JP2014077031A - System for gasifying carbon-based fuel - Google Patents

System for gasifying carbon-based fuel Download PDF

Info

Publication number
JP2014077031A
JP2014077031A JP2012224002A JP2012224002A JP2014077031A JP 2014077031 A JP2014077031 A JP 2014077031A JP 2012224002 A JP2012224002 A JP 2012224002A JP 2012224002 A JP2012224002 A JP 2012224002A JP 2014077031 A JP2014077031 A JP 2014077031A
Authority
JP
Japan
Prior art keywords
gasification furnace
gasification
carbon
water
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012224002A
Other languages
Japanese (ja)
Other versions
JP6139845B2 (en
Inventor
Takuya Ishiga
琢也 石賀
Fumihiko Kiso
文彦 木曽
Fumihiko Nagaremori
文彦 流森
Masanori Santo
正徳 山藤
Kenichi Ikeda
健一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Mitsubishi Power Ltd
Original Assignee
Electric Power Development Co Ltd
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Babcock Hitachi KK filed Critical Electric Power Development Co Ltd
Priority to JP2012224002A priority Critical patent/JP6139845B2/en
Priority to AU2013237711A priority patent/AU2013237711B2/en
Priority to CN201310467301.0A priority patent/CN103710046B/en
Publication of JP2014077031A publication Critical patent/JP2014077031A/en
Application granted granted Critical
Publication of JP6139845B2 publication Critical patent/JP6139845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

PROBLEM TO BE SOLVED: To provide a system for gasifying carbon-based fuel, in which the equipment cost and construction cost of a gasification furnace are reduced, the high-temperature waste water to be generated in the gasification furnace are utilized effectively and the waste heat thereof is also utilized.SOLUTION: The high-temperature water withdrawn from a slag cooling water storage part 12 of the bottom of the gasification furnace 3 for gasifying carbon-based fuel is supplied to the downstream side of the gasification furnace or the upstream side of a dust removal unit 8 through a water supply system c and is mixed with the generated gas to cool the generated gas. As a result, a heat recovery part 7 for recovering the heat of the generated gas is miniaturized or removed. Since the high-temperature water withdrawn from the slag cooling water storage part 12 is used, the high-temperature water is evaporated easily when mixed with the generated gas and the generated gas is cooled efficiently. Solids accompanied by the generated gas are recovered in the dust removal unit 8 and thrown again in the gasification furnace 3. Thereby, utilization of waste heat of high-temperature water, carbon loss and reduction of waste can be realized.

Description

本発明は、石炭等の炭素系燃料のガス化システムに係り、特に排水および排熱利用と廃棄物削減を両立させる炭素系燃料のガス化システムに関する。   The present invention relates to a gasification system for a carbon-based fuel such as coal, and more particularly to a carbon-based fuel gasification system that achieves both wastewater and waste heat utilization and waste reduction.

石炭等の炭素系燃料をガス化して発生する生成ガスは、ガス化炉出口で1000℃以上に達する。生成ガスを脱塵し、塩素分や硫黄分などの不純物を除去して精製するためには、生成ガスを400℃未満に冷却する必要がある。発電用のガス化システムでは、生成ガス冷却時に熱回収して、エネルギー効率を高めている。   The product gas generated by gasifying carbon-based fuel such as coal reaches 1000 ° C. or more at the gasification furnace outlet. In order to purify the product gas by dedusting and removing impurities such as chlorine and sulfur, it is necessary to cool the product gas to less than 400 ° C. In the gasification system for power generation, heat recovery is performed when the product gas is cooled to increase energy efficiency.

ガス化炉から出た生成ガスには、未燃カーボンや灰分等からなる固形物が多く同伴される。このため、生成ガスから熱回収しながら冷却する過程では、以下に述べる2つのトラブルを防ぐ必要がある。   The product gas emitted from the gasification furnace is accompanied by a large amount of solid matter composed of unburned carbon and ash. For this reason, it is necessary to prevent the following two troubles in the process of cooling while recovering heat from the product gas.

その1つは、1000℃以上の高温雰囲気では、溶融した灰分の伝熱管への付着(スラッギング)を防ぐ必要があることである。   One of them is that it is necessary to prevent the molten ash from adhering to the heat transfer tube (slagging) in a high temperature atmosphere of 1000 ° C. or higher.

また、他の1つは、生成ガスを800〜900℃程度に冷却する過程では、析出したアルカリ金属塩(NaSO等)の伝熱管への付着(ファウリング)を防ぐ必要があることである。 The other is that in the process of cooling the product gas to about 800 to 900 ° C., it is necessary to prevent the deposited alkali metal salt (Na 2 SO 4 or the like) from adhering to the heat transfer tube (fouling). It is.

以上述べたトラブル防止対策として、ガス化炉から出た生成ガスを2段階に分けて冷却する。ここで、上流(ガス化炉)側から第1熱回収部、第2熱回収部と呼ぶ。第1熱回収部では、生成ガスを800〜900℃に冷却し、水冷壁で熱回収する。第2熱回収部では、生成ガスを400℃未満に冷却し、熱回収部内及び壁面に設置された伝熱管で熱回収する。   As a countermeasure for preventing the trouble described above, the product gas discharged from the gasifier is cooled in two stages. Here, the first heat recovery unit and the second heat recovery unit are called from the upstream (gasification furnace) side. In the first heat recovery section, the product gas is cooled to 800 to 900 ° C., and heat recovery is performed with a water-cooled wall. In the second heat recovery unit, the product gas is cooled to less than 400 ° C., and heat is recovered by heat transfer tubes installed in the heat recovery unit and on the wall surface.

しかし、第1熱回収部および第2熱回収部の高さは、それぞれガス化炉の数倍に達し、ガス化システムの機器及び建設コストの上昇要因となっていた。このような機器及び建設コストを低減するため、例えば特開平9−194855号公報には、精製過程で生成ガスを洗浄する洗浄水の一部を熱回収部内に噴霧し、熱回収部を小型化する生成ガスの冷却方式に関する技術が開示されている。   However, the heights of the first heat recovery unit and the second heat recovery unit have reached several times that of the gasification furnace, which has been a factor in increasing gasification system equipment and construction costs. In order to reduce such equipment and construction costs, for example, in Japanese Patent Laid-Open No. 9-194855, a part of the cleaning water for cleaning the generated gas in the purification process is sprayed into the heat recovery unit, and the heat recovery unit is downsized. A technique relating to a cooling system for the generated gas is disclosed.

また、特開昭59−136389号公報には、精製過程で生成ガスを洗浄する洗浄水の一部を生成ガスに噴霧し、さらに生成ガスに噴霧した前記洗浄水がスラグ冷却水貯留部の水中を流通する冷却方式に関する技術が開示されている。この冷却方式では、スラグ冷却水貯留部で生成ガスに同伴される溶融スラグを除去でき、かつ生成ガスを冷却する熱回収部を不要にできる。   Japanese Patent Application Laid-Open No. 59-136389 discloses that a part of the cleaning water for cleaning the generated gas in the purification process is sprayed on the generated gas, and the cleaning water sprayed on the generated gas is submerged in the slag cooling water reservoir. A technology related to a cooling system that circulates is disclosed. In this cooling system, the molten slag accompanying the product gas can be removed in the slag cooling water storage unit, and a heat recovery unit for cooling the product gas can be eliminated.

特開平9−194855号公報JP-A-9-194855 特開昭59−136389号公報JP 59-136389 A

スラグ冷却水貯留部には、石炭灰の融点(1200〜1500℃程度で炭種で異なる)以上に加熱された溶融スラグが大量に流下する。溶融スラグはスラグ冷却水貯留部内で急冷され、非晶質(ガラス状)で粒状の水砕スラグとなる。このため、スラグ冷却水貯留部内のスラグ冷却水は、溶融スラグからの熱で高温化する。   A large amount of molten slag heated to the melting point of coal ash (approximately 1200 to 1500 ° C. and different depending on the coal type) flows into the slag cooling water reservoir. The molten slag is quenched in the slag cooling water reservoir, and becomes amorphous (glassy) granular granulated slag. For this reason, the slag cooling water in the slag cooling water reservoir is heated by the heat from the molten slag.

スラグ冷却水貯留部内におけるスラグ冷却水の蒸発を防ぐため、スラグ冷却水は循環冷却される。これは、スラグ冷却水の蒸発による、スラグ冷却水量の低下とガス化炉の温度低下を防ぐためである。   In order to prevent evaporation of the slag cooling water in the slag cooling water reservoir, the slag cooling water is circulated and cooled. This is to prevent a decrease in the amount of slag cooling water and a temperature decrease in the gasifier due to evaporation of the slag cooling water.

スラグ冷却水貯留部で高温化したスラグ冷却水の温度は、常圧下でも沸騰しない100℃未満としても、常温より数十℃高い。   The temperature of the slag cooling water heated in the slag cooling water storage part is several tens of degrees Celsius higher than normal temperature, even if it is less than 100 ° C. that does not boil even under normal pressure.

また、循環冷却するスラグ冷却水の質量流量は、石炭ガス化炉の場合を例にとると、石炭の0.5〜2倍程度(灰分や融点等で変動)に達する。従って、スラグ冷却水貯留部で高温化したスラグ冷却水の持つ顕熱は、場合によっては、ガス化炉に投入した石炭発熱量の1%程度に達する。   In addition, the mass flow rate of slag cooling water that is circulated and cooled reaches about 0.5 to 2 times that of coal (varies depending on ash content, melting point, etc.) in the case of a coal gasifier. Therefore, in some cases, the sensible heat of the slag cooling water heated to a high temperature in the slag cooling water reservoir reaches about 1% of the calorific value of the coal charged into the gasification furnace.

しかしながら、上記特開平9−194855号公報に開示された技術には、スラグ冷却水貯留部から抜き出した高温水の排熱利用について言及されていない。   However, the technique disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 9-194855 does not mention the use of exhaust heat from high-temperature water extracted from the slag cooling water reservoir.

また、特開昭59−136389号公報に開示された技術では、スラグ冷却水貯留部から抜き出した高温水に熱交換器を設置し、高温水の排熱を常温の給水加熱の熱源に利用している。この場合、熱交換器の出口において、スラグ冷却水貯留部から抜き出した高温水は常温より高いため、高温水の排熱を効率良く利用できていない。   In the technique disclosed in JP-A-59-136389, a heat exchanger is installed in high-temperature water extracted from the slag cooling water reservoir, and the exhaust heat of the high-temperature water is used as a heat source for heating water at room temperature. ing. In this case, at the outlet of the heat exchanger, the high-temperature water extracted from the slag cooling water reservoir is higher than the normal temperature, so that the exhaust heat of the high-temperature water cannot be used efficiently.

本発明の目的は、ガス化システムで生じた高温水の排熱を効率良く利用してガス化炉から取り出された生成ガスを冷却すると共に、炭素系燃料から生じるカーボンロス及び廃棄物の低減を図った炭素系燃料のガス化システムを提供することにある。   An object of the present invention is to efficiently reduce the generated gas taken out from the gasification furnace by efficiently using the exhaust heat of high-temperature water generated in the gasification system, and to reduce carbon loss and waste generated from the carbon-based fuel. An object is to provide a carbonized fuel gasification system.

本発明の炭素系燃料のガス化システムは、固体の炭素系燃料をガス化して生成ガスを生成するガス化炉と、固体の炭素系燃料を石炭ホッパから前記ガス化炉に気体で搬送する燃料供給系と、前記ガス化炉は、炭素系燃料をガス化して生成した生成ガスを該ガス化炉の上方から取り出し、炭素系燃料に含まれた無機物を溶融スラグ化して該ガス化炉の下方に取り出すように構成し、前記ガス化炉の下流側に設置され、該ガス化炉の上方から取り出された生成ガスを脱塵する脱塵部と、前記脱塵部で脱塵され、生成ガスに同伴したチャーを回収するチャーホッパと、前記チャーホッパで回収したチャーを、該チャーホッパから前記ガス化炉に気体で搬送するチャー供給系統と、前記脱塵部の下流側に設置され、該脱塵部を流下した前記生成ガスを洗浄する水洗塔を備え、前記ガス化炉の底部に溶融スラグを外部から供給した冷却水で冷却するスラグ冷却水貯留部を設置し、前記スラグ冷却水貯留部で溶融スラグによって昇温した高温水を該スラグ冷却水貯留部から前記ガス化炉の下流側、或いは前記脱塵部の上流側に供給して前記ガス化炉から取り出された生成ガスを冷却する水供給系統を配設したことを特徴とする。   A gasification system for a carbon-based fuel according to the present invention includes a gasification furnace that gasifies solid carbon-based fuel to generate a product gas, and a fuel that conveys the solid carbon-based fuel from a coal hopper to the gasification furnace. The supply system and the gasification furnace take out the product gas generated by gasifying the carbon-based fuel from the upper side of the gasification furnace, convert the inorganic substance contained in the carbon-based fuel into molten slag, and lower the gasification furnace. And a dust removing unit that is installed on the downstream side of the gasification furnace and dedusts the product gas taken out from above the gasification furnace, and is dedusted by the dust removal part, and the product gas A char hopper that collects the char accompanied with the char, a char supply system that conveys the char collected by the char hopper to the gasification furnace from the char hopper, and the dust removing unit that is installed downstream of the dust removing unit. The product gas flowing down A high-temperature water having a washing tower to be purified, a slag cooling water storage section that is cooled by cooling water supplied from the outside with molten slag at the bottom of the gasification furnace, and heated by the molten slag in the slag cooling water storage section From the slag cooling water storage part to the downstream side of the gasification furnace or the upstream side of the dedusting part to dispose a water supply system for cooling the generated gas taken out from the gasification furnace. Features.

本発明によれば、ガス化システムで生じた高温水の排熱を効率良く利用してガス化炉から出た生成ガスを冷却すると共に、炭素系燃料から生じるカーボンロス及び廃棄物の低減を図った炭素系燃料のガス化システムが実現できる。   According to the present invention, exhaust gas generated from a gasification furnace is cooled efficiently by using exhaust heat of high-temperature water generated in a gasification system, and carbon loss and waste generated from a carbon-based fuel are reduced. A carbonized fuel gasification system can be realized.

本発明の第1実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントの構成を示す系統図。BRIEF DESCRIPTION OF THE DRAWINGS The system diagram which shows the structure of the coal gasification combined cycle power plant provided with the gasification system of the carbonaceous fuel which is 1st Example of this invention. 本発明の第2実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントの構成を示す系統図。The system diagram which shows the structure of the coal gasification combined cycle power plant provided with the gasification system of the carbon-type fuel which is 2nd Example of this invention. 本発明の第3実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントの構成を示す系統図。The system diagram which shows the structure of the coal gasification combined cycle power plant provided with the gasification system of the carbonaceous fuel which is the 3rd example of the present invention. 本発明の第4実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントの構成を示す系統図。The system diagram which shows the structure of the coal gasification combined cycle power plant provided with the gasification system of the carbonaceous fuel which is the 4th example of the present invention. 本発明の第5実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントの構成を示す系統図。The system diagram which shows the structure of the coal gasification combined cycle power plant provided with the gasification system of the carbon-type fuel which is 5th Example of this invention.

本発明の実施例である炭素系燃料のガス化システムについて図面を用いて以下に説明する。   A carbon fuel gasification system according to an embodiment of the present invention will be described below with reference to the drawings.

本発明の第1実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントについて図1を引用して説明する。   A coal gasification combined power plant equipped with a carbon-based fuel gasification system according to a first embodiment of the present invention will be described with reference to FIG.

図1に示した本実施例の炭素系燃料のガス化システムは、溶融スラグの冷却水貯留部で発生する高温水の顕熱を効率良く利用し、炭素系燃料をガス化してできた生成ガスを冷却する熱回収部を小型化した炭素系燃料のガス化システムである。   The carbonized fuel gasification system of this embodiment shown in FIG. 1 efficiently uses the sensible heat of high-temperature water generated in the cooling water reservoir of molten slag to produce a gas produced by gasifying the carbon-based fuel. It is the carbonization fuel gasification system which reduced the heat recovery part which cools.

燃料に石炭を用い、生成ガスでガスタービンと蒸気タービンを駆動させる場合を例として、本発明の第1実施例である炭素系燃料のガス化システムについて図1を用いて説明する。   A carbonized fuel gasification system according to a first embodiment of the present invention will be described with reference to FIG. 1 by taking as an example a case where coal is used as fuel and a gas turbine and a steam turbine are driven by generated gas.

図1は本発明の第1実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントの構成を示す系統図であり、炭素系燃料の石炭を貯蔵する石炭ホッパ2と、空気から酸素と窒素を製造する空気分離器4と、石炭ホッパ2から石炭を気体によってガス化炉3に搬送する燃料供給系統aと、この燃料供給系統aを通じて供給した石炭と空気分離器4から供給したガス化剤の酸素を共に燃焼して生成ガス5を生成するガス化炉3と、ガス化炉3の下流側に設置されており、ガス化炉3から出た生成ガス5を脱塵すると共に該生成ガス5に含まれたチャー9を回収する脱塵装置8と、脱塵後の生成ガス5を冷却する熱交換器10及びベンチュリ11と、生成ガス5に含まれるハロゲン系物質や、脱塵装置8で捕集できなかった微細なダスト分を除去する水洗塔13と、生成ガス5中の硫黄分を除去する脱硫装置17とをそれぞれ備えている。   FIG. 1 is a system diagram showing the configuration of a coal gasification combined power plant equipped with a carbon fuel gasification system according to a first embodiment of the present invention, and a coal hopper 2 for storing carbon fuel coal, From an air separator 4 that produces oxygen and nitrogen from the air, a fuel supply system a that conveys coal from the coal hopper 2 to the gasification furnace 3 by gas, and a coal and air separator 4 that is supplied through the fuel supply system a The gasification furnace 3 that combusts the oxygen of the supplied gasifying agent together to generate the product gas 5 and the downstream of the gasification furnace 3 are installed, and the product gas 5 discharged from the gasification furnace 3 is dedusted. In addition, a dedusting device 8 that recovers the char 9 contained in the product gas 5, a heat exchanger 10 and a venturi 11 that cools the product gas 5 after dedusting, a halogen-based substance contained in the product gas 5, , The fine that could not be collected by the dust removal device 8 A water scrubber 13 to remove the strike component, and each comprise a desulfurization apparatus 17 for removing sulfur product gas 5.

また、脱塵装置8で回収されたチャー9は、チャーホッパ25に貯めて、チャー供給系統bを通じて空気分離器4で空気から分離させた窒素で搬送されてガス化炉3に再投入される。   Further, the char 9 collected by the dust removing device 8 is stored in the char hopper 25, transported by nitrogen separated from the air by the air separator 4 through the char supply system b, and re-entered into the gasification furnace 3.

更に、脱硫装置17で脱硫した後の生成ガス39は、脱硫装置17から上記した生成ガスの熱交換器10に供給されて再加熱された後に、ガスタービン装置に燃料として供給される。   Further, the product gas 39 desulfurized by the desulfurization device 17 is supplied from the desulfurization device 17 to the product gas heat exchanger 10 and reheated, and then supplied to the gas turbine device as fuel.

このガスタービン装置は、空気を圧縮するコンプレッサ24と、燃料として供給された生成ガス39をコンプレッサ24で圧縮した空気と混合して燃焼し、高温の燃焼ガスを生成するガスタービン燃焼器18と、ガスタービン燃焼器18で生成した燃焼ガスで駆動するタービン19から構成されている。   This gas turbine apparatus includes a compressor 24 that compresses air, a gas turbine combustor 18 that mixes and burns the product gas 39 supplied as fuel with the air compressed by the compressor 24 to generate high-temperature combustion gas, The turbine 19 is driven by the combustion gas generated by the gas turbine combustor 18.

また、タービン19から排出した排ガスは、排ガスの排熱を回収して蒸気を発生させる排ガスボイラ20に供給された後に煙突22から大気中に排出される。   The exhaust gas discharged from the turbine 19 is discharged from the chimney 22 into the atmosphere after being supplied to the exhaust gas boiler 20 that recovers exhaust heat of the exhaust gas and generates steam.

排ガスボイラ20で発生した蒸気は蒸気タービン装置を構成する蒸気タービン21に供給されて該蒸気タービン21を駆動する。蒸気タービン21を流下した蒸気は復水器26で冷却して復水となり、この復水が排ガスボイラ20に供給されるように構成している。   The steam generated in the exhaust gas boiler 20 is supplied to a steam turbine 21 constituting a steam turbine device to drive the steam turbine 21. The steam flowing down the steam turbine 21 is cooled by a condenser 26 to become condensed water, and this condensed water is supplied to the exhaust gas boiler 20.

上記した構成を備えた本実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントについて更に詳細に説明すると、石炭1は、石炭ホッパ2から空気分離器4で製造された窒素によってガス化炉3に搬送される。空気分離器4で製造された酸素は、石炭1のガス化剤としてガス化炉3に供給される。   The coal gasification combined power plant equipped with the carbonized fuel gasification system according to the present embodiment having the above-described configuration will be described in more detail. The coal 1 is produced from the coal hopper 2 by the air separator 4. It is conveyed to the gasification furnace 3 by nitrogen. The oxygen produced by the air separator 4 is supplied to the gasifier 3 as a gasifying agent for the coal 1.

ガス化炉3では、石炭1を空気分離器4で製造された酸素でガス化(部分燃焼)し、COやHを主成分とする生成ガス5を発生させる。石炭1には、約10wt%の灰分(無機物)が含まれる。 In the gasification furnace 3, the coal 1 is gasified (partially combusted) with oxygen produced by the air separator 4 to generate a product gas 5 mainly composed of CO and H 2 . Coal 1 contains about 10 wt% of ash (inorganic matter).

ガス化炉3で生成した生成ガス5は、発電用の気体燃料等に利用されるため、灰分と分離する必要がある。そこで、ガス化炉3内の燃焼温度を、灰の融点以上に高め、灰分を溶融スラグ化する。   Since the produced gas 5 generated in the gasification furnace 3 is used as a gaseous fuel for power generation, it must be separated from ash. Therefore, the combustion temperature in the gasification furnace 3 is raised to the melting point of ash or higher, and the ash is made into molten slag.

ガス化炉3では、気体の生成ガス5をガス化炉3から上方に抜き出し、液体の溶融スラグをガス化炉3から下方に抜き出すことで、石炭1から生成ガス5を取り出す。このため、ガス化炉3の出口における生成ガス5の温度は、1000℃以上に達する。   In the gasification furnace 3, the gaseous product gas 5 is extracted from the gasification furnace 3 upward, and the liquid molten slag is extracted downward from the gasification furnace 3, whereby the product gas 5 is extracted from the coal 1. For this reason, the temperature of the product gas 5 at the outlet of the gasification furnace 3 reaches 1000 ° C. or more.

生成ガス5を気体燃料として利用するには、脱塵、脱塩、脱硫といった不純物を除去する精製プロセスが必要である。このためには、生成ガス5を400℃未満に冷却する必要がある。ガス化炉3から出た生成ガス5には、未燃カーボンや灰分からなる粒子状のチャーも同伴する。   In order to use the generated gas 5 as a gaseous fuel, a purification process for removing impurities such as dedusting, desalting, and desulfurization is required. For this purpose, the product gas 5 needs to be cooled to less than 400 ° C. The product gas 5 emitted from the gasification furnace 3 is also accompanied by particulate char composed of unburned carbon and ash.

また、1000℃以上の生成ガス5を冷却する過程で、溶融した灰分の伝熱管への付着(スラッギング)、析出したアルカリ金属塩(NaSO等)の伝熱管への付着(ファウリング)といったトラブルを防止する必要がある。 Also, in the process of cooling the product gas 5 of 1000 ° C. or higher, the molten ash adheres to the heat transfer tube (slagging), and the deposited alkali metal salt (Na 2 SO 4 etc.) adheres to the heat transfer tube (fouling). It is necessary to prevent such troubles.

このため、生成ガス5を冷却する熱回収部7をガス化炉3の上部に設けている。熱回収部7の内部には伝熱管を設置せず、水冷壁で生成ガス5を800〜900℃に冷却する。これは、スラッギングやファウリングを防止するためである。   For this reason, the heat recovery unit 7 for cooling the generated gas 5 is provided in the upper part of the gasification furnace 3. A heat transfer tube is not installed inside the heat recovery section 7, and the product gas 5 is cooled to 800 to 900 ° C. with a water cooling wall. This is to prevent slugging and fouling.

前記熱回収部7を出た生成ガス5は、ガス化炉3の下流側に設置した脱塵装置8に供給されて脱塵され、チャー9が回収される。脱塵装置8で生成ガス5から回収されたチャー9は、チャーホッパ25に供給され、このチャーホッパ25に貯めて、石炭1と同様に、空気分離器4から供給された窒素に搬送されてチャーホッパ25からチャー供給系統dを通じてガス化炉3に再投入される。   The product gas 5 that has exited the heat recovery section 7 is supplied to a dust removing device 8 installed on the downstream side of the gasification furnace 3 for dust removal, and the char 9 is recovered. The char 9 recovered from the product gas 5 by the dust removing device 8 is supplied to the char hopper 25, stored in the char hopper 25, and transported to the nitrogen supplied from the air separator 4 in the same manner as the coal 1 to be fed to the char hopper 25. To the gasification furnace 3 through the char supply system d.

脱塵装置8で脱塵された後の生成ガス5は、脱塵装置8の下流側に設置した生成ガスの熱交換器10で300℃以下に冷却され、さらに、生成ガスの熱交換器10の下流側にそれぞれ設置したベンチュリ11および水洗塔13に供給されて100℃程度まで冷却される。   The product gas 5 after being dedusted by the dust removing device 8 is cooled to 300 ° C. or less by the product gas heat exchanger 10 installed on the downstream side of the dust removing device 8, and further the product gas heat exchanger 10. Are supplied to the venturi 11 and the water-washing tower 13 installed on the downstream side, respectively, and cooled to about 100 ° C.

前記水洗塔13では、生成ガス5に含まれるハロゲン系物質や、脱塵装置8で捕集できなかった微細なダスト分が除去される。さらに、水洗塔13の下流側に設置した脱硫装置17で、生成ガス5中の硫黄分が除去される。この脱硫装置17で生成ガス5中から回収された硫黄分は、硫黄分燃焼炉23で焼却される。   In the water washing tower 13, the halogen-based material contained in the generated gas 5 and fine dust that could not be collected by the dust removing device 8 are removed. Further, the sulfur content in the product gas 5 is removed by the desulfurization device 17 installed on the downstream side of the water washing tower 13. The sulfur content recovered from the product gas 5 by the desulfurization device 17 is incinerated in the sulfur content combustion furnace 23.

脱硫装置17で脱硫された生成ガス39は40℃程度に冷却されており、前記脱硫装置17から生成ガスの熱交換器10に供給されて再加熱され、ガスタービン装置を構成するガスタービン燃焼器18に燃料として供給される。   The product gas 39 desulfurized by the desulfurization device 17 is cooled to about 40 ° C., is supplied from the desulfurization device 17 to the heat exchanger 10 for the product gas, and is reheated to form a gas turbine combustor constituting the gas turbine device. 18 is supplied as fuel.

ここで、脱硫装置17で脱硫された生成ガス39は、ガスタービン燃焼器18でコンプレッサ24から供給された空気と混合し、燃焼して高温の燃焼ガスを生成する。   Here, the product gas 39 desulfurized by the desulfurization device 17 is mixed with the air supplied from the compressor 24 by the gas turbine combustor 18 and burned to generate high-temperature combustion gas.

ガスタービン燃焼器18で発生した燃焼ガスはタービン19を駆動し、タービン19から排出された燃焼排ガスは排ガスボイラ20に供給されて燃焼排ガスの排熱を排ガスボイラ20で回収し、この排ガスボイラ20で発生させた蒸気で蒸気タービン21を駆動する。   The combustion gas generated in the gas turbine combustor 18 drives the turbine 19, the combustion exhaust gas discharged from the turbine 19 is supplied to the exhaust gas boiler 20, the exhaust heat of the combustion exhaust gas is recovered by the exhaust gas boiler 20, and the exhaust gas boiler 20 The steam turbine 21 is driven by the steam generated in the above.

一方、ガス化炉3内でできた溶融スラグは1200℃以上となるので、冷却して固体のスラグ6としてガス化炉3から回収する。本実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントでは、溶融スラグをスラグ冷却水14で急冷して、非晶質(ガラス状)の水砕スラグとして回収する場合を示す。   On the other hand, since the molten slag formed in the gasification furnace 3 is 1200 ° C. or higher, it is cooled and recovered as solid slag 6 from the gasification furnace 3. In the coal gasification combined power plant equipped with the carbon fuel gasification system of the present embodiment, the molten slag is rapidly cooled with the slag cooling water 14 and recovered as an amorphous (glassy) granulated slag. Show.

ガス化炉3の直下には、スラグ冷却水14を貯留するスラグ冷却水貯留部12が設置されている。スラグ冷却水貯留部12に貯留したスラグ冷却水14は、高温で流下する溶融スラグにより加熱されて高温水15となるが、この高温水15には水中に浮遊するスラグやチャーといった固形物が含まれることになる。   A slag cooling water storage unit 12 for storing slag cooling water 14 is installed directly under the gasification furnace 3. The slag cooling water 14 stored in the slag cooling water storage section 12 is heated by the molten slag flowing down at a high temperature to become high-temperature water 15. The high-temperature water 15 includes solids such as slag and char floating in the water. Will be.

そこで、スラグ冷却水貯留部12で加熱された高温水15を抜き出して上記のスラグやチャー等の固形物30を処理する必要がある。   Therefore, it is necessary to extract the high-temperature water 15 heated in the slag cooling water reservoir 12 and treat the solid matter 30 such as slag and char.

スラグ冷却水貯留部12で加熱された高温水15は、常圧下でも沸騰しない100℃未満(例えば80℃)で運用すると便利である。この場合、高温水15の質量流量は、石炭の0.5〜2倍程度(灰分や融点等で変動)に達する。   It is convenient to operate the high-temperature water 15 heated in the slag cooling water storage unit 12 at less than 100 ° C. (for example, 80 ° C.) that does not boil even under normal pressure. In this case, the mass flow rate of the high-temperature water 15 reaches about 0.5 to 2 times that of coal (varies depending on ash content, melting point, etc.).

そこで、図1に示した本発明の第1実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントには、ガス化炉3で生成した生成ガス5を冷却するスラグ冷却水貯留部12で加熱した高温水15を処理する水処理系統cが配設されている。   Accordingly, the coal gasification combined power plant equipped with the carbonized fuel gasification system according to the first embodiment of the present invention shown in FIG. 1 has slag cooling for cooling the produced gas 5 generated in the gasification furnace 3. A water treatment system c that treats the high-temperature water 15 heated in the water reservoir 12 is disposed.

この高温水15を処理する水処理系統cは、スラグ冷却水貯留部12で加熱された高温水15を圧送するスラリーポンプ58を備えており、スラグ冷却水貯留部12に供給されたスラグ冷却水14が前記スラグ冷却水貯留部12で加熱された高温水15は、前記したように高温で流下する溶融スラグにより水中に浮遊するスラグやチャーといった固形物を含んだ高温水27となるので、スラリーポンプ58で加圧して、該水処理系統cを通じて固形物を含む高温水27をガス化炉3の下流側の生成ガス5中に供給するように構成している。   The water treatment system c that treats the high-temperature water 15 includes a slurry pump 58 that pumps the high-temperature water 15 heated in the slag cooling water storage unit 12, and the slag cooling water supplied to the slag cooling water storage unit 12. The high-temperature water 15 heated by the slag cooling water reservoir 12 becomes the high-temperature water 27 containing solids such as slag and char floating in the water by the molten slag flowing down at a high temperature as described above. The pump 58 is pressurized, and high temperature water 27 containing solids is supplied into the product gas 5 downstream of the gasification furnace 3 through the water treatment system c.

前記水処理系統cはガス化炉3の上部に設置した熱回収部7の下流側に接続されており、前記水処理系統cを通じて導かれた固形物を含む高温水27をガス化炉3内に供給、或いはガス化炉3から出た生成ガス5中に供給して脱塵装置8に流入するように構成されている。   The water treatment system c is connected to the downstream side of the heat recovery unit 7 installed in the upper part of the gasification furnace 3, and high-temperature water 27 containing solids introduced through the water treatment system c is supplied to the gasification furnace 3. Or supplied into the product gas 5 discharged from the gasification furnace 3 and flows into the dedusting device 8.

上記した高温水15を処理する水処理系統cを備えることによって、スラグ冷却水貯留部12でスラグ冷却水14を加熱した高温水15は、スラリーポンプ58によって前記水処理系統cを通じて圧送され、固形物を含む高温水27として、ガス化炉3、或いはガス化炉3の下流側の脱塵装置8に供給して、生成ガス5の冷却に用いている。   By providing the water treatment system c that treats the high-temperature water 15 described above, the high-temperature water 15 that has heated the slag cooling water 14 in the slag cooling water reservoir 12 is pumped through the water treatment system c by the slurry pump 58 and is solidified. The high-temperature water 27 containing substances is supplied to the gasification furnace 3 or the dust removing device 8 on the downstream side of the gasification furnace 3 to be used for cooling the product gas 5.

本実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントでは、ガス化炉3の上部に設置した熱回収部7の下流側に、スラグ冷却水貯留部12から前記水処理系統cを通じて固形物を含む高温水27を供給する構成を記載しているが、ガス化炉3の熱回収部7内に固形物を含む高温水27を供給するように前記水処理系統cを配設しても良い。   In the combined coal gasification combined power plant equipped with the carbonized fuel gasification system of the present embodiment, the water treatment is performed from the slag cooling water storage unit 12 to the downstream side of the heat recovery unit 7 installed in the upper part of the gasification furnace 3. Although the structure which supplies the high temperature water 27 containing a solid substance through the system | strain c is described, the said water treatment system | strain c is supplied so that the high temperature water 27 containing a solid substance may be supplied in the heat recovery part 7 of the gasification furnace 3. FIG. It may be arranged.

本実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントに示すように、スラグ冷却水貯留部12から水処理系統cを通じて高温水15(固形物を含んだ高温水27)をスラリーポンプ58で圧送して、ガス化炉3で生成した生成ガス5に混合した場合、次の4点の効果が得られる。   As shown in the coal gasification combined power plant provided with the carbonized fuel gasification system of the present embodiment, the high temperature water 15 (high temperature water 27 containing solids) from the slag cooling water reservoir 12 through the water treatment system c. Is pumped by the slurry pump 58 and mixed with the product gas 5 generated in the gasification furnace 3, the following four effects are obtained.

一つ目の効果は、機器コストと建設コストの低減である。スラグ冷却水貯留部12から水処理系統cを通じて供給される高温水15の蒸発潜熱および顕熱を利用してガス化炉3から出た生成ガス5を冷却することで、ガス化炉3の熱回収部7を小型化できる。   The first effect is reduction of equipment cost and construction cost. By using the latent heat of vaporization and sensible heat of the high-temperature water 15 supplied from the slag cooling water storage section 12 through the water treatment system c, the generated gas 5 emitted from the gasification furnace 3 is cooled, so that the heat of the gasification furnace 3 is obtained. The collection unit 7 can be downsized.

二つ目の効果は、スラグ冷却水貯留部12から水処理系統cを通じて供給される高温水15(固形物を含んだ高温水27)の排熱利用によるエネルギー効率の向上である。さらに、スラグ冷却水貯留部12から水処理系統cを通じて供給される高温水15の温度が常温より高い分、ガス化炉3で生成した生成ガス5との混合時に蒸発しやすくなり、生成ガス5の冷却にも有利である。   The second effect is an improvement in energy efficiency by using exhaust heat of the high-temperature water 15 (the high-temperature water 27 containing solid matter) supplied from the slag cooling water storage unit 12 through the water treatment system c. Furthermore, since the temperature of the high-temperature water 15 supplied from the slag cooling water reservoir 12 through the water treatment system c is higher than the normal temperature, the high-temperature water 15 is easily evaporated when mixed with the product gas 5 generated in the gasification furnace 3. It is also advantageous for cooling.

三つ目の効果は、廃棄物とカーボンロスの削減である。スラグ冷却水貯留部12から水処理系統cを通じて供給される高温水15(固形物を含んだ高温水27)に含まれ、廃棄物となるスラグやチャーといった固形物30をガス化炉3から出た生成ガス5に混合する。そしてこの高温水15に含まれた固形物30を脱塵装置8で回収し、チャー9とともにチャーホッパ25からガス化炉3に再投入することで、廃棄物となった固形物30の重量を削減できる。さらに、固形物30に含まれるカーボンロスも削減できる。   The third effect is the reduction of waste and carbon loss. The solids 30 such as slag and char which are contained in the high-temperature water 15 (high-temperature water 27 containing solids) supplied from the slag cooling water reservoir 12 through the water treatment system c are discharged from the gasifier 3. Mixed with the produced gas 5. And the solid substance 30 contained in this high temperature water 15 is collect | recovered with the dust removal apparatus 8, and the weight of the solid substance 30 used as the waste is reduced by re-injecting into the gasification furnace 3 with the char 9 from the char hopper 25. it can. Furthermore, the carbon loss contained in the solid 30 can also be reduced.

四つ目の効果は、シフト反応促進による、ガス化炉3で生成した生成ガス5中のH濃度の増加である。シフト反応式を式(1)に示す。 The fourth effect is an increase in the H 2 concentration in the product gas 5 generated in the gasification furnace 3 by promoting the shift reaction. The shift reaction formula is shown in Formula (1).

CO + HO → CO + H ・・・・(1)
このシフト反応は、1000℃を超える雰囲気で進むことが知られている。従って、ガス化炉3を出た直後の生成ガス5に、例えば生成ガス冷却部7内で生成ガス5に水噴霧した場合に、シフト反応による生成ガス5中のH濃度の増加が期待される。
CO + H 2 O → CO 2 + H 2 (1)
It is known that this shift reaction proceeds in an atmosphere exceeding 1000 ° C. Therefore, when the product gas 5 immediately after leaving the gasification furnace 3 is sprayed with water on the product gas 5 in the product gas cooling unit 7, for example, an increase in the H 2 concentration in the product gas 5 due to the shift reaction is expected. The

後述する第5実施例に記載したように、ガス化炉3で生成した生成ガス5からのCO回収手段を設置すれば、生成ガス5の主成分はHとなる。主成分Hとなった生成ガス5は、発電用の気体燃料のみならず、メタノールやアンモニア等の化学原料にも利用できうる。 As described in the fifth embodiment, which will be described later, if CO 2 recovery means from the product gas 5 generated in the gasification furnace 3 is installed, the main component of the product gas 5 is H 2 . The product gas 5 which has become the main component H 2 can be used not only for the gaseous fuel for power generation but also for chemical raw materials such as methanol and ammonia.

上記した構成の本実施例の炭素系燃料のガス化システムでは、スラグ冷却水貯留部12から水処理系統cを通じて供給される高温水15とガス化炉3で生成した生成ガス5を混合させて前記生成ガス5を効果的に冷却させることで、系統構成の簡素化、排熱利用によるエネルギー効率向上、廃棄物削減、生成ガス5の高付加価値化といった効果を見込める。   In the carbon-based fuel gasification system of the present embodiment having the above-described configuration, the high-temperature water 15 supplied from the slag cooling water reservoir 12 through the water treatment system c and the product gas 5 generated in the gasification furnace 3 are mixed. By effectively cooling the generated gas 5, effects such as simplification of the system configuration, improvement of energy efficiency by using exhaust heat, reduction of waste, and high added value of the generated gas 5 can be expected.

本実施例によれば、ガス化システムで生じた高温水の排熱を効率良く利用してガス化炉から出た生成ガスを冷却すると共に、炭素系燃料から生じるカーボンロス及び廃棄物の低減を図った炭素系燃料のガス化システムが実現できる。   According to the present embodiment, the exhaust gas generated from the gasification furnace is cooled by efficiently using the exhaust heat of the high temperature water generated in the gasification system, and the carbon loss and waste generated from the carbon-based fuel are reduced. The planned carbon fuel gasification system can be realized.

次に本発明の第2実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントについて図2を用いて説明する。図2に示した本実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントは、図1に示した第1実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントと基本的な構成は同じなので、両者に共通した構成の説明は省略し、異なる構成について以下に説明する。   Next, a combined coal gasification combined power plant equipped with a carbon fuel gasification system according to a second embodiment of the present invention will be described with reference to FIG. The coal gasification combined cycle power plant having the carbon fuel gasification system of the present embodiment shown in FIG. 2 is a coal gasification system having the carbon fuel gasification system of the first embodiment shown in FIG. Since the basic configuration is the same as that of the combined power plant, description of the configuration common to both is omitted, and different configuration will be described below.

図2に示した本実施例の炭素系燃料のガス化システムにおいて、ガス化炉3の直下のスラグ冷却水貯留部12で溶融スラグによって昇温した高温水15は、スラグ冷却水貯留部12から水供給系統cを通じて引き出されて該水供給系統cに設置した固形物分離部29に供給され、この固形物分離部29によって高温水15に含まれた固形物30を分離する。   In the carbonized fuel gasification system of this embodiment shown in FIG. 2, the high-temperature water 15 heated by the molten slag in the slag cooling water reservoir 12 immediately below the gasifier 3 is supplied from the slag cooling water reservoir 12. It is drawn out through the water supply system c and supplied to the solid material separation unit 29 installed in the water supply system c, and the solid material 30 contained in the high-temperature water 15 is separated by the solid material separation unit 29.

前記固形物分離部29によって固形物を分離した高温水31は、該水供給系統cに設置したポンプ16で圧送され、この該水供給系統cを通じて前記ガス化炉3の下流側から前記脱塵装置8に至る領域となる前記ガス化炉から取り出された生成ガスを流下する生成ガスの流路に供給され、この生成ガス5に混合されて前記生成ガス5を冷却する。   The high temperature water 31 from which the solid matter has been separated by the solid matter separation unit 29 is pumped by the pump 16 installed in the water supply system c, and the dust is removed from the downstream side of the gasification furnace 3 through the water supply system c. The product gas taken out from the gasification furnace, which is a region reaching the apparatus 8, is supplied to a product gas flow path through which the product gas flows down, and is mixed with the product gas 5 to cool the product gas 5.

本実施例の炭素系燃料のガス化システムは、スラグ冷却水貯留部12から昇温した高温水31を引き出す水供給系統cに設けた固形物分離部29で固形物を分離した高温水31を前記水供給系統cを通じてガス化炉3に設けた熱回収部7の下流側に供給する場合を示す。   The carbon-based fuel gasification system according to the present embodiment uses high-temperature water 31 obtained by separating solids in a solid-material separation unit 29 provided in a water supply system c that draws high-temperature water 31 that has been heated from the slag cooling water storage unit 12. The case where it supplies to the downstream of the heat recovery part 7 provided in the gasification furnace 3 through the said water supply system c is shown.

一方、水供給系統cに設けた固形物分離部29で高温水31から分離した固形物30は、固形物分離部29から固形物供給系統dを通じてガス化炉3に再投入される。   On the other hand, the solid material 30 separated from the high temperature water 31 by the solid material separation unit 29 provided in the water supply system c is reintroduced into the gasifier 3 from the solid material separation unit 29 through the solid material supply system d.

ここで、固形物30は微細なスラグやチャー9である。ガス化炉3に再投入されたチャー9中の可燃分(殆どカーボン)は、ガス化炉3でガス化して生成ガス5となる。   Here, the solid 30 is fine slag or char 9. The combustible component (mostly carbon) in the char 9 re-introduced into the gasification furnace 3 is gasified in the gasification furnace 3 to become a product gas 5.

チャー9中の灰分とスラグは、溶融スラグ化してガス化炉3の下部に設けた冷却水貯留部12に流下し、スラグ6として回収される。   The ash and slag in the char 9 are melted into slag and flow down to the cooling water storage unit 12 provided at the lower part of the gasification furnace 3, and are recovered as slag 6.

本実施例の炭素系燃料のガス化システムは、スラグ冷却水貯留部12から引き出す高温水15に固形物30が多く含まれていて、この固形物30を多く含む高温水15を前記ガス化炉3の下流側、或いは前記脱塵部8の上流側に直接供給することが困難な場合に有効である。   In the gasification system for carbon-based fuel according to the present embodiment, the high-temperature water 15 drawn out from the slag cooling water reservoir 12 contains a large amount of solid matter 30, and the high-temperature water 15 containing a large amount of this solid matter 30 is used as the gasifier. 3 is effective when it is difficult to supply directly to the downstream side of 3 or the upstream side of the dust removing unit 8.

すなわち、スラグ冷却水貯留部12から引き出す高温水15に含まれる固形物30が多く、水供給系統cに設けられて高温水15を昇圧するスラリーポンプ58が使えなかったり、生成ガス5に水供給系統cを通じて供給する高温水15を噴霧させるノズル等を閉塞させたり、水供給系統cを通じて高温水15を供給する熱回収部7や生成ガス5を流下させる配管を損傷させたりする可能性のある場合である。   That is, there are many solids 30 contained in the high-temperature water 15 drawn out from the slag cooling water reservoir 12, and the slurry pump 58 provided in the water supply system c to pressurize the high-temperature water 15 cannot be used, or water is supplied to the generated gas 5. There is a possibility that the nozzle for spraying the high-temperature water 15 supplied through the system c is blocked, or that the heat recovery unit 7 that supplies the high-temperature water 15 through the water supply system c or the piping that causes the product gas 5 to flow down may be damaged. Is the case.

本実施例によれば、ガス化システムで生じた高温水の排熱を効率良く利用してガス化炉から出た生成ガスを冷却すると共に、炭素系燃料から生じるカーボンロス及び廃棄物の低減を図った炭素系燃料のガス化システムが実現できる。   According to the present embodiment, the exhaust gas generated from the gasification furnace is cooled by efficiently using the exhaust heat of the high temperature water generated in the gasification system, and the carbon loss and waste generated from the carbon-based fuel are reduced. The planned carbon fuel gasification system can be realized.

次に本発明の第3実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントについて図3を用いて説明する。図3に示した本実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントは、図1に示した第1実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントと基本的な構成は同じなので、両者に共通した構成の説明は省略し、異なる構成について以下に説明する。   Next, a combined coal gasification combined power plant equipped with a carbonaceous fuel gasification system according to a third embodiment of the present invention will be described with reference to FIG. The coal gasification combined power plant provided with the carbon fuel gasification system of the present embodiment shown in FIG. 3 is a coal gasification equipped with the carbon fuel gasification system of the first embodiment shown in FIG. Since the basic configuration is the same as that of the combined power plant, description of the configuration common to both is omitted, and different configuration will be described below.

図3に示した本実施例の炭素系燃料のガス化システムにおいて、ガス化炉3の直下のスラグ冷却水貯留部12で溶融スラグによって昇温した高温水15は、スラグ冷却水貯留部12から水供給系統cを通じて引き出されて該水供給系統cに設置した固形物分離部29に供給され、この固形物分離部29によって高温水15に含まれた固形物30を分離する。   In the carbon-based fuel gasification system of this embodiment shown in FIG. 3, the high-temperature water 15 heated by the molten slag in the slag cooling water reservoir 12 immediately below the gasification furnace 3 is supplied from the slag cooling water reservoir 12. It is drawn out through the water supply system c and supplied to the solid material separation unit 29 installed in the water supply system c, and the solid material 30 contained in the high-temperature water 15 is separated by the solid material separation unit 29.

前記固形物分離部29によって高温水31から分離された固形物30は、固形物分離部29から固形物供給系統eを通じてチャーホッパ25に供給され、ガス化炉3から取り出された生成ガス5を脱塵する脱塵装置8から回収したチャー9とチャーホッパ25で混合される。   The solid material 30 separated from the high-temperature water 31 by the solid material separation unit 29 is supplied from the solid material separation unit 29 to the chirp hopper 25 through the solid material supply system e, and the product gas 5 taken out from the gasification furnace 3 is removed. The char 9 recovered from the dust removing device 8 and the char hopper 25 are mixed.

この固形物30は、チャー9とともに、空気分離器4から供給された窒素で搬送され、チャーホッパ25からチャー供給系統bを通じてガス化炉3に再投入される。   The solid material 30 is transported together with the char 9 by nitrogen supplied from the air separator 4, and is reintroduced from the char hopper 25 into the gasification furnace 3 through the char supply system b.

本実施例の炭素系燃料のガス化システムの利点は、固形物30を既存のチャー供給系統bでガス化炉3に供給するため、ガス化炉3を従来通りの運用方法を適用できる点である。   The advantage of the gasification system for carbon-based fuel of the present embodiment is that the conventional operation method can be applied to the gasification furnace 3 because the solid material 30 is supplied to the gasification furnace 3 by the existing char supply system b. is there.

但し、固形物30を加温する工程が必要になる。脱塵装置8で回収されたチャー9は、チャーホッパ25およびガス化炉3へのチャー供給系統bを保温することで、水分の凝縮を防いでいる。従って、固形物30も、チャー9と同程度(200℃程度)に加温する必要がある。   However, the process of heating the solid 30 is required. The char 9 collected by the dedusting device 8 keeps the char hopper 25 and the char supply system b to the gasification furnace 3 to prevent moisture condensation. Therefore, it is necessary to heat the solid 30 to the same degree as the char 9 (about 200 ° C.).

本実施例によれば、ガス化システムで生じた高温水の排熱を効率良く利用してガス化炉から出た生成ガスを冷却すると共に、炭素系燃料から生じるカーボンロス及び廃棄物の低減を図った炭素系燃料のガス化システムが実現できる。   According to the present embodiment, the exhaust gas generated from the gasification furnace is cooled by efficiently using the exhaust heat of the high temperature water generated in the gasification system, and the carbon loss and waste generated from the carbon-based fuel are reduced. The planned carbon fuel gasification system can be realized.

次に本発明の第4実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントについて図4を用いて説明する。図4に示した本実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントは、図1に示した第1実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントと基本的な構成は同じなので、両者に共通した構成の説明は省略し、異なる構成について以下に説明する。   Next, a coal gasification combined power plant equipped with a carbon fuel gasification system according to a fourth embodiment of the present invention will be described with reference to FIG. The coal gasification combined cycle power plant having the carbon fuel gasification system of this embodiment shown in FIG. 4 is the same as the coal gasification power plant having the carbon fuel gasification system of the first embodiment shown in FIG. Since the basic configuration is the same as that of the combined power plant, description of the configuration common to both is omitted, and different configuration will be described below.

図4に示した本実施例の炭素系燃料のガス化システムにおいて、脱塵装置8で脱塵された生成ガス5は、脱塵装置8の下流側に設置した熱交換器10にて脱硫装置17を経た生成ガス5によって300℃以下に冷却され、さらに前記熱交換器10の下流側に設置したベンチュリ11および水洗塔13に従事供給されて100℃程度に冷却される。   In the carbon fuel gasification system of this embodiment shown in FIG. 4, the product gas 5 dedusted by the dedusting device 8 is desulfurized by the heat exchanger 10 installed downstream of the dedusting device 8. 17 is cooled to 300 ° C. or less by the product gas 5 that has passed through 17, and further supplied to the venturi 11 and the water washing tower 13 installed on the downstream side of the heat exchanger 10 to be cooled to about 100 ° C.

前記ベンチュリ11および水洗塔13では、生成ガス5は、ベンチュリ11および水洗塔13に外部から補給した補給水36である液体の冷却水との気液接触により冷却される。ベンチュリ11と水洗塔13の冷却水は、生成ガス5を冷却する過程で、該生成ガス5によって100℃以上に加熱される。これらの冷却水の総流量は、ガス化炉3への石炭1の供給量の約1〜2倍程度に達する。   In the venturi 11 and the washing tower 13, the product gas 5 is cooled by gas-liquid contact with liquid cooling water which is makeup water 36 replenished to the venturi 11 and the washing tower 13 from the outside. The cooling water of the venturi 11 and the washing tower 13 is heated to 100 ° C. or more by the generated gas 5 in the process of cooling the generated gas 5. The total flow rate of these cooling waters reaches about 1 to 2 times the supply amount of coal 1 to the gasification furnace 3.

仮に、前記冷却水として温度100℃、流量を石炭1の供給量と同じとした場合、前記ベンチュリ11と水洗塔13で生成ガス5と気液接触により高温化した冷却水の顕熱は、石炭の総発熱量の約1%となる。   If the temperature of the cooling water is 100 ° C. and the flow rate is the same as the supply amount of coal 1, the sensible heat of the cooling water heated by gas-liquid contact with the product gas 5 in the venturi 11 and the washing tower 13 is coal. About 1% of the total calorific value.

そこで、本実施例の炭素系燃料のガス化システムでは、ベンチュリ11と水洗塔13で生成ガスと5の気液接触で高温化した冷却水の一部をベンチュリ11及び水洗塔13からそれぞれ抜き出し、前記ベンチュリ11及び水洗塔13から高温化した冷却水の一部をガス化炉3の出口と脱塵装置8の間の領域に噴霧してガス化炉3から取り出された生成ガス5を冷却する昇温水供給系統f1、f2をそれぞれ配設した。   Therefore, in the carbonized fuel gasification system of the present embodiment, a part of the cooling water heated by the gas-liquid contact between the product gas and 5 in the venturi 11 and the washing tower 13 is extracted from the venturi 11 and the washing tower 13, respectively. A part of the cooling water heated from the venturi 11 and the water washing tower 13 is sprayed on a region between the outlet of the gasification furnace 3 and the dust removing device 8 to cool the product gas 5 taken out from the gasification furnace 3. Heated water supply systems f1 and f2 were respectively provided.

ベンチュリ11及び水洗塔13から前記昇温水供給系統f1、f2を通じてガス化炉3の出口と脱塵装置8の間の領域に噴霧して生成ガス5を冷却する冷却水は、生成ガス5との混合時に、自身の持つ顕熱と合わせて蒸発しやすく、生成ガス5を効率良く冷却できる。   Cooling water that cools the product gas 5 by spraying from the venturi 11 and the water washing tower 13 to the region between the outlet of the gasification furnace 3 and the dedusting device 8 through the heated water supply systems f1 and f2 During mixing, it is easy to evaporate together with its own sensible heat, and the product gas 5 can be cooled efficiently.

なお、第1実施例の炭素系燃料のガス化システムにおける前述したスラグ冷却水貯留部12で昇温し、固形物30を分離した高温水31を供給する水供給系統cを含めて、昇温水供給系統f1、f2で供給する高温化した冷却水を1系統に纏めても良いし、複数系統のままで生成ガス5に噴霧しても良い。   The temperature rising water including the water supply system c that supplies the high temperature water 31 separated from the solid material 30 by raising the temperature in the slag cooling water reservoir 12 in the carbon fuel gasification system of the first embodiment. The high-temperature cooling water supplied by the supply systems f1 and f2 may be collected into one system, or may be sprayed on the product gas 5 while maintaining a plurality of systems.

冷却水の蒸発しやすさの観点からは、前記水供給系統cと前記昇温水供給系統f1、f2との複数系統を用いて生成ガス5に噴霧して冷却する方式が良く、その順序は、生成ガス5の温度の高い上流側に固形物30を分離した高温水31(前述の第1実施例で100℃未満)を水供給系統cを通じて供給し、下流側にベンチュリ11と水洗塔13で高温化した冷却水(100℃以上)を昇温水供給系統f1、f2を通じて供給する炭素系燃料のガス化システムを推奨する。   From the viewpoint of easiness of evaporation of the cooling water, a method of spraying and cooling the generated gas 5 using a plurality of systems of the water supply system c and the heated water supply systems f1 and f2 is preferable. Hot water 31 (below 100 ° C. in the first embodiment described above) separated from the solid 30 is supplied to the upstream side where the temperature of the product gas 5 is high through the water supply system c, and the venturi 11 and the washing tower 13 are provided downstream. A carbon fuel gasification system that supplies high-temperature cooling water (100 ° C. or higher) through the heated water supply systems f1 and f2 is recommended.

これは、水供給系統cを通じて固形物30を分離した高温水31をガス化炉3の出口と脱塵装置8との間の領域における上流側で生成ガス5に噴霧することにより、生成ガス5の温度は400〜700℃程度(石炭1の性状、固形物30を分離した高温水31の流量や温度、蒸発割合等で変動する)に低下すると考えられる。   This is achieved by spraying the product gas 5 on the upstream side in the region between the outlet of the gasification furnace 3 and the dust removing device 8 with the high temperature water 31 from which the solids 30 have been separated through the water supply system c. Is considered to be lowered to about 400 to 700 ° C. (varies depending on the properties of coal 1, the flow rate and temperature of high-temperature water 31 from which solid 30 is separated, the evaporation rate, etc.).

さらなる水噴霧で生成ガス5を冷却するには、温度が高く蒸発しやすいベンチュリ11と水洗塔13で高温化した冷却水33、35を生成ガス5の冷却に用いるのが良い。   In order to cool the product gas 5 by further water spraying, it is preferable to use the venturi 11 that is high in temperature and easily evaporated and the cooling water 33 and 35 that have been heated to high temperature in the washing tower 13 to cool the product gas 5.

そこで、生成ガス5を400度未満の所定温度に保てるように、ベンチュリ11と水洗塔13で高温化した冷却水33、35を抜き出し、昇温水供給系統f1、f2を通じてガス化炉3の出口と脱塵装置8との間の領域における下流側で生成ガス5に噴霧する冷却水33、35の流量を調整することで、脱塵装置8における凝縮水の発生を抑える炭素系燃料のガス化システムを構築できる。   Therefore, the cooling water 33 and 35 heated at the venturi 11 and the rinsing tower 13 are extracted so that the product gas 5 can be maintained at a predetermined temperature of less than 400 ° C., and the outlet of the gasifier 3 is connected through the heated water supply systems f1 and f2. A carbonized fuel gasification system that suppresses the generation of condensed water in the dedusting device 8 by adjusting the flow rate of the cooling water 33 and 35 sprayed on the product gas 5 on the downstream side in the region between the dedusting device 8 Can be built.

以下に、本実施例の炭素系燃料のガス化システムにおけるベンチュリ11および水洗塔13の冷却水の系統を説明する。   Below, the system of the cooling water of the venturi 11 and the water-washing tower 13 in the gasification system of the carbon-type fuel of a present Example is demonstrated.

ベンチュリ11の冷却水33は、300℃近くに達する生成ガス5との気液接触で高温化するため、高温熱交換器32で常温に冷却されて、ベンチュリ11に再投入される。   Since the cooling water 33 of the venturi 11 is heated to a high temperature by gas-liquid contact with the product gas 5 reaching nearly 300 ° C., the cooling water 33 is cooled to room temperature by the high-temperature heat exchanger 32 and is reintroduced into the venturi 11.

ベンチュリ11で高温化したベンチュリ11の冷却水33の温度は150℃程度に達する。高温化したベンチュリ11の冷却水の一部33をベンチュリ11から抜き出し、ベンチュリ11から昇温水供給系統f1を通じて冷却水33をガス化炉3の下流側の生成ガス5に噴霧・混合させることで、冷却水33の蒸発潜熱と顕熱を用いて生成ガス5を効果的に冷却できる。   The temperature of the cooling water 33 of the venturi 11 heated to the venturi 11 reaches about 150 ° C. By extracting a part of the cooling water 33 of the venturi 11 that has been heated from the venturi 11 and spraying and mixing the cooling water 33 from the venturi 11 to the product gas 5 on the downstream side of the gasification furnace 3 through the heating water supply system f1. The generated gas 5 can be effectively cooled using the latent heat of vaporization and sensible heat of the cooling water 33.

特に、ベンチュリ11の冷却水の一部33の温度は150℃程度であり、常温の水よりも蒸発しやすく、扱いやすい。なお、ベンチュリ11の冷却水33の流量確保のため、高温熱交換器32の下流で外部から補給水36を供給し、ベンチュリ11に供給するように構成している。   In particular, the temperature of a portion 33 of the cooling water of the venturi 11 is about 150 ° C., and is easier to evaporate and handle than normal temperature water. In order to secure the flow rate of the cooling water 33 of the venturi 11, the makeup water 36 is supplied from the outside downstream of the high-temperature heat exchanger 32 and supplied to the venturi 11.

水洗塔13の冷却水35についても、上記ベンチュリ11の冷却水33と同様に、冷却水35の一部を生成ガス5の冷却に用いると良い。   As for the cooling water 35 of the washing tower 13, a part of the cooling water 35 may be used for cooling the product gas 5, similarly to the cooling water 33 of the venturi 11.

即ち、高温化した水洗塔13の冷却水の一部35を水洗塔13から抜き出し、水洗塔13から昇温水供給系統f2を通じて冷却水35をガス化炉3の下流側の生成ガス5に噴霧・混合させることで、冷却水35の蒸発潜熱と顕熱を用いて生成ガス5を効果的に冷却できる。   That is, a part of the cooling water 35 of the water-washing tower 13 that has been heated is extracted from the water-washing tower 13, and the cooling water 35 is sprayed from the water-washing tower 13 to the product gas 5 on the downstream side of the gasification furnace 3 through the heating water supply system f 2. By mixing, the product gas 5 can be effectively cooled using the latent heat of vaporization and sensible heat of the cooling water 35.

水洗塔13を出た水洗塔13の冷却水35の温度は100℃程度と上記したベンチュリ11の冷却水33より低温であるが、常温の水より蒸発しやすく、扱いやすい特徴は同じである。なお、水洗塔13の冷却水35の流量確保のため、低温熱交換器34の下流で外部から補給水36を供給し、水洗塔13に供給するように構成している。   Although the temperature of the cooling water 35 of the water washing tower 13 which exits the water washing tower 13 is about 100 ° C., which is lower than the cooling water 33 of the venturi 11 described above, it is easier to evaporate than water at normal temperature, and the features that are easy to handle are the same. In addition, in order to secure the flow rate of the cooling water 35 in the washing tower 13, the makeup water 36 is supplied from the outside downstream of the low-temperature heat exchanger 34 and is supplied to the washing tower 13.

以上より、本実施例の炭素系燃料のガス化システムにおいては、ガス化炉3のスラグ冷却水貯留部12で発生する高温水31を供給する水供給系統cと、ベンチュリ11及び水洗塔13で発生する高温水33、35を供給する昇温水供給系統f1、f2を配設して、前記ガス化炉3の下流側、或いは前記脱塵装置8の上流側に供給してガス化炉3で生成した生成ガス5の冷却に用いる構成としたことで、プラントの排熱利用によるエネルギー効率の向上と、生成ガス5を冷却する熱回収部の小型化による低コスト化を両立することが可能となる。   As described above, in the carbon fuel gasification system of the present embodiment, the water supply system c that supplies the high-temperature water 31 generated in the slag cooling water reservoir 12 of the gasification furnace 3, the venturi 11, and the washing tower 13 The heated water supply systems f1 and f2 for supplying the generated high-temperature water 33 and 35 are disposed and supplied to the downstream side of the gasification furnace 3 or the upstream side of the dedusting device 8 to be supplied to the gasification furnace 3. By adopting a configuration that is used for cooling the generated product gas 5, it is possible to achieve both energy efficiency improvement by utilizing exhaust heat of the plant and cost reduction by downsizing the heat recovery section that cools the product gas 5. Become.

本実施例によれば、ガス化システムで生じた高温水の排熱を効率良く利用してガス化炉から出た生成ガスを冷却すると共に、炭素系燃料から生じるカーボンロス及び廃棄物の低減を図った炭素系燃料のガス化システムが実現できる。   According to the present embodiment, the exhaust gas generated from the gasification furnace is cooled by efficiently using the exhaust heat of the high temperature water generated in the gasification system, and the carbon loss and waste generated from the carbon-based fuel are reduced. The planned carbon fuel gasification system can be realized.

次に本発明の第5実施例である炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントについて図5を用いて説明する。図5に示した本実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントは、図1に示した第1実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントと基本的な構成は同じなので、両者に共通した構成の説明は省略し、異なる構成について以下に説明する。   Next, a combined coal gasification combined power plant equipped with a carbonaceous fuel gasification system according to a fifth embodiment of the present invention will be described with reference to FIG. The coal gasification combined power plant having the carbon fuel gasification system of the present embodiment shown in FIG. 5 is the same as the coal gasification power plant having the carbon fuel gasification system of the first embodiment shown in FIG. Since the basic configuration is the same as that of the combined power plant, description of the configuration common to both is omitted, and different configuration will be described below.

ガス化炉3への石炭1およびチャー9の搬送媒体には、後述するCO回収手段で回収したCO52の一部を用いる。このCOを、ガス化炉再投入用のCO53と定義する。 The carrier medium of coal 1 and char 9 to the gasification furnace 3, using a portion of the CO 2 52 recovered in later to the CO 2 recovery unit. This CO 2 is defined as CO 2 53 for recharging the gasifier.

搬送媒体をNからCOに変えることで、ガス化炉3内のCO濃度が高まり、(2)式に示すCOガス化反応が促進される。これにより、ガス化剤であるO使用量の低減が期待される。 By changing the carrier medium from N 2 to CO 2 , the CO 2 concentration in the gasification furnace 3 is increased, and the CO 2 gasification reaction represented by the formula (2) is promoted. Thus, the reduction of O 2 consumption is gasifying agent is expected.

C + CO → 2CO ・・・・(2)
使用量の低減は、空気分離器4の小型化による機器コスト低減、及びO製造動力低減によるランニングコスト低減とエネルギー効率向上に繋がる。
C + CO 2 → 2CO (2)
The reduction in the amount of O 2 used leads to a reduction in equipment cost due to downsizing of the air separator 4, a reduction in running cost and an improvement in energy efficiency due to a reduction in O 2 production power.

次に、ガス化炉3で生成された生成ガス5中の主成分は、CO、H、COである。この生成ガス5に水を噴霧して蒸発させると、生成ガス5を冷却できるだけでなく、生成ガス5中の水蒸気濃度が高まる。 Next, the main component of the product gas 5 produced in the gasification furnace 3, CO, is H 2, CO 2. When water is sprayed on the product gas 5 and evaporated, not only the product gas 5 can be cooled, but also the water vapor concentration in the product gas 5 increases.

これにより、第1実施例の(1)式に示したシフト反応が進むだけでなく、後述するガス化炉3の下流側に設置したシフト反応器40で添加する水蒸気41の流量も削減できる。   Thereby, not only the shift reaction shown in the formula (1) of the first embodiment proceeds, but also the flow rate of the water vapor 41 added in the shift reactor 40 installed on the downstream side of the gasification furnace 3 described later can be reduced.

本実施例では、1000℃以上の高温雰囲気でシフト反応を促進させるべく、水供給系統cに設置した固形物分離部29によって固形物を分離した高温水31を、この水供給系統cを通じてガス化炉3の上部に設置した生成ガス冷却部7内に供給するように構成している。   In the present embodiment, in order to promote the shift reaction in a high temperature atmosphere of 1000 ° C. or higher, the high temperature water 31 separated from the solid by the solid separation unit 29 installed in the water supply system c is gasified through the water supply system c. It is configured to supply the product gas cooling unit 7 installed in the upper part of the furnace 3.

ガス化炉3の下流側で生成ガス5に噴霧する冷却水は、第4実施例の場合と同様に、石炭ガス化複合発電プラントで発生する高温水(スラグ冷却水貯留部12で昇温した高温水15、ベンチュリ11の冷却水の一部37、水洗塔13の冷却水の一部38など)を用いる。   The cooling water sprayed on the product gas 5 on the downstream side of the gasification furnace 3 is the high temperature water generated in the coal gasification combined power plant (the slag cooling water storage section 12 is heated) as in the case of the fourth embodiment. High-temperature water 15, a part 37 of cooling water of the venturi 11, a part of cooling water 38 of the washing tower 13, etc.).

これら高温水の持つ顕熱は、これまで有効利用されていなかった。   The sensible heat of these high-temperature waters has not been effectively used so far.

一方、脱硫装置17の下流側に設置され、ガス化炉5で生成した生成ガス5中の一酸化炭素と水蒸気を反応させて二酸化炭素と水素にシフト反応させるシフト反応器40で添加する水蒸気41は、シフト反応用に製造されたものを用いる。   On the other hand, water vapor 41 is installed at the downstream side of the desulfurization unit 17 and added in a shift reactor 40 that causes carbon monoxide and water vapor in the product gas 5 generated in the gasification furnace 5 to react with each other to shift to carbon dioxide and hydrogen. Used for the shift reaction.

従って、シフト反応機器40で生成ガス5に添加する水蒸気41の流量を削減できれば、削減分の水蒸気41を製造する動力を低減できるため、ランニングコスト低減とエネルギー効率向上に繋がる。   Therefore, if the flow rate of the water vapor 41 added to the product gas 5 can be reduced by the shift reaction device 40, the power for producing the reduced amount of the water vapor 41 can be reduced, leading to reduction in running cost and improvement in energy efficiency.

前記水洗塔13の下流側に設置され、生成ガス5を脱硫する脱硫装置17で脱硫された40℃程度に冷却された生成ガス39は、脱硫後の生成ガス39を加熱する熱交換器42及び生成ガス加熱器43で200℃以上に再加熱されて、脱硫装置17の下流側に設置された生成ガス5中のシフト反応器40に供給される。   The product gas 39 installed at the downstream side of the water washing tower 13 and desulfurized by the desulfurization device 17 for desulfurizing the product gas 5 and cooled to about 40 ° C. includes a heat exchanger 42 for heating the product gas 39 after desulfurization, and The product gas is reheated to 200 ° C. or more by the product gas heater 43 and supplied to the shift reactor 40 in the product gas 5 installed on the downstream side of the desulfurization apparatus 17.

前記シフト反応器40では、脱硫後の生成ガス39に水蒸気41を添加して、第1実施例の(1)式に示したシフト反応が進む。このシフト反応により、脱硫後の生成ガス39中のCOはCOとHになって、H濃度が増加する。なお、シフト反応器40への脱硫後の生成ガス39、及び水蒸気41の投入温度は、シフト反応触媒の特性で決まる。 In the shift reactor 40, the water vapor 41 is added to the product gas 39 after desulfurization, and the shift reaction shown in the formula (1) of the first embodiment proceeds. By this shift reaction, CO in the product gas 39 after desulfurization becomes CO 2 and H 2 , and the H 2 concentration increases. Note that the input temperature of the product gas 39 after desulfurization and the steam 41 to the shift reactor 40 is determined by the characteristics of the shift reaction catalyst.

前記シフト反応器40でシフト反応後の生成ガス44の温度は、シフト反応器40の出口で200℃以上である。このため、シフト反応後の生成ガス44は、脱硫後の生成ガスの熱交換器42で150℃程度に冷却され、前記シフト反応器40の下流側に設置されたCO吸収塔45に供給される。 The temperature of the product gas 44 after the shift reaction in the shift reactor 40 is 200 ° C. or more at the outlet of the shift reactor 40. For this reason, the product gas 44 after the shift reaction is cooled to about 150 ° C. by the heat exchanger 42 of the product gas after desulfurization, and is supplied to the CO 2 absorption tower 45 installed on the downstream side of the shift reactor 40. The

前記CO吸収塔45において、シフト反応後の生成ガス44は、CO吸収塔45に流入し、このCO吸収塔45でCO吸収液47と接触する。これにより、シフト反応後の生成ガス44中のCOは、CO吸収液47に回収されてCOが除去された生成ガス46となる。 In the CO 2 absorption tower 45, the product gas 44 after the shift reaction flows into the CO 2 absorber 45, in contact with CO 2 absorbing liquid 47 in the CO 2 absorption tower 45. Thereby, the CO 2 in the product gas 44 after the shift reaction becomes a product gas 46 which is recovered in the CO 2 absorbing solution 47 and from which CO 2 is removed.

ここで、CO吸収塔45へのシフト反応後の生成ガス44の投入温度は、CO吸収液47の特性で決まる。そしてCO吸収塔45にてCO除去後の生成ガス46の主成分は、Hとなる。 Here, the input temperature of the product gas 44 after the shift reaction to the CO 2 absorption tower 45 is determined by the characteristics of the CO 2 absorbent 47. The main component of the product gas 46 after CO 2 is removed by the CO 2 absorption tower 45 is H 2 .

CO吸収塔45でCO除去後の生成ガス46は、CO吸収塔45からガスタービン燃焼器18に燃料として供給され、コンプレッサ24からガスタービン燃焼器18に供給された燃焼用の空気と混合して燃焼し、高温の燃焼ガスを発生する。 Product gas 46 after CO 2 removal in the CO 2 absorber 45 is supplied as fuel from the CO 2 absorber 45 to the gas turbine combustor 18, and the air for combustion supplied to the gas turbine combustor 18 from the compressor 24 Combusts by mixing, generating hot combustion gas.

前記ガスタービン燃焼器18で発生した燃焼ガスはガスタービン19に供給されてこのガスタービン19を駆動し、さらにガスタービン19から排出された排ガスをボイラ20に流下させて排ガスが有する排熱をこのボイラ20で回収して蒸気を発生させ、この発生した蒸気を蒸気タービン21に供給してこの蒸気タービン21を駆動する。   The combustion gas generated in the gas turbine combustor 18 is supplied to the gas turbine 19 to drive the gas turbine 19, and the exhaust gas discharged from the gas turbine 19 is caused to flow down to the boiler 20 so that the exhaust heat of the exhaust gas is reduced. Steam is collected by being recovered by the boiler 20, and the generated steam is supplied to the steam turbine 21 to drive the steam turbine 21.

また、前記CO吸収塔45で生成ガス44からCOを吸収したCO吸収液48は、CO吸収液の熱交換器49、CO吸収液の加熱器50で100℃以上に加熱されて、前記CO吸収塔45の下流側に設置されたCO再生塔51に供給される。 Further, the CO 2 absorbing liquid 48 that has absorbed CO 2 from the product gas 44 in the CO 2 absorption tower 45 is heated to 100 ° C. or more by the CO 2 absorbing liquid heat exchanger 49 and the CO 2 absorbing liquid heater 50. And is supplied to a CO 2 regeneration tower 51 installed on the downstream side of the CO 2 absorption tower 45.

前記CO再生塔51では、COを吸収したCO吸収液48中のCOを放出させることで、CO吸収液47の再利用が可能となる。 In the CO 2 regeneration tower 51, by releasing the CO 2 in the CO 2 absorbing liquid 48 that has absorbed CO 2, it is possible to reuse the CO 2 absorbing liquid 47.

前記CO再生塔51で回収したCO52は、その一部をガス化炉3の再投入用のCO53としてCO供給系統gを通じてCO再生塔51から導出されて石炭1とチャー9の搬送媒体に再利用されるが、CO再生塔51で回収したCO52の大部分は、地中などに供給して貯留される。 The CO 2 52 recovered in CO 2 regeneration tower 51, the part derived from CO 2 regeneration tower 51 through the CO 2 supply line g as CO 2 53 for reintroduction of the gasification furnace 3 by coal 1 and char is recycled to the transport medium 9, the majority of the CO 2 52 recovered in CO 2 regeneration tower 51 is stored and supplies the like in the ground.

ここで、CO再生塔51でのCO回収率を高く保つためには、CO吸収液48を保温する必要がある。そこで、CO吸収液48の一部を、再生加熱用のCO吸収液54としてCO再生塔51から抜き出し、熱交換器55で100℃以上に再加熱した後に、前記CO再生塔51に投入する。 Here, in order to keep the CO 2 recovery rate in the CO 2 regeneration tower 51 high, it is necessary to keep the CO 2 absorbent 48 warm. Therefore, a part of the CO 2 absorbing liquid 48 is extracted from the CO 2 regeneration tower 51 as a CO 2 absorbing liquid 54 for regeneration heating, reheated to 100 ° C. or higher by the heat exchanger 55, and then the CO 2 regeneration tower 51. In

この熱交換器55に必要な熱容量が大きく、その熱源にはボイラ20で発生した200〜300℃程度の低温蒸気56をボイラ20から蒸気供給系統iを通じて熱交換器55に導いて利用すると良い。この低温蒸気56を、CO吸収液54の加熱用蒸気56と呼ぶ。 The heat capacity required for the heat exchanger 55 is large, and a low-temperature steam 56 of about 200 to 300 ° C. generated in the boiler 20 is preferably used as a heat source from the boiler 20 to the heat exchanger 55 through the steam supply system i. This low-temperature steam 56 is referred to as heating steam 56 for the CO 2 absorbent 54.

CO吸収液48の加熱用蒸気56のもつ顕熱で、熱交換器55で再生加熱用のCO吸収液54が再加熱される。このため、熱交換器55を出たCO吸収液54の加熱用蒸気56は、200℃以下に低下する。 The sensible heat of the heating steam 56 of the CO 2 absorbing liquid 48 reheats the CO 2 absorbing liquid 54 for regeneration heating in the heat exchanger 55. Therefore, the heating steam 56 of the CO 2 absorbing liquid 54 exiting the heat exchanger 55 is lowered to 200 ° C. or less.

熱交換器55を出たCO吸収液54の加熱用蒸気56についても、前記熱交換器55から加熱用蒸気56をガス化炉3の下流側に供給する蒸気供給系統hを配設し、この蒸気供給系統hを通じて前記熱交換器55から加熱用蒸気56をガス化炉3の下流側に供給し、生成ガス5の冷却とシフト反応器40でのシフト反応促進に用いると良い。 A steam supply system h that supplies the heating steam 56 from the heat exchanger 55 to the downstream side of the gasification furnace 3 is also provided for the heating steam 56 of the CO 2 absorbent 54 that has exited the heat exchanger 55, It is preferable to supply the heating steam 56 from the heat exchanger 55 to the downstream side of the gasification furnace 3 through the steam supply system h and use it to cool the product gas 5 and promote the shift reaction in the shift reactor 40.

これは、熱交換器55を出たCO吸収液54の加熱用蒸気56を復水器26に戻せば、蒸気の顕熱と潜熱が廃熱となるためである。 This is because the sensible heat and latent heat of the steam become waste heat if the heating steam 56 of the CO 2 absorbing liquid 54 exiting the heat exchanger 55 is returned to the condenser 26.

本実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントでは、ガス化炉3の下流に熱交換器55を出たCO吸収液54の加熱用蒸気56を供給する蒸気供給系統h、ボイラ20から低温蒸気56を熱交換器55に居給する蒸気供給系統i、スラグ冷却水貯留部13からの高温水15を供給する水供給系統c、ベンチュリ11の冷却水の一部37及び水洗塔13の冷却水の一部38を供給する昇温水供給系統f1、f2の4種類の水又は蒸気を、前記ガス化炉3の下流側、或いは前記脱塵装置8の上流側に供給してガス化炉3で生成した生成ガス5の冷却に用いる構成としたが、これらの各系統のうち、少なくとも1種類以上の水又は蒸気を供給できる系統としても構わない。 In the combined coal gasification combined power plant equipped with the carbonized fuel gasification system of the present embodiment, the steam for supplying the heating steam 56 of the CO 2 absorbent 54 exiting the heat exchanger 55 downstream of the gasification furnace 3. A supply system h, a steam supply system i for supplying low-temperature steam 56 from the boiler 20 to the heat exchanger 55, a water supply system c for supplying high-temperature water 15 from the slag cooling water storage section 13, and a cooling water for the venturi 11 Four types of water or steam of the heated water supply systems f1 and f2 for supplying a part 37 and a part of cooling water 38 of the rinsing tower 13 are supplied to the downstream side of the gasification furnace 3 or the upstream side of the dedusting device 8. However, a system capable of supplying at least one kind of water or steam among these systems may be used.

以上より、本実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントによれば、COを排出させず、かつエネルギー効率の高い石炭ガス化複合発電プラントを構築できる。 As described above, according to the coal gasification combined power plant provided with the carbonized fuel gasification system of the present embodiment, it is possible to construct a coal gasification combined power plant that does not emit CO 2 and has high energy efficiency.

なお、本実施例の炭素系燃料のガス化システムを備えた石炭ガス化複合発電プラントでは、CO回収手段の一例として、CO吸収液54を用いたCO化学吸収方式を用いたシステムについて説明した。 In the coal gasification combined power generation plant including a gas system of carbonaceous fuels of this embodiment, as an example of a CO 2 recovery unit, the system using a CO 2 chemical absorption method using the CO 2 absorbing solution 54 explained.

また、CO回収手段は、膜分離などの物理吸収方式、吸着剤方式を用いても構わない。 Further, the CO 2 recovery means may use a physical absorption method such as membrane separation or an adsorbent method.

本実施例によれば、高温水の排熱を効率良く利用してガス化炉から出た生成ガスを冷却すると共に、高温水中の固形物を既存のガス化炉の脱塵設備で回収しガス化炉への再投入を可能にして炭素系燃料からのカーボンロス及び廃棄物の低減を図った炭素系燃料のガス化システムが実現できる。   According to the present embodiment, the exhaust gas from the high-temperature water is efficiently used to cool the generated gas from the gasification furnace, and the solid matter in the high-temperature water is recovered by the existing dust removal equipment of the gasification furnace. It is possible to realize a gasification system for a carbon-based fuel that can be re-introduced into the conversion furnace to reduce carbon loss and waste from the carbon-based fuel.

a:燃料供給系統、b:チャー供給系統、c:水供給系統、d:固形物供給系統、e:別の固形物供給系統、f1、f2:昇温水供給系統、g:CO供給系統、h:蒸気供給系統、i:蒸気供給系統、1:石炭、2:石炭ホッパ、3:ガス化炉、4:空気分離器、5:生成ガス、6:スラグ、7:熱回収部、8:脱塵装置、9:チャー、10:生成ガスの熱交換器、11:ベンチュリ、12:スラグ冷却水貯留部、13:水洗塔、14:スラグ冷却水、15:スラグ冷却水貯留部からの高温水、16:ポンプ、17:脱硫装置、18:ガスタービン燃焼器、19:ガスタービン、20:排ガスボイラ、21:蒸気タービン、22:煙突、23:硫黄分燃焼炉、24:コンプレッサ、25:チャーホッパ、26:復水器、27:固形物を含む高温水、29:固形物分離部、30:固形物、31:固形物を分離した高温水、32:高温熱交換器、33:ベンチュリの冷却水、34:低温熱交換器、35:水洗塔の冷却水、36:補給水、37:ベンチュリの冷却水の一部、38:水洗塔の冷却水の一部、39:脱硫後の生成ガス、40:シフト反応器、41:シフト反応用水蒸気、42:脱硫後の生成ガスの熱交換器、43:脱硫後の生成ガス加熱器、44:シフト反応後の生成ガス、45:CO吸収塔、46:CO除去後の生成ガス、47:CO吸収液、48:CO吸収したCO吸収液、49:CO吸収液の熱交換器、50:CO吸収液の加熱器、51:CO再生塔、52:回収したCO、53:ガス化炉再投入用のCO、54:再生加熱用のCO吸収液、55:熱交換器、56:CO吸収液の加熱用蒸気、57:スラグ冷却水の冷却器、58:スラリーポンプ a: fuel supply system, b: char supply system, c: water supply system, d: solid material supply system, e: another solid material supply system, f1, f2: heated water supply system, g: CO 2 supply system, h: steam supply system, i: steam supply system, 1: coal, 2: coal hopper, 3: gasification furnace, 4: air separator, 5: generated gas, 6: slag, 7: heat recovery unit, 8: Dedusting device, 9: Char, 10: Heat exchanger for generated gas, 11: Venturi, 12: Slag cooling water reservoir, 13: Flush tower, 14: Slag cooling water, 15: High temperature from slag cooling water reservoir Water: 16: Pump, 17: Desulfurizer, 18: Gas turbine combustor, 19: Gas turbine, 20: Exhaust gas boiler, 21: Steam turbine, 22: Chimney, 23: Sulfur content combustion furnace, 24: Compressor, 25: Chirp hopper, 26: Condenser, 27: Contains solids High temperature water, 29: Solid matter separation unit, 30: Solid matter, 31: High temperature water from which solid matter has been separated, 32: High temperature heat exchanger, 33: Venturi cooling water, 34: Low temperature heat exchanger, 35: Washing tower Cooling water, 36: makeup water, 37: part of cooling water for venturi, 38: part of cooling water for washing tower, 39: product gas after desulfurization, 40: shift reactor, 41: steam for shift reaction 42: Heat exchanger for the product gas after desulfurization, 43: Product gas heater after the desulfurization, 44: Product gas after the shift reaction, 45: CO 2 absorption tower, 46: Product gas after the CO 2 removal, 47 : CO 2 absorbing solution, 48: CO 2 absorbed CO 2 absorbing solution, 49: CO 2 absorbing solution heat exchanger, 50: CO 2 absorbing liquid heater, 51: CO 2 regeneration tower, 52: recovered CO 2 , 53: CO 2 for recharging the gasifier, 54: CO 2 for regeneration heating Absorption liquid, 55: heat exchanger, 56: steam for heating CO 2 absorption liquid, 57: cooler for slag cooling water, 58: slurry pump

Claims (6)

固体の炭素系燃料をガス化して生成ガスを生成するガス化炉と、
固体の炭素系燃料を石炭ホッパから前記ガス化炉に気体で搬送する燃料供給系と、
前記ガス化炉は、炭素系燃料をガス化して生成した生成ガスを該ガス化炉の上方から取り出し、炭素系燃料に含まれた無機物を溶融スラグ化して該ガス化炉の下方に取り出すように構成し、
前記ガス化炉の下流側に設置され、該ガス化炉の上方から取り出された生成ガスを脱塵する脱塵部と、
前記脱塵部で脱塵され、生成ガスに同伴したチャーを回収するチャーホッパと、
前記チャーホッパで回収したチャーを、該チャーホッパから前記ガス化炉に気体で搬送するチャー供給系統と、
前記脱塵部の下流側に設置され、該脱塵部を流下した前記生成ガスを洗浄する水洗塔を備え、
前記ガス化炉の底部に溶融スラグを外部から供給した冷却水で冷却するスラグ冷却水貯留部を設置し、
前記スラグ冷却水貯留部で溶融スラグによって昇温した高温水を該スラグ冷却水貯留部から前記ガス化炉の下流側、或いは前記脱塵部の上流側に供給して前記ガス化炉から取り出された生成ガスを冷却する水供給系統を配設したことを特徴とする炭素系燃料のガス化システム。
A gasification furnace that gasifies solid carbon-based fuel to generate product gas;
A fuel supply system for conveying a solid carbon-based fuel by gas from a coal hopper to the gasifier;
The gasification furnace takes out a product gas generated by gasifying a carbon-based fuel from above the gasification furnace, converts an inorganic substance contained in the carbon-based fuel into molten slag, and takes it out below the gasification furnace. Configure
A dust removing unit installed on the downstream side of the gasification furnace, and dedusting the generated gas taken out from above the gasification furnace;
A char hopper that collects the char that has been dedusted in the dust removing section and accompanied by the product gas;
A char supply system for conveying the char recovered by the char hopper by gas from the char hopper to the gasification furnace;
A water-washing tower that is installed on the downstream side of the dedusting unit and that cleans the generated gas flowing down the dedusting unit;
Installing a slag cooling water reservoir for cooling with cooling water supplied from the outside with molten slag at the bottom of the gasifier;
High temperature water heated by molten slag in the slag cooling water reservoir is supplied from the slag cooling water reservoir to the downstream side of the gasification furnace or upstream of the dedusting section and taken out from the gasification furnace. A carbonized fuel gasification system comprising a water supply system for cooling the produced gas.
請求項1に記載の炭素系燃料のガス化システムにおいて、
前記固形物分離部で回収した固形物を前記ガス化炉に搬送する固形物供給系統を備えたことを特徴とする炭素系燃料のガス化システム。
The gasification system for a carbon-based fuel according to claim 1,
A carbonized fuel gasification system comprising a solid material supply system for transporting the solid material collected by the solid material separation unit to the gasification furnace.
請求項1に記載の炭素系燃料のガス化システムにおいて、
前記固形物分離部で回収した固形物を前記チャーホッパに供給する別の固形物供給系統を配設し、
この別の固形物供給系を通じて前記チャーホッパに供給した固形物は前記チャー供給系統を通じて前記ガス化炉に投入するように構成したことを特徴とする炭素系燃料のガス化システム。
The gasification system for a carbon-based fuel according to claim 1,
Disposing another solid material supply system for supplying the solid material collected by the solid material separation unit to the chirp hopper,
A carbon-based fuel gasification system, wherein the solid material supplied to the char hopper through the separate solid material supply system is introduced into the gasification furnace through the char supply system.
請求項1乃至3のいずれか1項に記載の炭素系燃料のガス化システムにおいて、
前記脱塵部の下流側に前記ガス化炉から取り出された生成ガスを冷却水との気液接触により冷却するベンチュリ及び水洗塔をそれぞれ設置し、
前記ベンチュリ及び水洗塔で前記ガス化炉から取り出された生成ガスとの接触により昇温したベンチュリの冷却水の一部及び水洗塔の冷却水の一部を、このベンチュリ及び水洗塔から前記ガス化炉の下流側、或いは前記脱塵部の上流側に供給して前記ガス化炉から取り出された生成ガスを冷却する昇温水供給系統を配設したことを特徴とする炭素系燃料のガス化システム。
The gasification system of the carbon-based fuel according to any one of claims 1 to 3,
A venturi for cooling the generated gas taken out from the gasification furnace by gas-liquid contact with cooling water and a washing tower are respectively installed on the downstream side of the dust removing section,
A part of the cooling water of the venturi and a part of the cooling water of the washing tower heated by contact with the product gas taken out from the gasification furnace at the venturi and the washing tower are gasified from the venturi and the washing tower. A carbonized fuel gasification system comprising a heated water supply system that cools the generated gas that is supplied to the downstream side of the furnace or the upstream side of the dedusting section and taken out of the gasification furnace .
請求項1に記載の炭素系燃料のガス化システムにおいて、
前記脱塵部の下流側に設置され、該脱塵部を流下した前記生成ガスを洗浄する水洗塔と、
前記水洗塔の下流側に設置され、該水洗塔を流下した前記生成ガスを脱硫する脱硫装置を備え、
脱硫装置の下流側に設置され、該脱硫装置を流下した前記生成ガス中のCOを吸収液に吸収するCO吸収塔と、このCOを吸収したCO吸収液を加熱してCOを分離し吸収液を再生するCO再生塔をそれぞれ備え、
前記CO再生塔で分離したCOで固体の炭素系燃料をガス化炉に搬送するように前記CO再生塔から石炭ホッパにCOを供給するCO供給系統を配設したことを特徴とする炭素系燃料のガス化システム。
The gasification system for a carbon-based fuel according to claim 1,
A water-washing tower that is installed on the downstream side of the dust removal unit and that cleans the generated gas flowing down the dust removal unit,
A desulfurization device installed on the downstream side of the washing tower and desulfurizing the generated gas flowing down the washing tower;
Is installed on the downstream side of the desulfurization apparatus, the CO 2 contained the product gas to the desulfurization unit and flows down the CO 2 absorption tower for absorbing liquid absorbent, by heating the CO 2 absorbing solution which has absorbed the CO 2 CO 2 Each is provided with a CO 2 regeneration tower for regenerating the absorption liquid,
Characterized in that disposed CO 2 supply system for supplying CO 2 to the coal hopper from the CO 2 regeneration tower as a solid carbonaceous fuel in the separated CO 2 in the CO 2 regeneration tower to convey to the gasifier Carbon fuel gasification system.
請求項5に記載の炭素系燃料のガス化システムにおいて、
前記CO再生塔から抜き出した再生加熱用のCO吸収液の熱源として用いた蒸気を、前記CO再生塔から前記ガス化炉の下流側、或いは前記脱塵部の上流側に供給して生成ガスを冷却する蒸気供給系統を配設したことを特徴とする炭素系燃料のガス化システム。
The gasification system for carbon-based fuel according to claim 5,
The steam used as a heat source of the CO 2 absorbing solution for regeneration heat withdrawn from the CO 2 regeneration tower, downstream of the gasifier from the CO 2 regeneration tower, or supplied to the upstream side of the dust removing unit A gasification system for a carbon-based fuel, wherein a steam supply system for cooling generated gas is provided.
JP2012224002A 2012-10-09 2012-10-09 Carbon fuel gasification system Active JP6139845B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012224002A JP6139845B2 (en) 2012-10-09 2012-10-09 Carbon fuel gasification system
AU2013237711A AU2013237711B2 (en) 2012-10-09 2013-10-04 Gasification system for carbon containing fuel
CN201310467301.0A CN103710046B (en) 2012-10-09 2013-10-09 Gasification system for carbon-containing fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012224002A JP6139845B2 (en) 2012-10-09 2012-10-09 Carbon fuel gasification system

Publications (2)

Publication Number Publication Date
JP2014077031A true JP2014077031A (en) 2014-05-01
JP6139845B2 JP6139845B2 (en) 2017-05-31

Family

ID=50403412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012224002A Active JP6139845B2 (en) 2012-10-09 2012-10-09 Carbon fuel gasification system

Country Status (3)

Country Link
JP (1) JP6139845B2 (en)
CN (1) CN103710046B (en)
AU (1) AU2013237711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132676A (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Hydrogen feed system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059695B (en) * 2014-06-19 2016-04-27 衡阳华菱钢管有限公司 Pressure Swing Adsorption blast furnace gas device and Pressure Swing Adsorption blast furnace gas method
JP7106367B2 (en) 2018-06-22 2022-07-26 三菱重工業株式会社 Gasification equipment and its operation method
KR102213331B1 (en) * 2018-09-17 2021-02-08 한국에너지기술연구원 Process and apparatus for capturing carbon dioxide related deodorization process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926484B1 (en) * 1970-09-14 1974-07-09
JPS6274992A (en) * 1985-09-30 1987-04-06 Babcock Hitachi Kk Gasification of coal
JP2000178567A (en) * 1998-12-16 2000-06-27 Hitachi Ltd Composite coal gasification-power generation plant and purification apparatus for coal-gasified gas
JP2000328074A (en) * 1999-05-21 2000-11-28 Babcock Hitachi Kk Coal gasification system
JP2012111804A (en) * 2010-11-22 2012-06-14 Babcock Hitachi Kk Coal transportation system of coal gasification power generation plant

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089717B2 (en) * 1993-12-28 1996-01-31 バブコック日立株式会社 Airflow layer gasifier
JP3890482B2 (en) * 1994-11-24 2007-03-07 バブコック日立株式会社 Airflow gasifier
CN1098911C (en) * 1998-12-30 2003-01-15 中国科学院广州能源研究所 Biomass gasifying and purifying circular fluid-bed system
WO2000069994A1 (en) * 1999-05-14 2000-11-23 Kemestrie Inc. Process and apparatus for gasification of refuse
US7810310B2 (en) * 2006-12-14 2010-10-12 Mitsubishi Heavy Industries, Ltd. Integrated coal gasification combined cycle plant
ES2393266T3 (en) * 2007-02-22 2012-12-19 Fluor Technologies Corporation Configurations for the production of carbon dioxide and hydrogen from gasification streams
CN100577775C (en) * 2007-05-31 2010-01-06 宋建元 Coal gasification device for circulating fluidized bed and manufacturing method thereof
CN101161792B (en) * 2007-09-29 2010-11-17 上海惠生化工工程有限公司 Heat recovering technique for synthetic gas production process by coal gasification
DE102008012965A1 (en) * 2008-03-06 2009-09-17 Uhde Gmbh Method and device for the treatment of fluid streams resulting from the gasification
CN101298569B (en) * 2008-06-26 2011-05-11 华东理工大学 Gasification method of shock chilling type pulp or powder carbonaceous material
CN102041106B (en) * 2009-10-19 2014-07-09 中国石油化工集团公司 Gasification method of carbon-containing solid raw material and used reactor
US8486165B2 (en) * 2010-02-26 2013-07-16 General Electric Company Heat recovery in black water flash systems
CN101973521A (en) * 2010-09-21 2011-02-16 江阴市尚疯新能源技术开发有限公司 Method for forming oxygen and hydrogen by using steam and carbon monoxide through regenerating reduction and circular gasification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926484B1 (en) * 1970-09-14 1974-07-09
JPS6274992A (en) * 1985-09-30 1987-04-06 Babcock Hitachi Kk Gasification of coal
JP2000178567A (en) * 1998-12-16 2000-06-27 Hitachi Ltd Composite coal gasification-power generation plant and purification apparatus for coal-gasified gas
JP2000328074A (en) * 1999-05-21 2000-11-28 Babcock Hitachi Kk Coal gasification system
JP2012111804A (en) * 2010-11-22 2012-06-14 Babcock Hitachi Kk Coal transportation system of coal gasification power generation plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132676A (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Hydrogen feed system

Also Published As

Publication number Publication date
AU2013237711A1 (en) 2014-04-24
CN103710046A (en) 2014-04-09
AU2013237711B2 (en) 2016-01-21
CN103710046B (en) 2015-07-15
JP6139845B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
RU2270849C2 (en) System producing electric power with the help of gasification of combustibles
KR20020026536A (en) Apparatus and method for cleaning acidic gas
JP2011214562A (en) Coal gasification combined power generation system
JP4547244B2 (en) Organic gasifier
JP2006128006A (en) High temperature type fuel cell power generation system by carbonizing and gasifying biomass
JP6139845B2 (en) Carbon fuel gasification system
US20060137579A1 (en) Gasification system
JP6048133B2 (en) Syngas generation system and synthesis gas generation method
JP5602308B2 (en) Gas cooler, gasifier, and carbon-containing fuel gasification combined cycle generator
US20230234843A1 (en) Systems and methods for producing carbon-negative green hydrogen and renewable natural gas from biomass waste
JP5535732B2 (en) Boiler equipment
US8821153B2 (en) Method and system for the production of a combustible gas from a fuel
JP6000148B2 (en) Gasification combined power generation system and operation method of gasification combined power generation system
JP2019203078A (en) Gasification gas manufacturing apparatus and manufacturing method of gasification gas
CN204918494U (en) Coal gasification apparatus for producing of fixed bed and fluidized bed
JP2018095717A (en) Waste water treatment apparatus for use in twin tower gasification facility and twin tower gasification facility
JP5675149B2 (en) Boiler equipment
JP6008514B2 (en) Gas purification equipment for gasification gas
US20130168608A1 (en) Method for the generation of synthesis gas
US20200157442A1 (en) Method and facility for producing electricity from an srf load
JP2019218526A (en) Gasification equipment and operational method of the same
US11274574B2 (en) Carbon-based fuel gasification power generation system
JP7086675B2 (en) Gasifier system
JP5675297B2 (en) Gasification facilities and coal gasification combined power generation facilities
JP2007269905A (en) Gasification device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170428

R150 Certificate of patent or registration of utility model

Ref document number: 6139845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250