JP2014075248A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2014075248A
JP2014075248A JP2012221623A JP2012221623A JP2014075248A JP 2014075248 A JP2014075248 A JP 2014075248A JP 2012221623 A JP2012221623 A JP 2012221623A JP 2012221623 A JP2012221623 A JP 2012221623A JP 2014075248 A JP2014075248 A JP 2014075248A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
gas
generating member
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012221623A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Okano
誉之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2012221623A priority Critical patent/JP2014075248A/en
Publication of JP2014075248A publication Critical patent/JP2014075248A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell system having high durability.SOLUTION: The fuel cell system comprises: a fuel generation material for generating a fuel gas by chemical reaction and being recyclable by reductive reaction; a solid oxide type fuel cell unit for generation power by reaction of an oxidant gas containing oxygen with the fuel gas supplied from the fuel generation material; a circulation piping for circulating gas between the fuel generation material and the fuel electrode of the fuel cell unit; and a switching unit disposed in the circulation piping and used for switching a passage to either of a first state in which a gas discharged from the fuel generation material is supplied to the fuel electrode of the fuel cell unit or a second state in which a gas introduced from the outside is supplied to the fuel electrode of the fuel cell unit.

Description

本発明は、酸化反応により燃料ガスを発生し、還元反応により再生可能な燃料発生部材と、酸素を含む酸化剤ガスと前記燃料発生部材から供給される燃料ガスとの反応により発電を行う固体酸化物型燃料電池部とを備える燃料電池システムに関する。   The present invention relates to a solid oxide which generates power by a reaction of a fuel generating member that generates fuel gas by an oxidation reaction and can be regenerated by a reduction reaction, an oxidant gas containing oxygen, and a fuel gas supplied from the fuel generating member. The present invention relates to a fuel cell system including a physical fuel cell unit.

固体酸化物型燃料電池は、例えばイットリア安定化ジルコニア(YSZ)やランタンガレート系(例えば一般式LaSrMgGaOで表されるLSGM)を用いた固体酸化物電解質膜を、燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込んだものを1つのセル構成としている。そして、燃料極に燃料ガス(例えば水素)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給されることにより発電が行われる。   A solid oxide fuel cell includes a solid oxide electrolyte membrane using, for example, yttria-stabilized zirconia (YSZ) or a lanthanum gallate system (for example, LSGM represented by the general formula LaSrMgGaO), a fuel electrode (anode), and an oxidizer electrode. The one sandwiched from both sides by the (cathode) has a single cell configuration. A fuel gas channel for supplying a fuel gas (for example, hydrogen) to the fuel electrode and an oxidant gas channel for supplying an oxidant gas (for example, oxygen or air) to the oxidant electrode are provided. Electric power is generated by supplying the fuel gas and the oxidant gas to the fuel electrode and the oxidant electrode, respectively.

固体酸化物型燃料電池は、固体高分子型燃料電池よりも動作温度を高くする必要があるものの、固体高分子型燃料電池よりも発電効率が高いという利点を有している。   Although the solid oxide fuel cell needs to have a higher operating temperature than the solid polymer fuel cell, it has the advantage of higher power generation efficiency than the solid polymer fuel cell.

特表平11−501448号公報Japanese National Patent Publication No. 11-501448 国際公開第2012/098945号International Publication No. 2012/098945

特許文献1には、固体酸化物型燃料電池と鉄(水素発生部材)を組み合わせた燃料電池システムが開示されている。上記燃料電池システムでは、システムの発電動作時に鉄(水素発生部材)が水蒸気との酸化反応により水素を発生し、システムの充電動作時に酸化鉄(酸化した水素発生部材)が水素との還元反応により再生される。   Patent Document 1 discloses a fuel cell system in which a solid oxide fuel cell and iron (hydrogen generating member) are combined. In the fuel cell system, iron (hydrogen generating member) generates hydrogen by an oxidation reaction with water vapor during the power generation operation of the system, and iron oxide (oxidized hydrogen generating member) is reduced by a reduction reaction with hydrogen during the charging operation of the system. Played.

特許文献1には、上記燃料電池システムの運転時の動作や条件等については記載されているが、上記燃料電池システムの組み立てやメンテナンス等については記載されていない。   Patent Document 1 describes operations, conditions, and the like during operation of the fuel cell system, but does not describe assembly and maintenance of the fuel cell system.

例えばメンテナンスによって配管等の交換等が行われることを考えた場合、当該作業は作業容易性の観点から大気中で行われるのが一般的である。そして、配管等が大気中で外されれば、鉄(水素発生部材)は空気に晒されるため、空気中の酸素によってFe23にまで酸化される。 For example, when considering the replacement of piping or the like by maintenance, the operation is generally performed in the atmosphere from the viewpoint of workability. Then, the pipe or the like if removed in the air, since the iron (hydrogen generating member) is exposed to air, is oxidized by oxygen in air to the Fe 2 O 3.

メンテナンス終了後に再び上記燃料電池システムを発電動作可能な状態にするためには、Fe23(酸化した水素発生部材)を還元して再生する必要がある。 In order to return the fuel cell system to a power generation operation state after the maintenance is completed, it is necessary to reduce and regenerate Fe 2 O 3 (oxidized hydrogen generating member).

ここで、Fe23(酸化した水素発生部材)を還元する方法としては、Fe23(酸化した水素発生部材)と固体酸化物型燃料電池の燃料極側との間でガスを循環させるためのガス流路内の空気を水蒸気で置換した後、上記燃料電池システムを特許文献1に記載されているエネルギー貯蔵モードで動作させることにより固体酸化物型燃料電池で水蒸気を電気分解し、電気分解により生成された水素でFe23(酸化した水素発生部材)を還元する方法、または、Fe23(酸化した水素発生部材)と固体酸化物型燃料電池の燃料極側との間でガスを循環させるためのガス流路内の空気を水素で置換してFe23(酸化した水素発生部材)を還元する方法がある。 Here, as a method of reducing the Fe 2 O 3 (oxidized hydrogen generating member) is circulated gas between Fe 2 O 3 (oxidized hydrogen generating member) and solid oxide fuel fuel electrode side of the battery After replacing the air in the gas flow path for water vapor with water vapor, the fuel cell system is operated in the energy storage mode described in Patent Document 1 to electrolyze water vapor in the solid oxide fuel cell, how to reduce Fe 2 O 3 with hydrogen produced by electrolysis (oxidized hydrogen generating member), or, Fe 2 O 3 (oxidized hydrogen generating member) and a solid oxide fuel cell anode side of There is a method of reducing Fe 2 O 3 (oxidized hydrogen generating member) by substituting air in a gas flow path for circulating gas between them with hydrogen.

前者の方法では、ガス流路内の空気を水蒸気で置換してから固体酸化物型燃料電池が電気分解を行う迄の期間(主として固体酸化物型燃料電池を常温から電気分解の動作温度(例えば800℃程度)に昇温するのに要する期間)、ガス流路内に高濃度の水蒸気が満たされていることになる。そして、高濃度の水蒸気によって固体酸化物型燃料電池の燃料極が酸化し、酸化による体積膨張等のために燃料極の割れや剥がれが生じて固体酸化物型燃料電池の性能が低下するおそれがあった。   In the former method, the period from the replacement of the air in the gas flow path with water vapor to the electrolysis of the solid oxide fuel cell (mainly from the normal temperature to the electrolysis operating temperature of the solid oxide fuel cell (for example, During the period required to raise the temperature to about 800 ° C.), the gas flow path is filled with high-concentration water vapor. Then, the fuel electrode of the solid oxide fuel cell is oxidized by high concentration of water vapor, and the fuel electrode may be cracked or peeled off due to volume expansion due to oxidation, etc., which may deteriorate the performance of the solid oxide fuel cell. there were.

また、後者の方法では、Fe23(酸化した水素発生部材)は、下記の(1)式の還元反応によってFe34へと還元され、さらに下記の(2)式の還元反応によってFeへと還元される。
3Fe23+H2→2Fe34+H2O …(1)
Fe34+4H2→3Fe+4H2O …(2)
In the latter method, Fe 2 O 3 (oxidized hydrogen generating member) is reduced to Fe 3 O 4 by the reduction reaction of the following formula (1), and further by the reduction reaction of the following formula (2). Reduced to Fe.
3Fe 2 O 3 + H 2 → 2Fe 3 O 4 + H 2 O (1)
Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O (2)

しかしながら、上記の(1)式での還元速度は非常に速く、また、上記(1)式における化学平衡の水蒸気と水素とのガス組成比はほぼ100:0であるため、ガス流路内の水素は速やかに消費され、水蒸気が生成されるため、後者の方法においてもやはりガス流路内に高濃度の水蒸気が満たされていることになる。そして、高濃度の水蒸気によって固体酸化物型燃料電池の燃料極が酸化し、酸化による体積膨張等のために燃料極の割れや剥がれが生じて固体酸化物型燃料電池の性能が低下するおそれがあった。   However, the reduction rate in the above equation (1) is very fast, and the gas composition ratio of water vapor and hydrogen in the chemical equilibrium in the above equation (1) is almost 100: 0. Since hydrogen is consumed quickly and water vapor is generated, the gas flow path is also filled with high-concentration water vapor in the latter method. Then, the fuel electrode of the solid oxide fuel cell is oxidized by high concentration of water vapor, and the fuel electrode may be cracked or peeled off due to volume expansion due to oxidation, etc., which may deteriorate the performance of the solid oxide fuel cell. there were.

また、特許文献2には、水素発生部と発電・電気分解部とを組み合わせた燃料電池システムであって、水素発生部と発電・電気分解部との間を循環する水素及び水蒸気を含むガスが存在する空間に水を補給する水補給部を備える燃料電池システムが開示されている。しかしながら、水素発生部と発電・電気分解部との間を循環する水素及び水蒸気を含むガスが存在する空間に水補給部によって水が補給されると、当該空間の水蒸気濃度が高くなるため、高濃度の水蒸気によって固体酸化物型燃料電池の燃料極が酸化し、酸化による体積膨張等のために燃料極の割れや剥がれが生じて固体酸化物型燃料電池の性能が低下するおそれがあった。   Patent Document 2 discloses a fuel cell system in which a hydrogen generation unit and a power generation / electrolysis unit are combined, and a gas containing hydrogen and water vapor that circulates between the hydrogen generation unit and the power generation / electrolysis unit. A fuel cell system including a water replenishment unit that replenishes water in an existing space is disclosed. However, when water is replenished by a water replenishment unit in a space where hydrogen and water vapor containing gas circulating between the hydrogen generation unit and the power generation / electrolysis unit exist, the water vapor concentration in the space increases. The fuel electrode of the solid oxide fuel cell is oxidized by the water vapor having a concentration, and the fuel electrode may be cracked or peeled due to volume expansion due to the oxidation and the performance of the solid oxide fuel cell may be deteriorated.

本発明は、上記の状況に鑑み、耐久性が高い燃料電池システムを提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a highly durable fuel cell system.

上記目的を達成するために本発明に係る燃料電池システムは、酸化反応により燃料ガスを発生し、還元反応により再生可能な燃料発生部材と、酸素を含む酸化剤ガスと前記燃料発生部材から供給される燃料ガスとの反応により発電を行う固体酸化物型燃料電池部と、前記燃料発生部材と前記燃料電池部の燃料極との間でガスを循環させるための循環用配管と、前記循環用配管上に配置され、前記燃料発生部材から排出されるガスを前記燃料電池部の燃料極に供給する第1の状態と、前記燃料発生部材から排出されるガスを外部に排出し、外部から導入したガスを前記燃料電池部の燃料極に供給する第2の状態とのいずれかに流路を切り替える切替部とを備える構成(第1の構成)とする。なお、上記第2の状態は、前記燃料発生部材から排出されるガスの外部への排出と、外部から導入したガスの前記燃料電池部の燃料極への供給とが同時に行われる状態によって構成されてもよく、互いに切り替わる、前記燃料発生部材から排出されるガスの外部への排出が行われる状態と、外部から導入したガスの前記燃料電池部の燃料極への供給が行われる状態とによって構成されてもよい。   In order to achieve the above object, a fuel cell system according to the present invention generates a fuel gas by an oxidation reaction and is regenerated by a reduction reaction, an oxidant gas containing oxygen, and supplied from the fuel generation member. A solid oxide fuel cell unit that generates power by reaction with a fuel gas, a circulation pipe for circulating gas between the fuel generating member and the fuel electrode of the fuel cell unit, and the circulation pipe A first state in which the gas discharged from the fuel generating member is supplied to the fuel electrode of the fuel cell unit, and the gas discharged from the fuel generating member is discharged to the outside and introduced from the outside A configuration (first configuration) is provided that includes a switching unit that switches the flow path to either the second state in which the gas is supplied to the fuel electrode of the fuel cell unit. The second state is configured by a state in which the gas discharged from the fuel generating member is discharged to the outside and the gas introduced from the outside is simultaneously supplied to the fuel electrode of the fuel cell unit. Alternatively, the gas is discharged from the fuel generating member and the gas is discharged to the outside. The gas introduced from the outside is supplied to the fuel electrode of the fuel cell unit. May be.

上記第1の構成の燃料電池システムにおいて、前記第2の状態が、前記燃料発生部材から排出されるガスを外部に排出し、外部から導入したガスを前記燃料電池部の燃料極に供給し、さらに、外部から導入したガスを前記燃料発生部材に供給し、前記燃料電池部の燃料極から排出されるガスを外部に排出する状態である構成(第2の構成)としてもよい。   In the fuel cell system of the first configuration, the second state is such that the gas discharged from the fuel generating member is discharged to the outside, and the gas introduced from the outside is supplied to the fuel electrode of the fuel cell unit, Furthermore, it is good also as a structure (2nd structure) which is the state which supplies the gas introduce | transduced from the outside to the said fuel generation member, and discharges | emits the gas discharged | emitted from the fuel electrode of the said fuel cell part outside.

上記第2の構成の燃料電池システムにおいて、外部から導入したガスの前記燃料発生部材への供給及び前記燃料発生部材から排出されるガスの外部への排出と、外部から導入したガスの前記燃料電池部の燃料極への供給及び前記燃料電池部の燃料極から排出されるガスの外部への排出とが前記第2の状態において同時に行われる構成(第3の構成)としてもよい。   In the fuel cell system of the second configuration, supply of the gas introduced from the outside to the fuel generating member, discharge of the gas discharged from the fuel generating member to the outside, and the fuel cell of the gas introduced from the outside The supply to the fuel electrode of the unit and the discharge of the gas discharged from the fuel electrode of the fuel cell unit to the outside may be performed simultaneously in the second state (third configuration).

上記第1〜第3のいずれかの構成の燃料電池システムにおいて、第1のコネクタ、前記第1のコネクタと対になる第2のコネクタ、第3のコネクタ、及び前記第3のコネクタと対になる第4のコネクタを前記循環用配管上にさらに備え、第1の開閉バルブが前記第1のコネクタと前記燃料発生部材との間であって前記第1のコネクタの近傍に配置され、第2の開閉バルブが前記第2のコネクタと前記燃料電池部との間であって前記第2のコネクタの近傍に配置され、第3の開閉バルブが前記第3のコネクタと前記燃料発生部材との間であって前記第3のコネクタの近傍に配置され、第4の開閉バルブが前記第4のコネクタと前記燃料電池部との間であって前記第4のコネクタの近傍に配置され、前記第1の開閉バルブ、前記第2の開閉バルブ、前記第3の開閉バルブ、及び前記第4の開閉バルブが前記切替部に含まれる構成(第4の構成)としてもよい。   In the fuel cell system having any one of the first to third configurations, the first connector, the second connector paired with the first connector, the third connector, and the third connector are paired. And a first open / close valve disposed between the first connector and the fuel generating member in the vicinity of the first connector, and a second connector. An on-off valve is disposed between the second connector and the fuel cell portion and in the vicinity of the second connector, and a third on-off valve is provided between the third connector and the fuel generating member. And a fourth open / close valve is disposed between the fourth connector and the fuel cell unit and in the vicinity of the fourth connector, and the first connector is disposed near the third connector. Open / close valve, the second open / close valve It said third opening and closing valve, and the fourth on-off valve may be configured to be included in the switching unit (fourth configuration).

本発明に係る燃料電池システムによると、循環用配管上に配置される切替部によって、燃料発生部材から排出されるガスを燃料電池部の燃料極に供給する第1の状態から、燃料発生部材から排出されるガスを外部に排出し、外部から導入したガスを燃料電池部の燃料極に供給する第2の状態に流路を切り替えることができるので、例えばメンテナンス終了後に酸化した燃料発生部材を還元して再生する場合等に第2の状態にすることで、燃料発生部材から排出される高濃度の酸化性ガスが燃料電池部の燃料極に供給されることを防止することができる。したがって、高濃度の酸化性ガスによって固体酸化物型燃料電池の燃料極が酸化し、酸化による体積膨張等のために燃料極の割れや剥がれが生じて固体酸化物型燃料電池の性能が低下するおそれがなくなる。すなわち、本発明によると、耐久性が高い燃料電池システムを実現することができる。   According to the fuel cell system of the present invention, from the first state in which the gas discharged from the fuel generating member is supplied to the fuel electrode of the fuel cell unit by the switching unit disposed on the circulation pipe, from the fuel generating member. The flow path can be switched to the second state in which the exhausted gas is discharged to the outside and the gas introduced from the outside is supplied to the fuel electrode of the fuel cell unit. For example, the oxidized fuel generating member is reduced after the maintenance is completed. Thus, when the regeneration is performed in the second state, it is possible to prevent the high concentration oxidizing gas discharged from the fuel generating member from being supplied to the fuel electrode of the fuel cell unit. Therefore, the fuel electrode of the solid oxide fuel cell is oxidized by the high-concentration oxidizing gas, and the fuel electrode is cracked or peeled due to volume expansion due to the oxidation and the performance of the solid oxide fuel cell is deteriorated. No fear. That is, according to the present invention, a highly durable fuel cell system can be realized.

本発明の第1実施形態に係る燃料電池システムの概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of a fuel cell system according to a first embodiment of the present invention. 本発明の第1実施形態に係る燃料電池システムの概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of a fuel cell system according to a first embodiment of the present invention. 本発明の第2実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell system which concerns on 6th Embodiment of this invention.

本発明の実施形態について図面を参照して以下に説明する。なお、本発明は、後述する実施形態に限られない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not restricted to embodiment mentioned later.

<第1実施形態>
図1A及び図1Bは本発明の第1実施形態に係る燃料電池システムの概略構成を示す模式図である。本実施形態に係る燃料電池システムは、酸化反応により燃料ガスを発生し、還元反応により再生可能な燃料発生部材1と、酸素を含む酸化剤ガスと燃料発生部材1から供給される燃料ガスとの反応により発電を行う固体酸化物型燃料電池部2(以下、燃料電池部2と称する)とを備えている。燃料電池部2は、図1A及び図1Bに示す通り、固体酸化物電解質膜2Aの両面に燃料極2Bと酸化剤極2Cを接合したMEA構造(膜・電極接合体:Membrane Electrode Assembly)である。なお、図1A及び図1Bでは、MEAを1つだけ設けた構造を図示しているが、MEAを複数設けたり、さらに複数のMEAを積層構造にしたりしてもよい。
<First Embodiment>
1A and 1B are schematic views showing a schematic configuration of a fuel cell system according to a first embodiment of the present invention. The fuel cell system according to the present embodiment includes a fuel generating member 1 that generates fuel gas by an oxidation reaction and can be regenerated by a reduction reaction, an oxidant gas containing oxygen, and a fuel gas supplied from the fuel generating member 1. And a solid oxide fuel cell unit 2 (hereinafter referred to as a fuel cell unit 2) that generates power by reaction. As shown in FIGS. 1A and 1B, the fuel cell unit 2 has an MEA structure (membrane / electrode assembly) in which a fuel electrode 2B and an oxidant electrode 2C are bonded to both surfaces of a solid oxide electrolyte membrane 2A. . 1A and 1B illustrate a structure in which only one MEA is provided, a plurality of MEAs may be provided, or a plurality of MEAs may be stacked.

本実施形態に係る燃料電池システムは、燃料発生部材1を加熱するためのヒーター3と、燃料電池部2を加熱するためのヒーター4と、燃料発生部材1及びヒーター3を収容する容器5と、燃料電池部2及びヒーター4を収容する容器6と、燃料発生部材1と燃料極2Bとの間でガスを循環させるための循環用配管7と、容器5、容器6、循環用配管7、及び固体酸化物電解質膜2Aで囲まれる空間内に存在するガスを燃料発生部材1と燃料極2Bとの間で循環させるポンプ8と、四方弁9と、ガス導入口10と、ガス排出口11とをさらに備えている。なお、ポンプ8の代わりにブロアやコンプレッサ等の他の循環器を用いてもよく、ポンプ8やそれに代わる他の循環器を設けなくてもよい。また、必要に応じて燃料発生部材1や燃料電池部2の周辺に温度センサ等を設けてもよい。   The fuel cell system according to the present embodiment includes a heater 3 for heating the fuel generating member 1, a heater 4 for heating the fuel cell unit 2, a container 5 for housing the fuel generating member 1 and the heater 3, A container 6 housing the fuel cell unit 2 and the heater 4, a circulation pipe 7 for circulating gas between the fuel generating member 1 and the fuel electrode 2B, a container 5, a container 6, a circulation pipe 7, and A pump 8 that circulates a gas present in a space surrounded by the solid oxide electrolyte membrane 2A between the fuel generating member 1 and the fuel electrode 2B, a four-way valve 9, a gas inlet 10, and a gas outlet 11. Is further provided. Instead of the pump 8, other circulators such as a blower and a compressor may be used, and the pump 8 and other circulators replacing the pump 8 may not be provided. Moreover, you may provide a temperature sensor etc. around the fuel generation member 1 and the fuel cell part 2 as needed.

四方弁9は、循環用配管7上に配置され、燃料発生部材1から排出されるガスを燃料電池部2の燃料極に供給する第1の状態と、燃料発生部材1から排出されるガスを外部に排出し、外部から導入したガスを燃料電池部2の燃料極2Bに供給する第2の状態とのいずれかに流路を切り替える切替部として機能する。本実施形態に係る燃料電池システムの発電時及び充電時には、図1Aに示すように、四方弁9によってガスの流路が第1の状態に切り替えられる。一方、例えばメンテナンス終了後に酸化した燃料発生部材を還元して再生する場合等には、図1Bに示すように、四方弁9によってガスの流路が第2の状態に切り替えられる。   The four-way valve 9 is disposed on the circulation pipe 7, and has a first state in which the gas discharged from the fuel generating member 1 is supplied to the fuel electrode of the fuel cell unit 2, and the gas discharged from the fuel generating member 1. It functions as a switching unit that switches the flow path to either the second state in which the gas discharged to the outside and introduced from the outside to the fuel electrode 2B of the fuel cell unit 2 is supplied. During power generation and charging of the fuel cell system according to the present embodiment, the gas flow path is switched to the first state by the four-way valve 9 as shown in FIG. 1A. On the other hand, for example, when the oxidized fuel generating member is reduced and regenerated after the maintenance is completed, the gas flow path is switched to the second state by the four-way valve 9 as shown in FIG. 1B.

以下の説明では、燃料発生部材1として基材料(主成分)が鉄である微粒子圧縮体からなる燃料発生部材を用い、燃料ガスとして水素を用いた場合について説明する。   In the following description, a case where a fuel generating member made of a fine particle compressed body whose base material (main component) is iron is used as the fuel generating member 1 and hydrogen is used as the fuel gas will be described.

本実施形態に係る燃料電池システムの発電時に燃料電池部2は外部負荷(不図示)に電気的に接続される。燃料電池部2では、本実施形態に係る燃料電池システムの発電時に、燃料極2Bにおいて下記の(3)式の反応が起こる。
2+O2-→H2O+2e- …(3)
The fuel cell unit 2 is electrically connected to an external load (not shown) during power generation of the fuel cell system according to the present embodiment. In the fuel cell unit 2, the following reaction (3) occurs in the fuel electrode 2B during power generation of the fuel cell system according to the present embodiment.
H 2 + O 2− → H 2 O + 2e (3)

上記の(3)式の反応によって生成された電子は、外部負荷(不図示)を通って、酸化剤極2Cに到達し、酸化剤極2Cにおいて下記の(4)式の反応が起こる。
1/2O2+2e-→O2- …(4)
The electrons generated by the reaction of the above formula (3) pass through an external load (not shown) and reach the oxidant electrode 2C, and the reaction of the following formula (4) occurs at the oxidant electrode 2C.
1 / 2O 2 + 2e → O 2− (4)

そして、上記の(4)式の反応によって生成された酸素イオンは、固体酸化物電解質膜2Aを通って、燃料極2Bに到達する。上記の一連の反応を繰り返すことにより、燃料電池部2が発電動作を行うことになる。また、上記の(3)式から分かるように、本実施形態に係る燃料電池システムの発電動作時には、燃料極2B側においてH2が消費されH2Oが生成されることになる。 And the oxygen ion produced | generated by reaction of said (4) Formula reaches | attains the fuel electrode 2B through 2 A of solid oxide electrolyte membranes. By repeating the above series of reactions, the fuel cell unit 2 performs a power generation operation. Further, as can be seen from the above equation (3), during the power generation operation of the fuel cell system according to the present embodiment, H 2 is consumed and H 2 O is generated on the fuel electrode 2B side.

上記の(3)式及び(4)式より、本実施形態に係る燃料電池システムの発電動作時における燃料電池部2での反応は下記の(5)式の通りになる。
2+1/2O2→H2O …(5)
From the above equations (3) and (4), the reaction in the fuel cell unit 2 during the power generation operation of the fuel cell system according to the present embodiment is as shown in the following equation (5).
H 2 + 1 / 2O 2 → H 2 O (5)

一方、燃料発生部材1は、下記の(6)式に示す酸化反応により、本実施形態に係る燃料電池システムの発電時に燃料電池部2の燃料極2B側で生成されたH2Oを消費してH2を生成する。
3Fe+4H2O→Fe34+4H2 …(6)
On the other hand, the fuel generating member 1 consumes H 2 O generated on the fuel electrode 2B side of the fuel cell unit 2 during power generation of the fuel cell system according to the present embodiment by an oxidation reaction expressed by the following equation (6). To produce H 2 .
3Fe + 4H 2 O → Fe 3 O 4 + 4H 2 (6)

上記の(6)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄残量が減っていくが、上記の(6)式の逆反応(還元反応)により、燃料発生部材1を再生することができ、本実施形態に係る燃料電池システムを充電することができる。   When the oxidation reaction of iron shown in the above formula (6) proceeds, the change from iron to iron oxide proceeds and the remaining amount of iron decreases, but by the reverse reaction (reduction reaction) of the above formula (6), The fuel generating member 1 can be regenerated and the fuel cell system according to this embodiment can be charged.

本実施形態に係る燃料電池システムの充電時に燃料電池部2は外部電源(不図示)に接続される。燃料電池部2では、本実施形態に係る燃料電池システムの充電時に、上記の(5)式の逆反応である下記の(7)式に示す電気分解反応が起こり、燃料極2B側においてH2Oが消費されH2が生成され、燃料発生部材1では、上記の(6)式に示す酸化反応の逆反応である下記(8)式に示す還元反応が起こり、燃料電池部2の燃料極2B側で生成されたH2が消費されH2Oが生成される。
2O→H2+1/2O2 …(7)
Fe34+4H2→3Fe+4H2O …(8)
When the fuel cell system according to this embodiment is charged, the fuel cell unit 2 is connected to an external power source (not shown). In the fuel cell unit 2, when the fuel cell system according to the present embodiment is charged, an electrolysis reaction shown in the following equation (7) which is a reverse reaction of the above equation (5) occurs, and H 2 is generated on the fuel electrode 2B side. O is consumed and H 2 is generated, and the fuel generating member 1 undergoes a reduction reaction represented by the following equation (8), which is a reverse reaction of the oxidation reaction represented by the above equation (6), and the fuel electrode of the fuel cell unit 2 H 2 produced on the 2B side is consumed and H 2 O is produced.
H 2 O → H 2 + 1 / 2O 2 (7)
Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O (8)

本実施形態では、燃料発生部材1及び燃料電池部2は、本実施形態に係る燃料電池システムの発電時と充電時の両方において、ヒーター3及び4によって600℃程度に加熱されるようにする。   In the present embodiment, the fuel generating member 1 and the fuel cell unit 2 are heated to about 600 ° C. by the heaters 3 and 4 both during power generation and charging of the fuel cell system according to the present embodiment.

また、例えばメンテナンス終了後に酸化した燃料発生部材を還元して再生する場合等に、外部から水素をガス導入口10に導入し、燃料発生部材1から排出されるガスをガス排出口11から外部に排出する。これにより、燃料発生部材1と燃料電池部2の燃料極2B側との間でガスを循環させるためのガス流路内の空気を水素で置換することができるとともに、酸化された燃料発生部材1が還元されて高濃度の水蒸気が発生した場合でも高濃度の水蒸気が燃料電池部2の燃料極2Bに供給されない。したがって、高濃度の水蒸気によって燃料電池部2の燃料極2Bが酸化し、酸化による体積膨張等のために燃料極2Bの割れや剥がれが生じて燃料電池部2の性能が低下するおそれがなくなる。すなわち、耐久性が向上する。   Further, for example, when the oxidized fuel generating member is reduced and regenerated after the maintenance is completed, hydrogen is introduced from the outside into the gas inlet 10 and the gas discharged from the fuel generating member 1 is discharged from the gas outlet 11 to the outside. Discharge. Thereby, the air in the gas flow path for circulating the gas between the fuel generating member 1 and the fuel electrode 2B side of the fuel cell unit 2 can be replaced with hydrogen, and the oxidized fuel generating member 1 Even when the water is reduced and high-concentration water vapor is generated, the high-concentration water vapor is not supplied to the fuel electrode 2B of the fuel cell unit 2. Therefore, the fuel electrode 2B of the fuel cell unit 2 is oxidized by the high-concentration water vapor, and there is no possibility that the fuel electrode 2B is cracked or peeled due to volume expansion due to the oxidation and the performance of the fuel cell unit 2 is deteriorated. That is, durability is improved.

<第2実施形態>
図2A及び図2Bは本発明の第2実施形態に係る燃料電池システムの概略構成を示す模式図である。図2A及び図2Bにおいて、図1A及び図1Bと同一の部分には同一の符号を付す。以下、本実施形態と本発明の第1実施形態との相異点を主として説明し、本実施形態と本発明の第1実施形態との共通点については適宜説明を省略する。
Second Embodiment
2A and 2B are schematic views showing a schematic configuration of a fuel cell system according to a second embodiment of the present invention. 2A and 2B, the same parts as those in FIGS. 1A and 1B are denoted by the same reference numerals. Hereinafter, differences between the present embodiment and the first embodiment of the present invention will be mainly described, and the description of the common points between the present embodiment and the first embodiment of the present invention will be omitted as appropriate.

本実施形態に係る燃料電池システムは、第1実施形態に係る燃料電池システムから四方弁9を取り除き、四方弁9の代わりに開閉バルブ13〜15を設けた構成である。開閉バルブ14は循環用配管7とガス導入口10との間に設けられ、開閉バルブ15は循環用配管7とガス排出口11との間に設けられ、開閉バルブ13は開閉バルブ14と開閉バルブ15との間に設けられる。   The fuel cell system according to this embodiment has a configuration in which the four-way valve 9 is removed from the fuel cell system according to the first embodiment, and on-off valves 13 to 15 are provided instead of the four-way valve 9. The opening / closing valve 14 is provided between the circulation pipe 7 and the gas inlet 10, the opening / closing valve 15 is provided between the circulation pipe 7 and the gas outlet 11, and the opening / closing valve 13 is provided with the opening / closing valve 14 and the opening / closing valve. 15 is provided.

開閉バルブ13〜15は、循環用配管7上に配置され、燃料発生部材1から排出されるガスを燃料電池部2の燃料極に供給する第1の状態と、燃料発生部材1から排出されるガスを外部に排出し、外部から導入したガスを燃料電池部2の燃料極2Bに供給する第2の状態とのいずれかに流路を切り替える切替部として機能する。   The on-off valves 13 to 15 are disposed on the circulation pipe 7 and are discharged from the fuel generation member 1 in a first state in which the gas discharged from the fuel generation member 1 is supplied to the fuel electrode of the fuel cell unit 2. It functions as a switching unit that switches the flow path to either the second state in which the gas is discharged to the outside and the gas introduced from the outside is supplied to the fuel electrode 2B of the fuel cell unit 2.

図2A及び図2Bにおいて、開閉バルブ13〜15それぞれの白塗りは開状態を示し、開閉バルブ13〜15それぞれの黒塗りは閉状態を示している。本実施形態に係る燃料電池システムの発電時及び充電時には、図2Aに示すように、開閉バルブ13が開状態になり、開閉バルブ14及び15が閉状態になってガスの流路が第1の状態に切り替えられる。一方、例えばメンテナンス終了後に酸化した燃料発生部材を還元して再生する場合等には、図2Bに示すように、開閉バルブ13が閉状態になり、開閉バルブ14及び15が開状態になってガスの流路が第2の状態に切り替えられる。   In FIG. 2A and FIG. 2B, the white paint of each of the on-off valves 13 to 15 indicates an open state, and the black paint of each of the on-off valves 13 to 15 indicates a closed state. At the time of power generation and charging of the fuel cell system according to the present embodiment, as shown in FIG. 2A, the on-off valve 13 is opened, the on-off valves 14 and 15 are closed, and the gas flow path is the first. Switch to state. On the other hand, for example, when the oxidized fuel generating member is reduced and regenerated after the maintenance is completed, as shown in FIG. 2B, the opening / closing valve 13 is closed and the opening / closing valves 14 and 15 are opened, causing gas to enter. Are switched to the second state.

本実施形態に係る燃料電池システムは、本発明の第1実施形態に係る燃料電池システムと同様の効果を奏する。   The fuel cell system according to the present embodiment has the same effects as the fuel cell system according to the first embodiment of the present invention.

<第3実施形態>
図3A及び図3Bは本発明の第3実施形態に係る燃料電池システムの概略構成を示す模式図である。図3A及び図3Bにおいて、図1A及び図1Bと同一の部分には同一の符号を付す。以下、本実施形態と本発明の第1実施形態との相異点を主として説明し、本実施形態と本発明の第1実施形態との共通点については適宜説明を省略する。
<Third Embodiment>
3A and 3B are schematic views showing a schematic configuration of a fuel cell system according to a third embodiment of the present invention. 3A and 3B, the same reference numerals are given to the same portions as those in FIGS. 1A and 1B. Hereinafter, differences between the present embodiment and the first embodiment of the present invention will be mainly described, and the description of the common points between the present embodiment and the first embodiment of the present invention will be omitted as appropriate.

本実施形態に係る燃料電池システムは、本発明の第1実施形態に係る燃料電池システムから四方弁9とガス導入口10とガス排出口11を取り除き、それらの代わりに四方弁16及び17と燃料極側ガス導入口18と燃料極側ガス排出口19と燃料発生部材側ガス導入口20と燃料発生部材側ガス排出口21とを設けた構成である。   The fuel cell system according to the present embodiment removes the four-way valve 9, the gas inlet port 10, and the gas outlet port 11 from the fuel cell system according to the first embodiment of the present invention, and replaces them with the four-way valves 16 and 17 and the fuel. In this configuration, an electrode side gas inlet port 18, a fuel electrode side gas outlet port 19, a fuel generating member side gas inlet port 20, and a fuel generating member side gas outlet port 21 are provided.

四方弁16及び17は、循環用配管7上に配置され、燃料発生部材1から排出されるガスを燃料電池部2の燃料極に供給する第1の状態と、燃料発生部材1から排出されるガスを外部に排出し、外部から導入したガスを燃料電池部2の燃料極2Bに供給する第2の状態とのいずれかに流路を切り替える切替部として機能する。本実施形態に係る燃料電池システムの発電時及び充電時には、図3Aに示すように、四方弁16及び17によってガスの流路が第1の状態に切り替えられる。一方、例えばメンテナンス終了後に酸化した燃料発生部材を還元して再生する場合等には、図3Bに示すように、四方弁16及び17によってガスの流路が第2の状態に切り替えられる。   The four-way valves 16 and 17 are disposed on the circulation pipe 7 and are discharged from the fuel generating member 1 in a first state in which the gas discharged from the fuel generating member 1 is supplied to the fuel electrode of the fuel cell unit 2. It functions as a switching unit that switches the flow path to either the second state in which the gas is discharged to the outside and the gas introduced from the outside is supplied to the fuel electrode 2B of the fuel cell unit 2. At the time of power generation and charging of the fuel cell system according to the present embodiment, the gas flow path is switched to the first state by the four-way valves 16 and 17 as shown in FIG. 3A. On the other hand, for example, when the oxidized fuel generating member is reduced and regenerated after the maintenance is completed, the gas flow path is switched to the second state by the four-way valves 16 and 17 as shown in FIG. 3B.

例えばメンテナンス終了後に酸化した燃料発生部材を還元して再生する場合等に、外部から水素を燃料極側ガス導入口18に導入し、燃料電池部2の燃料極2B側から排出されるガスを燃料極側ガス排出口19から外部に排出するとともに、外部から水素を燃料発生部材側ガス導入口20に導入し、燃料発生部材1から排出されるガスを燃料発生部材側ガス排出口21から外部に排出する   For example, when the oxidized fuel generating member is reduced and regenerated after the maintenance is completed, hydrogen is introduced from the outside into the fuel electrode side gas inlet 18 and the gas discharged from the fuel electrode 2B side of the fuel cell unit 2 is used as the fuel. While discharging to the outside from the pole side gas discharge port 19, hydrogen is introduced from the outside to the fuel generation member side gas introduction port 20, and the gas discharged from the fuel generation member 1 is discharged from the fuel generation member side gas discharge port 21 to the outside. Discharge

これにより、燃料発生部材1と燃料電池部2の燃料極2B側との間でガスを循環させるためのガス流路内の空気を水素で置換することができるとともに、酸化された燃料発生部材1が還元されて高濃度の水蒸気が発生した場合でも高濃度の水蒸気が燃料電池部2の燃料極2Bに供給されない。したがって、高濃度の水蒸気によって燃料電池部2の燃料極2Bが酸化し、酸化による体積膨張等のために燃料極2Bの割れや剥がれが生じて燃料電池部2の性能が低下するおそれがなくなる。すなわち、耐久性が向上する。また、燃料発生部材1側のガス流路と燃料電池部2の燃料極2B側のガス流路が完全に分離されているので、もしも何らかの原因でガスの逆流が行った場合でも、燃料発生部材1側で発生した高濃度の水蒸気が燃料電池部2の燃料極2Bに供給されるおそれがなくなる。   Thereby, the air in the gas flow path for circulating the gas between the fuel generating member 1 and the fuel electrode 2B side of the fuel cell unit 2 can be replaced with hydrogen, and the oxidized fuel generating member 1 Even when the water is reduced and high-concentration water vapor is generated, the high-concentration water vapor is not supplied to the fuel electrode 2B of the fuel cell unit 2. Therefore, the fuel electrode 2B of the fuel cell unit 2 is oxidized by the high-concentration water vapor, and there is no possibility that the fuel electrode 2B is cracked or peeled due to volume expansion due to the oxidation and the performance of the fuel cell unit 2 is deteriorated. That is, durability is improved. In addition, since the gas flow path on the fuel generating member 1 side and the gas flow path on the fuel electrode 2B side of the fuel cell unit 2 are completely separated, the fuel generating member can be used even if a reverse gas flow occurs for some reason. There is no possibility that the high-concentration water vapor generated on one side is supplied to the fuel electrode 2B of the fuel cell unit 2.

<第4実施形態>
図4A及び図4Bは本発明の第4実施形態に係る燃料電池システムの概略構成を示す模式図である。図4A及び図4Bにおいて、図3A及び図3Bと同一の部分には同一の符号を付す。以下、本実施形態と本発明の第3実施形態との相異点を主として説明し、本実施形態と本発明の第3実施形態との共通点については適宜説明を省略する。
<Fourth embodiment>
4A and 4B are schematic views showing a schematic configuration of a fuel cell system according to a fourth embodiment of the present invention. 4A and 4B, the same parts as those in FIGS. 3A and 3B are denoted by the same reference numerals. Hereinafter, differences between the present embodiment and the third embodiment of the present invention will be mainly described, and description of common points between the present embodiment and the third embodiment of the present invention will be omitted as appropriate.

本実施形態に係る燃料電池システムは、本発明の第3実施形態に係る燃料電池システムから四方弁16及び17を取り除き、四方弁16の代わりに開閉バルブ22〜24を設け、四方弁17の代わりに開閉バルブ25〜27を設けた構成である。開閉バルブ23は循環用配管7と燃料極側ガス導入口18との間に設けられ、開閉バルブ24は循環用配管7と燃料発生部材側ガス導入口20との間に設けられ、開閉バルブ22は開閉バルブ23と開閉バルブ24との間に設けられる。また、開閉バルブ26は循環用配管7と燃料極側ガス排出口19との間に設けられ、開閉バルブ27は循環用配管7と燃料発生部材側ガス排出口21との間に設けられ、開閉バルブ25は開閉バルブ26と開閉バルブ27との間に設けられる。   In the fuel cell system according to the present embodiment, the four-way valves 16 and 17 are removed from the fuel cell system according to the third embodiment of the present invention, and on-off valves 22 to 24 are provided instead of the four-way valve 16. Is provided with open / close valves 25-27. The on-off valve 23 is provided between the circulation pipe 7 and the fuel electrode side gas inlet 18, and the on-off valve 24 is provided between the circulation pipe 7 and the fuel generation member side gas inlet 20, and the on-off valve 22 Is provided between the opening / closing valve 23 and the opening / closing valve 24. The open / close valve 26 is provided between the circulation pipe 7 and the fuel electrode side gas discharge port 19, and the open / close valve 27 is provided between the circulation pipe 7 and the fuel generation member side gas discharge port 21 to open and close it. The valve 25 is provided between the opening / closing valve 26 and the opening / closing valve 27.

開閉バルブ22〜27は、循環用配管7上に配置され、燃料発生部材1から排出されるガスを燃料電池部2の燃料極に供給する第1の状態と、燃料発生部材1から排出されるガスを外部に排出し、外部から導入したガスを燃料電池部2の燃料極2Bに供給する第2の状態とのいずれかに流路を切り替える切替部として機能する。   The on-off valves 22 to 27 are arranged on the circulation pipe 7 and are discharged from the fuel generating member 1 in a first state in which the gas discharged from the fuel generating member 1 is supplied to the fuel electrode of the fuel cell unit 2. It functions as a switching unit that switches the flow path to either the second state in which the gas is discharged to the outside and the gas introduced from the outside is supplied to the fuel electrode 2B of the fuel cell unit 2.

図4A及び図4Bにおいて、開閉バルブ22〜27それぞれの白塗りは開状態を示し、開閉バルブ22〜27それぞれの黒塗りは閉状態を示している。本実施形態に係る燃料電池システムの発電時及び充電時には、図4Aに示すように、開閉バルブ22及び25が開状態になり、開閉バルブ23、24、26、及び27が閉状態になってガスの流路が第1の状態に切り替えられる。一方、例えばメンテナンス終了後に酸化した燃料発生部材を還元して再生する場合等には、図4Bに示すように、開閉バルブ22及び25が閉状態になり、開閉バルブ23、24、26、及び27が開状態になってガスの流路が第2の状態に切り替えられる。   In FIGS. 4A and 4B, the white paint of the open / close valves 22 to 27 indicates the open state, and the black paint of the open / close valves 22 to 27 indicates the closed state. At the time of power generation and charging of the fuel cell system according to the present embodiment, as shown in FIG. 4A, the opening / closing valves 22 and 25 are opened, and the opening / closing valves 23, 24, 26, and 27 are closed and gas is discharged. Are switched to the first state. On the other hand, for example, when the oxidized fuel generating member is reduced and regenerated after the maintenance is completed, as shown in FIG. 4B, the opening and closing valves 22 and 25 are closed, and the opening and closing valves 23, 24, 26, and 27 are closed. Is opened and the gas flow path is switched to the second state.

本実施形態に係る燃料電池システムは、本発明の第3実施形態に係る燃料電池システムと同様の効果を奏する。   The fuel cell system according to the present embodiment has the same effects as the fuel cell system according to the third embodiment of the present invention.

<第5実施形態>
図5A、図5B、及び図5Cは本発明の第5実施形態に係る燃料電池システムの概略構成を示す模式図である。図5A、図5B、及び図5Cにおいて、図3A及び図3Bと同一の部分には同一の符号を付す。以下、本実施形態と本発明の第3実施形態との相異点を主として説明し、本実施形態と本発明の第3実施形態との共通点については適宜説明を省略する。
<Fifth Embodiment>
5A, 5B, and 5C are schematic views showing a schematic configuration of a fuel cell system according to a fifth embodiment of the present invention. 5A, 5B, and 5C, the same parts as those in FIGS. 3A and 3B are denoted by the same reference numerals. Hereinafter, differences between the present embodiment and the third embodiment of the present invention will be mainly described, and description of common points between the present embodiment and the third embodiment of the present invention will be omitted as appropriate.

本実施形態に係る燃料電池システムは、本発明の第4実施形態に係る燃料電池システムから四方弁16及び17を取り除き、四方弁16の代わりに三方弁28を設け、四方弁17の代わりに三方弁29を設け、燃料極側ガス導入口18及び燃料発生部材側ガス導入口20の代わりにガス導入口10を設け、燃料極側ガス排出口19及び燃料発生部材側ガス排出口21の代わりにガス排出口11を設けた構成である。   In the fuel cell system according to this embodiment, the four-way valves 16 and 17 are removed from the fuel cell system according to the fourth embodiment of the present invention, a three-way valve 28 is provided instead of the four-way valve 16, and a three-way valve 17 is used instead of the four-way valve 17. A valve 29 is provided, a gas introduction port 10 is provided instead of the fuel electrode side gas introduction port 18 and the fuel generation member side gas introduction port 20, and a fuel electrode side gas discharge port 19 and a fuel generation member side gas discharge port 21 are substituted. The gas outlet 11 is provided.

三方弁28は、循環用配管7上に配置され、燃料発生部材1から排出されるガスを燃料電池部2の燃料極に供給する第1の状態と、燃料発生部材1から排出されるガスを外部に排出し、外部から導入したガスを燃料電池部2の燃料極2Bに供給する第2の状態とのいずれかに流路を切り替える切替部として機能する。   The three-way valve 28 is disposed on the circulation pipe 7 and has a first state in which the gas discharged from the fuel generating member 1 is supplied to the fuel electrode of the fuel cell unit 2 and the gas discharged from the fuel generating member 1. It functions as a switching unit that switches the flow path to either the second state in which the gas discharged to the outside and introduced from the outside to the fuel electrode 2B of the fuel cell unit 2 is supplied.

例えばメンテナンス終了後に酸化した燃料発生部材を還元して再生する場合等に、まず始めに三方弁28及び29を図5Aに示す状態から図5Bに示す状態に切り替え、その切り替え完了後に外部から水素をガス導入口10に導入し、燃料電池部2の燃料極2B側から排出されるガスをガス排出口11から外部に排出し、その後、三方弁28及び29を図5Bに示す状態から図5Cに示す状態に切り替え、その切り替え完了後に再度外部から水素をガス導入口10に導入し、燃料発生部材1から排出されるガスをガス排出口11から外部に排出する。   For example, when the oxidized fuel generating member is reduced and regenerated after the maintenance is completed, the three-way valves 28 and 29 are first switched from the state shown in FIG. 5A to the state shown in FIG. 5B. The gas introduced into the gas inlet 10 and discharged from the fuel electrode 2B side of the fuel cell unit 2 is discharged to the outside from the gas outlet 11, and then the three-way valves 28 and 29 are changed from the state shown in FIG. 5B to FIG. 5C. After the switching is completed, hydrogen is again introduced from the outside into the gas inlet 10, and the gas discharged from the fuel generating member 1 is discharged from the gas outlet 11 to the outside.

本実施形態に係る燃料電池システムは、本発明の第3実施形態に係る燃料電池システムと基本的に同様の効果を奏するが、第2の状態が図5Bに示す状態と図5Cに示す状態とによって構成されるので、第2の状態を開始してから終了するまでに要する時間が本発明の第3実施形態に係る燃料電池システムよりも長くなる。   The fuel cell system according to the present embodiment has basically the same effects as the fuel cell system according to the third embodiment of the present invention, but the second state is the state shown in FIG. 5B and the state shown in FIG. 5C. Therefore, the time required from the start to the end of the second state is longer than that of the fuel cell system according to the third embodiment of the present invention.

<第6実施形態>
図6A、図6B、図6C、及び図6Dは本発明の第6実施形態に係る燃料電池システムの概略構成を示す模式図である。図6A、図6B、図6C、及び図6Dにおいて、図5A、図5B、及び図5Cと同一の部分には同一の符号を付す。以下、本実施形態と本発明の第5実施形態との相異点を主として説明し、本実施形態と本発明の第5実施形態との共通点については適宜説明を省略する。
<Sixth Embodiment>
6A, 6B, 6C, and 6D are schematic views showing a schematic configuration of a fuel cell system according to a sixth embodiment of the present invention. 6A, 6B, 6C, and 6D, the same parts as those in FIGS. 5A, 5B, and 5C are denoted by the same reference numerals. Hereinafter, differences between the present embodiment and the fifth embodiment of the present invention will be mainly described, and description of points common to the present embodiment and the fifth embodiment of the present invention will be omitted as appropriate.

本実施形態に係る燃料電池システムは、本発明の第5実施形態に係る燃料電池システムから三方弁28及び29を取り除き、三方弁28の代わりに開閉バルブ30〜32を設け、三方弁29の代わりに開閉バルブ33〜35を設け、さらに、互いに対となる第1のコネクタ36及び第2のコネクタ37と、互いに対となる第3のコネクタ38及び第4のコネクタ39とを新たに設けた構成である。開閉バルブ32は循環用配管7とガス導入口10との間に設けられ、開閉バルブ30は燃料発生部材1と開閉バルブ32との間に設けられ、開閉バルブ31は燃料電池部2と開閉バルブ32との間に設けられ、開閉バルブ35は循環用配管7とガス排出口11との間に設けられ、開閉バルブ33は燃料発生部材1と開閉バルブ35との間に設けられ、開閉バルブ34は燃料電池部2と開閉バルブ35との間に設けられる。
循環用配管7上に設けられる第1〜4のコネクタ36〜39は循環用配管7同士の接続及び分離を可能とするコネクタであって、開閉バルブ30の近傍に第1のコネクタ36が設けられ、開閉バルブ31の近傍に第2のコネクタ37が設けられ、開閉バルブ33の近傍に第3のコネクタ38が設けられ、開閉バルブ34の近傍に第4のコネクタ39が設けられる。
In the fuel cell system according to the present embodiment, the three-way valves 28 and 29 are removed from the fuel cell system according to the fifth embodiment of the present invention, and on-off valves 30 to 32 are provided instead of the three-way valve 28, and instead of the three-way valve 29. Provided with a first connector 36 and a second connector 37 which are paired with each other, and a third connector 38 and a fourth connector 39 which are paired with each other. It is. The open / close valve 32 is provided between the circulation pipe 7 and the gas inlet 10, the open / close valve 30 is provided between the fuel generating member 1 and the open / close valve 32, and the open / close valve 31 is connected to the fuel cell unit 2 and the open / close valve. The opening / closing valve 35 is provided between the circulation pipe 7 and the gas outlet 11, the opening / closing valve 33 is provided between the fuel generating member 1 and the opening / closing valve 35, and the opening / closing valve 34. Is provided between the fuel cell unit 2 and the open / close valve 35.
The first to fourth connectors 36 to 39 provided on the circulation pipe 7 are connectors that enable connection and separation between the circulation pipes 7, and the first connector 36 is provided in the vicinity of the opening / closing valve 30. A second connector 37 is provided in the vicinity of the opening / closing valve 31, a third connector 38 is provided in the vicinity of the opening / closing valve 33, and a fourth connector 39 is provided in the vicinity of the opening / closing valve 34.

開閉バルブ30〜35は、循環用配管7上に配置され、燃料発生部材1から排出されるガスを燃料電池部2の燃料極に供給する第1の状態と、燃料発生部材1から排出されるガスを外部に排出し、外部から導入したガスを燃料電池部2の燃料極2Bに供給する第2の状態とのいずれかに流路を切り替える切替部として機能する。   The on-off valves 30 to 35 are disposed on the circulation pipe 7, and are discharged from the fuel generation member 1 in a first state in which the gas discharged from the fuel generation member 1 is supplied to the fuel electrode of the fuel cell unit 2. It functions as a switching unit that switches the flow path to either the second state in which the gas is discharged to the outside and the gas introduced from the outside is supplied to the fuel electrode 2B of the fuel cell unit 2.

図6A、図6B、図6C、及び図6Dにおいて、開閉バルブ30〜35それぞれの白塗りは開状態を示し、開閉バルブ30〜35それぞれの黒塗りは閉状態を示している。本実施形態に係る燃料電池システムの発電時及び充電時には、図6Aに示すように、開閉バルブ30、32、33、及び34が開状態になり、開閉バルブ32及び35が閉状態になってガスの流路が第1の状態に切り替えられる。一方、例えばメンテナンス終了後に酸化した燃料発生部材を還元して再生する場合等には、まず始めに開閉バルブ30〜35を図6Aに示す状態から図6Bに示す状態に切り替え、その切り替え完了後に外部から水素をガス導入口10に導入し、燃料電池部2の燃料極2B側から排出されるガスをガス排出口11から外部に排出し、その後、開閉バルブ30〜35を図6Bに示す状態から図6Cに示す状態に切り替え、その切り替え完了後に再度外部から水素をガス導入口10に導入し、燃料発生部材1から排出されるガスをガス排出口11から外部に排出する。   6A, FIG. 6B, FIG. 6C, and FIG. 6D, the white color of each of the on-off valves 30 to 35 indicates an open state, and the black color of each of the on-off valves 30 to 35 indicates a closed state. At the time of power generation and charging of the fuel cell system according to the present embodiment, as shown in FIG. 6A, the on-off valves 30, 32, 33, and 34 are in an open state, and the on-off valves 32 and 35 are in a closed state. Are switched to the first state. On the other hand, for example, when the oxidized fuel generating member is reduced and regenerated after the maintenance is completed, the opening / closing valves 30 to 35 are first switched from the state shown in FIG. 6A to the state shown in FIG. Hydrogen is introduced into the gas inlet 10 from the fuel electrode 2B side, and the gas discharged from the fuel electrode 2B side of the fuel cell unit 2 is discharged from the gas outlet 11 to the outside. Thereafter, the opening and closing valves 30 to 35 are opened from the state shown in FIG. Switching to the state shown in FIG. 6C, hydrogen is again introduced from the outside into the gas inlet 10 after the switching is completed, and the gas discharged from the fuel generating member 1 is discharged from the gas outlet 11 to the outside.

本実施形態に係る燃料電池システムは、本発明の第5実施形態に係る燃料電池システムと同様の効果を奏する。   The fuel cell system according to the present embodiment has the same effects as the fuel cell system according to the fifth embodiment of the present invention.

さらに、本実施形態に係る燃料電池システムは、図6Dに示すように燃料発生部材側モジュール100と燃料電池部側モジュール200とに分離することができるので、モジュール単位での交換やメンテナンス等が可能となる。そして、開閉バルブ30、31、33、及び34がモジュール内のガス流路にガスを封入しておくためのバルブとしても用いることができるので、部品点数の増加を抑えることができる。   Furthermore, since the fuel cell system according to the present embodiment can be separated into the fuel generating member side module 100 and the fuel cell unit side module 200 as shown in FIG. 6D, replacement or maintenance in module units is possible. It becomes. Since the open / close valves 30, 31, 33, and 34 can also be used as valves for enclosing gas in the gas flow path in the module, an increase in the number of components can be suppressed.

<その他> <Others>

上述した各実施形態では、燃料電池部2の燃料ガスを水素にしているが、一酸化炭素や炭化水素など水素以外の還元性ガスを燃料電池部2の燃料ガスとして用いても構わない。そして、例えばメンテナンス終了後に酸化した燃料発生部材を還元して再生する場合等に、燃料ガスと同一のガスを外部から導入すればよい。   In each of the above-described embodiments, the fuel gas of the fuel cell unit 2 is hydrogen, but a reducing gas other than hydrogen, such as carbon monoxide or hydrocarbon, may be used as the fuel gas of the fuel cell unit 2. For example, when the oxidized fuel generating member is reduced and regenerated after the maintenance is completed, the same gas as the fuel gas may be introduced from the outside.

1 燃料発生部材
2 固体酸化物型燃料電池部
2A 固体酸化物電解質膜
2B 燃料極
2C 酸化剤極
3、4 ヒーター
5、6 容器
7 循環用配管
8 ポンプ
9、16、17 四方弁
10 ガス導入口
11 ガス排出口
13〜15、22〜27、30〜35 開閉バルブ
18 燃料極側ガス導入口
19 燃料極側ガス排出口
20 燃料発生部材側ガス導入口
21 燃料発生部材側ガス排出口
28、29 三方弁
36 第1のコネクタ
37 第2のコネクタ
38 第3のコネクタ
39 第4のコネクタ
100 燃料発生部材側モジュール
200 燃料電池部側モジュール
DESCRIPTION OF SYMBOLS 1 Fuel generating member 2 Solid oxide fuel cell part 2A Solid oxide electrolyte membrane 2B Fuel electrode 2C Oxidant electrode 3, 4 Heater 5, 6 Container 7 Circulation piping 8 Pump 9, 16, 17 Four-way valve 10 Gas inlet DESCRIPTION OF SYMBOLS 11 Gas discharge port 13-15, 22-27, 30-35 Open / close valve 18 Fuel electrode side gas introduction port 19 Fuel electrode side gas discharge port 20 Fuel generation member side gas introduction port 21 Fuel generation member side gas discharge port 28, 29 Three-way valve 36 1st connector 37 2nd connector 38 3rd connector 39 4th connector 100 Fuel generation member side module 200 Fuel cell part side module

Claims (4)

酸化反応により燃料ガスを発生し、還元反応により再生可能な燃料発生部材と、
酸素を含む酸化剤ガスと前記燃料発生部材から供給される燃料ガスとの反応により発電を行う固体酸化物型燃料電池部と、
前記燃料発生部材と前記燃料電池部の燃料極との間でガスを循環させるための循環用配管と、
前記循環用配管上に配置され、前記燃料発生部材から排出されるガスを前記燃料電池部の燃料極に供給する第1の状態と、前記燃料発生部材から排出されるガスを外部に排出し、外部から導入したガスを前記燃料電池部の燃料極に供給する第2の状態とのいずれかに流路を切り替える切替部とを備えることを特徴とする燃料電池システム。
A fuel generating member that generates fuel gas by an oxidation reaction and can be regenerated by a reduction reaction;
A solid oxide fuel cell unit that generates power by a reaction between an oxidant gas containing oxygen and a fuel gas supplied from the fuel generating member;
A circulation pipe for circulating gas between the fuel generating member and the fuel electrode of the fuel cell unit;
A first state in which the gas discharged from the fuel generating member is disposed on the circulation pipe and supplied to the fuel electrode of the fuel cell unit; and the gas discharged from the fuel generating member is discharged to the outside. A fuel cell system comprising: a switching unit that switches a flow path to any one of a second state in which gas introduced from the outside is supplied to the fuel electrode of the fuel cell unit.
前記第2の状態が、前記燃料発生部材から排出されるガスを外部に排出し、外部から導入したガスを前記燃料電池部の燃料極に供給し、さらに、外部から導入したガスを前記燃料発生部材に供給し、前記燃料電池部の燃料極から排出されるガスを外部に排出する状態である請求項1に記載の燃料電池システム。   In the second state, the gas discharged from the fuel generating member is discharged to the outside, the gas introduced from the outside is supplied to the fuel electrode of the fuel cell unit, and the gas introduced from the outside is generated as the fuel. 2. The fuel cell system according to claim 1, wherein the fuel cell system is in a state of being supplied to the member and discharging the gas discharged from the fuel electrode of the fuel cell unit to the outside. 前記第2の状態において、外部から導入したガスの前記燃料発生部材への供給及び前記燃料発生部材から排出されるガスの外部への排出と、外部から導入したガスの前記燃料電池部の燃料極への供給及び前記燃料電池部の燃料極から排出されるガスの外部への排出とが同時に行われる請求項2に記載の燃料電池システム。   In the second state, supply of gas introduced from the outside to the fuel generation member, discharge of gas discharged from the fuel generation member to the outside, and fuel electrode of the fuel cell unit of gas introduced from the outside The fuel cell system according to claim 2, wherein the supply to the fuel cell and the discharge of the gas discharged from the fuel electrode of the fuel cell unit to the outside are performed simultaneously. 第1のコネクタ、前記第1のコネクタと対になる第2のコネクタ、第3のコネクタ、及び前記第3のコネクタと対になる第4のコネクタを前記循環用配管上にさらに備え、
第1の開閉バルブが前記第1のコネクタと前記燃料発生部材との間であって前記第1のコネクタの近傍に配置され、
第2の開閉バルブが前記第2のコネクタと前記燃料電池部との間であって前記第2のコネクタの近傍に配置され、
第3の開閉バルブが前記第3のコネクタと前記燃料発生部材との間であって前記第3のコネクタの近傍に配置され、
第4の開閉バルブが前記第4のコネクタと前記燃料電池部との間であって前記第4のコネクタの近傍に配置され、
前記第1の開閉バルブ、前記第2の開閉バルブ、前記第3の開閉バルブ、及び前記第4の開閉バルブが前記切替部に含まれる請求項1〜3のいずれか一項に記載の燃料電池システム。
A first connector; a second connector paired with the first connector; a third connector; and a fourth connector paired with the third connector on the circulation pipe;
A first on-off valve is disposed between the first connector and the fuel generating member and in the vicinity of the first connector;
A second on-off valve is disposed between the second connector and the fuel cell unit and in the vicinity of the second connector;
A third on-off valve is disposed between the third connector and the fuel generating member and in the vicinity of the third connector;
A fourth open / close valve is disposed between the fourth connector and the fuel cell unit and in the vicinity of the fourth connector;
The fuel cell according to any one of claims 1 to 3, wherein the first open / close valve, the second open / close valve, the third open / close valve, and the fourth open / close valve are included in the switching unit. system.
JP2012221623A 2012-10-03 2012-10-03 Fuel cell system Withdrawn JP2014075248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012221623A JP2014075248A (en) 2012-10-03 2012-10-03 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012221623A JP2014075248A (en) 2012-10-03 2012-10-03 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2014075248A true JP2014075248A (en) 2014-04-24

Family

ID=50749271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012221623A Withdrawn JP2014075248A (en) 2012-10-03 2012-10-03 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2014075248A (en)

Similar Documents

Publication Publication Date Title
JP4961682B2 (en) Fuel cell power generation apparatus and operation stop method
JP5269582B2 (en) Fuel cell system
JP5505583B1 (en) Secondary battery type fuel cell system
JP5516735B2 (en) Fuel cell
JP5168431B2 (en) Secondary battery type solid oxide fuel cell system
JP2014075248A (en) Fuel cell system
JP5772681B2 (en) Fuel cell system
JP5679097B1 (en) Secondary battery type fuel cell system
JP2014110076A (en) Method for introducing gas into fuel cell system
JP5790530B2 (en) Secondary battery type fuel cell system
JP2014216062A (en) Secondary battery type fuel cell system and power supply system including the same
JP5786634B2 (en) Secondary battery type fuel cell
KR20190026180A (en) Fuel cell stack
JP2007018967A (en) Operation method of fuel cell
JP2014110077A (en) Method for introducing gas into fuel cell system
JP6084532B2 (en) Hydrogen production equipment
JP5776842B2 (en) Secondary battery type fuel cell system
WO2019155610A1 (en) Anode layer activation method for solid oxide fuel cell, and solid oxide fuel cell system
US20150306561A1 (en) Fuel Generation Device and Fuel Cell System Provided with Same
JP2018185985A (en) Cell stack device, module and module housing device
KR20120122053A (en) Slurry circulation type zn/air battery unit cell
JP2007335112A (en) Fuel cell
JP2011210587A (en) Fuel battery power generating apparatus, and control method thereof
JP2008135204A (en) Fuel-cell power generator, and its control method/control program
JP2007141556A (en) Fuel cell and passage composition member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20151216