JP2014081211A - 中性子源リチウムターゲット及びその製造方法 - Google Patents

中性子源リチウムターゲット及びその製造方法 Download PDF

Info

Publication number
JP2014081211A
JP2014081211A JP2012227247A JP2012227247A JP2014081211A JP 2014081211 A JP2014081211 A JP 2014081211A JP 2012227247 A JP2012227247 A JP 2012227247A JP 2012227247 A JP2012227247 A JP 2012227247A JP 2014081211 A JP2014081211 A JP 2014081211A
Authority
JP
Japan
Prior art keywords
layer
neutron source
lithium target
source lithium
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012227247A
Other languages
English (en)
Inventor
Shintaro Ishiyama
新太郎 石山
Yuji Baba
祐治 馬場
Yoshio Imahori
良夫 今堀
Akira Fujii
亮 藤井
Masaru Nakamura
勝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cancer Intelligence Care Sys Inc
CANCER INTELLIGENCE CARE SYSTEMS Inc
Japan Atomic Energy Agency
Original Assignee
Cancer Intelligence Care Sys Inc
CANCER INTELLIGENCE CARE SYSTEMS Inc
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cancer Intelligence Care Sys Inc, CANCER INTELLIGENCE CARE SYSTEMS Inc, Japan Atomic Energy Agency filed Critical Cancer Intelligence Care Sys Inc
Priority to JP2012227247A priority Critical patent/JP2014081211A/ja
Publication of JP2014081211A publication Critical patent/JP2014081211A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

【課題】Li膜のCu冷却基盤からの剥離など、小型中性子源の実用化上の課題を解決すること。
【解決手段】プロトンの照射注入を受けて中性子を発生する、中性子源リチウムターゲット及びその製造方法である。中性子源リチウムターゲットは、冷却基盤であるCu基盤上にPd、Li、Li3Nが順次積層されたCu/Pd/Li/Li3Nの4層構造を有し、プロトンのLi層への作用によって起こる、7Li(p,n)7Be反応によって、中性子が発生させられる。
【選択図】図1

Description

本発明は、代表的には、例えばホウ素中性子捕捉治療(BNCT)用の小型中性子源や、各種非破壊検査用の中性子源として使用される、リチウム(Li)ターゲット及びその製造方法に関する。
上述のBNCT(Boron Neutron Capture Therapy)とは、Liターゲットへの加速プロトン照射による7Li(p, n)7Be反応で得られる中性子を利用した治療法である。BNCTにおいて、プロトンを照射して7Li(p, n)7Be反応により中性子を発生させるためのLiターゲットの製造方法の一つが、特許文献1に開示されている。この特許文献1には、冷却基盤であるCu(銅)板と、Li薄板を、不活性雰囲気内において、押圧手段により圧延圧着することで、Liターゲットを製造する方法が開示されている。また、非特許文献1乃至3には、BNCTについてのこれまでの基礎的研究内容が開示されている。
特開2007−303983号公報
B.Bayanov, V.Belov, and et.al., Applied Radiation and Isotopes 61(2004)817-821. B. Bayanov and et al., Nucl. Instrum. Methods A 413, 397-426(1998) V. Belov, et.al, Neutron producing target for accelerator based neutron source for NCT In: Sauerwein, W. Moss, R. Witting, A.(Eds), Research and Development in Neutron Capture Therapy, Monduzzi Editore, Bologna, Italy pp.247-252.
例えば、上述のBNCTを例にとると、BNCTにおいては、使用されるLiターゲットの寿命や性能の面で、実用化に向けて多くの課題がある。すなわち、(ア)Liターゲットは融点が低くプロトン照射時の真空中でのLi溶融、(イ)加熱時の溶融Liの蒸発、(ウ)Cuの冷却基盤とLi膜間の剥離、ならびに(エ)運転中のブリスタリングによるLi膜の剥離など、小型中性子源の実用化において大きな課題となっている。
したがって、本発明の目的は、上述の従来技術の持つ課題の少なくとも一つを解決することができる、中性子源リチウムターゲットとその製造方法を提供することにある。
上述の幾つかの課題の内、特にブリスタリングの課題を解決できる本発明の一つの観点にかかる中性子源リチウムターゲットでは、プロトンの照射注入を受けて中性子を発生する、少なくともCu基盤上にLi層を有する中性子源リチウムターゲットであって、前記Cu基盤とLi層間に、照射注入された前記プロトンが抜け易い構造材が積層されている。このため、照射プロトンの蓄積によるブリスタリングを生じさせることなく、前記プロトンの前記Li層への作用によって起こる、7Li(p,n)7Be反応によって、効果的に中性子を発生させることができる。ここで、前記プロトンが抜け易い構造材としてはPd層であることが望ましい。
さらに好適な中性子源リチウムターゲットとしては、プロトンの照射注入を受けて中性子を発生する、中性子源リチウムターゲットであって、前記中性子源リチウムターゲットが、冷却基盤であるCu基盤上にPd、Li、Li3Nが順次積層されたCu/Pd/Li/ Li3Nの4層構造を有し、前記プロトンの前記Li層への作用によって起こる、7Li(p,n)7Be反応によって、中性子を発生させる構造を持つことが望ましい。Li層の上にLi3N層を設けることによって、Liの蒸発を防止できるためである。
さらに好適には、上述のような構成において、前記銅基盤表面上にマイクログリッドメッシュ構造を備えていることが望ましい。マイクログリッドメッシュ構造を持たせることで、伝熱面積を高められると同時に対流を発生させて除熱効果を高めることができるので、Li溶融を防止することができる。また、このマイクログリッドメッシュ構造によって、Li形成時の接合を強化することができる。
本発明の別の観点として、プロトンの照射注入を受けて中性子を発生する、中性子源リチウムターゲットを次の段階を経て製造する方法がある。すなわち、銅基盤を用意する段階、前記銅基盤の表面を機械加工によって、マイクログリッドメッシュを形成する段階、マイクログリッドメッシュ化された銅基盤上に、Pd層をコートする段階、前記Pd層のコート上に、真空蒸着によってLi薄膜層を形成する段階を経て、Cu/Pd/Liの3層構造から成る中性子源リチウムターゲットを製造する方法である。
さらに好ましい製造方法としては、前記Pd層のコート上に、真空蒸着によってLi薄膜層を形成する段階の後、前記Li薄膜層の表面を窒化する段階を有し、Cu/Pd/Li/Li3Nの4層構造とすることが望ましい。
上述したように、本発明では、Liターゲットの構造として、冷却基盤のCu層とLi層間にパラジウム層をコーティング形成することにより、上記(エ)のブリスタリングを防止することができる。また、別の観点として、Cu/Pd/Li表面を窒化させることにより、さらにLi3N層を形成することにより、上記(イ)の蒸発を防止することができる。さらに別の観点として、冷却基盤Cu表面にマイクログリッドメッシュ加工することにより伝熱面積を高めること、ならびにグリッドメッシュ間での溶融Liの対流伝熱による除熱効果を向上させることにより、上記(ア)のLi溶融を防止すると同時に、グリッドメッシュ化されたCu/Pd表面へのLi形成時の接合強化により、上記(ウ)のCu冷却基盤とLi膜間の剥離を防止することができる。
本発明の一実施例に係るCu/Pd/Li/Li3Nの4層構造を持つ中性子源リチウムターゲットとその製造方法を示す図。 マイクログリッドメッシュ構造の概念を説明する図。 Liターゲット表面温度とターゲット構造との関係を示す図。 Pd/Cu冷却基盤上へのLi薄膜及び窒化膜形成の説明図。 Cu/Pd/Li/Li3N 4積層Liターゲットの大気中暴気安定性の説明図。
図面を参照する。図1は、本発明の一実施例に係るCu/Pd/Li/Li3Nの4層構造を持つ中性子源リチウムターゲットの製造方法の概略説明図(図1の(a)から(c)を参照)であり、同時にその中性子源リチウムターゲットの構造図(図1の(c)を参照)でもある。また、図2は、本発明のCu/Pd接合表面に形成されるマイクログリッドメッシュ構造の概念を説明する図である。初めに、図1と図2を参照しながら、本発明の一実施例に係るCu/Pd/Li/Li3Nの4層構造を持つ中性子源リチウムターゲットと、その製造方法について説明する。
初めに、図1を参照し、中性子源リチウムターゲットの製造方法の各工程について説明する。
工程1:まず、冷却チャンネルを有するCu冷却基盤10を用意する。
工程2:そのCu冷却基盤10の伝熱部表面に、機械加工によってマイクログリッドメッシュ化する(図示せず)。
マイクログリッドメッシュの詳細な構造及び機能については、図2及び図3を参照して後述する。
工程3:マイクログリッドメッシュ化された伝熱部表面に20μm以下、例えばO.1〜lμmのパラジウム20を電解メッキする(図1の(a))。
ブリスタリング防止対策として、本発明の一実施例においては、Cu冷却基盤10上にPd20をコートしている。従来のターゲットでは照射プロトンによるブリスタリング損傷(照射プロトンがたまって火ぶくれのように盛り上がる現象)が、特に後述のようにして形成されたLi膜30側のCu冷却基盤10表面で生じ易い。このためLi膜30とCu冷却基盤10との健全な接合部位を損なうことになることから、これを防止するため、照射プロトンによるブリスタリング損傷の少ないパラジウム(照射注入されたプロトンが抜けやすい構造を有する)を、Li膜30とCu冷却基盤10間に設けるようにしている。
工程4:Pd膜20を形成後、さらにその表面に真空蒸着により(図1の(a))、Li膜を0.1〜0.2mm厚みで形成する(図1の(b)。ここでは100μm厚み)。
工程5:形成されたLi膜30の表面を窒素イオン注入により窒化することにより(図1の(b))、2000μm以下の厚みのLi3N膜40を形成する(図1の(c)参照。)。
非均一加熱等によるLi溶融蒸発防止対策等のため、Li膜30の表面にLi3N膜40を形成する。加速器による照射プロトンのエネルギーの不均一性ならびに加速制御精度による不均一な加熱が、Li膜/Cu冷却基盤内に生じることから部分溶融や蒸発が生じる。溶融箇所ではその後伝熱性能が低下してさらに高温化するため、Liの蒸発損失が積極的に生じる。本発明では、これを防止するため、Li膜30の表面を窒化させ高融点Li3N〈830℃)を生成することにより、蒸発Liの飛散を防止するとともに、後述するように、溶融Liをグリッドメッシュ間で対流させることによる伝熱性能低下を防止することができる。
以上の5つの工程によって、Cu/Pd/Li/Li3Nの4層構造を持つ中性子源リチウムターゲットが作製される。
次に、図2を参照して、上述の工程2において示した、熱面積ならびにLi冷却基盤間の接合強度の確保のための、マイクログリッドメッシュ構造について詳述する。なお、図2の紙面下方の図は部分拡大図であり、そこでは理解し易いようにパラジウムコーティング層を2重線で示している。また、ハッチング部分はCu部材である。
従来技術ではLi膜30をCu等の冷却基盤10に直接接合をする方式を採用しているが、プロトン照射時による低融点Li膜30の溶融蒸発防止のため、加熱エネルギーの積極的除去が不可欠である。このため、冷却基盤10に冷却チャンネルを設けてその中を高速流体化した水等のクーラントで除熱する必要がある。しかし、照射プロトンによる加熱源がLi膜30直下のCuの冷却基盤10の表面近傍で生じることから、冷却チヤンネルをCu冷却基盤10内におけるLi膜30の直下近傍に設けなくてはならなく、十分な伝熱面の確保がむずかしい。このため、本発明では伝熱面を同じ熱除去面に十分に確保するため、加熱側表面に凸凹のマイクログリッドメッシュ構造(模式的に横方向に一定間隔で配置された台形で示す。)を設けている。
図2においては、模式的に描かれたマイクログリッドメッシュ構造を形成する台形の底辺は50μmであり、高さは200μm程度である。また隣り合う台形同士は50μm間隔で配置されている。Li膜30の層上にはLi3N膜40の層が形成されているため、Li溶融時にCu冷却基盤10とLi3N膜40の層の間で、かつこれら台形グリッド間に対流が生ずる。この対流伝熱効果によりさらなる除熱効果が期待できる。
次に図3を参照する。図3は、従来のCu平板だけの場合のLiターゲット表面温度と、Cu平板表面にマイクログリッドメッシュ加工した場合のLiターゲット表面温度と、Cu平板表面にマイクログリッドメッシュ加工を施し、さらに対流伝熱効果を加えた場合のLiターゲット表面温度とを比較して示しているグラフである。
図3のグラフから、Cu平板へのLi蒸着方式によるLiターゲット表面温度に対して、Cu表面をマイクログリッドメッシュ化したものにLi蒸着することにより伝熱面が確保され、その結果除熱が進み、表面温度が低下することがわかる。さらに、Li膜層表面を窒化(Li3N)することにより、Cu/Li3N層間のLi蒸着層が仮に溶融したとしても、上述したようにCu/Li3N層間で対流が生じ、マイクログリッドとLi対流層との伝熱が進み、さらにLiターゲットの表面温度を下げる(図3の紙面に向って右端の棒グラフ)。
図4に、本発明の一実施例において使用した装置を示す。図4の(a)は、 表面をマイクログリッドメッシュ化したCu基盤上にPdを電解コートしたものに真空蒸着によるLi薄膜を形成してCu/Pd/Liの3積層化する真空蒸着装置の概略図であり、図4の(b)は、その後さらにLi表面を窒化し、Cu/Pd/Li/Li3Nの四積層化するための窒化・スパッタリング装置の概略図である。これらの装置を使用して、Cu/Pd/Liの3積層化条件と、Cu/Pd/Li/Li3Nの4積層化条件を調べた。
<Cu/Pd/Liの3積層化条件>
電解メッキ法により無酸素鋼板上(5mm× 5mm× 2mmt)にバラジウムを0.1からlμmの膜厚で形成した試験片に図4の(a)の真空蒸着装置(準備チャンバー、真空容器、コールドカソードイオンガン)により真空蒸着試験を実施。真空蒸着装置のコールドカソードイオンガンにおいてLiペレット(φ4.75mm×8mm、99%Li(CaO.01%、Fe;ND、NaO.001%))をその蒸発部(タンタル製ルツボ)にインストール後、(右)真空チャンバー内に装着する。蒸発部に+115 kVの電圧を印加し10‐6torrの真空環境において、タングステンフィラメントにより電子衝撃加熱することでLi薄膜をパラジウム表面に形成させ、その場でのLiターゲット部の形成条件を把握した。また、同方法により損耗したLi素材を再蒸着することで、現場でその場補修できることを確認した。
<Cu/Pd/Li/Li3Nの4積層化条件>
形成Li薄膜上を窒化するため、図4(b)の10‐10torrの真空チャンバー内に試料を置き、コールドカソード型イオンガンによりN2+イオンを照射した。N2+イオンの加速エネルギーは1keV、イオンのフラックスは1.3×1014 atoms・cm-2・s-1、照射時間は約1時間である。銅ないしパラジウム表面にカーボン等不純物がコンタミしやすいため、Li蒸着前に清浄面を確保するため、10-10torrの真空チャンバー内に試料を置き、スパッターイオンガンによりAr+イオンを試料表面に照射した。Ar+イオンの加速エネルギーはl keV、イオンのフラックスは10μA・cm-2、照射時間は10分である。
図5(a)及び(b)の左側は、Cu/Pd/Li/Li3Nの4積層化Liターゲットを長時間大気中に晒した後の表面変化を示し、同じく図5(a)及び(b)の右側は、窒化しないCu/Pd/Liの3積層化Liターゲットを長時間大気中に晒した後の表面変化を示している。そして、図5(a)は暴気時間が1時間の状態を示し、図5(b)は暴気時間が3ヶ月の状態を示している。図5から窒化を行っていない3積層化Liターゲットは、主に大気中の水分と反応して(LiOH化)表面が自色化するのに対して、窒化した4積層化LiターゲットはLi膜の大気との直接接触がLi3Nの被膜により妨げられることで、表面変化を起こすことなく安定していることがわかる。
10…Cu冷却基盤
20…Pd層
30…Li層
40…Li3N層

Claims (8)

  1. プロトンの照射注入を受けて中性子を発生する、少なくともCu基盤上にLi層を有する中性子源リチウムターゲットであって、
    前記Cu基盤とLi層間に、照射注入された前記プロトンが抜け易い構造材が積層され、
    前記プロトンの前記Li層への作用によって起こる、7Li(p,n)7Be反応によって、中性子を発生させることを特徴とする中性子源リチウムターゲット。
  2. プロトンの照射注入を受けて中性子を発生する、中性子源リチウムターゲットであって、
    前記中性子源リチウムターゲットが、冷却基盤であるCu基盤上にPd、Li、Li3Nが順次積層されたCu/Pd/Li/Li3Nの4層構造を有し、
    前記プロトンの前記Li層への作用によって起こる、7Li(p,n)7Be反応によって、中性子を発生させることを特徴とする中性子源リチウムターゲット。
  3. 請求項1において、前記プロトンが抜け易い前記構造材がPdであることを特徴とする中性子源リチウムターゲット
  4. 請求項1乃至3のいずれかに記載の中性子源リチウムターゲットにおいて、前記銅基盤表面上にマイクログリッドメッシュ構造を備えたことを特徴とする中性子源リチウムターゲット。
  5. プロトンの照射注入を受けて中性子を発生する、中性子源リチウムターゲットを製造する方法であって、
    銅基盤を用意する段階、
    前記銅基盤の表面を機械加工することによって、マイクログリッドメッシュを形成する段階、
    マイクログリッドメッシュ化された銅基盤上に、Pd層をコートする段階、
    前記Pd層のコート上に、真空蒸着によってLi薄膜層を形成する段階、
    から成ることを特徴とするCu/Pd/Liの3層構造から成る中性子源リチウムターゲットの製造方法。
  6. 請求項5に記載の製造方法であって、前記Pd層のコート上に、真空蒸着によってLi薄膜層を形成する段階の後、前記Li薄膜層の表面を窒化する段階を有することを特徴とするCu/Pd/Li/Li3Nの4層構造から成る中性子源リチウムターゲットの製造方法。
  7. 請求項5または6に記載の製造方法おいて、真空蒸着によって前記Li薄膜層を形成する前に、前記Pd層の表面にAr+イオンを照射することを特徴とする中性子源リチウムターゲットの製造方法。
  8. 請求項5乃至6のいずれかに記載の製造方法において、前記Pd層を、電解メッキ法を用いて前記Cu基盤上に10μm以下の膜厚に形成することを特徴とする中性子源リチウムターゲットの製造方法。
JP2012227247A 2012-10-12 2012-10-12 中性子源リチウムターゲット及びその製造方法 Pending JP2014081211A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012227247A JP2014081211A (ja) 2012-10-12 2012-10-12 中性子源リチウムターゲット及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012227247A JP2014081211A (ja) 2012-10-12 2012-10-12 中性子源リチウムターゲット及びその製造方法

Publications (1)

Publication Number Publication Date
JP2014081211A true JP2014081211A (ja) 2014-05-08

Family

ID=50785539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012227247A Pending JP2014081211A (ja) 2012-10-12 2012-10-12 中性子源リチウムターゲット及びその製造方法

Country Status (1)

Country Link
JP (1) JP2014081211A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095365A (ja) * 2013-11-12 2015-05-18 田中貴金属工業株式会社 中性子発生用ターゲット
JP2016136499A (ja) * 2015-01-23 2016-07-28 国立大学法人 筑波大学 中性子発生用ターゲット、中性子発生装置、中性子発生用ターゲットの製造方法及び中性子発生方法
CN107197586A (zh) * 2017-06-30 2017-09-22 中国科学院理化技术研究所 一种氚靶装置
CN108827994A (zh) * 2018-06-04 2018-11-16 西安交通大学 一种车载加速器中子源固态锂靶系统
CN109699114A (zh) * 2019-02-18 2019-04-30 中国科学院合肥物质科学研究院 一种多层复合中子靶及其制备方法
US10462893B2 (en) * 2017-06-05 2019-10-29 Neutron Therapeutics, Inc. Method and system for surface modification of substrate for ion beam target
JP2020526000A (ja) * 2017-06-05 2020-08-27 ニュートロン・セラピューティクス・インコーポレイテッドNeutron Therapeutics Inc. イオンビームターゲット用の基板の表面改質のための方法およびシステム
US20230047624A1 (en) * 2021-07-21 2023-02-16 Battelle Energy Alliance, Llc Methods of forming a metal coated article
WO2023225274A1 (en) * 2022-05-19 2023-11-23 Tae Technologies, Inc. Coupling lithium to a substrate

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3071001A4 (en) * 2013-11-12 2017-06-07 Tanaka Kikinzoku Kogyo K.K. Target for neutron generation
JP2015095365A (ja) * 2013-11-12 2015-05-18 田中貴金属工業株式会社 中性子発生用ターゲット
JP2016136499A (ja) * 2015-01-23 2016-07-28 国立大学法人 筑波大学 中性子発生用ターゲット、中性子発生装置、中性子発生用ターゲットの製造方法及び中性子発生方法
US11553584B2 (en) 2017-06-05 2023-01-10 Neutron Therapeutics, Inc. Method and system for surface modification of substrate for ion beam target
AU2021229255B2 (en) * 2017-06-05 2023-09-28 Joseph Gillespie Method and system for surface modification of substrate for ion beam target
US10462893B2 (en) * 2017-06-05 2019-10-29 Neutron Therapeutics, Inc. Method and system for surface modification of substrate for ion beam target
JP7319252B2 (ja) 2017-06-05 2023-08-01 ニュートロン・セラピューティクス・インコーポレイテッド イオンビームターゲット用の基板の表面改質のための方法およびシステム
JP2020526000A (ja) * 2017-06-05 2020-08-27 ニュートロン・セラピューティクス・インコーポレイテッドNeutron Therapeutics Inc. イオンビームターゲット用の基板の表面改質のための方法およびシステム
CN107197586A (zh) * 2017-06-30 2017-09-22 中国科学院理化技术研究所 一种氚靶装置
CN107197586B (zh) * 2017-06-30 2019-11-22 中国科学院理化技术研究所 一种氚靶装置
CN108827994A (zh) * 2018-06-04 2018-11-16 西安交通大学 一种车载加速器中子源固态锂靶系统
CN108827994B (zh) * 2018-06-04 2020-06-19 西安交通大学 一种车载加速器中子源固态锂靶系统
CN109699114A (zh) * 2019-02-18 2019-04-30 中国科学院合肥物质科学研究院 一种多层复合中子靶及其制备方法
US20230047624A1 (en) * 2021-07-21 2023-02-16 Battelle Energy Alliance, Llc Methods of forming a metal coated article
US11746434B2 (en) * 2021-07-21 2023-09-05 Battelle Energy Alliance, Llc Methods of forming a metal coated article
WO2023225274A1 (en) * 2022-05-19 2023-11-23 Tae Technologies, Inc. Coupling lithium to a substrate

Similar Documents

Publication Publication Date Title
JP2014081211A (ja) 中性子源リチウムターゲット及びその製造方法
EP3071001B1 (en) Target for neutron generation
JPWO2017183693A1 (ja) ターゲット、ターゲットの製造方法、及び中性子発生装置
US11612048B2 (en) Ion beam target assemblies for neutron generation
JP6539414B2 (ja) イオン注入器用リペラー、カソード、チャンバーウォール、スリット部材、及びこれを含むイオン発生装置
Sugai et al. Development of thick hybrid-type carbon stripper foils with high durability at 1800 K for RCS of J-PARC
Andoh et al. A new machine for film formation by ion and vapour deposition
JP6051492B2 (ja) 拡散接合スパッター・ターゲット・アセンブリの製造方法
WO2017188117A1 (ja) ビーム強度変換膜、及びビーム強度変換膜の製造方法
JP7401899B2 (ja) 中性子発生用リチウムターゲット及びその製造方法
CN115354285B (zh) 一种基于原位生长的中子靶及其制备方法
JP2013060618A (ja) 固体電解質膜形成用のマスク、リチウム二次電池の製造方法
Nakagawa et al. Modification of solid surface by intense pulsed light-ion and metal-ion beams
JP2004077200A (ja) 元素変換体およびその製造方法
Ivanova et al. Fuel re-absorption by thermally treated co-deposited carbon layers
KR20150079749A (ko) 래미네이트 재료, 방법 및 그 제조 장치, 및 그의 용도
JPS63213664A (ja) イオンプレ−テイング装置
RU2073282C1 (ru) Способ изготовления и установки на пучок ускоренных ионов графитовой фольги
DE102009024471B4 (de) Verfahren zum Metallisieren eines Halbleitersubstrates, Verfahren zum Herstellen einer Solarzelle
Fukumoto et al. Chemical binding states of carbon atoms migrated in tungsten coating layer exposed to JT-60U divertor plasmas
JP2004263243A (ja) 薄膜の製造方法
JPH05287506A (ja) 銅膜被覆基体
JP2002019018A (ja) レーザ穴あけ加工用樹脂付き銅箔及びその製造方法
DE102015215434A1 (de) Verfahren zur Abscheidung dünner Schichten
JPS63254726A (ja) X線露光用マスクとその製造方法