped terminal 22a, and the arrangement of the band-shaped terminal 22a may be omitted.

このようなダミー部材7を配置しない構造のものでは、その部分に空間が生じ、その空間に露出している端子にリード線を半田付けしている。その場合には、その部分の強度が低下するという虞がある。それに対して、ダミー部材7を介してリード線3aと接続するようにすることにより、凹部4a・5aの全体が熱電モジュール6により埋め尽くされた状態になるため、凹部4a・5aの底部分の全面に亘って高い強度が保持される。   In such a structure in which the dummy member 7 is not disposed, a space is generated in the portion, and a lead wire is soldered to a terminal exposed in the space. In that case, there is a possibility that the strength of the portion is lowered. On the other hand, by connecting to the lead wire 3a via the dummy member 7, the entire recesses 4a and 5a are filled with the thermoelectric module 6, so that the bottom portions of the recesses 4a and 5a High strength is maintained over the entire surface.

以上、本発明を、その好適実施形態の実施例について説明したが、当業者であれば容易に理解できるように、本発明はこのような実施例により限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。また、上記実施形態に示した構成要素は必ずしも全てが必須なものではなく、本発明の趣旨を逸脱しない限りにおいて適宜取捨選択することが可能である。   The present invention has been described with reference to the preferred embodiments. However, as those skilled in the art can easily understand, the present invention is not limited to such embodiments, and the gist of the present invention. As long as it does not deviate from the above, it can be appropriately changed. In addition, all the components shown in the above embodiment are not necessarily essential, and can be appropriately selected without departing from the gist of the present invention.

本発明にかかる熱電変換装置は、高い熱伝導率を実現し、かつ強度を高めることができ、コンパクト化し得るため、熱電素子を用いた冷却や発電を行う装置等として有用である。   Since the thermoelectric conversion device according to the present invention can achieve high thermal conductivity, increase strength, and can be made compact, it is useful as a device that performs cooling or power generation using a thermoelectric element.

1 熱電変換装置
2 ケース
3a・3b リード線
4 下側ケース
5 上側ケース
4a・5a 凹部
4b・5b 外向フランジ部
6a・6b 熱電素子
7 ダミー部材
13 接着剤
26 絶縁性粒子
DESCRIPTION OF SYMBOLS 1 Thermoelectric converter 2 Case 3a * 3b Lead wire 4 Lower case 5 Upper case 4a * 5a Recessed part 4b * 5b Outward flange part 6a * 6b Thermoelectric element 7 Dummy member 13 Adhesive 26 Insulating particle

Claims (4)

複数の熱電素子と、前記複数の熱電素子を挟持する第1及び第2のケース分割体と、前記複数の熱電素子を直列接続するための複数の接続端子とを有する熱電変換装置であって、
前記複数の熱電素子の前記直列接続の両端に接続され、かつ前記複数の熱電素子とともに前記第1及び第2のケース分割体間に挟持された外部接続用の導電性中継部材を有することを特徴とする熱電変換装置。
A thermoelectric conversion device having a plurality of thermoelectric elements, first and second case divided bodies that sandwich the plurality of thermoelectric elements, and a plurality of connection terminals for connecting the plurality of thermoelectric elements in series,
An electroconductive relay member for external connection connected to both ends of the series connection of the plurality of thermoelectric elements and sandwiched between the first and second case divided bodies together with the plurality of thermoelectric elements. Thermoelectric conversion device.
前記熱電素子と前記導電性中継部材とは、互いに同一形状に形成され、かつ縦横複数列に並べて平面視で矩形の外形を形成するように配置されていることを特徴とする請求項1に記載の熱電変換装置。   The thermoelectric element and the conductive relay member are formed in the same shape as each other, and are arranged so as to form a rectangular outer shape in a plan view by being arranged in a plurality of rows and columns. Thermoelectric conversion device. 前記複数の熱電素子が、隣り合うもの同士間に充填された絶縁性接着物により互いに接着されて一体化されていることを特徴とする請求項1または請求項2に記載の熱電変換装置。   The thermoelectric conversion device according to claim 1 or 2, wherein the plurality of thermoelectric elements are bonded and integrated with each other by an insulating adhesive filled between adjacent ones. 前記絶縁性接着物が、絶縁性粒子を接着剤に混入したものであることを特徴とする請求項3に記載の熱電変換装置。   The thermoelectric conversion device according to claim 3, wherein the insulating adhesive is obtained by mixing insulating particles in an adhesive.
JP2012230566A 2012-10-18 2012-10-18 Thermoelectric conversion device Pending JP2014082403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230566A JP2014082403A (en) 2012-10-18 2012-10-18 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230566A JP2014082403A (en) 2012-10-18 2012-10-18 Thermoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2014082403A true JP2014082403A (en) 2014-05-08

Family

ID=50786313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230566A Pending JP2014082403A (en) 2012-10-18 2012-10-18 Thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2014082403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412929B2 (en) 2014-08-18 2016-08-09 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412929B2 (en) 2014-08-18 2016-08-09 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP5956608B2 (en) Thermoelectric module
US20160064308A1 (en) Semiconductor module
KR20140122185A (en) Thermoelectric cooler/heater integrated in printed circuit board
JP2006269721A (en) Thermoelectric module and its manufacturing method
JP2010219419A (en) Semiconductor device and method of manufacturing the same
JP6226068B2 (en) Semiconductor device
KR101706825B1 (en) Semiconductor Package
KR100620913B1 (en) Thermoelectric module
EP3098864B1 (en) Thermoelectric conversion module
JP6809294B2 (en) Power module
JP6048238B2 (en) Electronic equipment
JP2014082403A (en) Thermoelectric conversion device
JP4913617B2 (en) Thermo module and manufacturing method thereof
US20160126414A1 (en) Chip Substrate and Chip Package Module
US10833237B2 (en) Thermoelectric module
CN105379097B (en) Power-converting device
JP2014082402A (en) Thermoelectric conversion device
JP6818465B2 (en) Thermoelectric module
CN107710428B (en) Thermoelectric module
JP6524406B2 (en) Thermoelectric conversion module
US10251256B2 (en) Heat dissipating structure
JP2006080326A (en) Thermoelectric apparatus
JP2006294729A (en) Semiconductor device
JP6595320B2 (en) Thermoelectric module assembly
WO2023233974A1 (en) Thermoelectric module