JP2013069450A - Secondary battery type fuel cell system - Google Patents

Secondary battery type fuel cell system Download PDF

Info

Publication number
JP2013069450A
JP2013069450A JP2011205557A JP2011205557A JP2013069450A JP 2013069450 A JP2013069450 A JP 2013069450A JP 2011205557 A JP2011205557 A JP 2011205557A JP 2011205557 A JP2011205557 A JP 2011205557A JP 2013069450 A JP2013069450 A JP 2013069450A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
storage alloy
generating member
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011205557A
Other languages
Japanese (ja)
Inventor
Jun Yamada
潤 山田
Katsuichi Uratani
勝一 浦谷
Yoshiyuki Okano
誉之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011205557A priority Critical patent/JP2013069450A/en
Publication of JP2013069450A publication Critical patent/JP2013069450A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize degradation of battery performance when hydrogen gas leaks in a secondary battery type fuel cell system.SOLUTION: The secondary battery type fuel cell system comprises a first hydrogen generation member 1 capable of generating hydrogen by oxidation reaction with steam and renewable by reduction reaction with hydrogen, a power generation/electrolysis part (e.g., a fuel cell 2)having a power generation function for generating power by using the hydrogen supplied from the first hydrogen generation member 1 as fuel, and an electrolysis function for performing electrolysis of steam in order to produce hydrogen being supplied to the first hydrogen generation member 1, and a second hydrogen generation member 3 composed of a hydrogen-storage alloy into which hydrogen is taken in previously. When the system is generating power, the hydrogen partial pressure dependent on the equilibrium state of oxidation reduction reaction of the first hydrogen generation member 1 is equal to or lower than the hydrogen equilibrium pressure of the hydrogen-storage alloy.

Description

本発明は、発電動作だけでなく充電動作も行える2次電池型燃料電池システムに関する。   The present invention relates to a secondary battery type fuel cell system capable of performing not only a power generation operation but also a charging operation.

燃料電池は、典型的には、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を、燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込んだものを1つのセル構成としている。そして、燃料極に燃料ガス(例えば水素ガス)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給されることにより発電が行われる。   A fuel cell typically includes a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), a fuel electrode (anode) and an oxidizer electrode. The one sandwiched from both sides by the (cathode) has a single cell configuration. A fuel gas flow path for supplying fuel gas (for example, hydrogen gas) to the fuel electrode and an oxidant gas flow path for supplying oxidant gas (for example, oxygen or air) to the oxidant electrode are provided. Power generation is performed by supplying fuel gas and oxidant gas to the fuel electrode and oxidant electrode through the passage.

この燃料電池は、水素と酸素から水を生成した際に電力を取り出すものであり、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになるだけでなく、発電時の排出物が水のみであるため、環境に優れた発電方式であり、地球規模でのエネルギーや環境問題解決の切り札として期待されている。   This fuel cell is designed to extract electric power when water is generated from hydrogen and oxygen. In principle, the efficiency of the electric power that can be extracted is high, which not only saves energy, but also generates only water when generating electricity. Therefore, it is an environmentally friendly power generation method, and is expected as a trump card for solving global energy and environmental problems.

国際公開第2011/030625号International Publication No. 2011/030625

特許文献1には、水蒸気との酸化反応により水素を発生し、水素との還元反応により再生可能な水素発生部材と、前記水素発生部材から供給される水素を燃料にして発電を行う発電機能及び前記水素発生部材に供給する水素を生成するための水蒸気の電気分解を行う電気分解機能を有する発電・電気分解部とを備え、前記水素発生部材と前記発電・電気分解部との間で水素と水蒸気を含む混合ガスを循環させる2次電池型燃料電池システムが開示されている。   Patent Document 1 discloses a hydrogen generation member that generates hydrogen by an oxidation reaction with water vapor and can be regenerated by a reduction reaction with hydrogen, a power generation function that generates power using hydrogen supplied from the hydrogen generation member as a fuel, and A power generation / electrolysis unit having an electrolysis function for electrolyzing water vapor to generate hydrogen to be supplied to the hydrogen generation member, and hydrogen between the hydrogen generation member and the power generation / electrolysis unit. A secondary battery type fuel cell system for circulating a mixed gas containing water vapor is disclosed.

特許文献1で開示されている2次電池型燃料電池システムにおいて、水素は、前記発電・電気分解部の一部(例えば、燃料電池部の燃料極)と前記水素発生部材とを封じた密閉空間内に蓄えられ、前記水素発生部材と前記発電・電気分解部との間を循環するものであるため、基本的には追加の必要がないものである。   In the secondary battery type fuel cell system disclosed in Patent Document 1, hydrogen is a sealed space in which a part of the power generation / electrolysis unit (for example, the fuel electrode of the fuel cell unit) and the hydrogen generating member are sealed. Since it is stored inside and circulates between the said hydrogen generating member and the said electric power generation and electrolysis part, there is basically no need for addition.

しかしながら、特許文献1で開示されている2次電池型燃料電池システムには、経年劣化等によって前記密閉空間の密閉度が低下して前記密閉空間内に充填した水素ガスが漏れてしまうと、前記発電・電気分解部への水素供給量が減少するので、電池性能が低下し、最悪の場合電池としての利用ができなくなってしまうという課題がある。   However, in the secondary battery type fuel cell system disclosed in Patent Document 1, when the hydrogen gas filled in the sealed space leaks due to a decrease in the sealing degree of the sealed space due to aged deterioration or the like, Since the amount of hydrogen supplied to the power generation / electrolysis section decreases, there is a problem that the battery performance is lowered, and in the worst case, it cannot be used as a battery.

本発明は、上記の状況に鑑み、水素ガスが漏れた場合に電池性能が低下することを抑えることができる2次電池型燃料電池システムを提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a secondary battery type fuel cell system capable of suppressing a decrease in battery performance when hydrogen gas leaks.

上記目的を達成するために本発明に係る2次電池型燃料電池システムは、水蒸気との酸化反応により水素を発生し、水素との還元反応により再生可能な第1の水素発生部材と、前記第1の水素発生部材から供給される水素を燃料にして発電を行う発電機能及び前記第1の水素発生部材に供給する水素を生成するための水蒸気の電気分解を行う電気分解機能を有する発電・電気分解部とを備え、前記第1の水素発生部材と前記発電・電気分解部との間で水素と水蒸気を含む混合ガスを循環させる2次電池型燃料電池システムであって、あらかじめ水素を取り込んだ水素吸蔵合金からなる第2の水素発生部材を備え、システムの発電時において、前記第1の水素発生部材の酸化還元反応の平衡状態で決まる水素分圧が、前記水素吸蔵合金の水素平衡圧力以下である構成(第1の構成)とする。   In order to achieve the above object, a secondary battery type fuel cell system according to the present invention includes a first hydrogen generating member that generates hydrogen by an oxidation reaction with water vapor and can be regenerated by a reduction reaction with hydrogen. Power generation / electricity having a power generation function for generating power using hydrogen supplied from one hydrogen generation member as fuel and an electrolysis function for electrolyzing water vapor to generate hydrogen supplied to the first hydrogen generation member A secondary battery type fuel cell system comprising a decomposition unit, wherein a mixed gas containing hydrogen and water vapor is circulated between the first hydrogen generation member and the power generation / electrolysis unit. A second hydrogen generation member made of a hydrogen storage alloy, and during power generation of the system, a hydrogen partial pressure determined by an equilibrium state of an oxidation-reduction reaction of the first hydrogen generation member is a hydrogen level of the hydrogen storage alloy. A configuration is pressure less (first configuration).

このような構成によると、水素と水蒸気を含む混合ガスが循環している密閉空間から水素が漏れ、上記密閉空間内の水素分圧が前記水素吸蔵合金の水素平衡圧力を下回った場合には、前記水素吸蔵合金から前記発電・電気分解部に水素が供給され、上記密閉空間内の水素分圧は前記水素吸蔵合金の水素平衡圧力まで回復する。これにより、水素ガスが漏れた場合に電池性能が低下することを抑えることができる   According to such a configuration, when hydrogen leaks from the sealed space in which the mixed gas containing hydrogen and water vapor circulates, and the hydrogen partial pressure in the sealed space is lower than the hydrogen equilibrium pressure of the hydrogen storage alloy, Hydrogen is supplied from the hydrogen storage alloy to the power generation / electrolysis section, and the hydrogen partial pressure in the sealed space is restored to the hydrogen equilibrium pressure of the hydrogen storage alloy. Thereby, when hydrogen gas leaks, it can suppress that battery performance falls.

また、発電の際に燃料極側で水蒸気を発生させるために、上記第1の構成の2次電池型燃料電池システムにおいて、前記発電・電気分解部が固体酸化物燃料電池である構成(第2の構成)にすることが望ましい。   Further, in order to generate water vapor on the fuel electrode side during power generation, in the secondary battery type fuel cell system of the first configuration, the power generation / electrolysis section is a solid oxide fuel cell (second It is desirable that

また、製造時に室温で水素を大気圧で充填した場合に、500℃から800℃において水素吸蔵合金の水素平衡圧力を第1の水素発生部材の酸化還元反応の平衡状態から決まる水素分圧以下にすることができるように、上記第2の構成の2次電池型燃料電池システムにおいて、前記水素吸蔵合金がウラン、チタン、またはこれらの各合金のいずれかである構成(第3の構成)にすることが望ましい。   In addition, when hydrogen is filled at atmospheric pressure at room temperature during production, the hydrogen equilibrium pressure of the hydrogen storage alloy is reduced to a hydrogen partial pressure determined from the equilibrium state of the oxidation-reduction reaction of the first hydrogen generating member at 500 ° C. to 800 ° C. In the secondary battery type fuel cell system having the second configuration, the hydrogen storage alloy may be uranium, titanium, or any of these alloys (third configuration). It is desirable.

また、水素吸蔵合金の劣化を抑えるために、上記第1〜第3のいずれかの構成の2次電池型燃料電池システムにおいて、前記水素吸蔵合金が、水素を透過し、水蒸気の透過を妨げる水素透過材料で覆われている構成(第4の構成)にすることが望ましい。   Further, in order to suppress deterioration of the hydrogen storage alloy, in the secondary battery type fuel cell system having any one of the first to third configurations, the hydrogen storage alloy allows hydrogen to pass through and prevents hydrogen from passing through. It is desirable to adopt a configuration (fourth configuration) covered with a permeable material.

また、水素が漏れていないときに水素吸蔵合金が水素を放出することを防止するために、上記第1〜第4のいずれかの構成の2次電池型燃料電池システムにおいて、前記水素吸蔵合金があらかじめ水素を最大限取り込んでおり、システムの発電時において、前記第1の水素発生部材の酸化還元反応の平衡状態で決まる水素分圧が、前記水素吸蔵合金の水素平衡圧力より小さい構成にすることが望ましい。   Further, in order to prevent the hydrogen storage alloy from releasing hydrogen when hydrogen is not leaking, in the secondary battery type fuel cell system having any one of the first to fourth configurations, the hydrogen storage alloy includes: Hydrogen is taken in to the maximum and the hydrogen partial pressure determined by the equilibrium state of the oxidation-reduction reaction of the first hydrogen generating member is smaller than the hydrogen equilibrium pressure of the hydrogen storage alloy at the time of power generation of the system. Is desirable.

本発明に係る2次電池型燃料電池システムによると、水素と水蒸気を含む混合ガスが循環している密閉空間から水素が漏れ、上記密閉空間内の水素分圧が前記水素吸蔵合金の水素平衡圧力を下回った場合には、前記水素吸蔵合金から前記発電・電気分解部に水素が供給され、上記密閉空間内の水素分圧は前記水素吸蔵合金の水素平衡圧力まで回復するので、水素ガスが漏れた場合に電池性能が低下することを抑えることができる。   According to the secondary battery type fuel cell system of the present invention, hydrogen leaks from the sealed space in which the mixed gas containing hydrogen and water vapor circulates, and the hydrogen partial pressure in the sealed space is equal to the hydrogen equilibrium pressure of the hydrogen storage alloy. If the pressure is lower than the hydrogen storage alloy, hydrogen is supplied from the hydrogen storage alloy to the power generation / electrolysis section, and the hydrogen partial pressure in the sealed space is restored to the hydrogen equilibrium pressure of the hydrogen storage alloy, so that hydrogen gas leaks. In this case, the battery performance can be prevented from deteriorating.

本発明の第1実施形態に係る2次電池型燃料電池システムの概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the secondary battery type fuel cell system which concerns on 1st Embodiment of this invention. 燃料極と第1の水素発生部材とを封じた密閉空間内の水素分圧比を示す図である。It is a figure which shows the hydrogen partial pressure ratio in the sealed space which sealed the fuel electrode and the 1st hydrogen generating member. 燃料極と第1の水素発生部材とを封じた密閉空間内の水素分圧を示す図である。It is a figure which shows the hydrogen partial pressure in the sealed space which sealed the fuel electrode and the 1st hydrogen generating member. 本発明の第1実施形態に係る2次電池型燃料電池システムの変形例を示す図である。It is a figure which shows the modification of the secondary battery type fuel cell system which concerns on 1st Embodiment of this invention. 温度一定の環境下での水素吸蔵合金の水素平衡圧力特性を示す図である。It is a figure which shows the hydrogen equilibrium pressure characteristic of the hydrogen storage alloy in an environment with constant temperature. 水素吸蔵合金の水素平衡圧力の温度による変化を示す図である。It is a figure which shows the change by the temperature of the hydrogen equilibrium pressure of a hydrogen storage alloy. 密閉空間内の水素分圧の時間変化例を示す図である。It is a figure which shows the example of a time change of the hydrogen partial pressure in sealed space. 密閉空間内の水素分圧の他の時間変化例を示す図である。It is a figure which shows the other time change example of the hydrogen partial pressure in sealed space. 本発明の第2実施形態に係る2次電池型燃料電池システムの概略構成を示す図である。It is a figure which shows schematic structure of the secondary battery type fuel cell system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る2次電池型燃料電池システムの概略構成を示す図である。It is a figure which shows schematic structure of the secondary battery type fuel cell system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る2次電池型燃料電池システムの概略構成を示す図である。It is a figure which shows schematic structure of the secondary battery type fuel cell system which concerns on 4th Embodiment of this invention.

本発明の実施形態について図面を参照して以下に説明する。なお、本発明は、後述する実施形態に限られない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not restricted to embodiment mentioned later.

<第1実施形態>
本発明の第1実施形態に係る2次電池型燃料電池システムの概略構成を図1に示す。本発明の第1実施形態に係る2次電池型燃料電池システムは、水蒸気との酸化反応により水素を発生し、水素との還元反応により再生可能な第1の水素発生部材1と、システムの発電時に第1の水素発生部材1から供給される水素を燃料にして発電を行いシステムの充電時に第1の水素発生部材1に供給する水素を生成するための水蒸気の電気分解を行う燃料電池部2と、水素吸蔵合金からなる第2の水素発生部材3と、第1の水素発生部材1、燃料電池部2、及び第2の水素発生部材3の温度を調節するヒーター4と、第1の水素発生部材1、燃料電池部2、第2の水素発生部材3、及びヒーター4を収容する容器5とを備えている。なお、容器5は断熱容器であることが望ましい。
<First Embodiment>
FIG. 1 shows a schematic configuration of a secondary battery type fuel cell system according to the first embodiment of the present invention. The secondary battery type fuel cell system according to the first embodiment of the present invention includes a first hydrogen generating member 1 that generates hydrogen by an oxidation reaction with water vapor and can be regenerated by a reduction reaction with hydrogen, and power generation of the system. A fuel cell unit 2 that generates electricity by using hydrogen supplied from the first hydrogen generating member 1 as fuel, and performs electrolysis of water vapor to generate hydrogen supplied to the first hydrogen generating member 1 when the system is charged A second hydrogen generating member 3 made of a hydrogen storage alloy, a heater 4 for adjusting the temperatures of the first hydrogen generating member 1, the fuel cell unit 2, and the second hydrogen generating member 3, and a first hydrogen A generation member 1, a fuel cell unit 2, a second hydrogen generation member 3, and a container 5 that houses a heater 4 are provided. The container 5 is preferably a heat insulating container.

第1の水素発生部材1としては、例えば、金属を母材として、その表面に金属または金属酸化物が添加されており、水蒸気との酸化反応によって水素を発生するものを用いることができる。母材の金属としては例えば、Ni、Fe、Pd、V、Mgやこれらを基材とする合金が挙げられ、特にFeは安価で、加工も容易なので好ましい。また、添加される金属としては、Al、Rd、Pd、Cr、Ni、Cu、Co、V、Moが挙げられ、添加される金属酸化物としてはSiO、TiOが挙げられる。ただし、母材となる金属と、添加される金属とは同一の材料ではない。なお、本実施形態においては、第1の水素発生部材1として、Feを主体とする水素発生部材を用いる。 As the first hydrogen generating member 1, for example, a material in which a metal is used as a base material, a metal or a metal oxide is added to the surface, and hydrogen is generated by an oxidation reaction with water vapor can be used. Examples of the base metal include Ni, Fe, Pd, V, Mg, and alloys based on these, and Fe is particularly preferable because it is inexpensive and easy to process. Examples of the added metal include Al, Rd, Pd, Cr, Ni, Cu, Co, V, and Mo. Examples of the added metal oxide include SiO 2 and TiO 2 . However, the metal used as a base material and the added metal are not the same material. In the present embodiment, a hydrogen generation member mainly composed of Fe is used as the first hydrogen generation member 1.

また、第1の水素発生部材1においては、その反応性を上げるために単位体積当りの表面積を大きくすることが望ましい。第1の水素発生部材1の単位体積当りの表面積を増加させる方策としては、例えば、第1の水素発生部材1の主体を微粒子化し、その微粒子化したものを成型すればよい。微粒子化の方法は例えばボールミル等を用いた粉砕によって粒子を砕く方法が挙げられる。さらに、機械的な手法などにより微粒子にクラックを発生させることで微粒子の表面積をより一層増加させてもよく、酸処理、アルカリ処理、ブラスト加工などによって微粒子の表面を荒らして微粒子の表面積をより一層増加させてもよい。また、第1の水素発生部材1としては、微粒子をガスが通過する程度の空隙を残して固めたものであってもよいし、ペレット状の粒に形成してこの粒を多数空間内に埋める形態であっても構わない。   Further, in the first hydrogen generating member 1, it is desirable to increase the surface area per unit volume in order to increase the reactivity. As a measure for increasing the surface area per unit volume of the first hydrogen generating member 1, for example, the main body of the first hydrogen generating member 1 may be made into fine particles and the fine particles may be molded. Examples of the fine particles include a method of crushing particles by crushing using a ball mill or the like. Further, the surface area of the fine particles may be further increased by generating cracks in the fine particles by a mechanical method or the like, and the surface area of the fine particles is further increased by roughening the surface of the fine particles by acid treatment, alkali treatment, blasting, etc. It may be increased. In addition, the first hydrogen generating member 1 may be one in which fine particles are solidified leaving a space that allows gas to pass through, or formed into pellet-shaped particles and filled with a large number of these particles in the space. It may be a form.

燃料電池部2は、図1に示す通り、電解質膜6を挟み、その両側にそれぞれ燃料極7と酸化剤極8が形成されているMEA構造(膜・電極接合体:Membrane Electrode Assembly)である。なお、図1では、MEAを1つだけ設けた構造を図示しているが、MEAを複数設けたり、さらに複数のMEAを積層構造にしたりしてもよい。   As shown in FIG. 1, the fuel cell unit 2 has an MEA structure (membrane / electrode assembly) in which an electrolyte membrane 6 is sandwiched and a fuel electrode 7 and an oxidant electrode 8 are formed on both sides thereof. . Although FIG. 1 illustrates a structure in which only one MEA is provided, a plurality of MEAs may be provided, or a plurality of MEAs may be stacked.

電解質膜6の材料としては、例えば、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用いることができ、また例えば、ナフィオン(デュポン社の商標)、カチオン導電性ポリマー、アニオン導電性ポリマー等の固体高分子電解質を用いることができるが、これらに限定されることなく、水素イオンを通すものや酸素イオンを通すもの、また、水酸化物イオンを通すもの等、燃料電池の電解質としての特性を満たすものであればよい。なお、本実施形態においては、電解質膜6として、酸素イオン又は水酸化物イオンを通す電解質、例えばイットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用い、システムの発電時に燃料極7側に水(水蒸気)を発生させるようにしている。この場合、システムの発電時に燃料極7側に発生した水蒸気と第1の水素発生部材1との酸化反応によって第1の水素発生部材1から水素を発生させることができる。   As the material of the electrolyte membrane 6, for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) can be used. For example, Nafion (trademark of DuPont), cationic conductive polymer, anionic conductive polymer Solid polymer electrolytes such as, but not limited to, those that pass hydrogen ions, those that pass oxygen ions, and those that pass hydroxide ions can be used as fuel cell electrolytes. Any material satisfying the characteristics may be used. In this embodiment, an electrolyte that passes oxygen ions or hydroxide ions, for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) is used as the electrolyte membrane 6, and the fuel electrode 7 side is used when generating power in the system. Water (water vapor) is generated in the water. In this case, hydrogen can be generated from the first hydrogen generating member 1 by an oxidation reaction between water vapor generated on the fuel electrode 7 side during power generation of the system and the first hydrogen generating member 1.

電解質膜6は、固体酸化物電解質の場合であれば、電気化学蒸着法(CVD−EVD法;Chemical Vapor Deposition -Electrochemical Vapor Deposition)等を用いて形成することができ、固体高分子電解質の場合であれば、塗布法等を用いて形成することができる。   In the case of a solid oxide electrolyte, the electrolyte membrane 6 can be formed using an electrochemical vapor deposition method (CVD-EVD method; Chemical Vapor Deposition-Electrochemical Vapor Deposition) or the like, and in the case of a solid polymer electrolyte. If there is, it can be formed using a coating method or the like.

燃料極7、酸化剤極8はそれぞれ、例えば、電解質膜6に接する触媒層と、その触媒層に積層された拡散電極とからなる構成にすることができる。触媒層としては、例えば白金黒或いは白金合金をカーボンブラックに担持させたもの等を用いることができる。また、燃料極7の拡散電極の材料としては、例えばカーボンペーパ、Ni−Fe系サーメットやNi−YSZ系サーメット等を用いることができる。また、酸化剤極8の拡散電極の材料としては、例えばカーボンペーパ、La−Mn−O系化合物やLa−Co−Ce系化合物等を用いることができる。   Each of the fuel electrode 7 and the oxidant electrode 8 can be configured by, for example, a catalyst layer in contact with the electrolyte membrane 6 and a diffusion electrode laminated on the catalyst layer. As the catalyst layer, for example, platinum black or a platinum alloy supported on carbon black can be used. Moreover, as a material of the diffusion electrode of the fuel electrode 7, for example, carbon paper, Ni—Fe cermet, Ni—YSZ cermet or the like can be used. Moreover, as a material of the diffusion electrode of the oxidizer electrode 8, for example, carbon paper, La—Mn—O-based compound, La—Co—Ce-based compound, or the like can be used.

燃料極7、酸化剤極8はそれぞれ、例えば蒸着法等を用いて形成することができる。   Each of the fuel electrode 7 and the oxidant electrode 8 can be formed using, for example, a vapor deposition method.

システムの発電時に燃料電池部2は外部負荷に接続され、燃料極7において下記の(1)式の反応が起こる。
+O2−→HO+2e …(1)
When the system generates power, the fuel cell unit 2 is connected to an external load, and the reaction of the following formula (1) occurs at the fuel electrode 7.
H 2 + O 2− → H 2 O + 2e (1)

上記の(1)式の反応によって生成された電子は、外部負荷を通って、酸化剤極8に到達し、酸化剤極8において下記の(2)式の反応が起こる。
1/2O+2e→O2− …(2)
The electrons generated by the reaction of the above formula (1) pass through the external load and reach the oxidant electrode 8, and the reaction of the following formula (2) occurs at the oxidant electrode 8.
1 / 2O 2 + 2e → O 2− (2)

そして、上記の(2)式の反応によって生成された酸素イオンは、電解質膜6を通って、燃料極7に到達する。上記の一連の反応を繰り返すことにより、燃料電池部2が発電動作を行うことになる。また、上記の(1)式から分かるように、発電動作時には、燃料極7側においてHが消費されHOが生成されることになる。 The oxygen ions generated by the reaction of the above formula (2) reach the fuel electrode 7 through the electrolyte membrane 6. By repeating the above series of reactions, the fuel cell unit 2 performs a power generation operation. Further, as can be seen from the above equation (1), during the power generation operation, H 2 is consumed and H 2 O is generated on the fuel electrode 7 side.

上記の(1)式及び(2)式より、発電動作時における燃料電池部2での反応は下記の(3)式の通りになる。
+1/2O→HO …(3)
From the above equations (1) and (2), the reaction in the fuel cell unit 2 during the power generation operation is as shown in the following equation (3).
H 2 + 1 / 2O 2 → H 2 O (3)

一方、第1の水素発生部材1は、下記の(4)式に示す酸化反応により、システムの発電時に燃料電池部2の燃料極7側で生成されたHOを消費してHを生成することができる。
3Fe+4HO→Fe+4H …(4)
On the other hand, the first hydrogen generating member 1, the oxidation reaction shown in (4) below, and H 2 consumes of H 2 O that is generated at the anode 7 side of the fuel cell unit 2 during the power generation system Can be generated.
3Fe + 4H 2 O → Fe 3 O 4 + 4H 2 (4)

このとき、燃料電池部2の燃料極7と第1の水素発生部材1とを封じた密閉空間(電解質膜6と容器5の内壁とによって囲まれる空間)内の水素分圧比(水素分圧と水蒸気分圧との和に対する水素分圧の比率)は図2に示すような値となる。そして、例えば、本発明の第1実施形態に係る2次電池型燃料電池システムを温度20℃の環境下で製造し、上記密閉空間に水素を1atmで充填した場合、上記密閉空間内の水素分圧は図3に示すような値となる。   At this time, the hydrogen partial pressure ratio (hydrogen partial pressure and hydrogen partial pressure ratio) in the sealed space (the space surrounded by the electrolyte membrane 6 and the inner wall of the container 5) in which the fuel electrode 7 of the fuel cell unit 2 and the first hydrogen generating member 1 are sealed. The ratio of the hydrogen partial pressure to the sum of the water vapor partial pressures is a value as shown in FIG. For example, when the secondary battery type fuel cell system according to the first embodiment of the present invention is manufactured in an environment at a temperature of 20 ° C. and the sealed space is filled with hydrogen at 1 atm, the hydrogen content in the sealed space is reduced. The pressure has a value as shown in FIG.

上記の(4)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄残量が減っていくが、上記の(4)式の逆反応(還元反応)により、水素発生装置1を再生することができ、システムを充電することができる。   When the oxidation reaction of iron shown in the above formula (4) proceeds, the change from iron to iron oxide proceeds and the remaining amount of iron decreases, but by the reverse reaction (reduction reaction) of the above formula (4), The hydrogen generator 1 can be regenerated and the system can be charged.

システムの充電時に燃料電池部2は外部電源に接続され、上記の(3)式の逆反応である下記の(5)式に示す電気分解反応が起こり、燃料極7側においてHOが消費されHが生成され、第1の水素発生部材1では、上記の(4)式に示す酸化反応の逆反応である下記(6)式に示す還元反応が起こり、燃料電池部2の燃料極7側で生成されたHが消費されHOが生成される。
O→H+1/2O …(5)
Fe+4H→3Fe+4HO …(6)
When the system is charged, the fuel cell unit 2 is connected to an external power source, and an electrolysis reaction shown in the following equation (5), which is a reverse reaction of the above equation (3), occurs, and H 2 O is consumed on the fuel electrode 7 side. is is H 2 is generated, the first hydrogen generating member 1, reduction reaction occurs as shown in the reverse reaction is the following (6) of the oxidation reaction shown in above (4) equation, the fuel cell unit 2 fuel electrode H 2 produced on the 7 side is consumed and H 2 O is produced.
H 2 O → H 2 + 1 / 2O 2 (5)
Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O (6)

水素吸蔵合金からなる第2の水素発生部材3は、本発明の第1実施形態に係る2次電池型燃料電池システムの製造時に、あらかじめ水素を吸蔵した状態で容器5内に収容され、燃料電池部2の燃料極7と第1の水素発生部材1とを封じた密閉空間内に配置される。なお、第1の水素発生部材1と第2の水素発生部材3とは必ずしも分離して配置する必要はないので、第1の水素発生部材1及び第2の水素発生部材3を配置する代わりに、図4に示すように第1の水素発生部材と第2の水素発生部材との混合体9を配置してもよい。第1の水素発生部材と第2の水素発生部材との混合体9としては、例えば、Feの粉体と水素吸蔵合金の粉体を混ぜ合わせたものや水素吸蔵合金の粉末の表面にFeを配置したものが挙げられる。   The second hydrogen generating member 3 made of a hydrogen storage alloy is accommodated in the container 5 in a state in which hydrogen is stored in advance when the secondary battery type fuel cell system according to the first embodiment of the present invention is manufactured. The fuel electrode 7 of the part 2 and the first hydrogen generating member 1 are disposed in a sealed space. Since the first hydrogen generating member 1 and the second hydrogen generating member 3 do not necessarily need to be arranged separately, instead of arranging the first hydrogen generating member 1 and the second hydrogen generating member 3. As shown in FIG. 4, a mixture 9 of the first hydrogen generating member and the second hydrogen generating member may be disposed. Examples of the mixture 9 of the first hydrogen generation member and the second hydrogen generation member include, for example, a mixture of Fe powder and hydrogen storage alloy powder, or Fe on the surface of the hydrogen storage alloy powder. The one arranged is mentioned.

水素吸蔵合金は、あらかじめ水素を吸蔵させておいた場合、温度一定(T1)の環境下で図5に示すような水素平衡圧力特性を有する。水素吸蔵合金の水素平衡圧力は水素吸蔵合金が保有する水素量すなわち水素吸蔵合金の水素濃度によって決まる。そして、図5に示すように、水素吸蔵合金の水素濃度の変化に対して水素平衡圧力がほぼ一定値(P1)を示す水素濃度領域R1が存在する。また、水素を吸蔵し、図水素濃度領域R1中の或る水素濃度(例えばD1)を有する水素吸蔵合金の水素平衡圧力は、図6に示すように温度によって変化する。   The hydrogen storage alloy has a hydrogen equilibrium pressure characteristic as shown in FIG. 5 under a constant temperature (T1) environment when hydrogen is stored beforehand. The hydrogen equilibrium pressure of the hydrogen storage alloy is determined by the amount of hydrogen held by the hydrogen storage alloy, that is, the hydrogen concentration of the hydrogen storage alloy. As shown in FIG. 5, there is a hydrogen concentration region R1 in which the hydrogen equilibrium pressure shows a substantially constant value (P1) with respect to the change in the hydrogen concentration of the hydrogen storage alloy. Further, the hydrogen equilibrium pressure of a hydrogen storage alloy that stores hydrogen and has a certain hydrogen concentration (for example, D1) in the hydrogen concentration region R1 shown in the figure varies depending on the temperature as shown in FIG.

水素吸蔵合金は、水素吸蔵合金周辺の水素圧力が水素平衡圧力より大きければ水素を吸蔵し、水素吸蔵合金周辺の水素圧力が水素平衡圧力より小さければ水素を放出する。水素吸蔵合金周辺の水素圧力が水素平衡圧力と一致している場合は平衡状態であり、見かけ上水素吸蔵合金からの水素の出入りはないように見える。   The hydrogen storage alloy stores hydrogen if the hydrogen pressure around the hydrogen storage alloy is higher than the hydrogen equilibrium pressure, and releases hydrogen if the hydrogen pressure around the hydrogen storage alloy is lower than the hydrogen equilibrium pressure. When the hydrogen pressure around the hydrogen storage alloy matches the hydrogen equilibrium pressure, the hydrogen storage alloy is in an equilibrium state, and it appears that no hydrogen enters or exits the hydrogen storage alloy.

本発明の第1実施形態に係る2次電池型燃料電池システムでは、システムの発電時において、第2の水素発生部材3として用いる水素吸蔵合金の水素平衡圧力が、第1の水素発生部材1として用いるFeの酸化還元反応の平衡状態から決まる水素分圧以下になるようにしている。これにより、通常は、第1の水素発生部材1から燃料電池部2に水素が供給され、その水素を用いて燃料電池部2が発電を行って水(水蒸気)を生成し、その水蒸気が第1の水素発生部材1と反応して第1の水素発生部材1が再度水素を発生するという循環を行うことができる。一方、燃料電池部2の燃料極7と第1の水素発生部材1とを封じた密閉空間から水素が漏れ、上記密閉空間内の水素分圧が第2の水素発生部材3として用いる水素吸蔵合金の水素平衡圧力を下回った場合には、第2の水素発生部材3として用いる水素吸蔵合金から燃料電池部2に水素が供給され、上記密閉空間内の水素分圧は第2の水素発生部材3として用いる水素吸蔵合金の水素平衡圧力まで回復する。なお、第1の水素発生部材1と第2の水素発生部材3とを個別に温度制御する必要がないため、温度制御を簡素化できる。   In the secondary battery type fuel cell system according to the first embodiment of the present invention, the hydrogen equilibrium pressure of the hydrogen storage alloy used as the second hydrogen generating member 3 is the first hydrogen generating member 1 during the power generation of the system. The hydrogen partial pressure determined from the equilibrium state of the oxidation-reduction reaction of Fe used is set to be lower than the partial pressure of hydrogen. Thus, normally, hydrogen is supplied from the first hydrogen generating member 1 to the fuel cell unit 2, and the fuel cell unit 2 generates electric power using the hydrogen to generate water (steam), and the steam is It is possible to perform a circulation in which the first hydrogen generating member 1 reacts with one hydrogen generating member 1 to generate hydrogen again. On the other hand, hydrogen leaks from the sealed space in which the fuel electrode 7 of the fuel cell unit 2 and the first hydrogen generating member 1 are sealed, and the hydrogen storage alloy in which the hydrogen partial pressure in the sealed space is used as the second hydrogen generating member 3. Is lower than the hydrogen equilibrium pressure, hydrogen is supplied from the hydrogen storage alloy used as the second hydrogen generating member 3 to the fuel cell unit 2, and the hydrogen partial pressure in the sealed space is the second hydrogen generating member 3. It recovers to the hydrogen equilibrium pressure of the hydrogen storage alloy used. Since it is not necessary to individually control the temperature of the first hydrogen generating member 1 and the second hydrogen generating member 3, temperature control can be simplified.

第2の水素発生部材3として用いる水素吸蔵合金の材料は特に限定されるものではないが、燃料電池部2として固体酸化物燃料電池を用いる場合には例えばウラン、チタン、ナトリウム、マグネシウムまたはこれらの各合金のいずれかを用いることができる。ウラン、チタンまたはこれらの各合金のいずれかを用いると、製造時に室温で上記密閉空間内に水素を大気圧で充填した場合に、500℃から800℃において水素吸蔵合金の水素平衡圧力をFeの酸化還元反応の平衡状態から決まる水素分圧以下にすることができるので、ウラン、チタンまたはこれらの各合金のいずれかを用いることが好ましい。また、水素吸蔵合金の劣化を抑える観点から、第2の水素発生部材3として用いる水素吸蔵合金が、水素を透過し、水蒸気の透過を妨げる水素透過材料で覆われていることがより好ましい。水素を透過し、水蒸気の透過を妨げる水素透過材料としては、例えば、セラミック薄膜、ゼオライト薄膜などの無機多孔質膜、および、パラジウム、バナジウム、チタン、ジルコニウム、ニッケル、ルテニウム、ニオブ、タンタルのうち少なくとも一種の材料からなる金属又は合金薄膜を用いることができる。より具体的な例としては、アモルファスシリカ膜や、パラジウム金属膜やAgPdなどのパラジウム合金膜、非パラジウム系としてバナジウム、タンタル、ニオブ薄膜やそれらの合金膜としてバナジウムに、ニッケル、コバルト、モリブデンを添加したV合金、ニオブにパラジウム、チタン、ニッケル、ルテニウム、タングステン、モリブデンを添加したNb合金、また、ジルコニウムとニッケルを主成分とする合金を挙げることができる。   The material of the hydrogen storage alloy used as the second hydrogen generating member 3 is not particularly limited, but when a solid oxide fuel cell is used as the fuel cell unit 2, for example, uranium, titanium, sodium, magnesium, or these Any of the alloys can be used. When any one of uranium, titanium, or each of these alloys is used, the hydrogen equilibrium pressure of the hydrogen storage alloy is reduced from 500 ° C. to 800 ° C. when the hydrogen is filled in the enclosed space at room temperature at the time of manufacture. Since the hydrogen partial pressure determined from the equilibrium state of the oxidation-reduction reaction can be reduced, it is preferable to use uranium, titanium, or any of these alloys. Further, from the viewpoint of suppressing the deterioration of the hydrogen storage alloy, it is more preferable that the hydrogen storage alloy used as the second hydrogen generating member 3 is covered with a hydrogen permeable material that transmits hydrogen and prevents water vapor transmission. Examples of the hydrogen permeable material that transmits hydrogen and prevents water vapor transmission include, for example, an inorganic porous film such as a ceramic thin film and a zeolite thin film, and at least one of palladium, vanadium, titanium, zirconium, nickel, ruthenium, niobium, and tantalum. A metal or alloy thin film made of a kind of material can be used. More specific examples include amorphous silica films, palladium alloy films such as palladium metal films and AgPd, vanadium, tantalum, niobium thin films as non-palladium, and vanadium as their alloy films with nickel, cobalt, and molybdenum added. And Vb alloys, Nb alloys obtained by adding palladium, titanium, nickel, ruthenium, tungsten and molybdenum to niobium, and alloys containing zirconium and nickel as main components.

次に、水素吸蔵合金の水素平衡圧力及び上記密閉空間内の水素分圧の第1設定例として、第2の水素発生部材3として用いる水素吸蔵合金の水素濃度がD1(図5参照)となるように、第2の水素発生部材3として用いる水素吸蔵合金にあらかじめ水素を最大限吸蔵させておき、システムの発電時の環境を温度T1、上記密閉空間内の水素分圧P1として、水素吸蔵合金の水素平衡圧力がP1(図5参照)で発電を行う場合を考える。温度T1において発電を行っているときには、上記密閉空間内の水素分圧P1は第2の水素発生部材3として用いる水素吸蔵合金の水素平衡圧力P1と同じであるので、見かけ上第2の水素発生部材3として用いる水素吸蔵合金からの水素の出入りはないように見える。一方、第1の水素発生部材1として用いるFeは、燃料電池部2が生成した水蒸気との酸化反応により水素を燃料電池部2に供給し、その水素を用いて燃料電池部2が発電を行って水蒸気を再度生成する。これにより、安定的に発電が行われる。   Next, as a first setting example of the hydrogen equilibrium pressure of the hydrogen storage alloy and the hydrogen partial pressure in the sealed space, the hydrogen concentration of the hydrogen storage alloy used as the second hydrogen generation member 3 is D1 (see FIG. 5). As described above, the hydrogen storage alloy used as the second hydrogen generating member 3 is preliminarily stored with hydrogen, and the environment during power generation of the system is set as the temperature T1 and the hydrogen partial pressure P1 in the sealed space as a hydrogen storage alloy. Let us consider a case where power generation is performed at a hydrogen equilibrium pressure of P1 (see FIG. 5). When power generation is performed at the temperature T1, the hydrogen partial pressure P1 in the sealed space is the same as the hydrogen equilibrium pressure P1 of the hydrogen storage alloy used as the second hydrogen generating member 3, so that the second hydrogen generation apparently appears. It seems that hydrogen does not enter and exit from the hydrogen storage alloy used as the member 3. On the other hand, Fe used as the first hydrogen generating member 1 supplies hydrogen to the fuel cell unit 2 by an oxidation reaction with water vapor generated by the fuel cell unit 2, and the fuel cell unit 2 generates power using the hydrogen. Water vapor again. Thereby, power generation is stably performed.

そして、経年劣化によって上記密閉空間から水素が漏れ上記密閉空間内の水素分圧が下がり始めると、もし2次電池型燃料電池システムが水素吸蔵合金からなる第2の水素発生部材3を備えていない場合には図7中の一点鎖線で示すように水素が漏れ始めた時間t1から上記密閉空間内の水素分圧が徐々に下がり続けてしまって電池性能が低下するのに対して、本実施形態のように2次電池型燃料電池システムが水素吸蔵合金からなる第2の水素発生部材3を備えている場合には、水素吸蔵合金からなる第2の水素発生部材3から水素が放出され、上記密閉空間内の水素分圧が図7中の実線で示すように直ちに元の状態であるP1に戻るので電池性能の低下を抑えることができる。   If hydrogen leaks from the sealed space due to aging and the hydrogen partial pressure in the sealed space starts to decrease, the secondary battery type fuel cell system does not include the second hydrogen generating member 3 made of a hydrogen storage alloy. In this case, as shown by the alternate long and short dash line in FIG. 7, the hydrogen partial pressure in the sealed space is gradually lowered from the time t1 when hydrogen starts to leak, and the battery performance is deteriorated. When the secondary battery type fuel cell system includes the second hydrogen generation member 3 made of a hydrogen storage alloy as described above, hydrogen is released from the second hydrogen generation member 3 made of a hydrogen storage alloy, Since the hydrogen partial pressure in the sealed space immediately returns to P1, which is the original state, as indicated by the solid line in FIG. 7, it is possible to suppress a decrease in battery performance.

次に、水素吸蔵合金の水素平衡圧力及び上記密閉空間内の水素分圧の第2設定例として、第2の水素発生部材3として用いる水素吸蔵合金の水素濃度がD1(図5参照)となるように、第2の水素発生部材3として用いる水素吸蔵合金にあらかじめ水素を最大限吸蔵させておき、システムの発電時の環境を温度T1、上記密閉空間内の水素分圧P2(>P1)として、水素吸蔵合金の水素平衡圧力がP1(図5参照)で発電を行う場合を考える。温度T1において発電を行っている間は、上記密閉空間内の水素分圧P2は第2の水素発生部材3として用いる水素吸蔵合金の水素平衡圧力P1より大きいが、第2の水素発生部材3として用いる水素吸蔵合金は既に水素を最大限(許容値の100%)吸貯しているため、それ以上水素を貯蔵することができず、第2の水素発生部材3として用いる水素吸蔵合金の水素平衡圧力はP1で安定する。このため、見かけ上第2の水素発生部材3として用いる水素吸蔵合金からの水素の出入りはないように見える。一方、第1の水素発生部材1として用いるFeは、燃料電池部2が生成した水蒸気との酸化反応により水素を燃料電池部2に供給し、その水素を用いて燃料電池部2が発電を行って水蒸気を再度生成する。これにより、安定的に発電が行われる。   Next, as a second setting example of the hydrogen equilibrium pressure of the hydrogen storage alloy and the hydrogen partial pressure in the sealed space, the hydrogen concentration of the hydrogen storage alloy used as the second hydrogen generating member 3 is D1 (see FIG. 5). As described above, the hydrogen storage alloy used as the second hydrogen generating member 3 is made to store the maximum amount of hydrogen beforehand, and the environment during power generation of the system is defined as the temperature T1 and the hydrogen partial pressure P2 (> P1) in the sealed space. Consider a case where power generation is performed at a hydrogen equilibrium pressure of P1 (see FIG. 5) of the hydrogen storage alloy. During power generation at the temperature T1, the hydrogen partial pressure P2 in the sealed space is higher than the hydrogen equilibrium pressure P1 of the hydrogen storage alloy used as the second hydrogen generating member 3, but as the second hydrogen generating member 3, Since the hydrogen storage alloy to be used has already stored the maximum amount of hydrogen (100% of the allowable value), it cannot store any more hydrogen, and the hydrogen equilibrium of the hydrogen storage alloy used as the second hydrogen generating member 3 The pressure stabilizes at P1. For this reason, it appears that hydrogen does not enter or exit from the hydrogen storage alloy used as the second hydrogen generating member 3 in appearance. On the other hand, Fe used as the first hydrogen generating member 1 supplies hydrogen to the fuel cell unit 2 by an oxidation reaction with water vapor generated by the fuel cell unit 2, and the fuel cell unit 2 generates power using the hydrogen. Water vapor again. Thereby, power generation is stably performed.

そして、経年劣化によって上記密閉空間から水素が漏れ上記密閉空間内の水素分圧が下がり始めると、もし2次電池型燃料電池システムが水素吸蔵合金からなる第2の水素発生部材3を備えていない場合には図8中の一点鎖線で示すように水素が漏れ始めた時間t1から上記密閉空間内の水素分圧が徐々に下がり続けてしまって電池性能が低下するのに対して、本実施形態のように2次電池型燃料電池システムが水素吸蔵合金からなる第2の水素発生部材3を備えている場合には、図8中の実線で示すように、水素が漏れ始めた時間t1から上記密閉空間内の水素分圧がP1になる時間t2までの間は上記密閉空間内の水素分圧が下がり、時間t2より後は水素吸蔵合金からなる第2の水素発生部材3から水素が放出され、上記密閉空間内の水素分圧がP1に保たれるので電池性能の低下を抑えることができる。   If hydrogen leaks from the sealed space due to aging and the hydrogen partial pressure in the sealed space starts to decrease, the secondary battery type fuel cell system does not include the second hydrogen generating member 3 made of a hydrogen storage alloy. In this case, as shown by the alternate long and short dash line in FIG. 8, the hydrogen partial pressure in the sealed space gradually decreases from the time t1 when hydrogen starts to leak, and the battery performance deteriorates. In the case where the secondary battery type fuel cell system includes the second hydrogen generating member 3 made of a hydrogen storage alloy as shown in FIG. 8, the above-mentioned time t1 when hydrogen starts to leak as shown by the solid line in FIG. The hydrogen partial pressure in the sealed space decreases until time t2 when the hydrogen partial pressure in the sealed space reaches P1, and hydrogen is released from the second hydrogen generating member 3 made of a hydrogen storage alloy after time t2. In the enclosed space Since oxygen partial pressure is maintained at P1 it is possible to suppress deterioration in battery performance.

<第2実施形態>
本発明の第2実施形態に係る2次電池型燃料電池システムの概略構成を図9に示す。図9に示す本発明の第2実施形態に係る2次電池型燃料電池システムは、第2の水素発生部材3、並びに、容器5の内壁及び電解質膜6で囲まれる密閉空間と第2の水素発生部材3とを連通する配管を容器5の壁内部に設けた点を除いて、図1に示す本発明の第1実施形態に係る2次電池型燃料電池システムと同一である。
Second Embodiment
FIG. 9 shows a schematic configuration of a secondary battery type fuel cell system according to the second embodiment of the present invention. The secondary battery type fuel cell system according to the second embodiment of the present invention shown in FIG. 9 includes the second hydrogen generating member 3, the sealed space surrounded by the inner wall of the container 5 and the electrolyte membrane 6, and the second hydrogen. The secondary battery type fuel cell system according to the first embodiment of the present invention shown in FIG. 1 is the same as that shown in FIG. 1 except that a pipe communicating with the generating member 3 is provided inside the wall of the container 5.

<第3実施形態>
本発明の第3実施形態に係る2次電池型燃料電池システムの概略構成を図10に示す。図10に示す本発明の第3実施形態に係る2次電池型燃料電池システムは、容器5の代わりに2つの容器10及び11を備え、容器10の内部に燃料電池部2を配置し、容器11の内部に第1の水素発生部材1、第2の水素発生部材3、及びヒーター4を配置し、さらに、容器10の内壁及び電解質膜6で囲まれる密閉空間と、容器11の内壁で囲まれる密閉空間とを連通する配管を備えた点を除いて、図1に示す本発明の第1実施形態に係る2次電池型燃料電池システムと同一である。尚、図4に示す変形例と同様に、図10に示す本発明の第3実施形態に係る2次電池型燃料電池システムにおいて、第1の水素発生部材1及び第2の水素発生部材3の代わりに、第1の水素発生部材及び第2の水素発生部材の混合体を設けるようにしてもよい。
<Third Embodiment>
FIG. 10 shows a schematic configuration of a secondary battery type fuel cell system according to the third embodiment of the present invention. The secondary battery type fuel cell system according to the third embodiment of the present invention shown in FIG. 10 includes two containers 10 and 11 instead of the container 5, the fuel cell unit 2 is arranged inside the container 10, and the container 11, the first hydrogen generating member 1, the second hydrogen generating member 3, and the heater 4 are disposed, and further, enclosed by an inner wall of the container 10 and the electrolyte membrane 6, and an inner wall of the container 11. The secondary battery type fuel cell system according to the first embodiment of the present invention shown in FIG. 1 is the same as that shown in FIG. Similar to the modification shown in FIG. 4, in the secondary battery type fuel cell system according to the third embodiment of the present invention shown in FIG. 10, the first hydrogen generating member 1 and the second hydrogen generating member 3 Instead, a mixture of the first hydrogen generating member and the second hydrogen generating member may be provided.

<第4実施形態>
本発明の第4実施形態に係る2次電池型燃料電池システムの概略構成を図10に示す。図10に示す本発明の第3実施形態に係る2次電池型燃料電池システムは、容器5に仕切り壁12を設け、仕切り壁12によって二つに分けられた容器5の内部空間の一方に燃料電池部2及び第2の水素発生部材3を設け他方に第1の水素発生部材1及びヒーター4を設け、容器5の二つの内部空間を連通した点を除いて、図1に示す本発明の第1実施形態に係る2次電池型燃料電池システムと同一である。
<Fourth embodiment>
FIG. 10 shows a schematic configuration of a secondary battery type fuel cell system according to the fourth embodiment of the present invention. In the secondary battery type fuel cell system according to the third embodiment of the present invention shown in FIG. 10, a partition wall 12 is provided in the container 5, and fuel is provided in one of the internal spaces of the container 5 divided into two by the partition wall 12. 1 except that the battery part 2 and the second hydrogen generating member 3 are provided, the other one is provided with the first hydrogen generating member 1 and the heater 4, and the two internal spaces of the container 5 are communicated with each other. This is the same as the secondary battery type fuel cell system according to the first embodiment.

<実施例>
上述した図1に示す本発明の第1実施形態に係る2次電池型燃料電池システムについて三つの実施例を以下に説明する。
<Example>
Three examples of the secondary battery type fuel cell system according to the first embodiment of the present invention shown in FIG. 1 will be described below.

(実施例1)
水素吸蔵合金からなる第2の水素発生部材3にウランを用い、製造時に、燃料電池部2の燃料極7と第1の水素発生部材1とを封じた密閉空間内に水素を1atm、20℃で充填する。そして、システムの発電時に540℃で動作させると、第1の水素発生部材1として用いられるFeの酸化還元反応の平衡状態から決まる水素分圧と、第2の水素発生部材3として用いられる水素吸蔵合金の水素平衡圧力とがともに2.22atmとなる。すなわち、システムの発電時に、第1の水素発生部材1として用いられるFeの酸化還元反応の平衡状態から決まる水素分圧と、第2の水素発生部材3として用いられる水素吸蔵合金の水素平衡圧力とを合わせることができる。
Example 1
Uranium is used for the second hydrogen generating member 3 made of a hydrogen storage alloy, and hydrogen is stored at 1 atm and 20 ° C. in a sealed space in which the fuel electrode 7 of the fuel cell unit 2 and the first hydrogen generating member 1 are sealed at the time of manufacture. Fill with. When the system is operated at 540 ° C. during power generation, the hydrogen partial pressure determined from the equilibrium state of the oxidation-reduction reaction of Fe used as the first hydrogen generation member 1 and the hydrogen storage used as the second hydrogen generation member 3 Both the hydrogen equilibrium pressure of the alloy is 2.22 atm. That is, during power generation of the system, the hydrogen partial pressure determined from the equilibrium state of the oxidation-reduction reaction of Fe used as the first hydrogen generation member 1 and the hydrogen equilibrium pressure of the hydrogen storage alloy used as the second hydrogen generation member 3 Can be combined.

これにより、上記密閉空間から水素が漏れた場合においても、第2の水素発生部材3として用いられる水素吸蔵合金に水素が十分貯蔵されている間は、システムの発電時に上記密閉空間内の水素分圧が2.22atmに維持され、安定的な発電を行うことができる。   Thus, even when hydrogen leaks from the sealed space, while the hydrogen storage alloy used as the second hydrogen generating member 3 is sufficiently stored in the hydrogen storage alloy, the hydrogen content in the sealed space can be reduced during system power generation. The pressure is maintained at 2.22 atm, and stable power generation can be performed.

(実施例2)
水素吸蔵合金からなる第2の水素発生部材3にウランを用い、製造時に、燃料電池部2の燃料極7と第1の水素発生部材1とを封じた密閉空間内に水素を1atm、20℃で充填する。そして、システムの発電時に500℃で動作させると、第1の水素発生部材1として用いられるFeの酸化還元反応の平衡状態から決まる水素分圧が2.20atmとなり、第2の水素発生部材3として用いられる水素吸蔵合金の水素平衡圧力が2atmになる。すなわち、システムの発電時に、第2の水素発生部材3として用いられる水素吸蔵合金の水素平衡圧力が、第1の水素発生部材1として用いられるFeの酸化還元反応の平衡状態から決まる水素分圧より小さくなる。
(Example 2)
Uranium is used for the second hydrogen generating member 3 made of a hydrogen storage alloy, and hydrogen is stored at 1 atm and 20 ° C. in a sealed space in which the fuel electrode 7 of the fuel cell unit 2 and the first hydrogen generating member 1 are sealed at the time of manufacture. Fill with. When the system is operated at 500 ° C. during power generation, the hydrogen partial pressure determined from the equilibrium state of the oxidation-reduction reaction of Fe used as the first hydrogen generating member 1 becomes 2.20 atm. The hydrogen equilibrium pressure of the hydrogen storage alloy used is 2 atm. That is, during power generation of the system, the hydrogen equilibrium pressure of the hydrogen storage alloy used as the second hydrogen generation member 3 is determined from the hydrogen partial pressure determined from the equilibrium state of the Fe redox reaction used as the first hydrogen generation member 1. Get smaller.

これにより、上記密閉空間から水素が漏れた場合においても、第2の水素発生部材3として用いられる水素吸蔵合金に水素が十分貯蔵されている間は、システムの発電時に上記密閉空間内の水素分圧が2.0atmに維持され、安定的な発電を行うことができる。   Thus, even when hydrogen leaks from the sealed space, while the hydrogen storage alloy used as the second hydrogen generating member 3 is sufficiently stored in the hydrogen storage alloy, the hydrogen content in the sealed space can be reduced during system power generation. The pressure is maintained at 2.0 atm, and stable power generation can be performed.

(実施例3)
水素吸蔵合金からなる第2の水素発生部材3にチタンを用い、製造時に、燃料電池部2の燃料極7と第1の水素発生部材1とを封じた密閉空間内に水素を0.6atm、20℃で充填する。そして、システムの発電時に700℃で動作させると、第1の水素発生部材1として用いられるFeの酸化還元反応の平衡状態から決まる水素分圧が1.13atmとなり、第2の水素発生部材3として用いられる水素吸蔵合金の水素平衡圧力が1.0atmになる。すなわち、システムの発電時に、第2の水素発生部材3として用いられる水素吸蔵合金の水素平衡圧力が、第1の水素発生部材1として用いられるFeの酸化還元反応の平衡状態から決まる水素分圧より小さくなる。
(Example 3)
Titanium is used for the second hydrogen generation member 3 made of a hydrogen storage alloy, and hydrogen is 0.6 atm in a sealed space in which the fuel electrode 7 of the fuel cell unit 2 and the first hydrogen generation member 1 are sealed at the time of manufacture. Fill at 20 ° C. When the system is operated at 700 ° C. during power generation, the hydrogen partial pressure determined from the equilibrium state of the oxidation-reduction reaction of Fe used as the first hydrogen generating member 1 becomes 1.13 atm. The hydrogen equilibrium pressure of the hydrogen storage alloy used is 1.0 atm. That is, during power generation of the system, the hydrogen equilibrium pressure of the hydrogen storage alloy used as the second hydrogen generation member 3 is determined from the hydrogen partial pressure determined from the equilibrium state of the Fe redox reaction used as the first hydrogen generation member 1. Get smaller.

これにより、上記密閉空間から水素が漏れた場合においても、第2の水素発生部材3として用いられる水素吸蔵合金に水素が十分貯蔵されている間は、システムの発電時に上記密閉空間内の水素分圧が1.0atmに維持され、安定的な発電を行うことができる。   Thus, even when hydrogen leaks from the sealed space, while the hydrogen storage alloy used as the second hydrogen generating member 3 is sufficiently stored in the hydrogen storage alloy, the hydrogen content in the sealed space can be reduced during system power generation. The pressure is maintained at 1.0 atm, and stable power generation can be performed.

<変形例>
上述した各実施形態においては、燃料電池2の電解質膜6として固体酸化物電解質を用いて、発電の際に燃料極7側で水(水蒸気)を発生させるようにする。この構成によれば、第1の水素発生部材1あるいは第1の水素発生部材と第2の水素発生部材との混合体9が設けられた側で水蒸気を発生するため、装置の簡素化や小型化に有利である。一方、特開2009−99491号公報に開示された燃料電池のように、燃料電池部2の電解質膜6として水素イオンを通す固体高分子電解質を用いることも可能である。但し、この場合には、発電の際に燃料電池部2の酸化剤極8側で水蒸気が発生されることになるため、この水蒸気を第1の水素発生部材1あるいは第1の水素発生部材と第2の水素発生部材との混合体9に伝搬する流路を設ければよい。
<Modification>
In each of the embodiments described above, a solid oxide electrolyte is used as the electrolyte membrane 6 of the fuel cell 2 so that water (water vapor) is generated on the fuel electrode 7 side during power generation. According to this configuration, since the water vapor is generated on the side where the first hydrogen generating member 1 or the mixture 9 of the first hydrogen generating member and the second hydrogen generating member is provided, the apparatus can be simplified and reduced in size. It is advantageous to make. On the other hand, as a fuel cell disclosed in Japanese Patent Application Laid-Open No. 2009-99491, a solid polymer electrolyte that allows hydrogen ions to pass through may be used as the electrolyte membrane 6 of the fuel cell unit 2. However, in this case, since water vapor is generated on the oxidant electrode 8 side of the fuel cell unit 2 during power generation, this water vapor is combined with the first hydrogen generating member 1 or the first hydrogen generating member. What is necessary is just to provide the flow path which propagates to the mixture 9 with a 2nd hydrogen generating member.

また、上述した実施形態では、1つの燃料電池部2が発電も水の電気分解も行っているが、燃料電池(例えば発電専用の固体酸化物燃料電池)と水の電気分解器(例えば水の電気分解専用の固体酸化物燃料電池)が燃料発生部材1に対してガス流路上並列に接続される構成にしてもよい。   In the above-described embodiment, one fuel cell unit 2 performs both power generation and water electrolysis. However, a fuel cell (for example, a solid oxide fuel cell dedicated to power generation) and a water electrolyzer (for example, water) A solid oxide fuel cell dedicated for electrolysis may be connected to the fuel generating member 1 in parallel on the gas flow path.

1 第1の水素発生部材
2 燃料電池部
3 第2の水素発生部材
4 ヒーター
5、10、11 容器
6 電解質膜
7 燃料極
8 酸化剤極
9 第1の水素発生部材と第2の水素発生部材との混合体
12 仕切り壁
DESCRIPTION OF SYMBOLS 1 1st hydrogen generating member 2 Fuel cell part 3 2nd hydrogen generating member 4 Heater 5, 10, 11 Container 6 Electrolyte membrane 7 Fuel electrode 8 Oxidant electrode 9 1st hydrogen generating member and 2nd hydrogen generating member Mixture with 12 partition wall

Claims (5)

水蒸気との酸化反応により水素を発生し、水素との還元反応により再生可能な第1の水素発生部材と、
前記第1の水素発生部材から供給される水素を燃料にして発電を行う発電機能及び前記第1の水素発生部材に供給する水素を生成するための水蒸気の電気分解を行う電気分解機能を有する発電・電気分解部とを備え、
前記第1の水素発生部材と前記発電・電気分解部との間で水素と水蒸気を含む混合ガスを循環させる2次電池型燃料電池システムであって、
あらかじめ水素を取り込んだ水素吸蔵合金からなる第2の水素発生部材を備え、
システムの発電時において、前記第1の水素発生部材の酸化還元反応の平衡状態で決まる水素分圧が、前記水素吸蔵合金の水素平衡圧力以下であることを特徴とする2次電池型燃料電池システム。
A first hydrogen generating member that generates hydrogen by an oxidation reaction with water vapor and can be regenerated by a reduction reaction with hydrogen;
Power generation function having power generation function using hydrogen supplied from the first hydrogen generation member as fuel and electrolysis function performing electrolysis of water vapor for generating hydrogen to be supplied to the first hydrogen generation member・ Equipped with an electrolysis unit,
A secondary battery type fuel cell system for circulating a mixed gas containing hydrogen and water vapor between the first hydrogen generating member and the power generation / electrolysis unit,
A second hydrogen generating member made of a hydrogen storage alloy that has previously taken in hydrogen;
A secondary battery type fuel cell system characterized in that a hydrogen partial pressure determined by an equilibrium state of an oxidation-reduction reaction of the first hydrogen generating member is equal to or less than a hydrogen equilibrium pressure of the hydrogen storage alloy during power generation of the system. .
前記発電・電気分解部が固体酸化物燃料電池であることを特徴とする請求項1に記載の2次電池型燃料電池システム。   The secondary battery type fuel cell system according to claim 1, wherein the power generation / electrolysis unit is a solid oxide fuel cell. 前記水素吸蔵合金がウラン、チタン、またはこれらの各合金のいずれかであることを特徴とする請求項2に記載の2次電池型燃料電池システム。   The secondary battery type fuel cell system according to claim 2, wherein the hydrogen storage alloy is uranium, titanium, or any of these alloys. 前記水素吸蔵合金が、水素を透過し、水蒸気の透過を妨げる水素透過材料で覆われていることを特徴とする請求項1〜3のいずれか一項に記載の2次電池型燃料電池システム。   The secondary battery type fuel cell system according to any one of claims 1 to 3, wherein the hydrogen storage alloy is covered with a hydrogen permeable material that permeates hydrogen and prevents permeation of water vapor. 前記水素吸蔵合金があらかじめ水素を最大限取り込んでおり、
システムの発電時において、前記第1の水素発生部材の酸化還元反応の平衡状態で決まる水素分圧が、前記水素吸蔵合金の水素平衡圧力より小さいことを特徴とする請求項1〜4のいずれか一項に2次電池型燃料電池システム。
The hydrogen storage alloy has taken in hydrogen to the maximum extent,
5. The hydrogen partial pressure determined by the equilibrium state of the oxidation-reduction reaction of the first hydrogen generation member during power generation of the system is smaller than the hydrogen equilibrium pressure of the hydrogen storage alloy. One item is a secondary battery type fuel cell system.
JP2011205557A 2011-09-21 2011-09-21 Secondary battery type fuel cell system Withdrawn JP2013069450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205557A JP2013069450A (en) 2011-09-21 2011-09-21 Secondary battery type fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011205557A JP2013069450A (en) 2011-09-21 2011-09-21 Secondary battery type fuel cell system

Publications (1)

Publication Number Publication Date
JP2013069450A true JP2013069450A (en) 2013-04-18

Family

ID=48474936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205557A Withdrawn JP2013069450A (en) 2011-09-21 2011-09-21 Secondary battery type fuel cell system

Country Status (1)

Country Link
JP (1) JP2013069450A (en)

Similar Documents

Publication Publication Date Title
CN102652379B (en) The method of battery and operation battery
US7781083B2 (en) Hydrogen/hydrogen peroxide fuel cell
CN107195935A (en) CIHT dynamical systems
JP2012513074A (en) Method for manufacturing and integrating direct sodium borohydride fuel cells
JP5511481B2 (en) Power supply system and power supply operation method
US20090029203A1 (en) Fuel Cell System With an Electrochemical Hydrogen Generation Cell
KR101342599B1 (en) Hydrogen generator and the fuel cell employing the same
Shabani et al. Unitised regenerative fuel cells
Wang et al. A novel direct borohydride fuel cell using an acid–alkaline hybrid electrolyte
JP2013025933A (en) Secondary battery type fuel battery
JP2013069450A (en) Secondary battery type fuel cell system
JP5896015B2 (en) Secondary battery type fuel cell system
JP5786634B2 (en) Secondary battery type fuel cell
JP2014216062A (en) Secondary battery type fuel cell system and power supply system including the same
JP6776794B2 (en) Fuel cell system
JP5679097B1 (en) Secondary battery type fuel cell system
JP5673907B1 (en) Secondary battery type fuel cell system
JP2013054868A (en) Secondary battery type fuel cell
JP5640821B2 (en) Secondary battery type fuel cell system
JP5772681B2 (en) Fuel cell system
JP5435178B2 (en) Secondary battery type fuel cell system
JP5790530B2 (en) Secondary battery type fuel cell system
JP2010097734A (en) Solid polymer fuel cell of dehydrgenation type using palladium thin film
JP5760983B2 (en) Fuel cell system
JP2022166453A (en) Fuel battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202