JP2014075246A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2014075246A
JP2014075246A JP2012221617A JP2012221617A JP2014075246A JP 2014075246 A JP2014075246 A JP 2014075246A JP 2012221617 A JP2012221617 A JP 2012221617A JP 2012221617 A JP2012221617 A JP 2012221617A JP 2014075246 A JP2014075246 A JP 2014075246A
Authority
JP
Japan
Prior art keywords
fuel
gas
amount
fuel cell
generating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012221617A
Other languages
Japanese (ja)
Inventor
Atsuhiro Noda
篤広 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2012221617A priority Critical patent/JP2014075246A/en
Publication of JP2014075246A publication Critical patent/JP2014075246A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell system having high energy efficiency.SOLUTION: The fuel cell system comprises: a fuel generation member 1 for generating a fuel gas by chemical reaction; a fuel cell unit 2 for generating power by using the fuel gas supplied from the fuel generation member; a gas passage for circulating gas between the fuel generation member and the fuel cell unit; a circulator 8 disposed in the gas passage and forcibly circulating gas between the fuel generation member and the fuel cell unit; and a circulator control unit for controlling the amount of gas circulated by the circulator so that the circulated amount of gas becomes equal to or less than a minimum value in the range of amounts of gas circulated by the circulator at which value the amount of fuel gas generated by the fuel generation unit becomes maximum.

Description

本発明は、燃料発生部材を備える燃料電池システムに関する。   The present invention relates to a fuel cell system including a fuel generating member.

燃料電池は、典型的には、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を、燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込んだものを1つのセル構成としている。そして、燃料極に燃料ガス(例えば水素)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給されることにより発電が行われる。   A fuel cell typically includes a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), a fuel electrode (anode) and an oxidizer electrode. The one sandwiched from both sides by the (cathode) has a single cell configuration. A fuel gas channel for supplying a fuel gas (for example, hydrogen) to the fuel electrode and an oxidant gas channel for supplying an oxidant gas (for example, oxygen or air) to the oxidant electrode are provided. Electric power is generated by supplying the fuel gas and the oxidant gas to the fuel electrode and the oxidant electrode, respectively.

燃料電池は、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになるだけでなく、環境に優れた発電方式であり、地球規模でのエネルギーや環境問題解決の切り札として期待されている。   Fuel cells are not only energy-saving because of the high efficiency of the power energy that can be extracted in principle, but they are also a power generation system that excels in the environment, and are expected as a trump card for solving global energy and environmental problems.

特表平11−501448号公報Japanese National Patent Publication No. 11-501448 国際公開第2012/043271号International Publication No. 2012/043271 特開2003―217627号公報JP 2003-217627 A

特許文献1及び特許文献2には、固体酸化物型燃料電池と、酸化反応により水素を発生し、還元反応により再生可能な水素発生部材とを組み合わせた2次電池型燃料電池システムが開示されている。上記2次電池型燃料電池システムでは、システムの発電動作時に水素発生部材が水素を発生し、システムの充電動作時に水素発生部材が再生される。   Patent Document 1 and Patent Document 2 disclose a secondary battery type fuel cell system that combines a solid oxide fuel cell and a hydrogen generating member that generates hydrogen by an oxidation reaction and can be regenerated by a reduction reaction. Yes. In the secondary battery type fuel cell system, the hydrogen generating member generates hydrogen during the power generation operation of the system, and the hydrogen generating member is regenerated during the charging operation of the system.

水素発生部材の典型的な形態としては、酸化反応により水素を発生し、還元反応により再生可能な金属を母材とする微粒子を押し固めたペレットを多数空間内に配置する形態を挙げることができる。   As a typical form of the hydrogen generating member, there can be mentioned a form in which a large number of pellets in which fine particles having metal as a base material, which generates hydrogen by an oxidation reaction and is regenerated by a reduction reaction, are compacted are arranged in a space. .

燃料ガスの発生効率を上げるためには、ペレットは表面に止まらず内部までガスと反応して酸化または還元することが望ましいが、微粒子を押し固めている構造であるが故にペレット内部へはガスが浸透し難い。また、水素発生部材の水素発生時に生じる酸化反応は上記微粒子の体積増加を伴うものであり、初めにペレット表面で酸化性ガスとの酸化反応により上記微粒子の膨張が起こり、水素発生部材の酸化が進むと、ペレット内部で酸化性ガスとの酸化反応が起こるが、上記微粒子の膨張により水素発生部材の内部への酸化性ガスの浸透が妨げられ、ペレット内部へのガスの浸透がより一層困難になる。   In order to increase the generation efficiency of the fuel gas, it is desirable that the pellet not only stay on the surface but react with the gas to the inside to oxidize or reduce, but because of the structure in which the fine particles are consolidated, the gas is inside the pellet. Hard to penetrate. In addition, the oxidation reaction that occurs during the hydrogen generation of the hydrogen generating member is accompanied by an increase in the volume of the fine particles. First, the fine particles expand due to the oxidation reaction with the oxidizing gas on the pellet surface, and the hydrogen generating member is oxidized. As it progresses, an oxidation reaction with the oxidizing gas occurs inside the pellet, but the expansion of the fine particles prevents the penetration of the oxidizing gas into the hydrogen generating member, making it more difficult for the gas to penetrate into the pellet. Become.

そのため、ペレット内部へのガスの浸透を促進する対策を講ずることが望ましいが、当該対策を講ずる際に無駄なエネルギーが消費されてしまうことにならないように留意する必要がある。   For this reason, it is desirable to take measures to promote gas permeation into the pellet, but care must be taken not to consume wasted energy when taking such measures.

なお、特許文献3で開示されている燃料供給量制御装置は、負荷電力と燃料電池の出力電力とに基づいて、燃料電池に供給する燃料の量を補償しているだけであり、水素発生源の状態を考慮した燃料供給量の制御は行われていない。   Note that the fuel supply amount control device disclosed in Patent Document 3 only compensates the amount of fuel supplied to the fuel cell based on the load power and the output power of the fuel cell. The fuel supply amount is not controlled in consideration of this condition.

本発明は、上記の状況に鑑み、エネルギー効率が高い燃料電池システムを提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a fuel cell system with high energy efficiency.

上記目的を達成するために本発明の第1の局面に係る燃料電池システムは、化学反応により燃料ガスを発生する燃料発生部材と、前記燃料発生部材から供給される前記燃料ガスを用いて発電を行う燃料電池部と、前記燃料発生部材と前記燃料電池部との間でガスを循環させるためのガス流路と、前記ガス流路上に設けられ、前記燃料発生部材と前記燃料電池部との間でガスを強制的に循環させる循環器と、前記燃料電池部の発電時に、前記燃料発生部材での燃料ガス発生量が最大になる前記循環器のガス循環量範囲の最小値以下となるように、前記循環器のガス循環量を制御する循環器制御部とを備える構成(第1の構成)とする。   In order to achieve the above object, a fuel cell system according to a first aspect of the present invention generates power using a fuel generating member that generates a fuel gas by a chemical reaction, and the fuel gas supplied from the fuel generating member. A fuel cell section to be performed, a gas flow path for circulating gas between the fuel generation member and the fuel cell section, and provided on the gas flow path, between the fuel generation member and the fuel cell section A circulator that forcibly circulates gas, and a fuel gas generation amount at the fuel generating member at the time of power generation by the fuel cell unit is less than a minimum value of a gas circulation amount range of the circulator that maximizes the amount of fuel gas generated. And a circulator control unit that controls a gas circulation amount of the circulator (first configuration).

上記目的を達成するために本発明の第2の局面に係る燃料電池システムは、化学反応により燃料ガスを発生し、前記化学反応の逆反応により再生可能な燃料発生部材と、前記燃料発生部材から供給される前記燃料ガスを用いて発電を行う発電機能及び前記燃料発生部材の再生時に前記燃料発生部材から供給される前記逆反応の生成物を電気分解する電気分解機能を有する発電・電気分解部と、前記燃料発生部材と前記発電・電気分解部との間でガスを循環させるためのガス流路と、前記燃料発生部材の再生時に、前記燃料発生部材で発生する前記逆反応の生成物の発生量が最大になる前記循環器のガス循環量範囲の最小値以下となるように、前記循環器のガス循環量を制御する循環器制御部とを備える構成(第2の構成)とする。なお、前記発電・電気分解部は、例えば、前記燃料発生部材から供給される前記燃料ガスを用いて発電を行う発電動作と、前記燃料発生部材の再生時に前記燃料発生部材から供給される前記逆反応の生成物を電気分解する電気分解動作とを切り替える燃料電池を備える構成であってもよく、また、例えば、前記燃料発生部材から供給される前記燃料ガスを用いて発電を行う燃料電池と、前記燃料発生部材の再生時に前記燃料発生部材から供給される前記逆反応の生成物を電気分解する電気分解器とを別個に備える構成であってもよい。   In order to achieve the above object, a fuel cell system according to a second aspect of the present invention includes a fuel generating member that generates a fuel gas by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction, and a fuel generating member. A power generation / electrolysis unit having a power generation function for generating power using the supplied fuel gas and an electrolysis function for electrolyzing the product of the reverse reaction supplied from the fuel generation member during regeneration of the fuel generation member A gas flow path for circulating gas between the fuel generating member and the power generation / electrolysis unit, and a product of the reverse reaction generated in the fuel generating member during regeneration of the fuel generating member. A configuration (second configuration) is provided that includes a circulator control unit that controls the gas circulation amount of the circulator so as to be equal to or less than the minimum value of the gas circulation amount range of the circulator where the generation amount is maximum. In addition, the power generation / electrolysis unit may, for example, generate power using the fuel gas supplied from the fuel generation member, and the reverse supplied from the fuel generation member during regeneration of the fuel generation member. The fuel cell may be configured to switch between an electrolysis operation for electrolyzing the product of the reaction, and, for example, a fuel cell that generates power using the fuel gas supplied from the fuel generating member; A configuration may be provided separately with an electrolyzer that electrolyzes the product of the reverse reaction supplied from the fuel generating member during regeneration of the fuel generating member.

また、上記第2の構成の燃料電池システムにおいて、前記循環器制御部が、前記発電・電気分解部の発電時に、前記燃料発生部材での燃料ガス発生量が最大になる前記循環器のガス循環量範囲の最小値以下となるように、前記循環器のガス循環量を制御する構成(第3の構成)とすることが好ましい。   Further, in the fuel cell system of the second configuration, the circulator control unit is configured to perform gas circulation of the circulator that maximizes the amount of fuel gas generated in the fuel generation member during power generation by the power generation / electrolysis unit. It is preferable to adopt a configuration (third configuration) for controlling the gas circulation amount of the circulator so as to be equal to or less than the minimum value of the amount range.

また、上記第1の構成の燃料電池システムにおいて、前記燃料発生部材は微粒子で形成され、前記微粒子は、前記化学反応により燃料ガスを発生する金属を母材とする構成(第4の構成)としてもよい。   Further, in the fuel cell system of the first configuration, the fuel generating member is formed of fine particles, and the fine particles have a metal base material (fourth configuration) that generates fuel gas by the chemical reaction. Also good.

また、上記第2又は第3の構成の燃料電池システムにおいて、前記燃料発生部材は微粒子で形成され、前記微粒子は、前記化学反応により燃料ガスを発生し、前記逆反応により再生可能な金属を母材とする構成(第5の構成)としてもよい。   Further, in the fuel cell system of the second or third configuration, the fuel generating member is formed of fine particles, and the fine particles generate a fuel gas by the chemical reaction and use a metal that can be regenerated by the reverse reaction. It is good also as composition (5th composition) used as material.

また、上記第1〜第5のいずれかの構成の燃料電池システムにおいて、 前記燃料発生部材が複数の容器に分かれて収容されている構成(第6の構成)としてもよい。   In the fuel cell system having any one of the first to fifth configurations, the fuel generation member may be configured to be divided into a plurality of containers (sixth configuration).

本発明の第1の局面に係る燃料電池システムによると、循環器制御部が、燃料電池部の発電時に、燃料発生部材での燃料ガス発生量が最大になる循環器のガス循環量範囲の最小値以下となるように、循環器のガス循環量を制御するので、燃料ガス発生量の増加につながらないガス循環量の増加を防止することができる。したがって、燃料電池部の発電時に、循環器の駆動に無駄なエネルギーが消費されることをなくすことができ、エネルギー効率を高くすることができる。   According to the fuel cell system of the first aspect of the present invention, the circulator control unit is configured to minimize the gas circulation amount range of the circulator in which the amount of fuel gas generated in the fuel generation member is maximized when the fuel cell unit generates power. Since the gas circulation rate of the circulator is controlled so as to be less than the value, an increase in the gas circulation rate that does not lead to an increase in the amount of fuel gas generation can be prevented. Therefore, it is possible to eliminate useless energy for driving the circulator during power generation of the fuel cell unit, and to increase energy efficiency.

本発明の第2の局面に係る燃料電池システムによると、循環器制御部が、燃料発生部材の再生時に、燃料発生部材で発生する逆反応の生成物の発生量が最大になる循環器のガス循環量範囲の最小値以下となるように、循環器のガス循環量を制御するので、逆反応の生成物の発生量の増加につながらないガス循環量の増加を防止することができる。したがって、燃料発生部材の再生時に、循環器の駆動に無駄なエネルギーが消費されることをなくすことができ、エネルギー効率を高くすることができる。   According to the fuel cell system according to the second aspect of the present invention, the circulator control unit causes the circulator gas to maximize the amount of the product of the reverse reaction generated in the fuel generating member during regeneration of the fuel generating member. Since the gas circulation rate of the circulator is controlled so as to be equal to or less than the minimum value of the circulation rate range, it is possible to prevent an increase in the gas circulation rate that does not lead to an increase in the generation amount of the product of the reverse reaction. Therefore, when the fuel generating member is regenerated, unnecessary energy is not consumed for driving the circulator, and energy efficiency can be increased.

本発明の一実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a fuel cell system concerning one embodiment of the present invention. ペレット表面付近のガスの流れを示す模式図である。It is a schematic diagram which shows the gas flow of the pellet surface vicinity. ガス循環量と水素発生量との関係を示す図である。It is a figure which shows the relationship between the amount of gas circulation, and the amount of hydrogen generation. ガス循環量と水素発生量との関係を示す図である。It is a figure which shows the relationship between the amount of gas circulation, and the amount of hydrogen generation. 燃料発生部材を示す模式図である。It is a schematic diagram which shows a fuel generation member. ガス循環量と水素発生量との関係を示す図である。It is a figure which shows the relationship between the amount of gas circulation, and the amount of hydrogen generation. ガス循環量と水素発生量との関係を示す図である。It is a figure which shows the relationship between the amount of gas circulation, and the amount of hydrogen generation. 燃料発生部材を示す模式図である。It is a schematic diagram which shows a fuel generation member. ガス循環量と水素発生量との関係を示す図である。It is a figure which shows the relationship between the amount of gas circulation, and the amount of hydrogen generation. 燃料発生部材を示す模式図である。It is a schematic diagram which shows a fuel generation member. ガス循環量と水素発生量との関係を示す図である。It is a figure which shows the relationship between the amount of gas circulation, and the amount of hydrogen generation. 燃料発生部材を示す模式図である。It is a schematic diagram which shows a fuel generation member. 燃料発生部材を示す模式図である。It is a schematic diagram which shows a fuel generation member. 燃料発生部材の部分拡大図である。It is the elements on larger scale of a fuel generation member.

本発明の実施形態について図面を参照して以下に説明する。なお、本発明は、後述する実施形態に限られない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not restricted to embodiment mentioned later.

本実施形態に係る燃料電池システムは、燃料発生部材1と、燃料電池部2と、燃料発生部材1を加熱するヒーター3と、燃料電池部2を加熱するヒーター4と、燃料発生部材1及びヒーター3を収容する容器5と、燃料電池部2及びヒーター4を収容する容器6と、燃料発生部材1と燃料電池部2の間でガスを循環させるための配管7と、燃料発生部材1と燃料電池部2の間でガスを強制的に循環させるポンプ8と、断熱容器9と、燃料電池部2の空気極2Cに空気を供給するための配管10と、燃料電池部2の空気極2Cから空気を排出するための配管11と、システム全体を制御するシステムコントローラ12とを備えている。断熱容器9は、容器5及び6と、配管7、10、及び11それぞれの一部とを収容している。なお、図が煩雑になることを防ぐため、電力を伝送する電力ラインや制御信号を伝送する制御ラインなどの図示は省略している。また、必要に応じて、燃料発生部材1や燃料電池部2の周辺に温度センサ等を設けてもよい。また、ポンプ8の代わりに、例えばコンプレッサ、ファン、ブロアなどの他の循環器を用いてもよい。   The fuel cell system according to this embodiment includes a fuel generating member 1, a fuel cell unit 2, a heater 3 for heating the fuel generating member 1, a heater 4 for heating the fuel cell unit 2, the fuel generating member 1 and the heater. 3, a container 6 for storing the fuel cell unit 2 and the heater 4, a pipe 7 for circulating gas between the fuel generating member 1 and the fuel cell unit 2, the fuel generating member 1 and the fuel From a pump 8 that forcibly circulates gas between the battery parts 2, a heat insulating container 9, a pipe 10 for supplying air to the air electrode 2 </ b> C of the fuel cell part 2, and an air electrode 2 </ b> C of the fuel cell part 2 A pipe 11 for discharging air and a system controller 12 for controlling the entire system are provided. The heat insulating container 9 accommodates the containers 5 and 6 and a part of each of the pipes 7, 10, and 11. In addition, in order to prevent the figure from becoming complicated, illustration of a power line for transmitting power and a control line for transmitting control signals is omitted. Moreover, you may provide a temperature sensor etc. around the fuel generation member 1 and the fuel cell part 2 as needed. Further, instead of the pump 8, other circulators such as a compressor, a fan, and a blower may be used.

燃料発生部材1としては、例えば、金属を母材として、その表面に金属または金属酸化物が添加されており、酸化性ガス(例えば水蒸気)との酸化反応によって燃料ガス(例えば水素)を発生し、還元性ガス(例えば水素)との還元反応により再生可能なものを用いることができる。母材の金属としては例えば、Ni、Fe、Pd、V、Mgやこれらを基材とする合金が挙げられ、特にFeは安価で、加工も容易なので好ましい。また、添加される金属としては、Al、Rd、Pd、Cr、Ni、Cu、Co、V、Moが挙げられ、添加される金属酸化物としてはSiO2、TiO2が挙げられる。ただし、母材となる金属と、添加される金属は同一の材料ではない。なお、本実施形態においては、燃料発生部材1として、Feを主体とする燃料発生部材を用いる。 As the fuel generating member 1, for example, a metal or a metal oxide is added to the surface of a metal as a base material, and a fuel gas (for example, hydrogen) is generated by an oxidation reaction with an oxidizing gas (for example, water vapor). Further, those that can be regenerated by a reduction reaction with a reducing gas (for example, hydrogen) can be used. Examples of the base metal include Ni, Fe, Pd, V, Mg, and alloys based on these, and Fe is particularly preferable because it is inexpensive and easy to process. Examples of the added metal include Al, Rd, Pd, Cr, Ni, Cu, Co, V, and Mo. Examples of the added metal oxide include SiO 2 and TiO 2 . However, the metal used as a base material and the added metal are not the same material. In this embodiment, a fuel generating member mainly composed of Fe is used as the fuel generating member 1.

Feを主体とする燃料発生部材は、例えば、下記の(1)式に示す酸化反応により、酸化性ガスである水蒸気を消費して燃料ガス(還元性ガス)である水素を生成することができる。
4H2O+3Fe→4H2+Fe34 …(1)
The fuel generating member mainly composed of Fe can generate hydrogen as a fuel gas (reducing gas) by consuming water vapor as an oxidizing gas, for example, by an oxidation reaction represented by the following formula (1). .
4H 2 O + 3Fe → 4H 2 + Fe 3 O 4 (1)

上記の(1)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄の残量が減っていくが、上記の(1)式の逆反応すなわち下記の(2)式に示す還元反応により、燃料発生部材1を再生することができる。なお、上記の(1)式に示す鉄の酸化反応及び下記の(2)式の還元反応は600℃未満の低い温度で行うこともできる。
4H2+Fe34→3Fe+4H2O …(2)
When the oxidation reaction of iron shown in the above formula (1) proceeds, the change from iron to iron oxide proceeds and the remaining amount of iron decreases, but the reverse reaction of the above formula (1), that is, the following (2 The fuel generating member 1 can be regenerated by the reductive reaction shown in the formula. The iron oxidation reaction shown in the above formula (1) and the reduction reaction in the following formula (2) can also be performed at a low temperature of less than 600 ° C.
4H 2 + Fe 3 O 4 → 3Fe + 4H 2 O (2)

燃料電池部2は、図1に示す通り、電解質膜2Aの両面に燃料極2Bと酸化剤極である空気極2Cを接合したMEA構造(膜・電極接合体:Membrane Electrode Assembly)である。なお、図1では、MEAを1つだけ設けた構造を図示しているが、MEAを複数設けたり、さらに複数のMEAを積層構造にしたりしてもよい。   As shown in FIG. 1, the fuel cell unit 2 has an MEA structure (membrane / electrode assembly) in which a fuel electrode 2B and an air electrode 2C as an oxidant electrode are bonded to both surfaces of an electrolyte membrane 2A. Although FIG. 1 illustrates a structure in which only one MEA is provided, a plurality of MEAs may be provided, or a plurality of MEAs may be stacked.

電解質膜2Aの材料としては、例えば、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用いることができ、また例えば、ナフィオン(デュポン社の商標)、カチオン導電性ポリマー、アニオン導電性ポリマー等の固体高分子電解質を用いることができるが、これらに限定されることなく、水素イオンを通すものや酸素イオンを通すもの、また、水酸化物イオンを通すもの等、燃料電池の電解質としての特性を満たすものであればよい。なお、本実施形態においては、電解質膜2Aとして、酸素イオン又は水酸化物イオンを通す電解質、例えばイットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用いる。   As a material of the electrolyte membrane 2A, for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) can be used. Solid polymer electrolytes such as, but not limited to, those that pass hydrogen ions, those that pass oxygen ions, and those that pass hydroxide ions can be used as fuel cell electrolytes. Any material satisfying the characteristics may be used. In the present embodiment, an electrolyte that passes oxygen ions or hydroxide ions, for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) is used as the electrolyte membrane 2A.

電解質膜2Aは、固体酸化物電解質の場合であれば、電気化学蒸着法(CVD−EVD法;Chemical Vapor Deposition - Electrochemical Vapor Deposition)等を用いて形成することができ、固体高分子電解の場合であれば、塗布法等を用いて形成することができる。   In the case of a solid oxide electrolyte, the electrolyte membrane 2A can be formed using an electrochemical vapor deposition method (CVD-EVD method; Chemical Vapor Deposition-Electrochemical Vapor Deposition) or the like. If there is, it can be formed using a coating method or the like.

燃料極2B、空気極2Cはそれぞれ、例えば、電解質膜2Aに接する触媒層と、その触媒層に積層された拡散電極とからなる構成にすることができる。触媒層としては、例えば白金黒或いは白金合金をカーボンブラックに担持させたもの等を用いることができる。また、燃料極2Bの拡散電極の材料としては、例えばカーボンペーパ、Ni−Fe系サーメットやNi−YSZ系サーメット等を用いることができる。また、空気極2Cの拡散電極の材料としては、例えばカーボンペーパ、La−Mn−O系化合物やLa−Co−Ce系化合物等を用いることができる。燃料極2B、空気極2Cはそれぞれ、例えば蒸着法等を用いて形成することができる。   Each of the fuel electrode 2B and the air electrode 2C can be configured by, for example, a catalyst layer in contact with the electrolyte membrane 2A and a diffusion electrode laminated on the catalyst layer. As the catalyst layer, for example, platinum black or a platinum alloy supported on carbon black can be used. Further, as a material for the diffusion electrode of the fuel electrode 2B, for example, carbon paper, Ni—Fe cermet, Ni—YSZ cermet, or the like can be used. Moreover, as a material of the diffusion electrode of the air electrode 2C, for example, carbon paper, La—Mn—O-based compound, La—Co—Ce-based compound, or the like can be used. Each of the fuel electrode 2B and the air electrode 2C can be formed by using, for example, vapor deposition.

以下の説明では、燃料ガスとして水素を用いた場合について説明する。   In the following description, a case where hydrogen is used as the fuel gas will be described.

本実施形態に係る燃料電池システムの発電時に燃料電池部2はシステムコントローラ12の制御によって外部負荷(不図示)に電気的に接続される。燃料電池部2では、本実施形態に係る燃料電池システムの発電時に、燃料極2Bにおいて下記の(3)式の反応が起こる。
2+O2-→H2O+2e- …(3)
During power generation of the fuel cell system according to the present embodiment, the fuel cell unit 2 is electrically connected to an external load (not shown) under the control of the system controller 12. In the fuel cell unit 2, the following reaction (3) occurs in the fuel electrode 2B during power generation of the fuel cell system according to the present embodiment.
H 2 + O 2− → H 2 O + 2e (3)

上記の(3)式の反応によって生成された電子は、外部負荷(不図示)を通って、空気極2Cに到達し、空気極2Cにおいて下記の(4)式の反応が起こる。
1/2O2+2e-→O2- …(4)
The electrons generated by the reaction of the above formula (3) pass through an external load (not shown) and reach the air electrode 2C, and the reaction of the following formula (4) occurs in the air electrode 2C.
1 / 2O 2 + 2e → O 2− (4)

そして、上記の(4)式の反応によって生成された酸素イオンは、電解質膜2Aを通って、燃料極2Bに到達する。上記の一連の反応を繰り返すことにより、燃料電池部2が発電動作を行うことになる。また、上記の(3)式から分かるように、本実施形態に係る燃料電池システムの発電動作時には、燃料極2B側においてH2が消費されH2Oが生成されることになる。 And the oxygen ion produced | generated by reaction of said (4) Formula reaches | attains the fuel electrode 2B through electrolyte membrane 2A. By repeating the above series of reactions, the fuel cell unit 2 performs a power generation operation. Further, as can be seen from the above equation (3), during the power generation operation of the fuel cell system according to the present embodiment, H 2 is consumed and H 2 O is generated on the fuel electrode 2B side.

上記の(3)式及び(4)式より、本実施形態に係る燃料電池システムの発電動作時における燃料電池部2での反応は下記の(5)式の通りになる。
2+1/2O2→H2O …(5)
From the above equations (3) and (4), the reaction in the fuel cell unit 2 during the power generation operation of the fuel cell system according to the present embodiment is as shown in the following equation (5).
H 2 + 1 / 2O 2 → H 2 O (5)

一方、燃料発生部材1は、上記の(1)式に示す酸化反応により、本実施形態に係る燃料電池システムの発電時に燃料電池部2の燃料極2B側で生成されたH2Oを消費してH2を生成する。 On the other hand, the fuel generating member 1 consumes H 2 O generated on the fuel electrode 2B side of the fuel cell unit 2 during power generation of the fuel cell system according to the present embodiment by the oxidation reaction shown in the above formula (1). To produce H 2 .

上記の(1)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄残量が減っていくが、上記の(2)式に示す還元反応により、燃料発生部材1を再生することができ、本実施形態に係る燃料電池システムを充電することができる。   When the oxidation reaction of iron shown in the above formula (1) proceeds, the change from iron to iron oxide proceeds and the remaining amount of iron decreases, but the fuel generating member is reduced by the reduction reaction shown in the above formula (2). 1 can be regenerated, and the fuel cell system according to this embodiment can be charged.

燃料発生部材1の再生時すなわち本実施形態に係る燃料電池システムの充電時に燃料電池部2はシステムコントローラ12の制御によって外部電源(不図示)に接続される。燃料電池部2では、本実施形態に係る燃料電池システムの充電時に、上記の(5)式の逆反応である下記の(6)式に示す電気分解反応が起こり、燃料極2B側においてH2Oが消費されH2が生成され、燃料発生部材1では、上記の(2)式に示す還元反応が起こり、燃料電池部2の燃料極2B側で生成されたH2が消費されH2Oが生成される。
2O→H2+1/2O2 …(6)
When the fuel generating member 1 is regenerated, that is, when the fuel cell system according to this embodiment is charged, the fuel cell unit 2 is connected to an external power source (not shown) under the control of the system controller 12. In the fuel cell unit 2, when the fuel cell system according to the present embodiment is charged, an electrolysis reaction shown in the following formula (6), which is the reverse reaction of the formula (5), occurs, and H 2 is generated on the fuel electrode 2B side. O is consumed and H 2 is generated. In the fuel generating member 1, the reduction reaction shown in the above formula (2) occurs, and the H 2 generated on the fuel electrode 2B side of the fuel cell unit 2 is consumed and H 2 O is consumed. Is generated.
H 2 O → H 2 + 1 / 2O 2 (6)

システムコントローラ12は、システム全体の制御、例えば、燃料電池部2の発電動作と電気分解動作の切り替えやポンプ8のガス循環量の制御等を行う。   The system controller 12 controls the entire system, for example, switches between the power generation operation and the electrolysis operation of the fuel cell unit 2 and controls the gas circulation amount of the pump 8.

なお、燃料発生部材1においては、その反応性を上げるために単位体積当りの表面積を大きくすることが望ましい。燃料発生部材1の単位体積当りの表面積を増加させる方策としては、例えば、燃料発生部材1の主体を微粒子化し、その微粒子化したものを成型すればよい。微粒子化の方法は例えばボールミル等を用いた粉砕によって粒子を砕く方法が挙げられる。さらに、機械的な手法などにより微粒子にクラックを発生させることで微粒子の表面積をより一層増加させてもよく、酸処理、アルカリ処理、ブラスト加工などによって微粒子の表面を荒らして微粒子の表面積をより一層増加させてもよい。   In the fuel generating member 1, it is desirable to increase the surface area per unit volume in order to increase the reactivity. As a measure for increasing the surface area per unit volume of the fuel generating member 1, for example, the main body of the fuel generating member 1 may be made into fine particles, and the fine particles may be molded. Examples of the fine particles include a method of crushing particles by crushing using a ball mill or the like. Further, the surface area of the fine particles may be further increased by generating cracks in the fine particles by a mechanical method or the like, and the surface area of the fine particles is further increased by roughening the surface of the fine particles by acid treatment, alkali treatment, blasting, etc. It may be increased.

ここで、燃料発生部材1の形態を、Fe微粒子を押し固めてペレット状の粒にし、容器5内にそのペレットを複数配置した場合の水素発生量について考察する。後述する図2ではガスの流れを矢印で模式的に示している。なお、矢印の線の太さはガスの圧力を示しており、矢印の線が太いほどガスの圧力が高くなる。   Here, the form of the fuel generating member 1 will be considered in terms of the amount of hydrogen generated when Fe fine particles are pressed into pellets and a plurality of pellets are arranged in the container 5. In FIG. 2 to be described later, the gas flow is schematically shown by arrows. The thickness of the arrow line indicates the gas pressure, and the thicker the arrow line, the higher the gas pressure.

まず図2(a)に示すようにポンプ8のガス循環量が少ない場合は、ガス循環量の増加に伴い燃料発生部材1での水素発生量が増える。これは、ポンプ8のガス循環量が増えるにしたがって、ペレット13において酸化性ガス(H2O)と反応する面積が増えて燃料発生部材1での水素発生量が増えるためである。 First, as shown in FIG. 2A, when the gas circulation amount of the pump 8 is small, the hydrogen generation amount in the fuel generating member 1 increases as the gas circulation amount increases. This is because as the gas circulation amount of the pump 8 increases, the area of the pellet 13 that reacts with the oxidizing gas (H 2 O) increases and the amount of hydrogen generated in the fuel generating member 1 increases.

ポンプ8のガス循環量を図2(b)に示すように更に増やした場合は、ガス循環量の増加に伴いペレット13内部への酸化性ガス(H2O)の浸透が進み、燃料発生部材1での水素発生量が増える。 When the gas circulation amount of the pump 8 is further increased as shown in FIG. 2 (b), the penetration of the oxidizing gas (H 2 O) into the pellet 13 proceeds with the increase of the gas circulation amount, and the fuel generating member The amount of hydrogen generated at 1 increases.

ポンプ8のガス循環量を図2(c)に示すように更に増やした場合は、ガス循環量が増加すると燃料発生部材1での水素発生量は増えるものの、ペレット13内部への酸化性ガス(H2O)の浸透が困難になってくるため水素発生量の増加率は鈍化する。 When the gas circulation amount of the pump 8 is further increased as shown in FIG. 2C, the hydrogen generation amount in the fuel generating member 1 increases as the gas circulation amount increases, but the oxidizing gas ( Since the penetration of H 2 O) becomes difficult, the rate of increase in the amount of hydrogen generation slows down.

そして、ポンプ8のガス循環量を図2(d)に示すように更に増やした場合は、ガス循環量が増加すると燃料発生部材1での水素発生量は逆に減少することとなる。これは、ポンプ8のガス循環量の増加に伴い、燃料発生部材1と燃料電池部2の間を循環するガス流の圧力が上昇し、そのガス流の周囲の圧力がペレット13内部の圧力より低くなって、ペレット13内部からガス流の周囲に向かうガスの流れ14が生じることで、ペレット13内部への酸化性ガス(H2O)の浸透が妨げられるからである。 When the gas circulation amount of the pump 8 is further increased as shown in FIG. 2D, the hydrogen generation amount in the fuel generating member 1 decreases conversely when the gas circulation amount increases. This is because the pressure of the gas flow circulating between the fuel generating member 1 and the fuel cell unit 2 increases as the gas circulation amount of the pump 8 increases, and the pressure around the gas flow is higher than the pressure inside the pellet 13. This is because the flow of gas 14 from the inside of the pellet 13 toward the periphery of the gas flow is reduced and the penetration of the oxidizing gas (H 2 O) into the inside of the pellet 13 is hindered.

以上により、ポンプ8のガス循環量と燃料発生部材1での水素発生量との関係は図3や図4に示すようになる。そこで、システムコントローラ12は、燃料電池部2の発電時に、燃料発生部材1での燃料ガス発生量が最大になるポンプ8のガス循環量範囲の最小値Vmin以下となるように、ポンプ8のガス循環量を制御する。すなわち、システムコントローラ12は、燃料電池部2の発電時に、ポンプ8のガス循環量を0以上Vmin以下の任意の値に設定する。このような制御により、水素発生量の増加につながらないガス循環量の増加を防止することができる。したがって、燃料電池部2の発電時に、ポンプ8の駆動に無駄なエネルギーが消費されることをなくすことができ、エネルギー効率を高くすることができる。   Thus, the relationship between the gas circulation amount of the pump 8 and the hydrogen generation amount in the fuel generating member 1 is as shown in FIG. 3 and FIG. Therefore, the system controller 12 sets the gas in the pump 8 so that the fuel gas generation amount in the fuel generating member 1 is the minimum value Vmin or less in the gas circulation amount range of the pump 8 when the fuel cell unit 2 generates power. Control the amount of circulation. That is, the system controller 12 sets the gas circulation amount of the pump 8 to an arbitrary value between 0 and Vmin during power generation of the fuel cell unit 2. Such control can prevent an increase in the amount of gas circulation that does not lead to an increase in the amount of hydrogen generation. Therefore, it is possible to eliminate useless energy for driving the pump 8 during power generation of the fuel cell unit 2, and to increase energy efficiency.

次に、複数のペレットによって構成される燃料発生部材1の各要素と水素発生量との関係について説明する。なお、以下の説明で用いられる図では容器5に収容されるヒーターの図示を省略する。   Next, the relationship between each element of the fuel generating member 1 composed of a plurality of pellets and the hydrogen generation amount will be described. In addition, illustration of the heater accommodated in the container 5 is abbreviate | omitted in the figure used by the following description.

(i)ペレットの大きさと水素発生量との関係
図5(a)に示すようにペレット13が大きい場合、ペレット13間の隙間が大きいため、ポンプ8のガス循環量が少なく燃料発生部材1と燃料電池部2の間を循環するガス流の圧力が低くても容器5の深い部分(燃料発生部材1と燃料電池部2の間を循環するガス流から離れている部分)までガスが行き渡る。しかしながら、ペレット13が大きいので、ペレット13内部へガスを浸透させるには、ポンプ8のガス循環量を増やして燃料発生部材1と燃料電池部2の間を循環するガス流の圧力を高くする必要がある。
(I) Relationship between pellet size and hydrogen generation amount As shown in FIG. 5 (a), when the pellet 13 is large, the gap between the pellets 13 is large, so the gas circulation amount of the pump 8 is small and the fuel generation member 1 Even if the pressure of the gas flow circulating between the fuel cell parts 2 is low, the gas spreads to a deep part of the container 5 (a part away from the gas flow circulating between the fuel generating member 1 and the fuel cell part 2). However, since the pellet 13 is large, in order to infiltrate the gas into the pellet 13, it is necessary to increase the gas circulation amount of the pump 8 and increase the pressure of the gas flow circulating between the fuel generating member 1 and the fuel cell unit 2. There is.

一方、図5(b)に示すようにペレット13が小さい場合、ペレット13間の隙間が小さいため、ポンプ8のガス循環量が少なく燃料発生部材1と燃料電池部2の間を循環するガス流の圧力が低くければ容器5の深い部分までガスが行き渡らない。しかしながら、ペレット13が小さいので、ポンプ8のガス循環量が少なく燃料発生部材1と燃料電池部2の間を循環するガス流の圧力が低くても容器5の浅い部分(燃料発生部材1と燃料電池部2の間を循環するガス流に近い部分)に位置するペレット13ではペレット13内部にまでガスを浸透する。ポンプ8のガス循環量を増やして燃料発生部材1と燃料電池部2の間を循環するガス流の圧力を高くすると、ガスが容器5の深い部分に到達するようになるが、ペレット13が大きい場合ほどはガスが容器5の深い部分に行き渡らない。   On the other hand, when the pellet 13 is small as shown in FIG. 5B, the gap between the pellets 13 is small, so that the gas circulation amount of the pump 8 is small and the gas flow circulating between the fuel generating member 1 and the fuel cell unit 2 is small. If the pressure is low, the gas will not reach the deep part of the container 5. However, since the pellet 13 is small, even if the gas circulation amount of the pump 8 is small and the pressure of the gas flow circulating between the fuel generating member 1 and the fuel cell unit 2 is low, the shallow portion of the container 5 (the fuel generating member 1 and the fuel) In the pellet 13 located in the portion near the gas flow circulating between the battery units 2, the gas penetrates into the pellet 13. When the gas circulation amount of the pump 8 is increased to increase the pressure of the gas flow circulating between the fuel generating member 1 and the fuel cell unit 2, the gas reaches the deep part of the container 5, but the pellet 13 is large. The gas does not reach the deep part of the container 5 as much as the case.

したがって、図5(a)に示すようにペレット13が大きい場合の水素発生量特性グラフ15と図5(b)に示すようにペレット13が小さい場合の水素発生量特性グラフ16とはそれぞれ図6に示すようになる。図6中のVmin(a)は、図5(a)に示すようにペレット13が大きい場合において、燃料電池部2の発電時に、燃料発生部材1での燃料ガス発生量が最大になるポンプ8のガス循環量範囲の最小値である。図6中のVmin(b)は、図5(b)に示すようにペレット13が小さい場合において、燃料電池部2の発電時に、燃料発生部材1での燃料ガス発生量が最大になるポンプ8のガス循環量範囲の最小値である。なお、図5では図示していないが、ペレット13の重力方向への落下を防ぐために金属メッシュなどの支持部材を容器5の内部に設けるとよい。   Therefore, the hydrogen generation amount characteristic graph 15 when the pellet 13 is large as shown in FIG. 5A and the hydrogen generation amount characteristic graph 16 when the pellet 13 is small as shown in FIG. As shown. Vmin (a) in FIG. 6 is a pump 8 that maximizes the amount of fuel gas generated in the fuel generating member 1 when the fuel cell unit 2 generates power when the pellet 13 is large as shown in FIG. This is the minimum value of the gas circulation rate range. Vmin (b) in FIG. 6 is a pump 8 that maximizes the amount of fuel gas generated in the fuel generating member 1 when the fuel cell unit 2 generates power when the pellet 13 is small as shown in FIG. 5B. This is the minimum value of the gas circulation rate range. Although not shown in FIG. 5, a support member such as a metal mesh may be provided inside the container 5 in order to prevent the pellet 13 from falling in the direction of gravity.

(ii)容器の深さと水素発生量との関係
図5(a)に示すようにペレット13が大きい場合、上述した通り容器5の深い部分までガスが行き渡るので、容器5を深くすると、それに伴ってガスと反応するペレットが増加し、水素発生量が増加する。
(Ii) Relationship between the depth of the container and the amount of hydrogen generated When the pellet 13 is large as shown in FIG. 5 (a), the gas reaches the deep part of the container 5 as described above. As a result, the number of pellets that react with the gas increases, and the amount of hydrogen generation increases.

一方、図5(b)に示すようにペレット13が小さい場合、ペレット13が大きい場合ほどはガスが容器5の深い部分に行き渡らない。このため、容器5を深くしてもさほど水素発生量は増加しない。   On the other hand, as shown in FIG. 5B, when the pellet 13 is small, the gas does not spread to the deep part of the container 5 as the pellet 13 is large. For this reason, even if the container 5 is deepened, the amount of hydrogen generation does not increase so much.

したがって、容器5を深くしたきの水素発生量の増加は、ペレット13が小さい場合よりもペレット13が大きい場合の方が顕著である(図7参照)。なお、図7において図5と同一のグラフには同一の符号を付す。図7中のグラフ17は、図5(a)に示すようにペレット13が大きい場合の水素発生量特性グラフであって、且つグラフ15のときよりも容器5を所定量深くした場合の水素発生量特性グラフである。また、図7中のグラフ18は、図5(b)に示すようにペレット13が小さい場合の水素発生量特性グラフであって、且つグラフ16のときよりも容器5を所定量深くした場合の水素発生量特性グラフである。   Therefore, the increase in the amount of hydrogen generated when the container 5 is deepened is more remarkable when the pellet 13 is larger than when the pellet 13 is small (see FIG. 7). In FIG. 7, the same reference numerals are assigned to the same graphs as in FIG. A graph 17 in FIG. 7 is a hydrogen generation amount characteristic graph when the pellet 13 is large as shown in FIG. 5A, and the hydrogen generation when the container 5 is deeper than the graph 15 by a predetermined amount. It is a quantity characteristic graph. Moreover, the graph 18 in FIG. 7 is a hydrogen generation amount characteristic graph in the case where the pellet 13 is small as shown in FIG. 5B, and the case where the container 5 is made a predetermined amount deeper than in the graph 16. It is a hydrogen generation amount characteristic graph.

(iii)容器の流路長さと水素発生量との関係
図8に示すように容器5の流路(燃料発生部材1と燃料電池部2の間を循環するガス流が辿る経路)が長い場合、容器5の循環ガス流入口付近と循環ガス流出口付近とでは水素発生量が異なる。燃料発生部材1と燃料電池部2の間を循環するガス流(循環ガス流)の圧力は、容器5内での圧力損失のため、循環ガス流入口付近よりも循環ガス流出口付近の方が低くなる。容器5の循環ガス流出口付近では、循環ガス流の圧力が元々低いため、循環ガス流量を増加させても循環ガス流の圧力がなかなか増加せず、その結果水素発生量もなかなか増加しない(図9参照)。
(Iii) Relationship between the flow path length of the container and the hydrogen generation amount When the flow path of the container 5 (path along which the gas flow circulating between the fuel generating member 1 and the fuel cell unit 2 follows) is long as shown in FIG. The amount of hydrogen generated differs between the vicinity of the circulation gas inlet of the container 5 and the vicinity of the circulation gas outlet. The pressure of the gas flow (circulation gas flow) that circulates between the fuel generating member 1 and the fuel cell unit 2 is greater in the vicinity of the circulation gas outlet than in the vicinity of the circulation gas inlet due to pressure loss in the container 5. Lower. In the vicinity of the circulating gas outlet of the vessel 5, the pressure of the circulating gas flow is originally low, so even if the circulating gas flow rate is increased, the pressure of the circulating gas flow does not increase easily, and as a result, the amount of hydrogen generation does not increase easily (Fig. 9).

図9中のグラフ19は、図8に示すように容器5の流路が長い場合の容器5の循環ガス流入口付近における水素発生量特性グラフである。また、図9中のグラフ20は、図8に示すように容器5の流路が長い場合の容器5の循環ガス流出口付近における水素発生量特性グラフである。   A graph 19 in FIG. 9 is a hydrogen generation amount characteristic graph in the vicinity of the circulating gas inlet of the container 5 when the flow path of the container 5 is long as shown in FIG. A graph 20 in FIG. 9 is a hydrogen generation amount characteristic graph in the vicinity of the circulation gas outlet of the container 5 when the flow path of the container 5 is long as shown in FIG.

なお、図10に示すように燃料発生部材1を構成しているペレット13が複数の容器に分かれて収容されていて複数の容器全体の流路が長い場合も、図8に示す場合と同様に、複数の容器全体の循環ガス流入口22と循環ガス流出口23とで水素発生量が異なる。   As shown in FIG. 10, when the pellets 13 constituting the fuel generating member 1 are separately accommodated in a plurality of containers and the flow paths of the plurality of containers are long, as in the case shown in FIG. The amount of hydrogen generation differs between the circulating gas inlet 22 and the circulating gas outlet 23 of the entire plurality of containers.

上記のように燃料発生部材1での水素発生量が局所的に異なる場合、システムコントローラ12は、例えば循環ガス流入口での水素発生量と循環ガス流出口での水素発生量との平均を求めるなどして、燃料発生部材1全体の水素発生量特性を求め、燃料電池部2の発電時に、燃料発生部材1全体での燃料ガス発生量が最大になるポンプ8のガス循環量範囲の最小値Vmin以下となるように、ポンプ8のガス循環量を制御すればよい。なお、図9中のグラフ21は、図8に示すように容器5の流路が長い場合の燃料発生部材1全体での水素発生量特性グラフである。   When the hydrogen generation amount in the fuel generating member 1 is locally different as described above, the system controller 12 calculates, for example, the average of the hydrogen generation amount at the circulation gas inlet and the hydrogen generation amount at the circulation gas outlet. Thus, the hydrogen generation amount characteristic of the entire fuel generation member 1 is obtained, and the minimum value of the gas circulation amount range of the pump 8 at which the generation amount of the fuel gas in the entire fuel generation member 1 is maximized when the fuel cell unit 2 generates power. What is necessary is just to control the gas circulation amount of the pump 8 so that it may become Vmin or less. A graph 21 in FIG. 9 is a hydrogen generation amount characteristic graph of the entire fuel generating member 1 when the flow path of the container 5 is long as shown in FIG.

(iv)燃料発生部材の酸化反応をしていない割合と水素発生量との関係
ペレット13の酸化反応はペレット13の表面から起こり、酸化反応によってFe微粒子が膨張するので、酸化反応が進むにつれてペレット13内部へガスが浸透しにくくなる。したがって、燃料発生部材1の酸化反応をしていない割合(鉄の残量)が減るほど、循環ガス流量を増加させても水素発生量が増加しにくくなる(図11参照)。
(Iv) Relationship between the ratio of the fuel generating member not undergoing the oxidation reaction and the hydrogen generation amount The oxidation reaction of the pellet 13 occurs from the surface of the pellet 13 and the Fe fine particles expand due to the oxidation reaction. It becomes difficult for gas to penetrate 13 inside. Therefore, as the proportion of the fuel generating member 1 that has not undergone the oxidation reaction (remaining amount of iron) decreases, the amount of hydrogen generation is less likely to increase even if the circulation gas flow rate is increased (see FIG. 11).

図11中のグラフ24は、燃料発生部材1の酸化反応をしていない割合(鉄の残量)が100%である場合の水素発生量特性グラフであり、図11中のVmin(100%)は、燃料発生部材1の酸化反応をしていない割合(鉄の残量)が100%である場合において、燃料電池部2の発電時に、燃料発生部材1での燃料ガス発生量が最大になるポンプ8のガス循環量範囲の最小値である。また、図11中のグラフ25は、燃料発生部材1の酸化反応をしていない割合(鉄の残量)が50%である場合の水素発生量特性グラフであり、図11中のVmin(50%)は、燃料発生部材1の酸化反応をしていない割合(鉄の残量)が50%である場合において、燃料電池部2の発電時に、燃料発生部材1での燃料ガス発生量が最大になるポンプ8のガス循環量範囲の最小値である。   A graph 24 in FIG. 11 is a hydrogen generation amount characteristic graph in the case where the ratio (remaining amount of iron) in which the fuel generating member 1 is not oxidized is 100%, and Vmin (100%) in FIG. In the case where the ratio (remaining amount of iron) in which the fuel generating member 1 is not oxidized is 100%, the amount of fuel gas generated in the fuel generating member 1 is maximized when the fuel cell unit 2 generates power. This is the minimum value of the gas circulation amount range of the pump 8. A graph 25 in FIG. 11 is a hydrogen generation amount characteristic graph in a case where the ratio (remaining amount of iron) in which the fuel generating member 1 does not undergo oxidation reaction is 50%, and Vmin (50 in FIG. 11). %) Is the maximum amount of fuel gas generated in the fuel generating member 1 when the fuel cell unit 2 generates power when the ratio (remaining amount of iron) of the fuel generating member 1 that has not undergone the oxidation reaction is 50%. This is the minimum value of the gas circulation amount range of the pump 8.

燃料発生部材の酸化反応をしていない割合と水素発生量との関係を考慮し、システムコントローラ12は、例えば、燃料電池部2の発電時に、鉄の残量が100%である燃料発生部材1での燃料ガス発生量が最大になるポンプ8のガス循環量範囲の最小値Vmin(100%)以下となるように、ポンプ8のガス循環量を制御するとよい。これにより、燃料発生部材1の酸化反応をしていない割合(鉄の残量)がどのような値であっても、水素発生量の増加につながらないガス循環量の増加を防止することができる。   Considering the relationship between the proportion of the fuel generating member that has not undergone the oxidation reaction and the amount of hydrogen generated, the system controller 12, for example, generates the fuel generating member 1 whose remaining amount of iron is 100% during power generation of the fuel cell unit 2. The gas circulation amount of the pump 8 may be controlled so as to be equal to or less than the minimum value Vmin (100%) of the gas circulation amount range of the pump 8 at which the amount of generated fuel gas is maximized. As a result, it is possible to prevent an increase in the amount of gas circulation that does not lead to an increase in the amount of hydrogen generation, regardless of the value of the ratio (the remaining amount of iron) in which the fuel generating member 1 does not undergo the oxidation reaction.

また、燃料発生部材の酸化反応をしていない割合と水素発生量との関係を考慮し、システムコントローラ12は、例えば、燃料電池部2の発電時に、燃料発生部材1での燃料ガス発生量が最大になるポンプ8のガス循環量範囲の最小値Vminを鉄の残量に応じて変化させ、その最小値Vmin以下となるように、ポンプ8のガス循環量を制御するようにしてもよい。これにより、水素発生量の増加につながらないガス循環量の増加を防止することができるとともに、鉄の残量に対応した最大限の水素発生量を得ることが可能となる。なお、鉄の残量は、例えば燃料発生部材1の重量から求めることができ、また、例えば燃料電池部2の発電電流及び電気分解電流の各積算値から求めることもできる。   In consideration of the relationship between the ratio of the fuel generating member not undergoing the oxidation reaction and the amount of hydrogen generated, the system controller 12 determines that the amount of fuel gas generated in the fuel generating member 1 is, for example, during power generation of the fuel cell unit 2. The gas circulation amount of the pump 8 may be controlled so that the minimum value Vmin of the gas circulation amount range of the pump 8 which is maximized is changed according to the remaining amount of iron and becomes the minimum value Vmin or less. As a result, it is possible to prevent an increase in the amount of gas circulation that does not lead to an increase in the amount of hydrogen generation, and to obtain the maximum amount of hydrogen generation corresponding to the remaining amount of iron. The remaining amount of iron can be obtained from, for example, the weight of the fuel generating member 1, and can also be obtained, for example, from each integrated value of the generated current and the electrolysis current of the fuel cell unit 2.

次に、燃料発生部材1の構成を決定する手順について説明する。   Next, a procedure for determining the configuration of the fuel generating member 1 will be described.

まず本実施形態に係る燃料電池システムの出力の仕様から燃料電池部2の発電量の仕様が決定され、続いて、燃料電池部2の発電量の仕様からポンプ8の出力の仕様が決定される。そして、本実施形態に係る燃料電池システムの発電持続時間の仕様から燃料発生部材1の総量が決定される。先に決められたポンプ8の出力の常用域が比較的小さければ、ペレット13を小さくした方が水素発生量が多くなるので発電効率が高くなる。逆にポンプ8の出力の常用域が比較的大きければ、ペレット13を大きくした方が水素発生量が多くなるので発電効率が高くなる。したがって、本実施形態に係る燃料電池システムでは、ポンプ8の出力の常用域に対応するガス循環量が燃料電池部2の発電時に、燃料発生部材1での燃料ガス発生量が最大になるポンプ8のガス循環量範囲の最小値以下になるように、ペレット13の大きさが決定される。   First, the specification of the power generation amount of the fuel cell unit 2 is determined from the specification of the output of the fuel cell system according to the present embodiment, and then the specification of the output of the pump 8 is determined from the specification of the power generation amount of the fuel cell unit 2. . Then, the total amount of the fuel generating member 1 is determined from the specification of the power generation duration of the fuel cell system according to the present embodiment. If the normal range of the output of the pump 8 determined in advance is relatively small, the amount of hydrogen generation increases when the pellets 13 are made smaller, so that the power generation efficiency becomes higher. On the contrary, if the normal range of the output of the pump 8 is relatively large, the larger the pellet 13 is, the more hydrogen is generated, and thus the power generation efficiency is increased. Therefore, in the fuel cell system according to this embodiment, the pump 8 in which the amount of fuel gas generated in the fuel generating member 1 is maximized when the amount of gas circulation corresponding to the normal range of the output of the pump 8 is generated by the fuel cell unit 2. The size of the pellet 13 is determined so as to be equal to or less than the minimum value of the gas circulation amount range.

ポンプ8のガス循環量範囲と燃料発生部材1での水素発生量との関係は、例えば、燃料発生部材1のみを測定対象として予め別途測定しておき、その測定データをシステムコントローラ12が記憶してもよく、水蒸気検知器(露点計)、圧力計、温度計などを本実施形態に係る燃料電池システムのガス循環径路上に設け、予備運転時などに循環ガスの圧力、水蒸気濃度、水素濃度などを検知することによってシステムコントローラ12が取得するようにしてもよい。   For example, the relationship between the gas circulation amount range of the pump 8 and the hydrogen generation amount in the fuel generating member 1 is separately measured in advance with only the fuel generating member 1 as a measurement target, and the system controller 12 stores the measurement data. A water vapor detector (dew point meter), pressure gauge, thermometer, etc. may be provided on the gas circulation path of the fuel cell system according to this embodiment, and the pressure of the circulating gas, water vapor concentration, hydrogen concentration during preliminary operation, etc. The system controller 12 may acquire the information by detecting the above.

上述した実施形態においては、システムコントローラ12は、燃料電池部2の発電時に、燃料発生部材1での燃料ガス発生量が最大になるポンプ8のガス循環量範囲の最小値以下となるように、ポンプ8のガス循環量を制御するが、同様の技術思想により、燃料発生部材1の再生時に、水蒸気発生量が最大になるポンプ8のガス循環量範囲の最小値以下となるように、ポンプ8のガス循環量を制御してもよい。このような燃料発生部材1の再生時におけるシステムコントローラ12の制御により、水蒸気発生量の増加につながらないガス循環量の増加を防止することができる。したがって、燃料発生部材1の再生時に、ポンプ8の駆動に無駄なエネルギーが消費されることをなくすことができ、エネルギー効率を高くすることができる。   In the above-described embodiment, the system controller 12 is configured so that the power generation amount of the fuel cell 1 is equal to or less than the minimum value of the gas circulation amount range of the pump 8 at which the fuel gas generation amount in the fuel generation member 1 is maximized. Although the gas circulation amount of the pump 8 is controlled, according to the same technical idea, the pump 8 is configured so that, when the fuel generation member 1 is regenerated, the water vapor generation amount becomes the maximum value of the gas circulation amount range of the pump 8 that is the maximum. The gas circulation amount may be controlled. Control of the system controller 12 during regeneration of the fuel generating member 1 can prevent an increase in the amount of gas circulation that does not lead to an increase in the amount of water vapor generated. Therefore, when the fuel generating member 1 is regenerated, unnecessary energy is not consumed for driving the pump 8, and energy efficiency can be increased.

なお、上述した燃料電池部2の発電時におけるシステムコントローラ12の制御と上述した燃料発生部材1の再生時におけるシステムコントローラ12の制御とは両方とも行われることが、エネルギー効率をより一層高くする観点から望ましいが、いずれか一方が行われるだけであっても構わない。   In addition, it is a viewpoint which makes energy efficiency still higher that both control of the system controller 12 at the time of the electric power generation of the fuel cell part 2 mentioned above and control of the system controller 12 at the time of the regeneration of the fuel generating member 1 mentioned above are performed. However, it is possible that only one of them is performed.

また、燃料発生部材1を収容する容器の形態は、上述した実施形態での各例に限定されるものではない。例えば、図12に示すように容器5がガス流路を長くするための仕切板26を備え、燃料発生部材1を構成するペレット13を収容するようにしてもよい。   Moreover, the form of the container which accommodates the fuel generation member 1 is not limited to each example in embodiment mentioned above. For example, as shown in FIG. 12, the container 5 may include a partition plate 26 for elongating the gas flow path, and may accommodate the pellets 13 constituting the fuel generating member 1.

また、上述した実施形態においては燃料発生部材1をペレットで構成したが、本発明は燃料発生部材1の形態をペレットに限定するものではない。例えば、図13に示すガス流路が形成されている構造物27を燃料発生部材1として利用してもよい。なお、構造物27はガス流路の断面形状が正六角形であるハニカム構造であるが、ガス流路の断面形状を他の形状にしても構わない。構造物27は、例えば、Fe微粒子をガスが通過する程度の空隙を残して固めた成型体であってもよく、また、例えば、構造物27を多孔質部材によって構成し、図14に示すように、多孔質部材28の内部に設けられた空間29内にFe微粒子30を配置するようにしてもよい。   Moreover, although the fuel generation member 1 was comprised with the pellet in embodiment mentioned above, this invention does not limit the form of the fuel generation member 1 to a pellet. For example, the structure 27 in which the gas flow path shown in FIG. 13 is formed may be used as the fuel generating member 1. The structure 27 has a honeycomb structure in which the cross-sectional shape of the gas flow path is a regular hexagon, but the cross-sectional shape of the gas flow path may be other shapes. The structure 27 may be, for example, a molded body obtained by solidifying the Fe fine particles while leaving a space that allows gas to pass. For example, the structure 27 is formed of a porous member, as shown in FIG. In addition, the Fe fine particles 30 may be disposed in a space 29 provided in the porous member 28.

構造物27を燃料発生部材1として利用した場合、ガス流路間に介在する壁(構造物27の一部分)の厚みがガスの流れに対してペレットの大きさと同じように作用するため、燃料電池部2の発電時の水素発生量特性あるいは燃料発生部材1の再生時の水蒸気発生量特性はペレットの場合と同じような傾向になる。   When the structure 27 is used as the fuel generating member 1, the thickness of the wall (a part of the structure 27) interposed between the gas flow paths acts on the gas flow in the same manner as the size of the pellet. The hydrogen generation amount characteristic at the time of power generation in the part 2 or the water vapor generation amount characteristic at the time of regeneration of the fuel generation member 1 has the same tendency as in the case of pellets.

上述した実施形態においては、燃料電池部2の電解質膜2Aとして固体酸化物電解質を用いて、発電の際に燃料極2B側で水を発生させるようにする。この構成によれば、燃料発生部材1が設けられた側で水を発生するため、装置の簡素化や小型化に有利である。一方、特開2009−99491号公報に開示された燃料電池のように、燃料電池部2の電解質膜2Aとして水素イオンを通す固体高分子電解質を用いることも可能である。但し、この場合には、発電の際に燃料電池部2の酸化剤極である空気極2C側で水が発生されることになるため、この水を燃料発生部材1に伝搬する流路を設ければよい。また、上述した実施形態では、1つの燃料電池部2が発電も水の電気分解も行っているが、燃料電池(例えば発電専用の固体酸化物燃料電池)と水の電気分解器(例えば水の電気分解専用の固体酸化物燃料電池)が燃料発生部材1に対してガス流路上並列に接続される構成にしてもよい。   In the embodiment described above, a solid oxide electrolyte is used as the electrolyte membrane 2A of the fuel cell unit 2, and water is generated on the fuel electrode 2B side during power generation. According to this configuration, water is generated on the side where the fuel generating member 1 is provided, which is advantageous for simplification and miniaturization of the apparatus. On the other hand, as a fuel cell disclosed in Japanese Patent Application Laid-Open No. 2009-99491, a solid polymer electrolyte that allows hydrogen ions to pass through may be used as the electrolyte membrane 2A of the fuel cell unit 2. However, in this case, since water is generated on the air electrode 2C side that is the oxidant electrode of the fuel cell unit 2 during power generation, a flow path for propagating this water to the fuel generating member 1 is provided. Just do it. In the above-described embodiment, one fuel cell unit 2 performs both power generation and water electrolysis. However, a fuel cell (for example, a solid oxide fuel cell dedicated to power generation) and a water electrolyzer (for example, water) A solid oxide fuel cell dedicated for electrolysis may be connected to the fuel generating member 1 in parallel on the gas flow path.

また、上述した実施形態では、燃料電池部2の燃料ガスを水素にしているが、一酸化炭素や炭化水素など水素以外の還元性ガスを燃料電池部2の燃料ガスとして用いても構わない。   In the above-described embodiment, the fuel gas of the fuel cell unit 2 is hydrogen. However, a reducing gas other than hydrogen, such as carbon monoxide or hydrocarbon, may be used as the fuel gas of the fuel cell unit 2.

また、上述した実施形態では、酸化剤ガスに空気を用いているが、空気以外の酸化剤ガスを用いても構わない。   In the above-described embodiment, air is used as the oxidant gas, but an oxidant gas other than air may be used.

1 燃料発生部材
2 燃料電池部
2A 電解質膜
2B 燃料極
2C 空気極
3、4 ヒーター
5、6 容器
7、10、11 配管
8 ポンプ
9 断熱容器
12 システムコントローラ
13 ペレット
22 複数の容器全体の循環ガス流入口
23 複数の容器全体の循環ガス流出口
26 仕切板
27 構造物
28 多孔質部材
29 空間
30 Fe微粒子
DESCRIPTION OF SYMBOLS 1 Fuel generating member 2 Fuel cell part 2A Electrolyte membrane 2B Fuel electrode 2C Air electrode 3, 4 Heater 5, 6 Container 7, 10, 11 Piping 8 Pump 9 Thermal insulation container 12 System controller 13 Pellet 22 Circulating gas flow of the whole several containers Inlet 23 Circulating gas outlet of the entire plurality of containers 26 Partition plate 27 Structure 28 Porous member 29 Space 30 Fe fine particles

Claims (6)

化学反応により燃料ガスを発生する燃料発生部材と、
前記燃料発生部材から供給される前記燃料ガスを用いて発電を行う燃料電池部と、
前記燃料発生部材と前記燃料電池部との間でガスを循環させるためのガス流路と、
前記ガス流路上に設けられ、前記燃料発生部材と前記燃料電池部との間でガスを強制的に循環させる循環器と、
前記燃料電池部の発電時に、前記燃料発生部材での燃料ガス発生量が最大になる前記循環器のガス循環量範囲の最小値以下となるように、前記循環器のガス循環量を制御する循環器制御部とを備えることを特徴とする燃料電池システム。
A fuel generating member that generates fuel gas by a chemical reaction;
A fuel cell unit that generates power using the fuel gas supplied from the fuel generating member;
A gas flow path for circulating gas between the fuel generating member and the fuel cell unit;
A circulator which is provided on the gas flow path and forcibly circulates a gas between the fuel generating member and the fuel cell unit;
Circulation for controlling the gas circulation amount of the circulator so that the amount of fuel gas generated in the fuel generating member is not more than the minimum value of the gas circulation amount range of the circulator when generating power in the fuel cell unit. A fuel cell system comprising a vessel controller.
化学反応により燃料ガスを発生し、前記化学反応の逆反応により再生可能な燃料発生部材と、
前記燃料発生部材から供給される前記燃料ガスを用いて発電を行う発電機能及び前記燃料発生部材の再生時に前記燃料発生部材から供給される前記逆反応の生成物を電気分解する電気分解機能を有する発電・電気分解部と、
前記燃料発生部材と前記発電・電気分解部との間でガスを循環させるためのガス流路と、
前記燃料発生部材の再生時に、前記燃料発生部材で発生する前記逆反応の生成物の発生量が最大になる前記循環器のガス循環量範囲の最小値以下となるように、前記循環器のガス循環量を制御する循環器制御部とを備えることを特徴とする燃料電池システム。
A fuel generating member that generates fuel gas by a chemical reaction, and that can be regenerated by a reverse reaction of the chemical reaction;
A power generation function for generating power using the fuel gas supplied from the fuel generation member; and an electrolysis function for electrolyzing the product of the reverse reaction supplied from the fuel generation member during regeneration of the fuel generation member. Power generation / electrolysis section,
A gas flow path for circulating gas between the fuel generating member and the power generation / electrolysis unit;
When the fuel generating member is regenerated, the gas in the circulator is set so that the amount of the product of the reverse reaction generated in the fuel generating member is equal to or less than the minimum value in the gas circulation amount range of the circulator. A fuel cell system, comprising: a circulator control unit that controls a circulation amount.
前記循環器制御部が、前記発電・電気分解部の発電時に、前記燃料発生部材での燃料ガス発生量が最大になる前記循環器のガス循環量範囲の最小値以下となるように、前記循環器のガス循環量を制御する請求項2に記載の燃料電池システム。   The circulation controller controls the circulation so that the amount of fuel gas generated in the fuel generation member becomes the maximum value of the gas circulation amount range of the circulator when the power generation / electrolysis unit generates power. The fuel cell system according to claim 2, wherein the amount of gas circulation in the vessel is controlled. 前記燃料発生部材は微粒子で形成され、
前記微粒子は、前記化学反応により燃料ガスを発生する金属を母材とする請求項1に記載の燃料電池システム。
The fuel generating member is formed of fine particles,
The fuel cell system according to claim 1, wherein the fine particles have a metal that generates fuel gas by the chemical reaction as a base material.
前記燃料発生部材は微粒子で形成され、
前記微粒子は、前記化学反応により燃料ガスを発生し、前記逆反応により再生可能な金属を母材とする請求項2または請求項3に記載の燃料電池システム。
The fuel generating member is formed of fine particles,
4. The fuel cell system according to claim 2, wherein the fine particles generate a fuel gas by the chemical reaction and use a metal that can be regenerated by the reverse reaction as a base material. 5.
前記燃料発生部材が複数の容器に分かれて収容されている請求項1〜5のいずれか一項に記載の燃料電池システム。   The fuel cell system according to any one of claims 1 to 5, wherein the fuel generating member is accommodated in a plurality of containers.
JP2012221617A 2012-10-03 2012-10-03 Fuel cell system Withdrawn JP2014075246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012221617A JP2014075246A (en) 2012-10-03 2012-10-03 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012221617A JP2014075246A (en) 2012-10-03 2012-10-03 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2014075246A true JP2014075246A (en) 2014-04-24

Family

ID=50749269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012221617A Withdrawn JP2014075246A (en) 2012-10-03 2012-10-03 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2014075246A (en)

Similar Documents

Publication Publication Date Title
JP5578294B1 (en) Fuel cell system
JP5505583B1 (en) Secondary battery type fuel cell system
JP5896015B2 (en) Secondary battery type fuel cell system
WO2012165097A1 (en) Secondary battery type fuel cell system
JP5435178B2 (en) Secondary battery type fuel cell system
JP2014075246A (en) Fuel cell system
JP5673907B1 (en) Secondary battery type fuel cell system
JP5772681B2 (en) Fuel cell system
JP2007026927A (en) Fuel reformer and fuel cell generator
JP2014216062A (en) Secondary battery type fuel cell system and power supply system including the same
JP5679097B1 (en) Secondary battery type fuel cell system
JP5640821B2 (en) Secondary battery type fuel cell system
JP2014207115A (en) Secondary battery type fuel battery system
JP2014154358A (en) Fuel cell system of secondary cell type
US20150171441A1 (en) Fuel Cell System
JP5760983B2 (en) Fuel cell system
WO2014188904A1 (en) Power supply system
WO2014087739A1 (en) Fuel generation device and fuel cell system provided with same
JP2014232658A (en) Fuel cell system
WO2013146396A1 (en) Secondary battery fuel cell system
JP2012252877A (en) Rechargeable fuel cell system
JP2014118336A (en) Fuel generator and fuel cell system equipped with the same
JP2013069450A (en) Secondary battery type fuel cell system
JPWO2014045895A1 (en) Secondary battery type fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20151216