JP2014073950A - Coating high temperature radiating coating material on ceramic fiber surface - Google Patents

Coating high temperature radiating coating material on ceramic fiber surface Download PDF

Info

Publication number
JP2014073950A
JP2014073950A JP2012234170A JP2012234170A JP2014073950A JP 2014073950 A JP2014073950 A JP 2014073950A JP 2012234170 A JP2012234170 A JP 2012234170A JP 2012234170 A JP2012234170 A JP 2012234170A JP 2014073950 A JP2014073950 A JP 2014073950A
Authority
JP
Japan
Prior art keywords
ceramic fiber
fiber
base
high temperature
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012234170A
Other languages
Japanese (ja)
Inventor
Toyoji Ogura
豊史 小倉
Sekikin Sho
石琴 肖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012234170A priority Critical patent/JP2014073950A/en
Publication of JP2014073950A publication Critical patent/JP2014073950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adhesive coating method of a high temperature radiating coating material on a ceramic fiber.SOLUTION: Adhesive coating of a high temperature radiating coating material can be achieved by controlling a shape, a fiber diameter, a density and heat expansion coefficients of a ceramic fiber. A surface heat radiation rate of a ceramic fiber heat insulator can be 0.9 or more.

Description

この発明は、セラミックファイバー断熱材表面に高温輻射塗料の塗装によりセラミックファイバーの表面輻射率を向上させ、高温炉内の加熱効率の向上及び省エネルギーを目的とする発明である。  The present invention aims to improve the surface radiation rate of the ceramic fiber by applying a high-temperature radiation coating on the surface of the ceramic fiber heat insulating material, thereby improving the heating efficiency in the high-temperature furnace and saving energy.

従来は工業炉壁の断熱材料として、セラミックファイバーを使っている。図1はその概念図です。その理由はセラミックファイバーの熱伝導率が小さいことなどが挙げられる。しかし、セラミックファイバーの表面色は白色であり、表面熱輻射率は0.4−0.6である。高温炉の熱効率は80%以上炉内壁面からの輻射伝熱によって占められるため、セラミックファイバーの表面では輻射率において不利である。しかし、セラミックファイバーは柔らかいため、直接にセラミックファイバー表面に高い熱輻射率塗料を塗装しても、熱サイクルに耐えず、剥離してしまう。セラミックファイバー表面に塗装をしていないのは現状である。これはセラミックファイバーの膨張係数と塗料の膨張係数の違い、剥離につながるからである。セラミックファイバー表面に高い熱輻射率(0.9以上)を有する塗料の塗装方法が望まれている。偶にセラミックファイバー表面にSUS鋼板でカバーをして、その鋼板の表面にセラミック塗装をすることはある。  Conventionally, ceramic fiber is used as an insulation material for industrial furnace walls. Figure 1 is a conceptual diagram. The reason is that the thermal conductivity of the ceramic fiber is small. However, the surface color of the ceramic fiber is white, and the surface thermal emissivity is 0.4-0.6. Since the thermal efficiency of a high temperature furnace is occupied by radiant heat transfer from the furnace inner wall surface by 80% or more, the surface of the ceramic fiber is disadvantageous in terms of radiation rate. However, since the ceramic fiber is soft, even if a high thermal emissivity paint is directly applied to the surface of the ceramic fiber, it does not endure the heat cycle and peels off. At present, the ceramic fiber surface is not coated. This is because the difference between the expansion coefficient of the ceramic fiber and the expansion coefficient of the paint leads to peeling. There is a demand for a method of applying a paint having a high thermal radiation rate (0.9 or more) on the surface of the ceramic fiber. A ceramic fiber surface is covered with a SUS steel plate, and the surface of the steel plate is ceramic coated.

特許公開2008−221276Patent Publication 2008-212276

しかし、前記SUS鋼板は無駄に熱を吸収し、熱伝導によって熱損失が起きる、全体の熱効率が悪い。本発明は熱輻射率低いセラミックファイバー表面に直接に高温放射率材料を塗装することを可能にした。セラミックファイバーの断熱機能のみではなく、高温加熱時、重要になる熱輻射率を向上する機能を追加した。本発明はそのセラッミクファイバーに高熱放射塗料の密着した塗装方法を提供する目的とするものである。  However, the SUS steel sheet absorbs heat unnecessarily and heat loss occurs due to heat conduction, and the overall thermal efficiency is poor. The present invention made it possible to paint a high emissivity material directly on the surface of a ceramic fiber having a low heat emissivity. In addition to the heat insulation function of ceramic fiber, a function to improve the heat radiation rate, which is important during high temperature heating, has been added. An object of the present invention is to provide a coating method in which a high thermal radiation coating is adhered to the ceramic fiber.

上記問題点を解決するため、本発明が採った手段は、セラミックファイバーの形状、繊維径、密度、および塗料との熱膨張係数の差を制御することを特徴とする方法である。  In order to solve the above-mentioned problems, the means taken by the present invention is a method characterized by controlling the shape, fiber diameter, density, and thermal expansion coefficient difference between the ceramic fiber and the paint.

セラミックファイバーの形状、成分、繊維径、密度および熱膨張率を制御し、実用に耐えられる密着した熱輻射材を塗装するができた、元の表面熱輻射率0.66から0.9以上にすることができた。  Controlling the shape, composition, fiber diameter, density, and thermal expansion coefficient of ceramic fiber, it was possible to paint an adhesive heat radiation material that could withstand practical use. We were able to.

この発明の応用環境の例の一つであるIt is one example of the application environment of this invention この発明の一実施形態を示す斜視図であるIt is a perspective view which shows one Embodiment of this invention. 高温輻射塗料で塗装したセラミックファイバーの熱疲労実験の温度時間図である。It is a temperature time figure of the thermal fatigue experiment of the ceramic fiber coated with the high temperature radiation paint. 熱疲労実験後の表面形状図である。It is a surface shape figure after a thermal fatigue experiment. テープ剥がす密着性実験結果である。It is the adhesiveness experimental result which peels off a tape.

この発明の一実施形態を、図2に示す。白いセラミックファイバーの表面に黒のCrベースの熱輻射塗料を塗装している。比較の為、異なるセラミックファイバーに同じ膜厚の高温輻射塗料を塗装した。同じ炉に入れて、図3に示すように室温から1250℃まで加熱し、10分を保持する。その後、750℃に降温した。1250℃と750℃の間、15回を昇温、降温する。炉を室温まで冷却し、セラミックファイバーの表面状態を観察した。
「実施形態の効果」
One embodiment of the present invention is shown in FIG. The surface of the white ceramic fiber is coated with black Cr 2 O 3 based thermal radiation paint. For comparison, high temperature radiation paint with the same film thickness was applied to different ceramic fibers. Place in the same furnace and heat from room temperature to 1250 ° C. as shown in FIG. 3 and hold for 10 minutes. Thereafter, the temperature was lowered to 750 ° C. The temperature is raised and lowered 15 times between 1250 ° C. and 750 ° C. The furnace was cooled to room temperature and the surface state of the ceramic fiber was observed.
"Effect of the embodiment"

この実施形態によれば、図4−1に示すようにサンプルA(平均繊維径5−7μm、線熱収縮率:0.8%(1500℃24時間)、密度:0.3g/cm)のセラミックファイバーボード表面に大きな亀裂がなくて、しっかり密着していることがわかった。逆に図4−2に示すようにサンプルB(平均繊維径3μm以下、線熱収縮率:2.8%(1200℃24時間)、密度:0.25g/cm)のセラミックファイバーボード表面に大きな亀裂があり、一部が剥離してしまった。
まだ同じ試料を4cm*4cmの四角の塗装層を切出して、市販布スコッチテープで塗料を剥がしたところ、図5−1,5−2に示すようにサンプルAが周辺以外、中央部が殆ど残っているのに対して、サンプルbは全部が剥がれてしまった。密着性の違いが明らかである。
According to this embodiment, sample A (average fiber diameter 5-7 μm, linear heat shrinkage rate: 0.8% (1500 ° C. for 24 hours), density: 0.3 g / cm 3 ) as shown in FIG. It was found that there was no large crack on the surface of the ceramic fiberboard, and it was firmly attached. On the contrary, as shown in FIG. 4-2, on the surface of the ceramic fiber board of Sample B (average fiber diameter of 3 μm or less, linear heat shrinkage: 2.8% (1200 ° C. for 24 hours), density: 0.25 g / cm 3 ). There was a big crack, and part of it peeled off.
The same sample was cut out of a 4cm * 4cm square paint layer, and the paint was peeled off with a commercial cloth scotch tape. As shown in FIGS. On the other hand, all of sample b was peeled off. The difference in adhesion is obvious.

産業上の利用は次の3種類の分野が可能である。1.石油精製、石油化学関係:加熱炉、分解炉、改質炉、その他の炉;2.鉄鋼、金属、非鉄金属 電気、自動車関係:熱処理炉、加熱炉、その他の炉;3.窯業関係。  The following three fields are possible for industrial use. 1. 1. Petroleum refining, petrochemical related: heating furnace, cracking furnace, reforming furnace, other furnaces; 2. Steel, metal, non-ferrous metal Electricity, automobile related: heat treatment furnace, heating furnace, other furnaces; Ceramic industry related.

Claims (10)

吹き付けるなどの方法でセラミックファイバー表面に熱輻射塗料を塗装することを特徴とする塗装方法。A coating method characterized in that a thermal radiation paint is applied to the surface of the ceramic fiber by spraying or the like. 前記のセラミックファイバーが、主としてAl,SiO、ZrO,TiOのうちに少なくとも一種類からなることを特徴とする塗装方法である。The ceramic fiber is a coating method characterized by comprising at least one of mainly Al 2 O 3 , SiO 2 , ZrO 2 , and TiO 2 . 前記請求項1の熱輻射塗料はCrベース、還元TiOベース、(FeMn)ベースおよびSiCベースのうちの少なくとも一種類からなることを特徴とする塗装方法である。The thermal radiation paint according to claim 1 is at least one of Cr 2 O 3 base, reduced TiO x base, (FeMn) 2 O 3 base and SiC base. 前記請求項1のセラミックファイバー以外に次のMgO,Fe,BeO,MoO,NiO,Cr,ZnO,SiC,SiN,AlN,LaBのうちの少なくとも一種類からなることを特徴とする塗装方法である。In addition to the ceramic fiber of claim 1, it is composed of at least one of the following MgO, Fe 2 O 3 , BeO, MoO, NiO, Cr 2 O 3 , ZnO, SiC, SiN, AlN, LaB 6. This is the painting method. 前記請求項1のセラミックファイバーの平均繊維径が3ミクロンメータ(μm)以上のものからなる特徴とするものである。The average fiber diameter of the ceramic fiber of claim 1 is 3 micrometer (μm) or more. 前記請求項1のセラミックファイバーの密度は0.3g/cm以上であることを特徴とするものである。The density of the ceramic fiber according to claim 1 is 0.3 g / cm 3 or more. 前記請求項1のセラミックファイバーの線熱膨張係数(1000℃以上24時間)は1%以下であることを特徴とするものである。The linear thermal expansion coefficient (1000 ° C. or more and 24 hours) of the ceramic fiber of claim 1 is 1% or less. 前記セラミックファイバーの形状は繊維状で、無定形状ではなく、ボード状などが硬度が高く、安定した表面が望ましいことを特徴とするものである。The shape of the ceramic fiber is fibrous, not an indeterminate shape, but a board shape or the like having a high hardness and a stable surface is desirable. セラミックファイバーにアルミナファイバーの成分が60%以上であることを特徴とするものである。The ceramic fiber contains 60% or more of an alumina fiber component. 高熱輻射材の塗装したセラミックファイバーを加熱炉の内表面側に敷き、炉壁との間に、普通の密度0.3g/cm以下の断熱セラミックファイバー積層構造からなることを特徴とするものである。A ceramic fiber coated with a high heat radiation material is laid on the inner surface side of the heating furnace, and is composed of a heat insulating ceramic fiber laminated structure having a normal density of 0.3 g / cm 3 or less between the furnace wall and the furnace wall. is there.
JP2012234170A 2012-10-05 2012-10-05 Coating high temperature radiating coating material on ceramic fiber surface Pending JP2014073950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234170A JP2014073950A (en) 2012-10-05 2012-10-05 Coating high temperature radiating coating material on ceramic fiber surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234170A JP2014073950A (en) 2012-10-05 2012-10-05 Coating high temperature radiating coating material on ceramic fiber surface

Publications (1)

Publication Number Publication Date
JP2014073950A true JP2014073950A (en) 2014-04-24

Family

ID=50748417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234170A Pending JP2014073950A (en) 2012-10-05 2012-10-05 Coating high temperature radiating coating material on ceramic fiber surface

Country Status (1)

Country Link
JP (1) JP2014073950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073115A1 (en) * 2015-10-27 2017-05-04 株式会社Inui Coating liquid, composition for coating liquid, and refractory article having coating layer
US11268763B1 (en) 2017-12-28 2022-03-08 Emisshield, Inc. Electric arc and ladle furnaces and components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073115A1 (en) * 2015-10-27 2017-05-04 株式会社Inui Coating liquid, composition for coating liquid, and refractory article having coating layer
JPWO2017073115A1 (en) * 2015-10-27 2017-12-14 株式会社Inui Coating liquid and method for producing refractory having coating layer
US11268763B1 (en) 2017-12-28 2022-03-08 Emisshield, Inc. Electric arc and ladle furnaces and components

Similar Documents

Publication Publication Date Title
US8481902B2 (en) Heating element production
CN105517423A (en) High thermal conductivity graphene cooling metal foil
JP6303384B2 (en) Moisture-proof sheet
CN103724055B (en) Hot matching coating of a kind of SiC/HfC/ZrC and preparation method thereof
CN104475316A (en) Preparing method of graphene coating
JP2014073950A (en) Coating high temperature radiating coating material on ceramic fiber surface
CN104549960A (en) High-temperature-resistant heat-insulation coating production method
CN105330339A (en) Magnetic conductive film for low-thermal-expansion ceramics
JP2009097080A (en) Insulation structure of induction heating coil
CN201677547U (en) Glass ceramics gradient composite coating metal plate
CN109494332A (en) Battery box cover and its processing technology, battery case
JP2014088002A (en) Moistureproof sheet
CN208657107U (en) A kind of graphene frequency conversion heating board
CN103002608A (en) Mica electro-thermal film
CN205851308U (en) A kind of cumulative ceramic coating
CN206486584U (en) A kind of linear evaporation source and vacuum deposition apparatus
JP4777191B2 (en) Induction heating equipment installed in continuous annealing furnace with zinc bath
CN208240383U (en) A kind of winding wire resistant to high temperature
CN203633041U (en) Electronic element heat dissipation apparatus
CN203848675U (en) Energy-saving lining special for high-temperature heating furnace
CN201820746U (en) Soft ceramic composite metal substrate
JP2006086054A (en) Heating structure body and manufacturing method thereof
CN203968414U (en) A kind of high temperature film heater
CN207756453U (en) A kind of endurance ceramic coating
Neckel Jr et al. Particle-Filled Polysilazane Coatings for Steel Protection