WO2012165097A1 - Secondary battery type fuel cell system - Google Patents

Secondary battery type fuel cell system Download PDF

Info

Publication number
WO2012165097A1
WO2012165097A1 PCT/JP2012/061596 JP2012061596W WO2012165097A1 WO 2012165097 A1 WO2012165097 A1 WO 2012165097A1 JP 2012061596 W JP2012061596 W JP 2012061596W WO 2012165097 A1 WO2012165097 A1 WO 2012165097A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
hydrogen
water vapor
secondary battery
cell system
Prior art date
Application number
PCT/JP2012/061596
Other languages
French (fr)
Japanese (ja)
Inventor
寛子 大森
誉之 岡野
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2012165097A1 publication Critical patent/WO2012165097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a secondary battery type fuel cell system capable of performing not only a power generation operation but also a charging operation.
  • Fuel cells that take out electricity by directly converting chemical energy generated when a reducing substance (fuel) and an oxidizing substance react into electric energy has been actively conducted.
  • Fuel cells for example, do not emit carbon dioxide in principle when hydrogen is used as the fuel, so they are not only attracting attention as a clean energy source, but also have a high efficiency of power energy that can be extracted in principle, so energy saving Furthermore, by recovering the heat generated during power generation, it has the feature that it can also use thermal energy, and is expected as a trump card for solving global energy and environmental problems.
  • Such a fuel cell includes, for example, a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ) (see, for example, Patent Document 1) as a fuel electrode ( A single cell structure is sandwiched between the anode and the oxidant electrode (cathode).
  • the fuel gas and the oxidant gas are supplied to the fuel electrode and the oxidant electrode through these flow paths, respectively, and electricity is generated.
  • Fuel cells can be used in various forms, one of which is mounted on an EV (electric vehicle) and used as a power source for the EV. In such a usage mode, since the EV is a moving body, it is necessary to make the fuel cell not a type to which fuel is supplied from the outside but a type (secondary battery type) to which a renewable fuel generator is attached. is there.
  • Examples of the renewable fuel generator include a fuel generator that generates a fuel which is a reducing substance by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction. Then, a fuel that is a reducing substance is generated by a chemical reaction, and a hydrogen generator that is an example of a fuel generator that can be regenerated by a reverse reaction of the chemical reaction, that is, hydrogen is generated by a chemical reaction, Examples of a hydrogen generator that can be regenerated by a reverse reaction include a hydrogen generator that has a base material (main component) of iron, generates hydrogen by an oxidation reaction with water, and can regenerate by a reduction reaction with hydrogen. (For example, refer to Patent Document 2).
  • a hydrogen generator whose base material (main component) is iron can generate hydrogen by an oxidation reaction represented by the following formula (1). 4H 2 O + 3Fe ⁇ 4H 2 + Fe 3 O 4 (1)
  • the hydrogen generator whose base material (main component) is iron can be regenerated by the reduction reaction shown in the following formula (2). 4H 2 + Fe 3 O 4 ⁇ 3Fe + 4H 2 O (2)
  • a hydrogen generator that generates hydrogen by the chemical reaction as described above and can be regenerated by a reverse reaction of the chemical reaction, a power generation function that generates power using hydrogen supplied from the hydrogen generator, and the hydrogen generator Secondary battery type fuel by having a structure in which a gas containing hydrogen and water vapor is circulated between a power generation / electrolysis unit having an electrolysis function for electrolyzing water for generating hydrogen to be supplied to A battery system can be realized.
  • the power generation / electrolysis part for example, a solid having an MEA (Membrane Electrode Assembly) structure in which a solid electrolyte that permeates O 2 ⁇ is sandwiched and an oxidant electrode and a fuel electrode are formed on both sides, respectively.
  • An oxide fuel cell can be used.
  • the following reaction (3) occurs at the fuel electrode during the power generation operation.
  • generated by reaction of said (4) Formula reaches
  • the solid oxide fuel cell performs a power generation operation. Further, as can be seen from the above equation (3), during the power generation operation, H 2 is consumed and H 2 O is generated on the fuel electrode side.
  • FIG. 8 and 9 show the relationship between the temperature of the mixed gas and the water vapor partial pressure ratio, and the temperature and pressure of the mixed gas.
  • FIG. 9 shows the temperature range from 0 ° C. to 100 ° C. extracted from the temperature range shown in FIG. 8 (0 ° C. to 400 ° C.).
  • the pressure in the fuel cell device is 1 atm, that is, 101325 pascals, for example, in FIG. 8, if the water vapor partial pressure ratio on the right vertical axis is 10%, the pressure on the left vertical axis corresponds to 10132.5 pascals.
  • the water vapor partial pressure ratio in the above-mentioned equilibrium state depends on the temperature. As shown in FIG. 8, for example, if the temperature is 400 ° C., the water vapor partial pressure ratio is about 9%.
  • the characteristic line T2 shown in FIGS. 8 and 9 indicates the saturated water vapor pressure, and the saturated water vapor pressure also depends on the temperature.
  • the secondary battery type fuel cell system ends the power generation operation at 400 ° C.
  • the temperature of the fuel cell device decreases according to the environmental temperature
  • the temperature drop rate is fast and the steam partial pressure ratio remains 9%
  • the water vapor partial pressure exceeds the saturated water vapor pressure at room temperature (see FIG. 8)
  • dew condensation occurs at room temperature to produce water.
  • the temperature drops below freezing point
  • the condensation turns into ice. If water generated by condensation enters the porous structure electrode of the fuel cell device and becomes ice below freezing point, the fuel cell device may be stressed by volume expansion, which may cause deterioration or damage of the fuel cell device. .
  • the use environment temperature (hereinafter, representatively referred to as room temperature) is a certain temperature that is appropriately selected from a range of about 0 ° C. to 40 ° C., specifically.
  • room temperature is a certain temperature that is appropriately selected from a range of about 0 ° C. to 40 ° C., specifically.
  • condensation may occur and the fuel cell device may be deteriorated or damaged.
  • an object of the present invention is to provide a secondary battery type fuel cell system capable of preventing deterioration and breakage due to condensation.
  • a secondary battery type fuel cell system generates hydrogen by an oxidation reaction with water vapor and regenerates the hydrogen by a reduction reaction with hydrogen, and the hydrogen
  • a power generation / electrolysis unit having a power generation function for generating power using hydrogen supplied from the generating agent as fuel and an electrolysis function for electrolyzing water vapor to generate hydrogen supplied to the hydrogen generating agent;
  • a secondary battery type fuel cell system in which a mixed gas containing hydrogen and water vapor is circulated between the hydrogen generating agent and the power generation / electrolysis unit, and after stopping at least one of the power generation operation and the charging operation, Provided with a control unit that controls the temperature of the power generation / electrolysis unit or the water vapor partial pressure ratio of the mixed gas so that the water vapor partial pressure of the mixed gas is lower than the saturated water vapor partial pressure
  • the power generation / electrolysis unit electrolyzes, for example, a power generation operation that generates power using hydrogen supplied from the hydrogen generator and water vapor supplied from the hydrogen generator during
  • the fuel cell may be configured to switch between the electrolysis operation to be performed and, for example, a fuel cell that generates power using hydrogen supplied from the hydrogen generator, and the hydrogen at the time of regeneration of the hydrogen generator
  • steam supplied from a generating agent may be sufficient.
  • the secondary battery type fuel cell system according to the present invention prevents condensation at room temperature by temperature control or steam partial pressure ratio control, so that deterioration and breakage can be prevented.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a secondary battery type fuel cell system according to a first embodiment of the present invention. It is a flowchart which shows the operation
  • the main body of the hydrogen generating agent used in the secondary battery type fuel cell system according to one configuration of the present invention may be anything as long as it can release hydrogen by a chemical reaction.
  • Ni, Fe, Pd, V Mg, each of these alloys, etc. are mentioned.
  • these hydrogen generators can be regenerated by releasing the hydrogen through a chemical reaction in which hydrogen is generated and then reversing the chemical reaction in which hydrogen is generated.
  • the main component of the hydrogen generating agent may be made into fine particles and the fine particles may be molded.
  • the fine particles include a method of crushing particles by crushing using a ball mill or the like.
  • the surface area of the fine particles may be further increased by generating cracks in the fine particles by a mechanical method or the like, and the surface area of the fine particles is further increased by roughening the surface of the fine particles by acid treatment, alkali treatment, blasting, etc. It may be increased.
  • Ti, Zr, V, Nb, Cr, Mo, Al, Ga, Mg, Sc, Ni, Cu and Nd may be added as a catalyst.
  • the particle diameter of the fine particles is preferably 10 mm or less, more preferably 3 mm or less, and further preferably 150 ⁇ m or less from the viewpoint of reactivity.
  • the minimum of a particle size is not specifically limited, A 0.01 micrometer thing can also be used.
  • the average particle size of the fine particles is 0.05 to 0.5 ⁇ m.
  • iron or iron oxide fine particles are prepared using an iron compound such as pure iron, iron oxide, or iron nitrate as a raw material. Then, a specific metal is added by physical mixing or impregnation method, preferably coprecipitation method, before forming iron or iron oxide fine particles.
  • the specific metal added to the iron or iron oxide fine particles is at least one of the metals of Group 4, Group 5, Group 13 and Group 13 of the IUPAC periodic table, preferably Ti, Zr, V, It is selected from any of Nb, Cr, Mo, Al, and Ga. Alternatively, any of Mg, Sc, Ni, and Cu can be used as a specific metal added to iron or iron oxide fine particles.
  • the amount of the specific metal added to the fine particles of iron or iron oxide is preferably 0.5 to 30 mol%, more preferably 0.5 to 15 mol% of the total metal atoms, calculated by the number of moles of metal atoms.
  • Fine particles of iron or iron oxide to which a specific metal is added are formed into a shape with a large surface area suitable for chemical reaction, such as powder or pellets, cylinders, honeycombs, and nonwoven fabrics for efficient use.
  • the molded body of iron oxide fine particles has the ability to generate hydrogen by being subjected to reduction treatment.
  • the conditions for the reduction reaction are not particularly limited as long as iron oxide can be reduced.
  • carbon monoxide gas or hydrogen gas can be used.
  • the reduction treatment is preferably performed at about 200 ° C. to about 600 ° C. from the viewpoint of reduction efficiency.
  • Fe 3 O 4 does not necessarily have to be reduced to Fe, and the reduction reaction can be stopped with FeO, which is a low-valent metal oxide.
  • the voids between the particles are preferably 30 to 70% with respect to the total volume of the molded body.
  • the hydrogen generator mainly composed of iron can generate H 2 by consuming H 2 O by the oxidation reaction shown in the above formula (1).
  • both the oxidation reaction of iron shown in the above formula (1) and the reduction reaction of the above formula (2) can be promoted at a temperature of less than 600 ° C.
  • FIG. 1 shows a schematic configuration of a secondary battery type fuel cell system according to the first embodiment of the present invention.
  • the secondary battery type fuel cell system according to the first embodiment of the present invention shown in FIG. 1 includes a hydrogen generating agent 1, a fuel cell unit 2, a heater 3 for adjusting temperature, and a temperature sensor 4 for detecting temperature.
  • the voltage measuring unit 5, the temperature control unit 6, and the container 7 are provided.
  • the hydrogen generating agent 1 and the fuel cell unit 2 are accommodated in the same container 7, and the heater 3 and the temperature sensor 4 are also provided in the container 7.
  • the hydrogen generating agent 1 and the fuel cell unit 2 of the secondary battery type fuel cell system shown in FIG. 1 may be provided with a sensor for detecting leakage of the fuel gas, if necessary.
  • the hydrogen generating agent 1 is a hydrogen generating agent that can release hydrogen by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction in which hydrogen is generated.
  • the fuel cell unit 2 is a battery unit having an MEA (Membrane Electrode Assembly) structure in which an electrolyte 8 is sandwiched and an oxidant electrode 9 and a fuel electrode 10 are formed on both sides, respectively.
  • MEA Membrane Electrode Assembly
  • a known material can be used as the material of the electrolyte 8.
  • GDC ceria-based oxide
  • Sm samarium
  • Gd gadolinium
  • strontium Sr
  • Mg magnesium
  • Oxygen ion conductive ceramic materials such as doped lanthanum galide oxide, zirconia oxide (YSZ) containing scandium (Sc) and yttrium (Y) can be used, but are not limited thereto. Any material that conducts oxygen ions or hydrogen ions and satisfies the characteristics as an electrolyte of a fuel cell may be used.
  • the electrolyte 8 can be formed by using an electrochemical vapor deposition method (CVD-EVD method; Chemical Vapor Deposition-Electrochemical Vapor Deposition) or the like.
  • CVD-EVD method Chemical Vapor Deposition-Electrochemical Vapor Deposition
  • it can be formed using a coating method or the like.
  • Each of the oxidant electrode 9 and the fuel electrode 10 can be constituted by, for example, a catalyst layer in contact with the electrolyte 8 and a diffusion electrode laminated on the catalyst layer.
  • the catalyst layer for example, platinum black or a platinum alloy supported on carbon black can be used.
  • the material of the diffusion electrode of the oxidizer electrode 9 for example, carbon paper, La—Mn—O compound, La—Co—Ce compound, or the like can be used.
  • the material of the diffusion electrode of the fuel electrode 10 for example, carbon paper, Ni—Fe cermet, Ni—YSZ cermet and the like can be used.
  • Each of the oxidizer electrode 9 and the fuel electrode 10 can be formed using, for example, a vapor deposition method.
  • the heater 3 heats the inside of the container 7, and the temperature sensor 4 detects the temperature in the container 7.
  • the voltage measuring unit 5 measures the open circuit voltage of the fuel cell unit 2.
  • the temperature control unit 6 controls the heater 3 while referring to the temperature detected by the temperature sensor 4.
  • the secondary battery type fuel cell system according to the first embodiment of the present invention having the above configuration starts the flow operation shown in FIG. 2A.
  • the internal temperature of the container 7 is measured by the temperature sensor 4 (step S10).
  • the temperature control unit 6 determines whether or not the internal temperature of the container 7 measured by the temperature sensor 4 is 100 ° C. or higher (step S20).
  • the reason why the threshold value is 100 ° C. is that when the pressure in the fuel cell device is 101325 Pascals, condensation does not occur at 100 ° C. or higher. Therefore, the internal temperature serving as the threshold value may be a lower limit value of the temperature at which dew condensation does not occur according to the pressure in the fuel cell device.
  • step S50 the temperature controller 6 heats the inside of the container 7 by the heater 3 (step S50), and then returns to step S10.
  • the heating by the heater 3 in step S50 is adjusted to a degree of heating slightly higher than 100 ° C. when the internal temperature of the vessel 7 is not 100 ° C. or higher, and the heating by the heater 3 increases the internal temperature of the vessel 7. ing.
  • the voltage measuring unit 5 determines that the open circuit voltage of the fuel cell unit 2 (when the fuel cell unit 2 is not connected to any load). The output voltage of the fuel cell unit 2 is measured (step S30).
  • the voltage (electromotive force) E of the fuel cell unit 2 is expressed by the following Nernst equation because there is no loss due to overvoltage.
  • E0 is the standard electromotive force
  • R is the gas constant
  • T is the absolute temperature
  • F is the Faraday constant
  • P H2 and P H2O are the hydrogen and water vapor partial pressures at the fuel electrode 10 of the fuel cell unit 2
  • P O2 is the fuel It is the partial pressure of oxygen at the oxidant electrode 9 of the battery unit 2
  • ⁇ G0 is the standard Gibbs free energy in the power generation reaction (H 2 + 1 / 2O 2 ⁇ H 2 O) of the fuel cell unit 2, and is unique if the temperature is determined It is a value determined by.
  • the temperature control unit 6 uses the internal temperature of the container 7 measured by the temperature sensor 4 and the open circuit voltage of the fuel cell unit 2 measured by the voltage measurement unit 5 to calculate the water vapor partial pressure ratio from the Nernst equation. Is obtained (step S30).
  • the water vapor partial pressure ratio can be obtained by setting the total pressure of the fuel electrode 10 of the fuel cell unit 2 to 101325 Pascal and the partial pressure of oxygen at the oxidant electrode 9 of the fuel cell unit 2 to 20265 Pascal.
  • step S30 the temperature controller 6 determines whether or not the water vapor partial pressure ratio obtained in step S30 is 0.1% or less (step S40).
  • the reason why the threshold value is 0.1% will be described.
  • FIG. 9 shows, the water vapor partial pressure ratio corresponding to the saturated water vapor pressure at 0 ° C. is about 0.6%. That is, if the water vapor partial pressure ratio is 0.6% or less, no condensation occurs even if the temperature is rapidly lowered to room temperature. If the water vapor partial pressure ratio decreases as shown by the characteristic line T1 shown in FIG. 8, the water vapor partial pressure ratio at 100 ° C. is about 0.1%. Therefore, in this embodiment, the threshold is set to 0.1%. Yes.
  • step S40 in FIG. 2A can be replaced with, for example, step S40 shown in FIG. 2B.
  • step S30 if the water vapor partial pressure ratio obtained in step S30 is not less than 0.1% (NO in step S40), the process returns to step S10.
  • the process may proceed to step S50 and be heated by the heater 3. In this case, the heating by the heater 3 may be adjusted so that the internal temperature of the container 7 does not increase.
  • step S40 if the water vapor partial pressure ratio obtained in step S30 is 0.1% or less (YES in step S40), the temperature control after stopping the power generation operation is terminated. Further, for example, when the temperature at the end of the power generation operation is 400 ° C., there is no condensation unless the temperature is less than 50 ° C. (see FIG. 8), so a temperature lower than 100 ° C. (eg, 80 ° C.) is set in step S20. It is also possible to set a threshold value.
  • FIG. 3 shows a schematic configuration of a secondary battery type fuel cell system according to the second embodiment of the present invention.
  • the secondary battery type fuel cell system according to the second embodiment of the present invention shown in FIG. 3 removes the voltage measuring unit 5 from the secondary battery type fuel cell system according to the first embodiment of the present invention shown in FIG. Instead, a dew point meter 11 is newly provided in the container 7.
  • the secondary battery type fuel cell system according to the second embodiment of the present invention configured as described above starts the flow operation shown in FIG. 4 when the power generation operation is stopped.
  • step S35 Since the flow operation shown in FIG. 4 is the same as the flow operation shown in FIG. 2A except that the process of step S35 is executed instead of step S30, only step S35 will be described.
  • step S35 the temperature control unit 6 obtains a water vapor partial pressure ratio from the water vapor partial pressure in the container 7 measured by the dew point meter 11 (step S35).
  • the water vapor partial pressure ratio can be obtained by setting the total pressure of the fuel electrode 10 of the fuel cell unit 2 to 101325 Pascals.
  • HTT103 manufactured by Toyo Technica
  • the partial pressure of water vapor can be measured up to 150 ° C.
  • the upper limit is 150 ° C. Therefore, a step of determining whether or not the temperature of the water vapor gas is 150 ° C. or lower is added before step S20. It is preferable to wait while measuring the temperature until the temperature becomes below, and to proceed to step S20 when the temperature becomes 150 ° C. or below. Alternatively, this flow may be started after the water vapor gas reaches 150 ° C. or lower and waits for 150 ° C. or lower.
  • FIG. 5 shows a schematic configuration of a secondary battery type fuel cell system according to the third embodiment of the present invention.
  • the secondary battery type fuel cell system according to the third embodiment of the present invention shown in FIG. 5 is similar to the secondary battery type fuel cell system according to the first embodiment of the present invention shown in FIG. 13 is newly provided.
  • the voltage application unit 12 applies a reverse voltage to the fuel cell unit 2 so that the fuel cell unit 2 electrolyzes water vapor.
  • the selection unit 13 selects the voltage measurement unit 5 when the process of step S30 shown in FIG. 6 is executed, and electrically connects the voltage measurement unit 5 and the fuel cell unit 2, and when the process of step S55 shown in FIG. 6 is executed.
  • the voltage application unit 12 is selected to electrically connect the voltage application unit 12 and the fuel cell unit 2.
  • the secondary battery type fuel cell system according to the third embodiment of the present invention having the above configuration starts the flow operation shown in FIG. 6 when the power generation operation is stopped.
  • step S55 Since the flow operation shown in FIG. 6 is the same as the flow operation shown in FIG. 2A except that the process of step S55 is added, only step S55 will be described.
  • step S30 If the water vapor partial pressure ratio obtained by the temperature control unit 6 in step S30 is not less than 0.1% (NO in step S40), the temperature control unit 6 applies a reverse voltage to the fuel cell unit 2 to the voltage application unit 12. Then, the fuel cell unit 2 electrolyzes the water vapor in the container 7 to generate hydrogen (step S55). Specifically, when the voltage application unit 12 applies a voltage between the oxidant electrode 9 and the fuel electrode 10 of the fuel cell unit 2 and energizes, the fuel electrode 10 energizes with water vapor (H 2 O) in the mixed gas. The reaction shown in the following formula (5) occurs with the electrons (e) supplied by the above, and hydrogen is generated by electrolysis. Thus, the water vapor partial pressure ratio is lowered by electrolysis.
  • FIG. 7 shows a schematic configuration of a secondary battery type fuel cell system according to the fourth embodiment of the present invention.
  • the secondary battery type fuel cell system according to the fourth embodiment of the present invention shown in FIG. 7 removes the voltage measuring unit 5 from the secondary battery type fuel cell system according to the first embodiment of the present invention shown in FIG.
  • the double wall container 14 is used instead of the container 7.
  • the double-walled container 14 has an inner wall 15 and an outer wall 16, and enhances heat insulation performance by making the inside of the double wall have a low thermal conductivity.
  • the double wall container 14 also has a support portion 17 that supports the inner wall 15 in order to fix the double wall structure.
  • the space inside the double wall is made an airtight space to make a vacuum state
  • the space inside the double wall is made an airtight space and the heat conductivity is low.
  • Examples thereof include a method of filling a gas and a method of filling a space in the double wall with a member having low thermal conductivity such as glass wool. From the viewpoint of making the thermal conductivity as low as possible, a method of making the space in the double wall an airtight space and making it in a vacuum state is preferable.
  • glass or metal which is a high temperature resistant material
  • glass or the like which is a material that has high temperature resistance and low thermal conductivity
  • a material having a low thermal conductivity is used as the material of the support part 17, the cross-sectional area of the support part 17 is reduced, and the length of the support part 17 (inner wall 15 and outer wall There is a method of increasing the distance to 16).
  • the double wall container 14 also has a bimetal 18 in the double wall.
  • the bimetal 18 is fixed to the inner wall 15, but is not fixed to the outer wall 16.
  • the bimetal 18 and the outer wall 16 are in a non-contact state, and when the inside of the container is hot and the bimetal 18 is 300 ° C. or higher,
  • the shape of the bimetal 18 is designed so that the bimetal 18 and the outer wall 16 are brought into contact with each other due to the deformation of the bimetal 18. Examples of the shape of the bimetal 18 include a cube, a U-shape, and a spiral shape.
  • the internal temperature of the double-walled container 14 is maintained at 300 ° C. or higher by the temperature control of the temperature control unit 6 during the power generation operation. Yes. Therefore, during the power generation operation, the bimetal 18 and the outer wall 16 are in contact with each other to prevent overheating in the double-walled container 14.
  • the temperature control of the temperature control unit 6 is also stopped.
  • the bimetal 18 and the outer wall 16 are brought into a non-contact state.
  • the inside of the double-walled container 14 is insulated, and the rate of decrease in the internal temperature of the double-walled container 14 is slowed, so that it is possible to prevent dew condensation at room temperature and generation of water.
  • the bimetal 18 has a structure in which two types of conductive materials having different linear expansion coefficients are joined.
  • a bimetal having a structure in which a stainless material having a linear expansion coefficient of 17 ⁇ 10 ⁇ 6 / ° C. and a titanium alloy having a linear expansion coefficient of 9 ⁇ 10 ⁇ 6 / ° C. can be used.
  • a bimetal having a structure in which two types of conductive materials having different linear expansion coefficients are joined is curved in a convex shape toward the metal material having a large linear expansion coefficient.
  • a shape changing member for example, a shape memory alloy whose shape changes depending on the temperature other than the bimetal may be used.
  • the secondary battery type fuel cell system according to the first embodiment of the present invention is a comparative example in which the temperature control after power generation is stopped is not executed.
  • the water vapor pressure partial pressure ratio at the time when the internal temperature of the container (container 7 or double-walled container 14) was reduced to 100 ° C. was determined.
  • a dew point meter was provided in the double wall container 14 to determine the water vapor pressure partial pressure ratio.
  • the time required for the internal temperature of the container to drop from 300 ° C. to 100 ° C. after the power generation operation is stopped is a comparative example. It became 10 times.
  • the comparative example and the secondary battery type fuel cell system according to the first to fourth embodiments of the present invention were allowed to stand at an environmental temperature of ⁇ 5 ° C. for 24 hours after the power generation operation was stopped. Thereafter, each fuel cell unit 2 was observed, and whether or not ice was generated inside the fuel cell unit and whether or not a crack occurred in the fuel cell unit was investigated.
  • the survey results are shown in Table 1. From the results shown in Table 1, it was confirmed that the present invention can prevent the generation of ice inside the fuel cell unit and the generation of cracks in the fuel cell unit. That is, it has been confirmed that the present invention can prevent deterioration and breakage of the fuel cell unit.
  • ⁇ Modification> In the fuel cell system according to each of the embodiments described above, a structure in which only one MEA that is the fuel cell unit 2 and one hydrogen generation member 1 are provided is illustrated. For example, a plurality of MEAs may be provided on the same plane, Furthermore, a multi-unit configuration in which a plurality of units each composed of an MEA and a hydrogen generating member are stacked may be employed.
  • the hydrogen generating agent 1 and the fuel cell unit 2 are accommodated in a separate container.
  • a structure may be provided in which a circulation path for circulating gas between the hydrogen generating agent 1 and the fuel cell unit 2 is provided.
  • a pump for circulating the gas in the circulation path may be provided.
  • a plurality of at least one of the hydrogen generating agent 1 and the fuel cell unit 2 may be provided.
  • an arrangement in which one of the hydrogen generating agent 1 and the fuel cell unit 2 is radially surrounded by the other may be considered.
  • an electrolyte that conducts oxygen ions is used as the electrolyte 8 to generate water on the fuel electrode 10 side during power generation.
  • water is generated on the electrode side (fuel electrode 10 side) connected to the hydrogen generating agent 1 by the gas flow path for supplying hydrogen from the hydrogen generating agent 1 to the fuel cell unit 2.
  • a solid polymer electrolyte that allows hydrogen ions to pass through can be used as the electrolyte of the fuel cell unit 2.
  • a flow path for propagating this water to the hydrogen generating agent 1 may be provided.
  • the charging operation (reduction treatment) is preferably performed at a high temperature of 200 ° C. to 600 ° C. from the viewpoint of reduction efficiency. Therefore, after the charging operation is stopped, the temperature of the fuel cell device rapidly decreases and condensation occurs. A similar problem occurs. Therefore, it is desirable to perform temperature control or water vapor partial pressure ratio control similar to that after stopping the power generation operation after stopping the charging operation. For example, in FIG. 2A showing the flow operation started after the stop of the power generation operation, “power generation” may be replaced with “charge” and read (see FIG. 2C).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A secondary battery type fuel cell system comprises: a hydrogen generating agent that generates hydrogen by an oxidation reaction with water and that is capable of regeneration by a reduction reaction with hydrogen; a generator/electrolysis section having a generating function that generates electricity by using as fuel hydrogen that is supplied from the hydrogen generating agent and an electrolytic function that performs electrolysis of water vapour for generating hydrogen that is supplied to the hydrogen generating agent; and a control section, wherein mixed gas containing hydrogen and water vapour is circulated between the hydrogen generating agent and the generator/electrolysis section. The control section performs temperature control of the generator/electrolysis section or control of the water vapour partial pressure ratio of the mixed gas, so that the water vapour partial pressure of the mixed gas is lower than the saturation water vapour partial pressure, after stopping of operation of at least either power generation operation or charging operation.

Description

2次電池型燃料電池システムSecondary battery type fuel cell system
 本発明は、発電動作だけでなく充電動作も行える2次電池型燃料電池システムに関する。 The present invention relates to a secondary battery type fuel cell system capable of performing not only a power generation operation but also a charging operation.
 還元性物質(燃料)と酸化性物質が反応するときに発生する化学エネルギーを直接電気エネルギーに変換して電気を取り出す燃料電池の開発が近年盛んに行われている。燃料電池は、例えば燃料を水素ガスにした場合に原理的に二酸化炭素を排出しないため、クリーンなエネルギー源として注目を浴びているだけでなく、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになり、さらに、発電時に発生する熱を回収することにより、熱エネルギーをも利用することができるといった特徴を有しており、地球規模でのエネルギーや環境問題解決の切り札として期待されている。 In recent years, development of fuel cells that take out electricity by directly converting chemical energy generated when a reducing substance (fuel) and an oxidizing substance react into electric energy has been actively conducted. Fuel cells, for example, do not emit carbon dioxide in principle when hydrogen is used as the fuel, so they are not only attracting attention as a clean energy source, but also have a high efficiency of power energy that can be extracted in principle, so energy saving Furthermore, by recovering the heat generated during power generation, it has the feature that it can also use thermal energy, and is expected as a trump card for solving global energy and environmental problems.
 このような燃料電池は、例えば、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜(例えば特許文献1参照)等を燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込んだものを1つのセル構成としている。そして、このような構成のセルには、燃料極に燃料ガス(例えば水素ガス)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給されることにより発電が行われる。 Such a fuel cell includes, for example, a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ) (see, for example, Patent Document 1) as a fuel electrode ( A single cell structure is sandwiched between the anode and the oxidant electrode (cathode). In the cell having such a configuration, a fuel gas flow path for supplying a fuel gas (for example, hydrogen gas) to the fuel electrode, and an oxidant gas flow for supplying an oxidant gas (for example, oxygen or air) to the oxidant electrode. The fuel gas and the oxidant gas are supplied to the fuel electrode and the oxidant electrode through these flow paths, respectively, and electricity is generated.
 燃料電池の利用形態は様々であるが、その一つにEV(electric vehicle)に搭載され、EVの動力源として利用される形態がある。このような利用形態では、EVが移動体であるため、燃料電池を、外部から燃料が供給されるタイプではなく、再生可能な燃料発生装置を附属するタイプ(2次電池型)にする必要がある。 Fuel cells can be used in various forms, one of which is mounted on an EV (electric vehicle) and used as a power source for the EV. In such a usage mode, since the EV is a moving body, it is necessary to make the fuel cell not a type to which fuel is supplied from the outside but a type (secondary battery type) to which a renewable fuel generator is attached. is there.
 再生可能な燃料発生装置としては、化学反応により還元性物質である燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生装置が挙げられる。そして、化学反応により還元性物質である燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生装置の一例である水素発生装置、すなわち、化学反応により水素を発生し、前記化学反応の逆反応により再生可能な水素発生装置としては、例えば基材料(主成分)が鉄であって、水との酸化反応により水素を発生し水素との還元反応により再生可能な水素発生装置が挙げられる(例えば特許文献2参照)。 Examples of the renewable fuel generator include a fuel generator that generates a fuel which is a reducing substance by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction. Then, a fuel that is a reducing substance is generated by a chemical reaction, and a hydrogen generator that is an example of a fuel generator that can be regenerated by a reverse reaction of the chemical reaction, that is, hydrogen is generated by a chemical reaction, Examples of a hydrogen generator that can be regenerated by a reverse reaction include a hydrogen generator that has a base material (main component) of iron, generates hydrogen by an oxidation reaction with water, and can regenerate by a reduction reaction with hydrogen. (For example, refer to Patent Document 2).
 基材料(主成分)が鉄である水素発生装置は、下記の(1)式に示す酸化反応により、水素を発生することができる。
  4HO+3Fe→4H+Fe …(1)
A hydrogen generator whose base material (main component) is iron can generate hydrogen by an oxidation reaction represented by the following formula (1).
4H 2 O + 3Fe → 4H 2 + Fe 3 O 4 (1)
 また、基材料(主成分)が鉄である水素発生装置は、下記の(2)式に示す還元反応により、再生することができる。
  4H+Fe→3Fe+4HO …(2)
Moreover, the hydrogen generator whose base material (main component) is iron can be regenerated by the reduction reaction shown in the following formula (2).
4H 2 + Fe 3 O 4 → 3Fe + 4H 2 O (2)
 上記のような化学反応により水素を発生し、前記化学反応の逆反応により再生可能な水素発生装置と、前記水素発生装置から供給される水素を燃料にして発電を行う発電機能及び前記水素発生装置に供給する水素を生成するための水の電気分解を行う電気分解機能を有する発電・電気分解部との間で、水素及び水蒸気を含むガスを循環させる構成にすることで、2次電池型燃料電池システムを実現することができる。 A hydrogen generator that generates hydrogen by the chemical reaction as described above and can be regenerated by a reverse reaction of the chemical reaction, a power generation function that generates power using hydrogen supplied from the hydrogen generator, and the hydrogen generator Secondary battery type fuel by having a structure in which a gas containing hydrogen and water vapor is circulated between a power generation / electrolysis unit having an electrolysis function for electrolyzing water for generating hydrogen to be supplied to A battery system can be realized.
 発電・電気分解部としては、例えばO2-を透過する固体電解質を挟み、両側にそれぞれ酸化剤極と燃料極が形成されているMEA(Membrane Electrode Assembly;膜・電極接合体)構造をなす固体酸化物燃料電池を用いることができる。固体酸化物燃料電池では、発電動作時に、燃料極において下記の(3)式の反応が起こる。
  H+O2-→HO+2e …(3)
As the power generation / electrolysis part, for example, a solid having an MEA (Membrane Electrode Assembly) structure in which a solid electrolyte that permeates O 2− is sandwiched and an oxidant electrode and a fuel electrode are formed on both sides, respectively. An oxide fuel cell can be used. In the solid oxide fuel cell, the following reaction (3) occurs at the fuel electrode during the power generation operation.
H 2 + O 2− → H 2 O + 2e (3)
 上記の(3)式の反応によって生成された電子は、外部負荷を通って、酸化剤極に到達し、酸化剤極において下記の(4)式の反応が起こる。
 (1/2)O+2e→O2- …(4)
The electrons generated by the reaction of the above formula (3) pass through the external load and reach the oxidant electrode, and the following reaction of the formula (4) occurs at the oxidant electrode.
(1/2) O 2 + 2e → O 2− (4)
 そして、上記の(4)式の反応によって生成された酸素イオンは、固体電解質を通って、燃料極に到達する。上記の一連の反応を繰り返すことにより、固体酸化物燃料電池が発電動作を行うことになる。また、上記の(3)式から分かるように、発電動作時には、燃料極側においてHが消費されHOが生成されることになる。 And the oxygen ion produced | generated by reaction of said (4) Formula reaches | attains a fuel electrode through a solid electrolyte. By repeating the above series of reactions, the solid oxide fuel cell performs a power generation operation. Further, as can be seen from the above equation (3), during the power generation operation, H 2 is consumed and H 2 O is generated on the fuel electrode side.
 一方、固体酸化物燃料電池が電気分解器として作動する場合、上記の(3)式及び(4)式の逆反応が起こり、燃料極側においてHOが消費されHが生成される。 On the other hand, when the solid oxide fuel cell operates as an electrolyzer, the reverse reactions of the above formulas (3) and (4) occur, and H 2 O is consumed and H 2 is generated on the fuel electrode side.
特許第3113340号公報Japanese Patent No. 3113340 特開2008-94645号公報JP 2008-94645 A
 基材料(主成分)が鉄である水素発生装置において鉄(Fe)と酸化鉄(Fe)が混在する状態で、水素発生装置内に水素ガスと水蒸気ガスの混合ガスが存在するとき、鉄の酸化反応(上記の(1)式)の反応速度と酸化鉄の還元反応(上記の(2)式)の反応速度とが一致する平衡状態で安定する。図8及び図9に示す特性線T1はこの平衡状態を示している。 When a mixed gas of hydrogen gas and water vapor gas exists in the hydrogen generator in a state where iron (Fe) and iron oxide (Fe 3 O 4 ) are mixed in the hydrogen generator whose base material (main component) is iron The reaction rate of the iron oxidation reaction (the above formula (1)) is stable in an equilibrium state where the reaction rate of the iron oxide reduction reaction (the above formula (2)) coincides. A characteristic line T1 shown in FIGS. 8 and 9 indicates this equilibrium state.
 図8及び図9は、混合ガスの温度と水蒸気分圧比、混合ガスの温度と圧力との関係を示している。図9は、図8が示す温度範囲(0℃から400℃)の内、0℃から100℃までの温度範囲を抽出したものである。燃料電池装置内の圧力を1気圧、すなわち101325パスカルとした場合、例えば図8において、右縦軸の水蒸気分圧比が10%であれば、左縦軸の圧力は10132.5パスカルに相当する。 8 and 9 show the relationship between the temperature of the mixed gas and the water vapor partial pressure ratio, and the temperature and pressure of the mixed gas. FIG. 9 shows the temperature range from 0 ° C. to 100 ° C. extracted from the temperature range shown in FIG. 8 (0 ° C. to 400 ° C.). When the pressure in the fuel cell device is 1 atm, that is, 101325 pascals, for example, in FIG. 8, if the water vapor partial pressure ratio on the right vertical axis is 10%, the pressure on the left vertical axis corresponds to 10132.5 pascals.
 上記の平衡状態における水蒸気分圧比は、温度に依存しており、図8に示すように、例えば温度が400℃であれば水蒸気分圧比は約9%になる。 The water vapor partial pressure ratio in the above-mentioned equilibrium state depends on the temperature. As shown in FIG. 8, for example, if the temperature is 400 ° C., the water vapor partial pressure ratio is about 9%.
 また、図8及び図9に示す特性線T2は飽和水蒸気圧を示しており、飽和水蒸気圧も温度に依存している。 Also, the characteristic line T2 shown in FIGS. 8 and 9 indicates the saturated water vapor pressure, and the saturated water vapor pressure also depends on the temperature.
 例えば、2次電池型燃料電池システムが400℃で発電動作を終了したとする。終了後、環境温度に従い燃料電池装置の温度が下がるとき、もし温度降下速度が速くて水蒸気分圧比が9%のままで燃料電池装置の使用環境温度(例えば、室温25℃)まで温度が低下すると、水蒸気分圧が室温での飽和水蒸気圧を越えてしまうことになるため(図8参照)、室温で結露して水が生じる。さらに氷点下にまで温度が下がると、結露が氷に変わる。結露によって生じた水が燃料電池装置の多孔質構造である電極内に入り込み、氷点下で氷になると、体積膨張によって燃料電池装置に応力がかかり、燃料電池装置の劣化や破損が生じるおそれがあった。なお、使用環境温度(以下、代表して室温という)とは、具体的には0℃から40℃程度の範囲から適宜選択される、ある温度である。尚、2次電池型燃料電池システムが充電動作を終了した後に、燃料電池装置の温度降下速度が速い場合も、同様に、結露が生じて燃料電池装置の劣化や破損が生じるおそれがある。 For example, it is assumed that the secondary battery type fuel cell system ends the power generation operation at 400 ° C. After the completion, when the temperature of the fuel cell device decreases according to the environmental temperature, if the temperature decreases to the operating temperature of the fuel cell device (for example, room temperature 25 ° C.) while the temperature drop rate is fast and the steam partial pressure ratio remains 9% Since the water vapor partial pressure exceeds the saturated water vapor pressure at room temperature (see FIG. 8), dew condensation occurs at room temperature to produce water. When the temperature drops below freezing point, the condensation turns into ice. If water generated by condensation enters the porous structure electrode of the fuel cell device and becomes ice below freezing point, the fuel cell device may be stressed by volume expansion, which may cause deterioration or damage of the fuel cell device. . The use environment temperature (hereinafter, representatively referred to as room temperature) is a certain temperature that is appropriately selected from a range of about 0 ° C. to 40 ° C., specifically. In addition, when the temperature decrease rate of the fuel cell device is high after the secondary battery type fuel cell system has finished the charging operation, similarly, condensation may occur and the fuel cell device may be deteriorated or damaged.
 一方、2次電池型燃料電池システムの発電動作又は充電動作を終了した後、燃料電池装置の温度降下速度が緩やかであればある程、水蒸気分圧比は特性線T1により近い線に沿って低下すると考えられる。そのため、図8及び図9が示すように、燃料電池装置が室温まで低下しても水蒸気分圧比が飽和水蒸気圧を越えることはなく、その結果、結露も氷結も発生しない。 On the other hand, after the power generation operation or the charging operation of the secondary battery type fuel cell system is finished, the more the temperature drop rate of the fuel cell device is slower, the lower the water vapor partial pressure ratio is along a line closer to the characteristic line T1. Conceivable. Therefore, as shown in FIGS. 8 and 9, even if the fuel cell device is lowered to room temperature, the water vapor partial pressure ratio does not exceed the saturated water vapor pressure, and as a result, neither condensation nor freezing occurs.
 本発明は、上記の状況に鑑み、結露による劣化や破損を防止することができる2次電池型燃料電池システムを提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a secondary battery type fuel cell system capable of preventing deterioration and breakage due to condensation.
 上記目的を達成するために本発明の1構成に係る2次電池型燃料電池システムは、水蒸気との酸化反応により水素を発生し、水素との還元反応により再生可能な水素発生剤と、前記水素発生剤から供給される水素を燃料にして発電を行う発電機能及び前記水素発生剤に供給する水素を生成するための水蒸気の電気分解を行う電気分解機能を有する発電・電気分解部とを備え、前記水素発生剤と前記発電・電気分解部との間で水素と水蒸気を含む混合ガスを循環させる2次電池型燃料電池システムであって、発電動作及び充電動作の少なくとも一方の動作の停止後に、前記混合ガスの水蒸気分圧が飽和水蒸気分圧より低くなるように、前記発電・電気分解部の温度制御又は前記混合ガスの水蒸気分圧比の制御を行う制御部を備える構成とする。なお、前記発電・電気分解部は、例えば、前記水素発生剤から供給される水素を用いて発電を行う発電動作と、前記水素発生剤の再生時に前記水素発生剤から供給される水蒸気を電気分解する電気分解動作とを切り替える燃料電池を備える構成であってもよく、また、例えば、前記水素発生剤から供給される水素を用いて発電を行う燃料電池と、前記水素発生剤の再生時に前記水素発生剤から供給される水蒸気を電気分解する電気分解器とを別個に備える構成であってもよい。 In order to achieve the above object, a secondary battery type fuel cell system according to one configuration of the present invention generates hydrogen by an oxidation reaction with water vapor and regenerates the hydrogen by a reduction reaction with hydrogen, and the hydrogen A power generation / electrolysis unit having a power generation function for generating power using hydrogen supplied from the generating agent as fuel and an electrolysis function for electrolyzing water vapor to generate hydrogen supplied to the hydrogen generating agent; A secondary battery type fuel cell system in which a mixed gas containing hydrogen and water vapor is circulated between the hydrogen generating agent and the power generation / electrolysis unit, and after stopping at least one of the power generation operation and the charging operation, Provided with a control unit that controls the temperature of the power generation / electrolysis unit or the water vapor partial pressure ratio of the mixed gas so that the water vapor partial pressure of the mixed gas is lower than the saturated water vapor partial pressureThe power generation / electrolysis unit electrolyzes, for example, a power generation operation that generates power using hydrogen supplied from the hydrogen generator and water vapor supplied from the hydrogen generator during regeneration of the hydrogen generator. For example, the fuel cell may be configured to switch between the electrolysis operation to be performed and, for example, a fuel cell that generates power using hydrogen supplied from the hydrogen generator, and the hydrogen at the time of regeneration of the hydrogen generator The structure separately provided with the electrolyzer which electrolyzes the water vapor | steam supplied from a generating agent may be sufficient.
 本発明に係る2次電池型燃料電池システムによると、温度制御又は水蒸気分圧比制御によって室温で結露することを防止しているので、劣化や破損を防止することができる。 The secondary battery type fuel cell system according to the present invention prevents condensation at room temperature by temperature control or steam partial pressure ratio control, so that deterioration and breakage can be prevented.
本発明の第1実施形態に係る2次電池型燃料電池システムの概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of a secondary battery type fuel cell system according to a first embodiment of the present invention. 本発明の第1実施形態に係る2次電池型燃料電池システムの発電動作停止時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the electric power generation operation stop of the secondary battery type fuel cell system which concerns on 1st Embodiment of this invention. 図2A中のステップS40と置換可能なステップを示す図である。It is a figure which shows the step which can be substituted with step S40 in FIG. 2A. 本発明の第1実施形態に係る2次電池型燃料電池システムの充電動作停止時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the charging operation stop of the secondary battery type fuel cell system which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る2次電池型燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the secondary battery type fuel cell system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る2次電池型燃料電池システムの発電動作停止時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the electric power generation operation stop of the secondary battery type fuel cell system concerning 2nd Embodiment of this invention. 本発明の第3実施形態に係る2次電池型燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the secondary battery type fuel cell system which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る2次電池型燃料電池システムの発電動作停止時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the electric power generation operation stop of the secondary battery type fuel cell system concerning 3rd Embodiment of this invention. 本発明の第4実施形態に係る2次電池型燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the secondary battery type fuel cell system which concerns on 4th Embodiment of this invention. 飽和水蒸気圧及び平衡状態での水素発生装置内の水蒸気分圧の温度特性を示す図である。It is a figure which shows the temperature characteristic of the water vapor partial pressure in a hydrogen generator in a saturated water vapor pressure and an equilibrium state. 図8の低温領域拡大図である。It is a low temperature area | region enlarged view of FIG.
 本発明の実施形態について図面を参照して以下に説明する。尚、本発明は、後述する実施形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments described later.
<水素発生剤>
 本発明の1構成に係る2次電池型燃料電池システムで用いられる水素発生剤の主体は、化学反応によって水素を放出することができるものであれば何でもよく、例えば、Ni、Fe、Pd、V、Mgやこれらの各合金などが挙げられる。
<Hydrogen generator>
The main body of the hydrogen generating agent used in the secondary battery type fuel cell system according to one configuration of the present invention may be anything as long as it can release hydrogen by a chemical reaction. For example, Ni, Fe, Pd, V Mg, each of these alloys, etc. are mentioned.
 また、これら水素発生剤の主体は、水素が生成される化学反応によって水素を放出した後、水素が生成される化学反応の逆反応によって再生可能である。 In addition, the main components of these hydrogen generators can be regenerated by releasing the hydrogen through a chemical reaction in which hydrogen is generated and then reversing the chemical reaction in which hydrogen is generated.
 また、反応性を上げるために単位体積当りの表面積を大きくすることが望ましい。水素発生剤の単位体積当りの表面積を増加させる方策としては、例えば、水素発生剤の主体を微粒子化し、その微粒子化したものを成型すればよい。微粒子化の方法は例えばボールミル等を用いた粉砕によって粒子を砕く方法が挙げられる。さらに、機械的な手法などにより微粒子にクラックを発生させることで微粒子の表面積をより一層増加させてもよく、酸処理、アルカリ処理、ブラスト加工などによって微粒子の表面を荒らして微粒子の表面積をより一層増加させてもよい。 Also, it is desirable to increase the surface area per unit volume in order to increase the reactivity. As a measure for increasing the surface area per unit volume of the hydrogen generating agent, for example, the main component of the hydrogen generating agent may be made into fine particles and the fine particles may be molded. Examples of the fine particles include a method of crushing particles by crushing using a ball mill or the like. Further, the surface area of the fine particles may be further increased by generating cracks in the fine particles by a mechanical method or the like, and the surface area of the fine particles is further increased by roughening the surface of the fine particles by acid treatment, alkali treatment, blasting, etc. It may be increased.
 また、触媒としてTi、Zr、V、Nb、Cr、Mo、Al、Ga、Mg、Sc、Ni、Cu及びNdなどを添加してもよい。 Further, Ti, Zr, V, Nb, Cr, Mo, Al, Ga, Mg, Sc, Ni, Cu and Nd may be added as a catalyst.
 微粒子の粒径は、反応性の観点から、10mm以下が好ましく、3mm以下がより好ましく、150μm以下がさらに好ましい。なお、粒径の下限は特に限定されないが、0.01μmのものも使用することができる。さらに、水蒸気との高い反応性を得るために、微粒子の平均粒径を0.05~0.5μmにすることが特に好ましい。 The particle diameter of the fine particles is preferably 10 mm or less, more preferably 3 mm or less, and further preferably 150 μm or less from the viewpoint of reactivity. In addition, although the minimum of a particle size is not specifically limited, A 0.01 micrometer thing can also be used. Further, in order to obtain high reactivity with water vapor, it is particularly preferable that the average particle size of the fine particles is 0.05 to 0.5 μm.
<水素発生剤の製造方法>
 本発明に係る2次電池型燃料電池システムで用いられる水素発生剤の製造方法の一例として、鉄を水素発生剤の主体にする場合の製造方法について以下に説明する。
<Method for producing hydrogen generator>
As an example of a method for producing a hydrogen generator used in the secondary battery type fuel cell system according to the present invention, a method for producing iron as a main component of the hydrogen generator will be described below.
 まず、純鉄、酸化鉄、または硝酸鉄などの鉄化合物を原料として、鉄または酸化鉄の微粒子を作製する。そして、鉄または酸化鉄の微粒子を成型する前に特定の金属を物理混合または含浸法、好ましくは共沈法により添加する。 First, iron or iron oxide fine particles are prepared using an iron compound such as pure iron, iron oxide, or iron nitrate as a raw material. Then, a specific metal is added by physical mixing or impregnation method, preferably coprecipitation method, before forming iron or iron oxide fine particles.
 鉄または酸化鉄の微粒子に添加される特定の金属は、IUPACの周期律表の4族、5族、6族、13族の金属の少なくとも1つであり、好ましくは、Ti、Zr、V、Nb、Cr、Mo、Al、Gaのいずれかにより選ばれる。または、Mg、Sc、Ni、Cuのいずれかを、鉄または酸化鉄の微粒子に添加される特定の金属として用いることもできる。 The specific metal added to the iron or iron oxide fine particles is at least one of the metals of Group 4, Group 5, Group 13 and Group 13 of the IUPAC periodic table, preferably Ti, Zr, V, It is selected from any of Nb, Cr, Mo, Al, and Ga. Alternatively, any of Mg, Sc, Ni, and Cu can be used as a specific metal added to iron or iron oxide fine particles.
 鉄または酸化鉄の微粒子に添加する特定の金属の添加量は、金属原子のモル数で計算して、好ましくは全金属原子の0.5~30mol%、より好ましくは0.5~15mol%になるように調製する。 The amount of the specific metal added to the fine particles of iron or iron oxide is preferably 0.5 to 30 mol%, more preferably 0.5 to 15 mol% of the total metal atoms, calculated by the number of moles of metal atoms. Prepare as follows.
 特定の金属が添加された鉄または酸化鉄の微粒子は、効率良く利用するために、粉末状またはペレット状、円筒状、ハニカム構造、不織布形状など、化学反応に適した表面積の大きい形状に成型される。 Fine particles of iron or iron oxide to which a specific metal is added are formed into a shape with a large surface area suitable for chemical reaction, such as powder or pellets, cylinders, honeycombs, and nonwoven fabrics for efficient use. The
 特定の金属が添加された鉄または酸化鉄の微粒子を成型する方法には、スラリーを層状に成形したグリーンシートを焼成する方法、乾燥させた粉体を加圧プレスする方法などがある。 There are a method of molding fine particles of iron or iron oxide to which a specific metal is added, a method of firing a green sheet in which a slurry is formed into a layer, and a method of pressing a dried powder under pressure.
 なお、酸化鉄微粒子の成型体は、還元処理が施されることで、水素発生能力を持つ。還元反応の条件としては、酸化鉄を還元できるものであれば特に限定されないが、例えば、一酸化炭素ガスや水素ガスなどを使用することができる。 In addition, the molded body of iron oxide fine particles has the ability to generate hydrogen by being subjected to reduction treatment. The conditions for the reduction reaction are not particularly limited as long as iron oxide can be reduced. For example, carbon monoxide gas or hydrogen gas can be used.
 酸化鉄微粒子の成型体と一酸化炭素ガスや水素ガスとの接触に際しては、一酸化炭素ガスや水素ガス雰囲気下で加熱したり、成型体の内部に一酸化炭素ガスや水素ガスを加圧して流通させたりすることも可能である。 When contacting the compact of iron oxide fine particles with carbon monoxide gas or hydrogen gas, it is heated in a carbon monoxide gas or hydrogen gas atmosphere, or carbon monoxide gas or hydrogen gas is pressurized inside the compact. It can also be distributed.
 還元処理は、約200℃~約600℃で行うことが還元効率の観点から好ましい。なお、還元処理の際、Feは必ずしもFeまで還元しなくてもよく、低原子価金属酸化物であるFeOで還元反応を停止することもできる。また、成型体に含まれる有機系バインダー等を気化させる上で、上記還元反応を300℃以上で行うことがより好ましい。また、粒子間の空隙は、成型体の総体積に対して、30~70%が好ましい。 The reduction treatment is preferably performed at about 200 ° C. to about 600 ° C. from the viewpoint of reduction efficiency. In the reduction treatment, Fe 3 O 4 does not necessarily have to be reduced to Fe, and the reduction reaction can be stopped with FeO, which is a low-valent metal oxide. Moreover, it is more preferable to perform the said reduction reaction at 300 degreeC or more when vaporizing the organic type binder etc. which are contained in a molded object. The voids between the particles are preferably 30 to 70% with respect to the total volume of the molded body.
 鉄を主体とする水素発生剤は、上記の(1)式に示す酸化反応により、HOを消費してHを生成することができる。 The hydrogen generator mainly composed of iron can generate H 2 by consuming H 2 O by the oxidation reaction shown in the above formula (1).
 上記の(1)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄残量が減っていくが、上記の(1)式の逆反応(還元反応)すなわち上記の(2)式に示す還元反応により、水素発生剤を再生することができる。なお、上記の(1)式に示す鉄の酸化反応及び上記の(2)式の還元反応ともに、600℃未満の温度で促進させることができる。 When the oxidation reaction of iron shown in the above formula (1) proceeds, the change from iron to iron oxide proceeds and the remaining amount of iron decreases, but the reverse reaction (reduction reaction) of the above formula (1), that is, the above The hydrogen generating agent can be regenerated by the reduction reaction shown in the formula (2). In addition, both the oxidation reaction of iron shown in the above formula (1) and the reduction reaction of the above formula (2) can be promoted at a temperature of less than 600 ° C.
<本発明の第1実施形態に係る2次電池型燃料電池システム>
 本発明の第1実施形態に係る2次電池型燃料電池システムの概略構成を図1に示す。図1に示す本発明の第1実施形態に係る2次電池型燃料電池システムは、水素発生剤1と、燃料電池ユニット2と、温度を調節するヒータ3と、温度を検出する温度センサ4と、電圧測定部5と、温度制御部6と、容器7とを備えている。水素発生剤1と燃料電池ユニット2とは同一の容器7に収容されており、ヒータ3及び温度センサ4も容器7内に設けられている。
<Secondary battery type fuel cell system according to the first embodiment of the present invention>
FIG. 1 shows a schematic configuration of a secondary battery type fuel cell system according to the first embodiment of the present invention. The secondary battery type fuel cell system according to the first embodiment of the present invention shown in FIG. 1 includes a hydrogen generating agent 1, a fuel cell unit 2, a heater 3 for adjusting temperature, and a temperature sensor 4 for detecting temperature. The voltage measuring unit 5, the temperature control unit 6, and the container 7 are provided. The hydrogen generating agent 1 and the fuel cell unit 2 are accommodated in the same container 7, and the heater 3 and the temperature sensor 4 are also provided in the container 7.
 また、図1に示す2次電池型燃料電池システムの水素発生剤1及び燃料電池ユニット2には必要に応じて、燃料ガスの漏洩を検知するセンサ等を設けてもよい。 Further, the hydrogen generating agent 1 and the fuel cell unit 2 of the secondary battery type fuel cell system shown in FIG. 1 may be provided with a sensor for detecting leakage of the fuel gas, if necessary.
 水素発生剤1は、化学反応によって水素を放出することができ、水素が生成される化学反応の逆反応によって再生可能な水素発生剤である。 The hydrogen generating agent 1 is a hydrogen generating agent that can release hydrogen by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction in which hydrogen is generated.
 燃料電池ユニット2は、電解質8を挟み、両側にそれぞれ酸化剤極9と燃料極10が形成されているMEA(Membrane Electrode Assembly;膜・電極接合体)構造をなす電池ユニットである。 The fuel cell unit 2 is a battery unit having an MEA (Membrane Electrode Assembly) structure in which an electrolyte 8 is sandwiched and an oxidant electrode 9 and a fuel electrode 10 are formed on both sides, respectively.
 電解質8の材料としては、公知のものを使用することができ、例えば、サマリウム(Sm)やガドリニウム(Gd)等をドープしたセリア系酸化物(GDC)、ストロンチウム(Sr)やマグネシウム(Mg)をドープしたランタン・ガレード系酸化物、スカンジウム(Sc)やイットリウム(Y)を含むジルコニア系酸化物(YSZ)等の酸素イオン伝導性セラミックス材料を用いることができるが、これらに限定されることはなく、酸素イオンまたは水素イオンを伝導するものであって、燃料電池の電解質としての特性を満たすものであればよい。 As the material of the electrolyte 8, a known material can be used. For example, ceria-based oxide (GDC) doped with samarium (Sm), gadolinium (Gd), strontium (Sr), or magnesium (Mg). Oxygen ion conductive ceramic materials such as doped lanthanum galide oxide, zirconia oxide (YSZ) containing scandium (Sc) and yttrium (Y) can be used, but are not limited thereto. Any material that conducts oxygen ions or hydrogen ions and satisfies the characteristics as an electrolyte of a fuel cell may be used.
 電解質8は、固体酸化物電解質の場合であれば、電気化学蒸着法(CVD-EVD法;Chemical Vapor Deposition - Electrochemical Vapor Deposition)等を用いて形成することができ、固体高分子電解質の場合であれば、塗布法等を用いて形成することができる。 In the case of a solid oxide electrolyte, the electrolyte 8 can be formed by using an electrochemical vapor deposition method (CVD-EVD method; Chemical Vapor Deposition-Electrochemical Vapor Deposition) or the like. For example, it can be formed using a coating method or the like.
 酸化剤極9、燃料極10はそれぞれ、例えば、電解質8に接する触媒層と、その触媒層に積層された拡散電極とからなる構成にすることができる。触媒層としては、例えば白金黒或いは白金合金をカーボンブラックに担持させたもの等を用いることができる。また、酸化剤極9の拡散電極の材料としては、例えばカーボンペーパ、La-Mn-O系化合物やLa-Co-Ce系化合物等を用いることができる。また、燃料極10の拡散電極の材料としては、例えばカーボンペーパ、Ni-Fe系サーメットやNi-YSZ系サーメット等を用いることができる。 Each of the oxidant electrode 9 and the fuel electrode 10 can be constituted by, for example, a catalyst layer in contact with the electrolyte 8 and a diffusion electrode laminated on the catalyst layer. As the catalyst layer, for example, platinum black or a platinum alloy supported on carbon black can be used. Further, as the material of the diffusion electrode of the oxidizer electrode 9, for example, carbon paper, La—Mn—O compound, La—Co—Ce compound, or the like can be used. Further, as the material of the diffusion electrode of the fuel electrode 10, for example, carbon paper, Ni—Fe cermet, Ni—YSZ cermet and the like can be used.
 酸化剤極9、燃料極10はそれぞれ、例えば蒸着法等を用いて形成することができる。 Each of the oxidizer electrode 9 and the fuel electrode 10 can be formed using, for example, a vapor deposition method.
 ヒータ3は容器7内を加熱し、温度センサ4は容器7内の温度を検出する。電圧測定部5は、燃料電池ユニット2の開回路電圧を測定する。温度制御部6は、温度センサ4の検出温度を参照しながら、ヒータ3を制御する。 The heater 3 heats the inside of the container 7, and the temperature sensor 4 detects the temperature in the container 7. The voltage measuring unit 5 measures the open circuit voltage of the fuel cell unit 2. The temperature control unit 6 controls the heater 3 while referring to the temperature detected by the temperature sensor 4.
 上記構成の本発明の第1実施形態に係る2次電池型燃料電池システムは、発電動作を停止すると、図2Aに示すフロー動作を開始する。 When the power generation operation is stopped, the secondary battery type fuel cell system according to the first embodiment of the present invention having the above configuration starts the flow operation shown in FIG. 2A.
 まず、温度センサ4によって、容器7の内部温度が測定される(ステップS10)。次に、温度制御部6は、温度センサ4によって測定された容器7の内部温度が100℃以上であるか否かを判定する(ステップS20)。ここで、100℃を閾値としている理由は、燃料電池装置内の圧力を101325パスカルとした場合、100℃以上であれば結露が発生しないからである。よって、この閾値となる内部温度は、燃料電池装置内の圧力に応じて、結露が生じない温度の下限値にすればよい。 First, the internal temperature of the container 7 is measured by the temperature sensor 4 (step S10). Next, the temperature control unit 6 determines whether or not the internal temperature of the container 7 measured by the temperature sensor 4 is 100 ° C. or higher (step S20). Here, the reason why the threshold value is 100 ° C. is that when the pressure in the fuel cell device is 101325 Pascals, condensation does not occur at 100 ° C. or higher. Therefore, the internal temperature serving as the threshold value may be a lower limit value of the temperature at which dew condensation does not occur according to the pressure in the fuel cell device.
 ここで、容器7の内部温度が100℃以上でなければ(ステップS20のNO)、温度制御部6は、ヒータ3によって容器7の内部を加熱し(ステップS50)、その後ステップS10に戻る。なお、ステップS50でのヒータ3による加熱は、容器7の内部温度が100℃以上でなければ、ヒータ3による加熱によって容器7の内部温度が上昇し、100℃を少し上回る程度の加熱に調整されている。このように内部温度を100℃以上に保つことにより、急激な温度低下による結露の発生を防いでいる。 Here, if the internal temperature of the container 7 is not 100 ° C. or more (NO in step S20), the temperature controller 6 heats the inside of the container 7 by the heater 3 (step S50), and then returns to step S10. In addition, the heating by the heater 3 in step S50 is adjusted to a degree of heating slightly higher than 100 ° C. when the internal temperature of the vessel 7 is not 100 ° C. or higher, and the heating by the heater 3 increases the internal temperature of the vessel 7. ing. By keeping the internal temperature at 100 ° C. or higher in this way, the occurrence of condensation due to a rapid temperature drop is prevented.
 一方、容器7の内部温度が100℃以上であれば(ステップS20のYES)、電圧測定部5は、燃料電池ユニット2の開回路電圧(燃料電池ユニット2がいかなる負荷にも接続されていないときの燃料電池ユニット2の出力電圧)を測定する(ステップS30)。 On the other hand, if the internal temperature of the container 7 is 100 ° C. or higher (YES in step S20), the voltage measuring unit 5 determines that the open circuit voltage of the fuel cell unit 2 (when the fuel cell unit 2 is not connected to any load). The output voltage of the fuel cell unit 2 is measured (step S30).
 燃料電池ユニット2がいかなる負荷にも接続されていない場合、燃料電池ユニット2の電圧(起電力)Eは、過電圧による損失がないため、下記のネルンストの式で表される。
Figure JPOXMLDOC01-appb-M000001
When the fuel cell unit 2 is not connected to any load, the voltage (electromotive force) E of the fuel cell unit 2 is expressed by the following Nernst equation because there is no loss due to overvoltage.
Figure JPOXMLDOC01-appb-M000001
 E0は標準起電力であり、Rは気体定数、Tは絶対温度、Fはファラデー定数、PH2及びPH2Оはそれぞれ燃料電池ユニット2の燃料極10における水素、水蒸気の分圧、PО2は燃料電池ユニット2の酸化剤極9における酸素の分圧であり、ΔG0は燃料電池ユニット2の発電反応(H+1/2O→HO)における標準ギブス自由エネルギーであり、温度が決まれば一意に定まる値である。 E0 is the standard electromotive force, R is the gas constant, T is the absolute temperature, F is the Faraday constant, P H2 and P H2O are the hydrogen and water vapor partial pressures at the fuel electrode 10 of the fuel cell unit 2, and P O2 is the fuel It is the partial pressure of oxygen at the oxidant electrode 9 of the battery unit 2, and ΔG0 is the standard Gibbs free energy in the power generation reaction (H 2 + 1 / 2O 2 → H 2 O) of the fuel cell unit 2, and is unique if the temperature is determined It is a value determined by.
 温度制御部6は、温度センサ4によって測定された容器7の内部温度と、電圧測定部5によって測定された燃料電池ユニット2の開回路電圧とを用いて、上記のネルンストの式から水蒸気分圧比を求める(ステップS30)。例えば、燃料電池ユニット2の燃料極10の全圧を101325パスカルとし、燃料電池ユニット2の酸化剤極9における酸素の分圧を20265パスカルとして、水蒸気分圧比を求めることができる。 The temperature control unit 6 uses the internal temperature of the container 7 measured by the temperature sensor 4 and the open circuit voltage of the fuel cell unit 2 measured by the voltage measurement unit 5 to calculate the water vapor partial pressure ratio from the Nernst equation. Is obtained (step S30). For example, the water vapor partial pressure ratio can be obtained by setting the total pressure of the fuel electrode 10 of the fuel cell unit 2 to 101325 Pascal and the partial pressure of oxygen at the oxidant electrode 9 of the fuel cell unit 2 to 20265 Pascal.
 ステップS30の処理終了後、温度制御部6は、ステップS30で求めた水蒸気分圧比が0.1%以下であるか否かを判定する(ステップS40)。ここで、0.1%を閾値とした理由について説明する。図9が示すように、0℃での飽和水蒸気圧に対応する水蒸気分圧比は約0.6%である。すなわち、水蒸気分圧比が0.6%以下であれば、温度が急激に室温まで低下しても、結露が生じることはない。尚、水蒸気分圧比が図8に示す特性線T1のとおり低下するとすれば、100℃のときの水蒸気分圧比は約0.1%であるので、本実施形態では閾値を0.1%にしている。しかし、上述のとおり0.6%であれば、温度降下速度にかかわらず結露が生じないので、ステップS40で用いる閾値は0.6%以下であれば任意の値でよい。したがって、図2A中のステップS40を、例えば図2Bに示すステップS40に置き換えることができる。 After step S30, the temperature controller 6 determines whether or not the water vapor partial pressure ratio obtained in step S30 is 0.1% or less (step S40). Here, the reason why the threshold value is 0.1% will be described. As FIG. 9 shows, the water vapor partial pressure ratio corresponding to the saturated water vapor pressure at 0 ° C. is about 0.6%. That is, if the water vapor partial pressure ratio is 0.6% or less, no condensation occurs even if the temperature is rapidly lowered to room temperature. If the water vapor partial pressure ratio decreases as shown by the characteristic line T1 shown in FIG. 8, the water vapor partial pressure ratio at 100 ° C. is about 0.1%. Therefore, in this embodiment, the threshold is set to 0.1%. Yes. However, if it is 0.6% as described above, condensation does not occur regardless of the temperature drop rate, so the threshold used in step S40 may be any value as long as it is 0.6% or less. Therefore, step S40 in FIG. 2A can be replaced with, for example, step S40 shown in FIG. 2B.
 ここで、ステップS30で求めた水蒸気分圧比が0.1%以下でなければ(ステップS40のNO)、ステップS10に戻る。尚、温度変化が急激な環境で使用されることが予定される場合などは、ステップS40でNOのとき、ステップS50へ進み、ヒータ3で加熱するようにしてもよい。この場合、ヒータ3による加熱は、容器7の内部温度が上昇しない程度に調整すればよい。 Here, if the water vapor partial pressure ratio obtained in step S30 is not less than 0.1% (NO in step S40), the process returns to step S10. In addition, when it is planned to be used in an environment where the temperature change is abrupt, when the answer is NO in step S40, the process may proceed to step S50 and be heated by the heater 3. In this case, the heating by the heater 3 may be adjusted so that the internal temperature of the container 7 does not increase.
 一方、ステップS30で求めた水蒸気分圧比が0.1%以下であれば(ステップS40のYES)、発電動作停止後の温度制御を終了する。また、例えば発電動作終了時の温度が400℃である場合、50℃未満にならなければ結露することはないので(図8参照)、ステップS20において100℃よりも低い温度(例えば80℃)を閾値にすることも可能である。 On the other hand, if the water vapor partial pressure ratio obtained in step S30 is 0.1% or less (YES in step S40), the temperature control after stopping the power generation operation is terminated. Further, for example, when the temperature at the end of the power generation operation is 400 ° C., there is no condensation unless the temperature is less than 50 ° C. (see FIG. 8), so a temperature lower than 100 ° C. (eg, 80 ° C.) is set in step S20. It is also possible to set a threshold value.
<本発明の第2実施形態に係る2次電池型燃料電池システム>
 本発明の第2実施形態に係る2次電池型燃料電池システムの概略構成を図3に示す。図3に示す本発明の第2実施形態に係る2次電池型燃料電池システムは、図1に示す本発明の第1実施形態に係る2次電池型燃料電池システムから電圧測定部5を取り除き、その代わりに容器7内に露点計11を新たに設けた構成である。
<Secondary Battery Type Fuel Cell System According to Second Embodiment of the Present Invention>
FIG. 3 shows a schematic configuration of a secondary battery type fuel cell system according to the second embodiment of the present invention. The secondary battery type fuel cell system according to the second embodiment of the present invention shown in FIG. 3 removes the voltage measuring unit 5 from the secondary battery type fuel cell system according to the first embodiment of the present invention shown in FIG. Instead, a dew point meter 11 is newly provided in the container 7.
 上記構成の本発明の第2実施形態に係る2次電池型燃料電池システムは、発電動作を停止すると、図4に示すフロー動作を開始する。 The secondary battery type fuel cell system according to the second embodiment of the present invention configured as described above starts the flow operation shown in FIG. 4 when the power generation operation is stopped.
 図4に示すフロー動作はステップS30の代わりにステップS35の処理を実行する以外は図2Aの示すフロー動作と同様であるため、ステップS35についてのみ説明する。 Since the flow operation shown in FIG. 4 is the same as the flow operation shown in FIG. 2A except that the process of step S35 is executed instead of step S30, only step S35 will be described.
 ステップS35において、温度制御部6は、露点計11によって測定された容器7内の水蒸気分圧から水蒸気分圧比を求める(ステップS35)。例えば、燃料電池ユニット2の燃料極10の全圧を101325パスカルとして、水蒸気分圧比を求めることができる。高温耐性を有する露点計の一例であるHTT103(東陽テクニカ製)を用いた場合、150℃まで水蒸気分圧の測定が可能である。このように露点計に測定可能温度の上限がある場合には、水蒸気ガスの温度が上限以下になったか否かを判定するステップを設けるとよい。例えば、上記のHTT103(東陽テクニカ製)の場合は上限が150℃であるので、水蒸気ガスの温度が150℃以下になっているか否かを判定するステップをステップS20の前に追加し、150℃以下になるまで温度を測定しながら待機し、温度が150℃以下になればステップS20に進むようにするのがよい。あるいは、水蒸気ガスが150℃以下になるまで待機し、150℃以下になってからこのフローを開始してもよい。 In step S35, the temperature control unit 6 obtains a water vapor partial pressure ratio from the water vapor partial pressure in the container 7 measured by the dew point meter 11 (step S35). For example, the water vapor partial pressure ratio can be obtained by setting the total pressure of the fuel electrode 10 of the fuel cell unit 2 to 101325 Pascals. When HTT103 (manufactured by Toyo Technica), which is an example of a dew point meter having high temperature resistance, is used, the partial pressure of water vapor can be measured up to 150 ° C. As described above, when the dew point meter has an upper limit of the measurable temperature, it is preferable to provide a step of determining whether or not the temperature of the water vapor gas is equal to or lower than the upper limit. For example, in the case of the above-mentioned HTT103 (manufactured by Toyo Technica), the upper limit is 150 ° C. Therefore, a step of determining whether or not the temperature of the water vapor gas is 150 ° C. or lower is added before step S20. It is preferable to wait while measuring the temperature until the temperature becomes below, and to proceed to step S20 when the temperature becomes 150 ° C. or below. Alternatively, this flow may be started after the water vapor gas reaches 150 ° C. or lower and waits for 150 ° C. or lower.
<本発明の第3実施形態に係る2次電池型燃料電池システム>
 本発明の第3実施形態に係る2次電池型燃料電池システムの概略構成を図5に示す。図5に示す本発明の第3実施形態に係る2次電池型燃料電池システムは、図1に示す本発明の第1実施形態に係る2次電池型燃料電池システムに電圧印加部12及び選択部13を新たに設けた構成である。
<Secondary Battery Type Fuel Cell System According to Third Embodiment of the Present Invention>
FIG. 5 shows a schematic configuration of a secondary battery type fuel cell system according to the third embodiment of the present invention. The secondary battery type fuel cell system according to the third embodiment of the present invention shown in FIG. 5 is similar to the secondary battery type fuel cell system according to the first embodiment of the present invention shown in FIG. 13 is newly provided.
 電圧印加部12は、燃料電池ユニット2が水蒸気を電気分解するように燃料電池ユニット2に逆電圧を印加する。選択部13は、図6に示すステップS30の処理実行時に電圧測定部5を選択して電圧測定部5と燃料電池ユニット2とを電気的に接続し、図6に示すステップS55の処理実行時に電圧印加部12を選択して電圧印加部12と燃料電池ユニット2とを電気的に接続する。 The voltage application unit 12 applies a reverse voltage to the fuel cell unit 2 so that the fuel cell unit 2 electrolyzes water vapor. The selection unit 13 selects the voltage measurement unit 5 when the process of step S30 shown in FIG. 6 is executed, and electrically connects the voltage measurement unit 5 and the fuel cell unit 2, and when the process of step S55 shown in FIG. 6 is executed. The voltage application unit 12 is selected to electrically connect the voltage application unit 12 and the fuel cell unit 2.
 上記構成の本発明の第3実施形態に係る2次電池型燃料電池システムは、発電動作を停止すると、図6に示すフロー動作を開始する。 The secondary battery type fuel cell system according to the third embodiment of the present invention having the above configuration starts the flow operation shown in FIG. 6 when the power generation operation is stopped.
 図6に示すフロー動作はステップS55の処理を追加した以外は図2Aの示すフロー動作と同様であるため、ステップS55についてのみ説明する。 Since the flow operation shown in FIG. 6 is the same as the flow operation shown in FIG. 2A except that the process of step S55 is added, only step S55 will be described.
 ステップS30で温度制御部6が求めた水蒸気分圧比が0.1%以下でなければ(ステップS40のNO)、温度制御部6は、電圧印加部12に、燃料電池ユニット2に逆電圧を印加させて、燃料電池ユニット2に容器7内の水蒸気を電気分解させて水素を生成させる(ステップS55)。具体的には、電圧印加部12が燃料電池ユニット2の酸化剤極9と燃料極10との間に電圧を印加し通電すると、燃料極10では混合ガス中の水蒸気(HO)と通電により供給された電子(e)とで下記の(5)式に示す反応が生じ、電気分解により水素が発生する。このように電気分解により水蒸気分圧比が低下する。 If the water vapor partial pressure ratio obtained by the temperature control unit 6 in step S30 is not less than 0.1% (NO in step S40), the temperature control unit 6 applies a reverse voltage to the fuel cell unit 2 to the voltage application unit 12. Then, the fuel cell unit 2 electrolyzes the water vapor in the container 7 to generate hydrogen (step S55). Specifically, when the voltage application unit 12 applies a voltage between the oxidant electrode 9 and the fuel electrode 10 of the fuel cell unit 2 and energizes, the fuel electrode 10 energizes with water vapor (H 2 O) in the mixed gas. The reaction shown in the following formula (5) occurs with the electrons (e) supplied by the above, and hydrogen is generated by electrolysis. Thus, the water vapor partial pressure ratio is lowered by electrolysis.
  HO+2e→H+O2- ・・・(5)
 その後ステップS10に戻る。
H 2 O + 2e → H 2 + O 2− (5)
Thereafter, the process returns to step S10.
<本発明の第4実施形態に係る2次電池型燃料電池システム>
 本発明の第4実施形態に係る2次電池型燃料電池システムの概略構成を図7に示す。図7に示す本発明の第4実施形態に係る2次電池型燃料電池システムは、図1に示す本発明の第1実施形態に係る2次電池型燃料電池システムから電圧測定部5を取り除き、容器7の代わりに二重壁容器14を用いた構成である。
<Secondary Battery Type Fuel Cell System According to Fourth Embodiment of the Present Invention>
FIG. 7 shows a schematic configuration of a secondary battery type fuel cell system according to the fourth embodiment of the present invention. The secondary battery type fuel cell system according to the fourth embodiment of the present invention shown in FIG. 7 removes the voltage measuring unit 5 from the secondary battery type fuel cell system according to the first embodiment of the present invention shown in FIG. The double wall container 14 is used instead of the container 7.
 二重壁容器14は、内壁15と外壁16とを有しており、二重壁内を熱伝導率の低い状態にすることによって断熱性能を高めている。また、二重壁容器14は、二重壁構造を固定するために内壁15を支持する支持部17も有している。 The double-walled container 14 has an inner wall 15 and an outer wall 16, and enhances heat insulation performance by making the inside of the double wall have a low thermal conductivity. The double wall container 14 also has a support portion 17 that supports the inner wall 15 in order to fix the double wall structure.
 二重壁内を熱伝導率の低い状態にする方法としては、二重壁内の空間を気密空間にして真空状態にする方法、二重壁内の空間を気密空間にして熱伝導率の低い気体を充填する方法、二重壁内の空間にガラスウールなどの熱伝導率の低い部材を充填する方法などが挙げられる。熱伝導率をできるだけ低くするという観点から、二重壁内の空間を気密空間にして真空状態にする方法が好ましい。 As a method of making the inside of the double wall have a low thermal conductivity, the space inside the double wall is made an airtight space to make a vacuum state, the space inside the double wall is made an airtight space and the heat conductivity is low. Examples thereof include a method of filling a gas and a method of filling a space in the double wall with a member having low thermal conductivity such as glass wool. From the viewpoint of making the thermal conductivity as low as possible, a method of making the space in the double wall an airtight space and making it in a vacuum state is preferable.
 内壁15及び外壁16の材料には、耐高温の材料であるガラスや金属などを用いるとよい。また、支持部17の材料には、耐高温であり尚かつ熱伝導率が低い材料であるガラスなどを用いるとよい。 As the material of the inner wall 15 and the outer wall 16, glass or metal, which is a high temperature resistant material, may be used. Further, as the material of the support portion 17, it is preferable to use glass or the like, which is a material that has high temperature resistance and low thermal conductivity.
 内壁15から外壁16への熱の伝達は主として支持部17を経由して起こる。二重壁容器14の断熱性能を高めるためには、支持部17の材料に熱伝導率の小さい材料を用いる、支持部17の断面積を小さくする、支持部17の長さ(内壁15と外壁16との距離)を長くするなどの方法がある。 Heat transfer from the inner wall 15 to the outer wall 16 mainly occurs via the support portion 17. In order to improve the heat insulation performance of the double-walled container 14, a material having a low thermal conductivity is used as the material of the support part 17, the cross-sectional area of the support part 17 is reduced, and the length of the support part 17 (inner wall 15 and outer wall There is a method of increasing the distance to 16).
 さらに、二重壁容器14は、二重壁内にバイメタル18も有している。バイメタル18は、内壁15には固定されているが、外壁16には固定されていない。二重壁容器14では、バイメタル18が300℃未満である場合は、バイメタル18と外壁16とが非接触状態であり、容器内が高温になりバイメタル18が300℃以上になっている場合は、バイメタル18の変形によってバイメタル18と外壁16とが接触状態になるように、バイメタル18の形状を設計しておく。バイメタル18の形状としては、例えば、立方体、U字型、らせん状などが挙げられる。バイメタル18と外壁16とが接触状態であるとき、すなわち300℃以上の高温のときは、バイメタル18を経由して内壁15から外壁16へ熱が伝達され、内部温度の低下速度が速くなる。一方、バイメタル18と外壁16とが非接触状態であるとき、すなわち300℃未満のときは、二重壁容器14の内部が断熱され、内部温度の低下速度が遅くなる。 Furthermore, the double wall container 14 also has a bimetal 18 in the double wall. The bimetal 18 is fixed to the inner wall 15, but is not fixed to the outer wall 16. In the double wall container 14, when the bimetal 18 is less than 300 ° C., the bimetal 18 and the outer wall 16 are in a non-contact state, and when the inside of the container is hot and the bimetal 18 is 300 ° C. or higher, The shape of the bimetal 18 is designed so that the bimetal 18 and the outer wall 16 are brought into contact with each other due to the deformation of the bimetal 18. Examples of the shape of the bimetal 18 include a cube, a U-shape, and a spiral shape. When the bimetal 18 and the outer wall 16 are in contact with each other, that is, at a high temperature of 300 ° C. or higher, heat is transferred from the inner wall 15 to the outer wall 16 via the bimetal 18, and the rate of decrease in the internal temperature is increased. On the other hand, when the bimetal 18 and the outer wall 16 are in a non-contact state, that is, when the temperature is lower than 300 ° C., the inside of the double-walled container 14 is thermally insulated, and the rate of decrease in the internal temperature becomes slow.
 図7に示す本発明の第4実施形態に係る2次電池型燃料電池システムでは、発電動作中、温度制御部6の温度制御によって二重壁容器14の内部温度が300℃以上に保たれている。したがって、発電動作中は、バイメタル18と外壁16とが接触状態になることで、二重壁容器14内の過熱を防止している。 In the secondary battery type fuel cell system according to the fourth embodiment of the present invention shown in FIG. 7, the internal temperature of the double-walled container 14 is maintained at 300 ° C. or higher by the temperature control of the temperature control unit 6 during the power generation operation. Yes. Therefore, during the power generation operation, the bimetal 18 and the outer wall 16 are in contact with each other to prevent overheating in the double-walled container 14.
 また、図7に示す本発明の第4実施形態に係る2次電池型燃料電池システムでは、発電動作が停止すると、温度制御部6の温度制御も停止する。これにより、二重壁容器14の内部温度が下がり、300℃未満になるとバイメタル18と外壁16とが非接触状態になる。これにより、二重壁容器14の内部が断熱され、二重壁容器14の内部温度の低下速度が遅くなるので、室温で結露して水が生じることを防止することができる。 In the secondary battery type fuel cell system according to the fourth embodiment of the present invention shown in FIG. 7, when the power generation operation is stopped, the temperature control of the temperature control unit 6 is also stopped. Thereby, when the internal temperature of the double-walled container 14 falls and becomes less than 300 ° C., the bimetal 18 and the outer wall 16 are brought into a non-contact state. Thereby, the inside of the double-walled container 14 is insulated, and the rate of decrease in the internal temperature of the double-walled container 14 is slowed, so that it is possible to prevent dew condensation at room temperature and generation of water.
 バイメタル18は、線膨張係数の異なる2種類の導電性材料が接合された構造を有している。例えば、線膨張係数が17×10―6/℃であるステンレス材料と、線膨張係数が9×10―6/℃であるチタン合金とが接合された構造を有するバイメタルを用いることができる。線膨張係数の異なる2種類の導電性材料が接合された構造を有するバイメタルは、加熱されると、線膨張係数の大きい金属材料側に凸状に湾曲する。 The bimetal 18 has a structure in which two types of conductive materials having different linear expansion coefficients are joined. For example, a bimetal having a structure in which a stainless material having a linear expansion coefficient of 17 × 10 −6 / ° C. and a titanium alloy having a linear expansion coefficient of 9 × 10 −6 / ° C. can be used. When heated, a bimetal having a structure in which two types of conductive materials having different linear expansion coefficients are joined is curved in a convex shape toward the metal material having a large linear expansion coefficient.
 ここで、金属材料の線膨張係数の参考値を小さい順に示す。上述した設計条件を満たすように、下記に列挙された金属あるいはその他の金属から線膨張係数の異なる2種を選択すればよい。
 Cr:6.5×10―6/℃,Ti:8.9×10―6/℃,Pt:9.0×10―6/℃,SUS430:10.4×10―6/℃,Co:12.5×10―6/℃,Ni:13.3×10―6/℃,Au:14.1×10―6/℃,SUS310:15.8×10―6/℃,Mo:16.0×10―6/℃,SUS316:16.0×10―6/℃,SUS301:16.9×10―6/℃,Cu:17.0×10―6/℃,SUS304:17.3×10―6/℃,Ag:19.1×10―6/℃,Mn:23.0×10―6/℃,Pb:29.0×10―6/℃
Here, reference values of the linear expansion coefficient of the metal material are shown in ascending order. In order to satisfy the design conditions described above, two types having different linear expansion coefficients may be selected from the metals listed below or other metals.
Cr: 6.5 × 10 -6 /℃,Ti:8.9×10 -6 /℃,Pt:9.0×10 -6 /℃,SUS430:10.4×10 -6 / ℃, Co: 12.5 × 10 -6 /℃,Ni:13.3×10 -6 /℃,Au:14.1×10 -6 /℃,SUS310:15.8×10 -6 / ℃, Mo: 16. 0 × 10 -6 /℃,SUS316:16.0×10 -6 /℃,SUS301:16.9×10 -6 /℃,Cu:17.0×10 -6 /℃,SUS304:17.3× 10 -6 /℃,Ag:19.1×10 -6 /℃,Mn:23.0×10 -6 /℃,Pb:29.0×10 -6 / ℃
 なお、バイメタル18の代わりに、バイメタル以外の、温度によって形状が変化する形状変化部材(例えば形状記憶合金)を用いてもよい。 Instead of the bimetal 18, a shape changing member (for example, a shape memory alloy) whose shape changes depending on the temperature other than the bimetal may be used.
<評価方法>
 本発明の第1実施形態に係る2次電池型燃料電池システムにおいて、発電停止後の温度制御を実行しないようにしたものを比較例とした。
<Evaluation method>
The secondary battery type fuel cell system according to the first embodiment of the present invention is a comparative example in which the temperature control after power generation is stopped is not executed.
 発電動作の停止後、容器(容器7又は二重壁容器14)の内部温度が100℃まで低下した時点の水蒸気圧分圧比を求めたところ、比較例では10%であったのに対して、本発明の第1~第4実施形態に係る2次電池型燃料電池システムではいずれも0.1%であった。なお、本発明の第4実施形態に係る2次電池型燃料電池システムでは二重壁容器14内に露点計を設けて水蒸気圧分圧比を求めた。 After stopping the power generation operation, the water vapor pressure partial pressure ratio at the time when the internal temperature of the container (container 7 or double-walled container 14) was reduced to 100 ° C. was determined. In the secondary battery type fuel cell systems according to the first to fourth embodiments of the present invention, all were 0.1%. In the secondary battery type fuel cell system according to the fourth embodiment of the present invention, a dew point meter was provided in the double wall container 14 to determine the water vapor pressure partial pressure ratio.
 また、本発明の第1,2,4実施形態に係る2次電池型燃料電池システムでは、発電動作の停止後に容器の内部温度が300℃から100℃まで低下するのに要する時間が比較例の10倍になった。 In the secondary battery type fuel cell system according to the first, second, and fourth embodiments of the present invention, the time required for the internal temperature of the container to drop from 300 ° C. to 100 ° C. after the power generation operation is stopped is a comparative example. It became 10 times.
 また、比較例と本発明の第1~第4実施形態に係る2次電池型燃料電池システムとを、発電動作の停止後、環境温度-5℃で24時間放置した。その後、それぞれの燃料電池ユニット2を観察し、燃料電池ユニット内部での氷の発生有無及び燃料電池ユニットのクラック発生有無を調査した。その調査結果を表1に示す。表1に示す結果から、本発明により、燃料電池ユニット内部での氷の発生及び燃料電池ユニットのクラック発生を防止できることが確認できた。すなわち、本発明により、燃料電池ユニットの劣化や破損を防止できることが確認できた。 In addition, the comparative example and the secondary battery type fuel cell system according to the first to fourth embodiments of the present invention were allowed to stand at an environmental temperature of −5 ° C. for 24 hours after the power generation operation was stopped. Thereafter, each fuel cell unit 2 was observed, and whether or not ice was generated inside the fuel cell unit and whether or not a crack occurred in the fuel cell unit was investigated. The survey results are shown in Table 1. From the results shown in Table 1, it was confirmed that the present invention can prevent the generation of ice inside the fuel cell unit and the generation of cracks in the fuel cell unit. That is, it has been confirmed that the present invention can prevent deterioration and breakage of the fuel cell unit.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<変形例>
 上述した各実施形態に係る燃料電池システムでは、燃料電池ユニット2であるMEA及び水素発生部材1をそれぞれ1つだけ設けた構造を図示しているが、例えば同一平面上にMEAを複数設けたり、さらにMEAと水素発生部材とで構成されるユニットを複数重ねた積層構造にした複数ユニット構成にしてもよい。
<Modification>
In the fuel cell system according to each of the embodiments described above, a structure in which only one MEA that is the fuel cell unit 2 and one hydrogen generation member 1 are provided is illustrated. For example, a plurality of MEAs may be provided on the same plane, Furthermore, a multi-unit configuration in which a plurality of units each composed of an MEA and a hydrogen generating member are stacked may be employed.
 また、上述した各実施形態では、水素発生剤1と燃料電池ユニット2とを同一の容器に収容した構造を図示しているが、水素発生剤1と燃料電池ユニット2とを別々の容器に収容し、水素発生剤1と燃料電池ユニット2との間でガスを循環させる循環経路を設ける構造にしてもよい。この場合、循環経路内のガスを循環させるためのポンプを設けてもよい。 Moreover, in each embodiment mentioned above, although the structure which accommodated the hydrogen generating agent 1 and the fuel cell unit 2 in the same container is illustrated, the hydrogen generating agent 1 and the fuel cell unit 2 are accommodated in a separate container. However, a structure may be provided in which a circulation path for circulating gas between the hydrogen generating agent 1 and the fuel cell unit 2 is provided. In this case, a pump for circulating the gas in the circulation path may be provided.
 また、水素発生剤1と燃料電池ユニット2の少なくとも一方を複数設けてもよい。この場合、例えば、水素発生剤1及び燃料電池ユニット2のどれか1つを他のものが放射状に囲む配置などが考えられる。 Further, a plurality of at least one of the hydrogen generating agent 1 and the fuel cell unit 2 may be provided. In this case, for example, an arrangement in which one of the hydrogen generating agent 1 and the fuel cell unit 2 is radially surrounded by the other may be considered.
 また、上述した各実施形態では、電解質8として酸素イオンを伝導する電解質を用いて、発電の際に燃料極10側で水を発生させるようにしている。この構成によれば、水素を水素発生剤1から燃料電池ユニット2に供給するためのガス流路によって水素発生剤1とつながっている電極側(燃料極10側)で水を発生するため、装置の簡素化や小型化に有利である。一方、特開2009-99491号公報に開示された燃料電池のように、燃料電池ユニット2の電解質として水素イオンを通す固体高分子電解質を用いることも可能である。但し、この場合には、発電の際酸化剤極9側で水が発生されることになるため、この水を水素発生剤1に伝搬する流路を設ければよい。 In each of the above-described embodiments, an electrolyte that conducts oxygen ions is used as the electrolyte 8 to generate water on the fuel electrode 10 side during power generation. According to this configuration, water is generated on the electrode side (fuel electrode 10 side) connected to the hydrogen generating agent 1 by the gas flow path for supplying hydrogen from the hydrogen generating agent 1 to the fuel cell unit 2. This is advantageous for simplification and downsizing. On the other hand, as a fuel cell disclosed in Japanese Patent Application Laid-Open No. 2009-99491, a solid polymer electrolyte that allows hydrogen ions to pass through can be used as the electrolyte of the fuel cell unit 2. However, in this case, since water is generated on the oxidant electrode 9 side during power generation, a flow path for propagating this water to the hydrogen generating agent 1 may be provided.
 また、前述のように充電動作(還元処理)は200℃から600℃の高温で行うことが還元効率の観点から好ましいため、充電動作の停止後、燃料電池装置の温度が急激に低下して結露が生じるという同様の問題が生じる。よって、充電動作の停止後、発電動作の停止後と同様の温度制御又は水蒸気分圧比の制御を行うようにすることが望ましい。例えば、発電動作の停止後に開始するフロー動作を示した図2Aにおいて、“発電”を“充電”に置き換えて読めばよい(図2C参照)。 Further, as described above, the charging operation (reduction treatment) is preferably performed at a high temperature of 200 ° C. to 600 ° C. from the viewpoint of reduction efficiency. Therefore, after the charging operation is stopped, the temperature of the fuel cell device rapidly decreases and condensation occurs. A similar problem occurs. Therefore, it is desirable to perform temperature control or water vapor partial pressure ratio control similar to that after stopping the power generation operation after stopping the charging operation. For example, in FIG. 2A showing the flow operation started after the stop of the power generation operation, “power generation” may be replaced with “charge” and read (see FIG. 2C).
   1 水素発生剤
   2 燃料電池ユニット
   3 ヒータ
   4 温度センサ
   5 電圧測定部
   6 温度制御部
   7 容器
   8 電解質
   9 酸化剤極
   10 燃料極
   11 露点計
   12 電圧印加部
   13 選択部
   14 二重壁容器
   15 内壁
   16 外壁
   17 支持部
   18 バイメタル
DESCRIPTION OF SYMBOLS 1 Hydrogen generating agent 2 Fuel cell unit 3 Heater 4 Temperature sensor 5 Voltage measurement part 6 Temperature control part 7 Container 8 Electrolyte 9 Oxidant electrode 10 Fuel electrode 11 Dew point meter 12 Voltage application part 13 Selection part 14 Double wall container 15 Inner wall 16 Outer wall 17 Support 18 Bimetal

Claims (9)

  1.  水蒸気との酸化反応により水素を発生し、水素との還元反応により再生可能な水素発生剤と、
     前記水素発生剤から供給される水素を燃料にして発電を行う発電機能及び前記水素発生剤に供給する水素を生成するための水蒸気の電気分解を行う電気分解機能を有する発電・電気分解部とを備え、
     前記水素発生剤と前記発電・電気分解部との間で水素と水蒸気を含む混合ガスを循環させる2次電池型燃料電池システムであって、
     発電動作及び充電動作の少なくとも一方の動作の停止後に、前記混合ガスの水蒸気分圧が飽和水蒸気分圧より低くなるように、前記発電・電気分解部の温度制御又は前記混合ガスの水蒸気分圧比の制御を行う制御部を備えることを特徴とする2次電池型燃料電池システム。
    A hydrogen generating agent that generates hydrogen by an oxidation reaction with water vapor and can be regenerated by a reduction reaction with hydrogen;
    A power generation / electrolysis unit having a power generation function for generating power using hydrogen supplied from the hydrogen generation agent as fuel and an electrolysis function for electrolyzing water vapor for generating hydrogen supplied to the hydrogen generation agent; Prepared,
    A secondary battery type fuel cell system for circulating a mixed gas containing hydrogen and water vapor between the hydrogen generating agent and the power generation / electrolysis unit,
    After stopping at least one of the power generation operation and the charging operation, the temperature control of the power generation / electrolysis unit or the water vapor partial pressure ratio of the mixed gas is set so that the water vapor partial pressure of the mixed gas becomes lower than the saturated water vapor partial pressure. A secondary battery type fuel cell system comprising a control unit for performing control.
  2.  前記制御部の制御終了時点における前記混合ガスの水蒸気分圧比が0.6%以下であることを特徴とする請求項1に記載の2次電池型燃料電池システム。 2. The secondary battery type fuel cell system according to claim 1, wherein a water vapor partial pressure ratio of the mixed gas at the end of control of the control unit is 0.6% or less.
  3.  前記制御部は、発電動作及び充電動作の少なくとも一方の動作の停止後、前記混合ガスの水蒸気分圧比が0.6%以下になるまで、前記発電・電気分解部の温度が100℃以上となるよう温度制御することを特徴とする請求項2に記載の2次電池型燃料電池システム。 After the stop of at least one of the power generation operation and the charging operation, the control unit has a temperature of the power generation / electrolysis unit of 100 ° C. or higher until a water vapor partial pressure ratio of the mixed gas is 0.6% or less. The secondary battery type fuel cell system according to claim 2, wherein the temperature is controlled as described above.
  4.  前記2次電池型燃料電池システムは、温度センサと電圧測定部を更に備え、
     前記水蒸気分圧比は、前記温度センサで検出された前記発電・電気分解部の温度と前記電圧測定部で測定された前記発電・電気分解部の開回路電圧から算出されることを特徴とする請求項1乃至3のいずれか一項に記載の2次電池型燃料電池システム。
    The secondary battery type fuel cell system further includes a temperature sensor and a voltage measurement unit,
    The water vapor partial pressure ratio is calculated from the temperature of the power generation / electrolysis unit detected by the temperature sensor and the open circuit voltage of the power generation / electrolysis unit measured by the voltage measurement unit. Item 4. The secondary battery type fuel cell system according to any one of Items 1 to 3.
  5.  前記2次電池型燃料電池システムは、露点計を更に備え、
     前記水蒸気分圧比は、前記露点計によって測定された水蒸気分圧から算出されることを特徴とする請求項1乃至3のいずれか一項に記載の2次電池型燃料電池システム。
    The secondary battery type fuel cell system further includes a dew point meter,
    The secondary battery type fuel cell system according to any one of claims 1 to 3, wherein the water vapor partial pressure ratio is calculated from a water vapor partial pressure measured by the dew point meter.
  6.  前記2次電池型燃料電池システムは、電圧印加部を更に備え、
     前記水蒸気分圧比は、前記電圧印加部によって前記発電・電気分解部に電圧を印加することにより前記混合ガス中の水蒸気を電気分解することにより制御されることを特徴とする請求項1乃至3のいずれか一項に記載の2次電池型燃料電池システム。
    The secondary battery type fuel cell system further includes a voltage application unit,
    The water vapor partial pressure ratio is controlled by electrolyzing water vapor in the mixed gas by applying a voltage to the power generation / electrolysis unit by the voltage application unit. The secondary battery type fuel cell system according to any one of the above.
  7.  水蒸気との酸化反応により水素を発生し、水素との還元反応により再生可能な水素発生剤と、
     前記水素発生剤から供給される水素を燃料にして発電を行う発電機能及び前記水素発生剤に供給する水素を生成するための水蒸気の電気分解を行う電気分解機能を有する発電・電気分解部と、
     前記水素発生剤と前記発電・電気分解部を内蔵する容器とを備え、
     前記水素発生剤と前記発電・電気分解部との間で水素と水蒸気を含む混合ガスを循環させる2次電池型燃料電池システムであって、
     前記容器の内部から外部への熱伝導性を変化させることによって前記容器内の温度を制御する部材を有することを特徴とする2次電池型燃料電池システム。
    A hydrogen generating agent that generates hydrogen by an oxidation reaction with water vapor and can be regenerated by a reduction reaction with hydrogen;
    A power generation / electrolysis unit having a power generation function of generating power using hydrogen supplied from the hydrogen generator as an fuel and an electrolysis function of electrolyzing water vapor for generating hydrogen supplied to the hydrogen generator;
    A container containing the hydrogen generating agent and the power generation / electrolysis unit;
    A secondary battery type fuel cell system for circulating a mixed gas containing hydrogen and water vapor between the hydrogen generating agent and the power generation / electrolysis unit,
    A secondary battery type fuel cell system comprising a member for controlling the temperature in the container by changing the thermal conductivity from the inside to the outside of the container.
  8.  前記容器は、外壁と内壁を有する二重壁容器であって、
     前記部材は前記外壁と前記内壁の間に配置され、温度変化によって形状が変化する形状変形部材であって、
     前記部材と前記外壁及び前記内壁との接触又は非接触によって、前記容器の内部から外部への熱伝導性を切り替えることを特徴とする請求項7に記載の2次電池型燃料電池システム。
    The container is a double-walled container having an outer wall and an inner wall,
    The member is disposed between the outer wall and the inner wall, and is a shape deforming member whose shape changes due to a temperature change,
    The secondary battery type fuel cell system according to claim 7, wherein the thermal conductivity from the inside of the container to the outside is switched by contact or non-contact of the member with the outer wall and the inner wall.
  9.  前記発電・電気分解部が固体酸化物燃料電池であることを特徴とする請求項1乃至8のいずれか一項に記載の2次電池型燃料電池システム。 The secondary battery type fuel cell system according to any one of claims 1 to 8, wherein the power generation / electrolysis unit is a solid oxide fuel cell.
PCT/JP2012/061596 2011-06-01 2012-05-02 Secondary battery type fuel cell system WO2012165097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011123257 2011-06-01
JP2011-123257 2011-06-01

Publications (1)

Publication Number Publication Date
WO2012165097A1 true WO2012165097A1 (en) 2012-12-06

Family

ID=47258961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061596 WO2012165097A1 (en) 2011-06-01 2012-05-02 Secondary battery type fuel cell system

Country Status (2)

Country Link
JP (1) JPWO2012165097A1 (en)
WO (1) WO2012165097A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172337A1 (en) * 2018-03-07 2019-09-12 大阪瓦斯株式会社 Fuel cell system and method for operating fuel cell system
JP2020128576A (en) * 2019-02-08 2020-08-27 東芝エネルギーシステムズ株式会社 Control device and control method of hydrogen production plant
WO2021145221A1 (en) * 2020-01-17 2021-07-22 パナソニックIpマネジメント株式会社 Fuel cell system and control method for fuel cell system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041769A (en) * 1984-07-20 1985-03-05 Hitachi Ltd Fuel cell
JP2004031096A (en) * 2002-06-25 2004-01-29 Canon Inc Fuel cell and electric equipment
JP2004311348A (en) * 2003-04-10 2004-11-04 Denso Corp Fuel cell system
JP2005259440A (en) * 2004-03-10 2005-09-22 Denso Corp Fuel cell system
JP2009099534A (en) * 2007-09-28 2009-05-07 Bio Coke Lab Co Ltd Power generating device, power generation method, and manufacturing method of magnesium hydride particle
JP2010003456A (en) * 2008-06-18 2010-01-07 Aquafairy Kk Fuel cell
WO2011040182A1 (en) * 2009-09-30 2011-04-07 コニカミノルタホールディングス株式会社 Fuel cell device
WO2011052283A1 (en) * 2009-10-29 2011-05-05 コニカミノルタホールディングス株式会社 Fuel cell device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183931B2 (en) * 2007-02-02 2013-04-17 Jx日鉱日石エネルギー株式会社 Fuel cell system and operation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041769A (en) * 1984-07-20 1985-03-05 Hitachi Ltd Fuel cell
JP2004031096A (en) * 2002-06-25 2004-01-29 Canon Inc Fuel cell and electric equipment
JP2004311348A (en) * 2003-04-10 2004-11-04 Denso Corp Fuel cell system
JP2005259440A (en) * 2004-03-10 2005-09-22 Denso Corp Fuel cell system
JP2009099534A (en) * 2007-09-28 2009-05-07 Bio Coke Lab Co Ltd Power generating device, power generation method, and manufacturing method of magnesium hydride particle
JP2010003456A (en) * 2008-06-18 2010-01-07 Aquafairy Kk Fuel cell
WO2011040182A1 (en) * 2009-09-30 2011-04-07 コニカミノルタホールディングス株式会社 Fuel cell device
WO2011052283A1 (en) * 2009-10-29 2011-05-05 コニカミノルタホールディングス株式会社 Fuel cell device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172337A1 (en) * 2018-03-07 2019-09-12 大阪瓦斯株式会社 Fuel cell system and method for operating fuel cell system
JPWO2019172337A1 (en) * 2018-03-07 2021-03-11 大阪瓦斯株式会社 Fuel cell system and how to operate the fuel cell system
US11367887B2 (en) 2018-03-07 2022-06-21 Osaka Gas Co., Ltd. Fuel cell system and method for operating fuel cell system
JP7155241B2 (en) 2018-03-07 2022-10-18 大阪瓦斯株式会社 FUEL CELL SYSTEM AND METHOD OF OPERATION OF FUEL CELL SYSTEM
JP2020128576A (en) * 2019-02-08 2020-08-27 東芝エネルギーシステムズ株式会社 Control device and control method of hydrogen production plant
JP7039504B2 (en) 2019-02-08 2022-03-22 東芝エネルギーシステムズ株式会社 Control device and control method for hydrogen production plant
WO2021145221A1 (en) * 2020-01-17 2021-07-22 パナソニックIpマネジメント株式会社 Fuel cell system and control method for fuel cell system
EP4092790A4 (en) * 2020-01-17 2024-05-01 Panasonic Ip Man Co Ltd Fuel cell system and control method for fuel cell system

Also Published As

Publication number Publication date
JPWO2012165097A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP3680232B2 (en) Solid electrolyte and fuel cell, hydrogen pump, oxygen concentration sensor and water vapor concentration sensor using the same
Yang et al. High performance solid oxide electrolysis cells using Pr0. 8Sr1. 2 (Co, Fe) 0.8 Nb0. 2O4+ δ–Co–Fe alloy hydrogen electrodes
JP6024373B2 (en) Fuel cell and operation method thereof
JP2006283103A (en) Steam electrolysis cell
JP2009037872A (en) Ceramic powder, lamination member of air electrode and electrolytic layer of intermediate-temperature operating solid-oxide fuel cell using the powder, and method of manufacturing the member
WO2012165097A1 (en) Secondary battery type fuel cell system
JP2013030359A (en) Fuel cell device
US20140308596A1 (en) Method and device for stopping solid-oxide fuel cell system
JP5481611B2 (en) High temperature steam electrolysis cell
JP5858249B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP6734048B2 (en) FUEL CELL CARTRIDGE, FUEL CELL MODULE, FUEL CELL CARTRIDGE CONTROL DEVICE AND CONTROL METHOD
JP5199218B2 (en) Solid oxide fuel cell and manufacturing method thereof
JP2018147583A (en) Proton conductor, solid electrolyte layer, cell structure and water vapor electrolysis cell including the same, and fuel cell
JP2013025933A (en) Secondary battery type fuel battery
JP6239229B2 (en) Fuel cell system and fuel cell operating method
JP5596594B2 (en) FUEL ELECTRODE MATERIAL FOR SOLID OXIDE FUEL CELL, FUEL ELECTRODE, SOLID OXIDE FUEL CELL AND METHOD FOR PRODUCING FUEL ELECTRODE
JP2006032210A (en) Operation method of fuel cell
KR20100108955A (en) Cathode material for solid oxide fuel cell and manufacturing method of the same
KR102191620B1 (en) Cylindrical solid oxide fuel cell stack using modified propane gas
JP2013140766A (en) Tubular solid oxide fuel cell module and method of manufacturing the same
JP5657399B2 (en) Method for producing solid oxide electrochemical cell
JP5640821B2 (en) Secondary battery type fuel cell system
Kim et al. Revolutionizing hydrogen production with LSGM-based solid oxide electrolysis cells: An innovative approach by sonic spray
JP7376710B2 (en) Advanced heating methods and systems
KR101367068B1 (en) Bimetal current collecting contact member and fuel cell apparatus with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517935

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792097

Country of ref document: EP

Kind code of ref document: A1