JP2014071948A - Method for producing negative electrode active material - Google Patents

Method for producing negative electrode active material Download PDF

Info

Publication number
JP2014071948A
JP2014071948A JP2012214842A JP2012214842A JP2014071948A JP 2014071948 A JP2014071948 A JP 2014071948A JP 2012214842 A JP2012214842 A JP 2012214842A JP 2012214842 A JP2012214842 A JP 2012214842A JP 2014071948 A JP2014071948 A JP 2014071948A
Authority
JP
Japan
Prior art keywords
sio
lithium
battery
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012214842A
Other languages
Japanese (ja)
Other versions
JP6092558B2 (en
Inventor
Mai Yokoi
麻衣 横井
Hiroyuki Minami
博之 南
Naoki Imachi
直希 井町
Toshitada Sato
俊忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012214842A priority Critical patent/JP6092558B2/en
Publication of JP2014071948A publication Critical patent/JP2014071948A/en
Application granted granted Critical
Publication of JP6092558B2 publication Critical patent/JP6092558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve initial charge/discharge efficiency and cycle characteristics of a nonaqueous electrolyte secondary battery when the nonaqueous electrolyte secondary battery is manufactured using a negative electrode active material produced by a method of the present invention.SOLUTION: A method for producing a negative electrode active material comprises: a first step of mixing a lithium compound and SiO(0.8≤X≤1.2) having a surface coated with carbon so that the lithium compound adheres to the surface of the SiO; and a second step of subjecting the SiOhaving a surface on which the lithium compound adheres to heat treatment to form a lithium silicate phase in the SiO.

Description

本発明は、負極活物質の製造方法に関するものである。   The present invention relates to a method for producing a negative electrode active material.

SiOで表わされるシリコン酸化物は、比容量が高く、充電時にリチウムを吸収した際の体積膨張率もSiに比べて小さいことから、黒鉛と混合して負極活物質として用いることが検討されている(特許文献1参照)。
しかしながら、SiOで表わされるシリコン酸化物を負極活物質として用いた非水電解質二次電池は、黒鉛のみを負極活物質として使用した場合に比べ、初回充放電効率、及びサイクル初期における容量が著しく低下するという課題がある。
初回充放電効率の向上を図るべく、炭素活物質中にシリコン酸化物が分散され、該シリコン酸化物中にシリコンとリチウムシリケート相とを有する構造の複合体粒子が提案されている(特許文献2参照)。
Since the silicon oxide represented by SiO X has a high specific capacity and a volume expansion coefficient when absorbing lithium during charging is smaller than that of Si, it has been studied to mix with graphite and use it as a negative electrode active material. (See Patent Document 1).
However, the nonaqueous electrolyte secondary battery using the silicon oxide represented by SiO X as the negative electrode active material has significantly higher initial charge / discharge efficiency and capacity at the beginning of the cycle than when only graphite is used as the negative electrode active material. There is a problem of lowering.
In order to improve the initial charge and discharge efficiency, composite particles having a structure in which silicon oxide is dispersed in a carbon active material and silicon and a lithium silicate phase are included in the silicon oxide have been proposed (Patent Document 2). reference).

特開2011−233245号公報JP2011-233245A 特開2007−59213号公報JP 2007-59213 A

しかしながら、特許文献2に記載の提案では、炭素活物質中に分散されたシリコン酸化物は、炭素マトリクス内にシリコン酸化物が点在した構造を有するため、充放電時に炭素マトリクスがリチウム拡散を阻害する。このため、リチウムがシリコン酸化物に十分届かない場合があり、実際の電池容量が理論容量よりも著しく小さくなって、初回充放電効率が低下する等の課題を有していた。   However, in the proposal described in Patent Document 2, since the silicon oxide dispersed in the carbon active material has a structure in which the silicon oxide is scattered in the carbon matrix, the carbon matrix inhibits lithium diffusion during charging and discharging. To do. For this reason, lithium may not reach the silicon oxide sufficiently, and the actual battery capacity is significantly smaller than the theoretical capacity, and the initial charge / discharge efficiency is reduced.

本発明は、SiO(0.8≦X≦1.2)とリチウム化合物とを混合して、SiOの表面にリチウム化合物を付着させる第1ステップと、上記表面にリチウム化合物が付着したSiOを熱処理して、上記SiO中にリチウムシリケート相を形成する第2ステップと、を備える。 The present invention includes a first step in which SiO X (0.8 ≦ X ≦ 1.2) and a lithium compound are mixed to adhere a lithium compound to the surface of SiO X , and SiO having a lithium compound adhered to the surface. A second step of heat treating X to form a lithium silicate phase in the SiO X.

本発明の実施例に記載した方法で製造した負極活物質を用いた非水電解質二次電池では、初回充放電効率とサイクル特性とが飛躍的に向上する。   In the nonaqueous electrolyte secondary battery using the negative electrode active material manufactured by the method described in the examples of the present invention, the initial charge / discharge efficiency and the cycle characteristics are dramatically improved.

電池A1、ZにおけるSiOのXRD測定結果を表すグラフである。It is a graph showing the XRD measurement result of SiO X in cell A1, Z.

本発明は、SiO(0.8≦X≦1.2)とリチウム化合物とを混合して、SiOの表面にリチウム化合物を付着させる第1ステップと、上記表面にリチウム化合物が付着したSiOを熱処理して、上記SiO中にリチウムシリケート相を形成する第2ステップと、を備える。
上記方法で製造した負極活物質を用いた非水電解質二次電池では、初回充放電効率とサイクル特性とが向上する。この理由を以下に示す。
The present invention includes a first step in which SiO X (0.8 ≦ X ≦ 1.2) and a lithium compound are mixed to adhere a lithium compound to the surface of SiO X , and SiO having a lithium compound adhered to the surface. A second step of heat treating X to form a lithium silicate phase in the SiO X.
In the nonaqueous electrolyte secondary battery using the negative electrode active material produced by the above method, the initial charge / discharge efficiency and the cycle characteristics are improved. The reason is shown below.

SiOは、SiとSiOとの微細混合体であり、負極活物質として用いた場合の初回充電反応は、一般的に下記(1)式で表すことができる。
4SiO(2Si+2SiO)+16Li+16e→3LiSi+LiSiO・・・(1)
上記(1)式の如く、初回充電時にLiSiOが生成されるが、このLiSiOは不可逆反応物である。したがって、SiO中の全てのSiが可逆反応するものではなく、理論効率が低くなる。具体的には、上記(1)式のように不可逆反応物としてLiSiOが生成される場合には、16個のリチウムイオンのうち4個が不可逆となるため、理論効率は75%となる。
SiO X is a fine mixture of Si and SiO 2, and the initial charge reaction when used as a negative electrode active material can be generally expressed by the following formula (1).
4SiO (2Si + 2SiO 2 ) + 16Li + + 16e → 3Li 4 Si + Li 4 SiO 4 (1)
As in the above formula (1), Li 4 SiO 4 is generated during the initial charge, and this Li 4 SiO 4 is an irreversible reactant. Therefore, not all Si in SiO X reacts reversibly, and the theoretical efficiency is lowered. Specifically, when Li 4 SiO 4 is generated as an irreversible reactant as in the above formula (1), four of the 16 lithium ions are irreversible, so the theoretical efficiency is 75%. Become.

そこで、上記構成の如く、電池作製時(初回充電前)のSiOに、LiSiO等のリチウムシリケート相が形成されたSiOを用いる。このような構成であれば、初回充電時において、不可逆反応物に奪われるリチウムが少なくなるので、初回充放電効率を飛躍的に改善することが可能となる。また、SiO粒子は、リチウムシリケート相を形成することにより、体積が大きくなる。そのため、SiOを負極活物質として用いた場合、リチウムシリケート相を有するSiOは、リチウムシリケート相を有しないSiOよりも充放電時における膨張、収縮時の変位が小さい。したがって、リチウムシリケート相を有するSiOを用いれば、負極合剤層内での剥離や、負極合剤層と負極集電体との剥離を抑制することができるので、サイクル特性が向上する。加えて、SiOの回りには炭素マトリクスが存在しないので、リチウム拡散が円滑に行われる。したがって、実際の電池容量が大きくなる。 Therefore, as described above, SiO X in which a lithium silicate phase such as Li 4 SiO 4 is formed is used as SiO X at the time of battery fabrication (before the first charge). With such a configuration, the amount of lithium taken away by the irreversible reactant during the first charge is reduced, so that the first charge / discharge efficiency can be drastically improved. In addition, the volume of the SiO X particles is increased by forming a lithium silicate phase. Therefore, in the case of using SiO X as a negative electrode active material, SiO X having lithium silicate phase, the expansion during charge and discharge than SiO X having no lithium silicate phase displacement during shrinkage is small. Therefore, if SiO X having a lithium silicate phase is used, peeling in the negative electrode mixture layer and peeling between the negative electrode mixture layer and the negative electrode current collector can be suppressed, and thus cycle characteristics are improved. In addition, since there is no carbon matrix around SiO X , lithium diffusion is performed smoothly. Therefore, the actual battery capacity is increased.

SiO中にリチウムシリケート相を形成するには、上記負極活物質の製造方法における第2ステップで示したように、表面にリチウム化合物が付着したSiOを熱処理すれば良い。リチウム化合物としてLiOHを用いたときの反応式を、下記(2)式に示す。(2)式から明らかなように、SiO中に存在するSiOとLiOHとが反応して、LiSiOが生成することがわかる。
SiO+4LiOH→LiSiO+2HO・・・(2)
尚、リチウムシリケート相は、LiとSi、Oとの化合物であり、上記LiSiO以外にも、LiSiOやLiSiがあり、リチウム化合物の添加量や処理方法によって生成物が異なる場合がある。また、リチウム化合物としては、上記LiOHの他、LiCO、LiF、又はLiCl等がある。
In order to form a lithium silicate phase in SiO X , as shown in the second step in the method for producing a negative electrode active material, SiO X having a lithium compound attached to the surface may be heat-treated. The reaction formula when LiOH is used as the lithium compound is shown in the following formula (2). As is clear from the formula (2), it can be seen that SiO 2 existing in SiO X reacts with LiOH to produce Li 4 SiO 4 .
SiO 2 + 4LiOH → Li 4 SiO 4 + 2H 2 O (2)
The lithium silicate phase is a compound of Li, Si, and O. Besides Li 4 SiO 4 , there are Li 2 SiO 3 and Li 2 Si 2 O 5 , depending on the amount of lithium compound added and the processing method. Products may be different. Further, examples of the lithium compound include Li 2 CO 3 , LiF, and LiCl in addition to the above LiOH.

リチウムシリケート相を形成する場合の熱処理温度は、リチウム化合物の融点以上で処理することが好ましい。リチウム化合物の種類にもよるが、リチウム化合物の融点以下で熱処理した場合、リチウムシリケート相が十分に形成されず、リチウム化合物のまま残ることがある。但し、熱処理温度の上限は、1400℃以下であることが好ましく、特に、1100℃以下であることが好ましい。1100℃より高い温度で熱処理した場合、SiO中のSiやSiOの結晶化が起こり、SiO内のリチウム拡散パスの減少や粒子抵抗の増大により、充放電容量が大きく低下する。特に、1400℃よりも高い温度で熱処理した場合は、このような課題が顕著となる上、SiO表面を炭素被覆している場合には、SiCが形成されて、更に充放電容量が低下する。 When the lithium silicate phase is formed, the heat treatment temperature is preferably higher than the melting point of the lithium compound. Although depending on the type of the lithium compound, when the heat treatment is performed at a temperature lower than the melting point of the lithium compound, the lithium silicate phase may not be sufficiently formed and may remain as the lithium compound. However, the upper limit of the heat treatment temperature is preferably 1400 ° C. or less, and particularly preferably 1100 ° C. or less. When heated at a temperature higher than 1100 ° C., it occurs Si and SiO 2 of crystallization in SiO X, the increased loss and particle resistance of the lithium diffusion paths in SiO X, the charge-discharge capacity decreases significantly. In particular, when heat treatment is performed at a temperature higher than 1400 ° C., such a problem becomes remarkable, and when the SiO X surface is coated with carbon, SiC is formed, and charge / discharge capacity is further reduced. .

SiO中にリチウムシリケート相を形成する際、SiO中に均一にリチウムシリケート相を形成することが好ましい。そのためには、熱処理を行う前に、SiO表面にリチウム化合物を均一に分散、付着させる必要がある。その方法として、SiOとリチウム化合物とを粉状態で均一に混練した後、熱処理する方法がある(以下、この方法を乾式処理と称することがある)。また、リチウム化合物とSiOとを水等の溶媒に分散し、乾燥することでSiO表面にリチウム化合物を析出した後、熱処理を行う方法もある(以下、この方法を湿式処理と称することがある)。一般的には、乾式処理よりも湿式処理の方が、SiOの表面にリチウム化合物を均一に分散、付着させ易いので、湿式処理を用いるのが好ましい。尚、湿式処理を行う場合には、SiOとリチウム化合物とが溶媒を通じて良く分散するように、分散剤や界面活性剤を加えて分散しても良い。この場合、分散剤や界面活性剤は、その後の熱処理工程で蒸発するため、電池特性への影響はほとんどない。
上記界面活性剤としては、電池性能への影響がないことが好ましく、具体的には、イオン伝導を妨げないポリオキシエチレンアルキルエーテルや、ポリオキシエチレンアルキルエステル等の非イオン性界面活性剤が好ましい。上記分散剤としては、CMC(カルボキシメチルセルロース)、ポリアクリル酸ナトリウム等が例示できる。
When forming the lithium silicate phase in the SiO X, it is preferable to form a uniform lithium silicate phase in the SiO X. For this purpose, it is necessary to uniformly disperse and adhere the lithium compound to the SiO X surface before heat treatment. As such a method, there is a method in which SiO X and a lithium compound are uniformly kneaded in a powder state and then heat-treated (hereinafter, this method may be referred to as a dry treatment). In addition, there is a method in which a lithium compound and SiO X are dispersed in a solvent such as water and dried to precipitate the lithium compound on the surface of SiO X and then heat treatment is performed (hereinafter, this method is referred to as a wet treatment). is there). In general, the wet process is preferably used rather than the dry process because the lithium compound is more easily dispersed and adhered to the surface of the SiO X surface. Incidentally, when performing a wet process, as the SiO X and the lithium compound is dispersed well through a solvent, it may be dispersed with addition of dispersants and surfactants. In this case, since the dispersant and the surfactant are evaporated in the subsequent heat treatment step, there is almost no influence on the battery characteristics.
As the surfactant, it is preferable that the battery performance is not affected, and specifically, nonionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene alkyl ester that do not hinder ion conduction are preferable. . Examples of the dispersant include CMC (carboxymethylcellulose), sodium polyacrylate, and the like.

また、リチウム化合物との熱処理後に、未反応リチウム化合物を除去する工程を含むことが好ましい。充放電反応に寄与しないリチウム化合物を除去することにより、重量あたりの容量を高めることが可能となる。また、リチウム化合物は水溶媒中でアルカリ性を示すことが多い。このため、負極スラリー調製時に、分散剤(増粘剤)としてのCMCを用いた場合には、CMCが開環して増粘効果が著しく低下するといった問題も生じる。
尚、未反応リチウム化合物を除去する方法としては、熱(化成)処理後のSiOを水洗しても良いし、超音波洗浄や酸/アルカリを用いて中和しても良い。
Moreover, it is preferable to include the process of removing an unreacted lithium compound after heat processing with a lithium compound. By removing the lithium compound that does not contribute to the charge / discharge reaction, the capacity per weight can be increased. In addition, lithium compounds often show alkalinity in an aqueous solvent. For this reason, when CMC as a dispersing agent (thickening agent) is used at the time of negative electrode slurry preparation, the problem that a thickening effect falls remarkably and CMC will open a ring also arises.
In addition, as a method for removing the unreacted lithium compound, SiO X after the thermal (chemical conversion) treatment may be washed with water, or may be neutralized using ultrasonic washing or acid / alkali.

本発明において用いるSiOは、その表面が炭素で被覆されたものであってもよい。SiOは電子伝導性が低いので、その表面を炭素で被覆することにより、電子伝導性を高めることができる。
SiO表面を炭素被覆する場合、SiO中にリチウムシリケート相を形成した後に、炭素被覆を行う方が好ましい。炭素被覆は、リチウム化合物の拡散を妨げるため、熱処理前に炭素被膜が存在すると、SiO中にリチウム化合物が均一に拡散しないことがある。したがって、リチウムシリケート相が偏在することになる。また、SiO中へのリチウムの拡散量が減少するため、形成されるリチウムシリケート相が少なくなるといった問題を生じることもある。更に、SiO中へのリチウムの拡散量が減少することに起因して、未反応リチウム化合物が炭素被覆表面に残存し、これが炭素被覆表面に付着するため、導電性が低下するといった不具合もある。
The surface of SiO X used in the present invention may be coated with carbon. Since SiO X has low electron conductivity, the electron conductivity can be increased by coating the surface with carbon.
In the case where the surface of SiO X is coated with carbon, it is preferable to perform carbon coating after forming a lithium silicate phase in SiO X. Since the carbon coating prevents the diffusion of the lithium compound, the lithium compound may not be uniformly diffused into the SiO X if the carbon coating is present before the heat treatment. Therefore, the lithium silicate phase is unevenly distributed. In addition, since the amount of lithium diffusion into SiO X is reduced, there may be a problem that the formed lithium silicate phase is reduced. Furthermore, due to the decrease in the amount of lithium diffused into the SiO X , unreacted lithium compounds remain on the surface of the carbon coating, and this adheres to the surface of the carbon coating, leading to a problem that the conductivity is lowered. .

炭素で被覆する場合、炭素被覆の厚みは、1nm以上200nm以下であることが好ましい。1nm未満では、導電性が低く、また均一に被覆するのが難しい。一方、200nmを超えると、炭素被覆がリチウム拡散を阻害して、SiOに十分リチウムが届かず、大きく容量が低下する。 When coating with carbon, the thickness of the carbon coating is preferably 1 nm or more and 200 nm or less. If it is less than 1 nm, the conductivity is low and it is difficult to coat uniformly. On the other hand, when the thickness exceeds 200 nm, the carbon coating inhibits lithium diffusion, so that lithium does not reach the SiO X sufficiently, and the capacity is greatly reduced.

SiO(0.8≦X≦1.2)の単独粒子の総モル数に対する上記リチウムシリケート相のモル数の割合が、0.5モル%以上25モル%以下であることが好ましい。リチウムシリケート相の割合が0.5モル%未満の場合には、初回充放電効率の改善効果が小さい。一方、リチウムシリケート相の割合が25モル%を超える場合には、可逆反応するSiが少なくなって、充放電容量が低下する。 The ratio of the number of moles of the lithium silicate phase to the total number of moles of single particles of SiO X (0.8 ≦ X ≦ 1.2) is preferably 0.5 mol% or more and 25 mol% or less. When the proportion of the lithium silicate phase is less than 0.5 mol%, the effect of improving the initial charge / discharge efficiency is small. On the other hand, when the proportion of the lithium silicate phase exceeds 25 mol%, the amount of Si that undergoes reversible reaction decreases, and the charge / discharge capacity decreases.

本発明で用いるSiOは、負極活物質として単独で用いても良く、黒鉛やハードカーボンといった炭素系活物質と混合して用いても良い。SiOは、炭素系活物質よりも比容量が高いため、添加量が多いほど高容量化が可能となる。しかし、SiOは、炭素系活物質よりも、充放電時の膨張、収縮率が大きく、その割合が多過ぎると、負極合剤層と負極集電体との界面における剥離や、負極活物質粒子間の導電接触が低下するため、サイクル特性が大幅に低下することがある。したがって、SiOと炭素系活物質とを混合して用いる場合、負極活物質の総量に対するSiOの割合は、20質量%以下であることが好ましい。一方、SiOの割合が少な過ぎると、SiOを添加して高容量化するメリットが小さくなるので、負極活物質の総量に対するSiOの割合は1質量%以上であることが好ましい。 SiO X used in the present invention may be used alone as a negative electrode active material, or may be used by mixing with a carbon-based active material such as graphite or hard carbon. Since the specific capacity of SiO X is higher than that of the carbon-based active material, the capacity can be increased as the addition amount increases. However, SiO X has a larger expansion / contraction rate at the time of charge / discharge than the carbon-based active material, and if the ratio is too large, peeling at the interface between the negative electrode mixture layer and the negative electrode current collector, or the negative electrode active material Since the conductive contact between the particles is reduced, the cycle characteristics may be significantly reduced. Therefore, when SiO X and a carbon-based active material are mixed and used, the ratio of SiO X to the total amount of the negative electrode active material is preferably 20% by mass or less. On the other hand, if the proportion of SiO X is too small, the merit of increasing the capacity by adding SiO X is reduced, so the proportion of SiO X with respect to the total amount of the negative electrode active material is preferably 1% by mass or more.

本発明に用いるSiOの平均一次粒子径は、1μm以上15μm以下であることが好ましい。SiOの平均一次粒子径が1μm未満の場合は、粒子表面積が大きくなり過ぎて、電解液との反応量が大きくなり、容量低下することがある。また、SiOの膨張収縮量が小さく、負極合剤層へ与える影響は小さい。そのため、SiO中に予めリチウムシリケート相を形成しなくても、負極合剤層と負極集電体との間で剥離が生じ難く、サイクル特性がさほど低下しない。一方、SiOの平均一次粒子径が15μmを超えている場合は、リチウムシリケート相の形成時に、SiO内部までリチウムが拡散せず、SiO表面にのみリチウムシリケート相が形成されることがある。リチウムシリケート相は絶縁性であるため、このような構造になると、リチウム拡散が阻害されて、充放電時にリチウムがSiOの中心付近まで拡散できないため、容量低下や負荷特性が低下することがある。したがって、SiOの平均一次粒子径は、1μm以上15μm以下であることが好ましく、特に4μm以上10μm以下であることが好ましい。
なお、SiOの平均一次粒子径(D50)とは、レーザー回折散乱法で測定された粒度分布における累積50体積%径のことである。
The average primary particle diameter of SiO X used in the present invention is preferably 1 μm or more and 15 μm or less. When the average primary particle diameter of SiO X is less than 1 μm, the particle surface area becomes too large, the amount of reaction with the electrolytic solution increases, and the capacity may decrease. Further, the amount of expansion and contraction of SiO X is small, and the influence on the negative electrode mixture layer is small. Therefore, even if a lithium silicate phase is not formed in advance in SiO X , separation between the negative electrode mixture layer and the negative electrode current collector hardly occurs and the cycle characteristics do not deteriorate so much. On the other hand, when the average primary particle diameter of SiO X exceeds 15 μm, lithium may not diffuse into the inside of SiO X during the formation of the lithium silicate phase, and the lithium silicate phase may be formed only on the SiO X surface. . Since the lithium silicate phase is insulative, when such a structure is used, lithium diffusion is hindered, and lithium cannot be diffused to the vicinity of the center of SiO during charge / discharge, which may result in a decrease in capacity and load characteristics. Therefore, the average primary particle diameter of SiO X is preferably 1 μm or more and 15 μm or less, and particularly preferably 4 μm or more and 10 μm or less.
In addition, the average primary particle diameter (D 50 ) of SiO X is the cumulative 50 volume% diameter in the particle size distribution measured by the laser diffraction scattering method.

正極及び非水電解質は、非水電解質二次電池に用いるものであれば、特に限定されることなく用いることができる。
正極活物質としては、例えば、コバルト酸リチウム、ニッケルあるいはマンガンを含むリチウム複合酸化物、リン酸鉄リチウム(LiFePO)に代表されるオリビン型リン酸リチウム等などが挙げられる。ニッケルあるいはマンガンを含むリチウム複合酸化物としては、Ni−Co−Mn、Ni−Mn−Al、及びNi−Co−Alなどのリチウム複合酸化物などが挙げられる。正極活物質はこれらを単独で用いても良いし、混合して用いてもよい。
The positive electrode and the non-aqueous electrolyte can be used without any particular limitation as long as they are used for a non-aqueous electrolyte secondary battery.
Examples of the positive electrode active material include lithium complex oxide containing lithium cobaltate, nickel or manganese, olivine type lithium phosphate represented by lithium iron phosphate (LiFePO 4 ), and the like. Examples of the lithium composite oxide containing nickel or manganese include lithium composite oxides such as Ni—Co—Mn, Ni—Mn—Al, and Ni—Co—Al. These positive electrode active materials may be used alone or in combination.

非水電解液の溶媒、溶質については、非水電解質二次電池に用いることができるものであれば特に限定されるものではない。
上記非水電解液の溶質としては、LiBF,LiPF,LiN(SOCF,LiN(SO,LiPF6−x(C2n+1[但し、1<x<6,n=1または2]、或いは、オキサラト錯体をアニオンとするリチウム塩を用いることもできる。このオキサラト錯体をアニオンとするリチウム塩としては、LiBOB〔リチウム−ビスオキサレートボレート〕の他、中心原子にC 2−が配位したアニオンを有するリチウム塩、例えば、Li[M(C](式中、Mは遷移金属,周期律表のIIIb族,IVb族,Vb族から選択される元素、Rはハロゲン、アルキル基、ハロゲン置換アルキル基から選択される基、xは正の整数、yは0又は正の整数である。)で表わされるものを用いることができる。具体的には、Li[B(C)F]、Li[P(C)F]、Li[P(C]等がある。但し、高温環境下においても負極の表面に安定な被膜を形成するためには、LiBOBを用いることが最も好ましい。
The solvent and solute of the nonaqueous electrolyte solution are not particularly limited as long as they can be used for the nonaqueous electrolyte secondary battery.
Solutes of the non-aqueous electrolyte include LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiPF 6-x (C n F 2n + 1 ) x [wherein 1 <x <6, n = 1 or 2], or a lithium salt having an oxalato complex as an anion can also be used. As a lithium salt having this oxalato complex as an anion, in addition to LiBOB [lithium-bisoxalate borate], a lithium salt having an anion in which C 2 O 4 2− is coordinated to the central atom, for example, Li [M (C 2 O 4 ) x R y ] (wherein M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table, R is selected from a halogen, an alkyl group, and a halogen-substituted alkyl group) Group, x is a positive integer, and y is 0 or a positive integer). Specifically, there are Li [B (C 2 O 4 ) F 2 ], Li [P (C 2 O 4 ) F 4 ], Li [P (C 2 O 4 ) 2 F 2 ], and the like. However, it is most preferable to use LiBOB in order to form a stable film on the surface of the negative electrode even in a high temperature environment.

尚、上記溶質は、単独で用いるのみならず、2種以上を混合して用いても良い。また、溶質の濃度は特に限定されないが、電解液1リットル当り0.8〜1.8モルであることが望ましい。更に、大電流での放電を必要とする用途では、上記溶質の濃度が電解液1リットル当たり1.0〜1.6モルであることが望ましい。   In addition, the said solute may be used not only independently but in mixture of 2 or more types. The concentration of the solute is not particularly limited, but is preferably 0.8 to 1.8 mol per liter of the electrolyte. Furthermore, in applications that require discharging with a large current, the concentration of the solute is desirably 1.0 to 1.6 mol per liter of the electrolyte.

一方、上記非水電解液の溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ−ブチルラクトン、ジエチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートなどのカーボネート系溶媒や、これらの溶媒の水素の一部がFにより置換されているカーボネート系溶媒が好ましく用いられる。溶媒としては、環状カーボネートと鎖状カーボネートを組み合わせて用いることが好ましい。   On the other hand, as the solvent of the non-aqueous electrolyte, carbonate solvents such as ethylene carbonate, propylene carbonate, γ-butyl lactone, diethylene carbonate, ethyl methyl carbonate, dimethyl carbonate, and a part of hydrogen in these solvents are F. Substituted carbonate solvents are preferably used. As the solvent, it is preferable to use a combination of a cyclic carbonate and a chain carbonate.

以下、本発明を具体的な実施例によりさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
〈第1実施例〉
Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the present invention. It is a thing.
<First embodiment>

(実施例1)
〔負極の作製〕
表面を炭素で被覆したSiO(X=0.93、平均一次粒子径:5.0μm)を準備した。尚、被覆はCVD法を用いて行い、また、SiOに対する炭素の割合は10質量%とした。上記SiO1モルとLiOH0.2モルとを粉状態で混合して(SiOに対するLiOHの割合は20モル%となっている)、SiOの表面にLiOHを付着させた。次に、Ar雰囲気中、800℃で10時間熱処理することにより、内部にリチウムシリケート相が形成されたSiOを作製した。この熱処理後のSiOをXRD(線源はCuKαである)で解析したところ、図1に示すように、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、SiOの総モル数に対するリチウムシリケート相のモル数(以下、SiO中のリチウムシリケート相の割合、と称することがある)は5モル%であった。
Example 1
(Production of negative electrode)
SiO X (X = 0.93, average primary particle size: 5.0 μm) whose surface was coated with carbon was prepared. The coating was performed using the CVD method, and the ratio of carbon to SiO X was 10% by mass. 1 mol of SiO X and 0.2 mol of LiOH were mixed in a powder state (the ratio of LiOH to SiO X is 20 mol%), and LiOH was adhered to the surface of SiO X. Next, heat treatment was performed in an Ar atmosphere at 800 ° C. for 10 hours to produce SiO X in which a lithium silicate phase was formed. When SiO X after this heat treatment was analyzed by XRD (the radiation source was CuKα), as shown in FIG. 1, the peaks of Li 4 SiO 4 and Li 2 SiO 3 which are lithium silicates were confirmed. Further, the number of moles of lithium silicate phase to the total number of moles of SiO X (hereinafter, the ratio of the lithium silicate phase in the SiO X, may be referred to as) was 5 mol%.

上記リチウムシリケート相が形成されたSiOと、バインダーであるPAN(ポリアクリロニトリル)とを、質量比で95:5となるように混合し、更に希釈溶媒としてのNMP(N−メチル−2−ピロリドン)を添加した。これを、混合機(プライミクス社製、ロボミックス)を用いて攪拌し、負極合剤スラリーを調製した。
上記負極合剤スラリーを、銅箔の片面上に負極合剤層の1m当りの質量が、25g/mとなるように塗布した。次に、これを大気中105℃で乾燥し、圧延することにより負極を作製した。尚、負極合剤層の充填密度は、1.50g/mlとした。
SiO X in which the lithium silicate phase is formed and PAN (polyacrylonitrile) as a binder are mixed at a mass ratio of 95: 5, and NMP (N-methyl-2-pyrrolidone as a dilution solvent) is further mixed. ) Was added. This was stirred using a mixer (Primics, Robomix) to prepare a negative electrode mixture slurry.
The negative electrode mixture slurry was applied on one surface of a copper foil so that the mass per 1 m 2 of the negative electrode mixture layer was 25 g / m 2 . Next, this was dried at 105 ° C. in the atmosphere and rolled to prepare a negative electrode. The filling density of the negative electrode mixture layer was 1.50 g / ml.

〔非水電解液の調製〕
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、体積比が3:7の割合となるように混合した混合溶媒に、六フッ化リン酸リチウム(LiPF)を、1.0モル/リットル添加して非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
To a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7, lithium hexafluorophosphate (LiPF 6 ) was added at 1.0 mol / liter. This was added to prepare a non-aqueous electrolyte.

〔電池の組み立て〕
不活性雰囲気中で、外周にNiタブを取り付けた上記負極と、リチウム金属箔と、負極とリチウム金属箔との間に配置させたポリエチレン製セパレータとを用いて電極体を作製した。この電極体を、アルミニウムラミネートからなる電池外装体内に入れ、更に、非水電解液を電池外装体内に注入し、その後電池外装体を封止して電池を作製した。
このようにして作製した電池を、以下、電池A1と称する。
[Assembling the battery]
In an inert atmosphere, an electrode body was produced using the above negative electrode with a Ni tab attached to the outer periphery, a lithium metal foil, and a polyethylene separator disposed between the negative electrode and the lithium metal foil. This electrode body was put into a battery casing made of an aluminum laminate, and a non-aqueous electrolyte was injected into the battery casing, and then the battery casing was sealed to produce a battery.
The battery thus produced is hereinafter referred to as battery A1.

(実施例2)
リチウム源とSiOとを混合して熱処理する際、リチウム源として、LiOHの代わりにLiCOを用いた(SiOに対するLiCOの割合は10モル%とした)こと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOを、XRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。
このようにして作製した電池を、以下、電池A2と称する。
(Example 2)
When mixing and heat-treating the lithium source and SiO X , Li 2 CO 3 was used instead of LiOH as the lithium source (the ratio of Li 2 CO 3 to SiO X was 10 mol%), A battery was fabricated in the same manner as in Example 1 of the first example. Incidentally, the SiO X after heat treatment, was analyzed by XRD, the peak of the Li 4 SiO 4 and Li 2 SiO 3 is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%.
The battery thus produced is hereinafter referred to as battery A2.

(実施例3)
リチウム源とSiOとを混合して熱処理する際、リチウム源として、LiOHの代わりにLiClを用いた(SiOに対するLiClの割合は20モル%とした)こと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOを、XRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。
このようにして作製した電池を、以下、電池A3と称する。
(Example 3)
When mixing and heat-treating the lithium source and SiO X , LiCl was used instead of LiOH as the lithium source (the ratio of LiCl to SiO X was 20 mol%). A battery was produced in the same manner as in Example 1. Incidentally, the SiO X after heat treatment, was analyzed by XRD, the peak of the Li 4 SiO 4 and Li 2 SiO 3 is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%.
The battery thus produced is hereinafter referred to as battery A3.

(実施例4)
リチウム源とSiOとを混合して熱処理する際、リチウム源として、LiOHの代わりにLiFを用いた(SiOに対するLiFの割合は20モル%とした)こと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOを、XRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。
このようにして作製した電池を、以下、電池A4と称する。
Example 4
When the heat treatment was performed by mixing the lithium source and SiO X , LiF was used instead of LiOH as the lithium source (the ratio of LiF to SiO X was 20 mol%). A battery was produced in the same manner as in Example 1. Incidentally, the SiO X after heat treatment, was analyzed by XRD, the peak of the Li 4 SiO 4 and Li 2 SiO 3 is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%.
The battery thus produced is hereinafter referred to as battery A4.

(比較例)
LiOHとSiOとを混合せず、且つ、熱処理を行わなかった(即ち、負極活物質としてのSiOとして、未処理のSiOを用いた)こと以外は、上記第1実施例の実施例1と同様に電池を作製した。このSiOをXRDで解析したところ、図1に示すように、リチウムシリケート相は確認されなかった。
このようにして作製した電池を、以下、電池Zと称する。
(Comparative example)
Example of the first example except that LiOH and SiO X were not mixed and heat treatment was not performed (that is, untreated SiO X was used as SiO X as the negative electrode active material). A battery was produced in the same manner as in Example 1. When this SiO X was analyzed by XRD, a lithium silicate phase was not confirmed as shown in FIG.
The battery thus produced is hereinafter referred to as battery Z.

(実験)
上記電池A1〜A4、Zを、以下の条件で充放電し、下記(3)式で示す初回充放電効率と下記(4)式で示す10サイクル目の容量維持率とを調べたので、その結果を表1に示す。
〔充放電条件〕
0.2It(4mA)の電流で電圧が0Vになるまで定電流充電を行った後、0.05It(1mA)の電流で電圧が0Vになるまで定電流充電を行った。次に、10分間休止した後、0.2It(4mA)の電流で電圧が1.0Vになるまで定電流放電を行った。
(Experiment)
The batteries A1 to A4, Z were charged / discharged under the following conditions, and the initial charge / discharge efficiency represented by the following formula (3) and the capacity retention rate at the 10th cycle represented by the following formula (4) were examined. The results are shown in Table 1.
(Charging / discharging conditions)
Constant current charging was performed until the voltage became 0 V with a current of 0.2 It (4 mA), and then constant current charging was performed until the voltage became 0 V with a current of 0.05 It (1 mA). Next, after resting for 10 minutes, constant current discharge was performed until the voltage became 1.0 V at a current of 0.2 It (4 mA).

〔初回充放電効率の算出式〕
初回充放電効率(%)=(1サイクル目の放電容量/1サイクル目の充電容量)×100・・・(3)
〔10サイクル目の容量維持率の算出式〕
10サイクル目の容量維持率(%)=(10サイクル目の放電容量/1サイクル目の放電容量)×100・・・(4)
[Calculation formula for initial charge / discharge efficiency]
Initial charge / discharge efficiency (%) = (discharge capacity at the first cycle / charge capacity at the first cycle) × 100 (3)
[Calculation formula of capacity maintenance ratio at 10th cycle]
Capacity maintenance ratio (%) at 10th cycle = (discharge capacity at 10th cycle / discharge capacity at 1st cycle) × 100 (4)

Figure 2014071948
Figure 2014071948

内部にリチウムシリケート相を有するSiOを用いた電池A1〜A4は、内部にリチウムシリケート相を有していないSiOを用いた電池Zに比べて、初回充放電効率及びサイクル特性が向上することがわかる。これは、充放電前のSiOにおいて、予めリチウムシリケート相を有していれば、初回充電時に生成するLiSiOに奪われるリチウム量が少量で済み、充放電に関与できるリチウム量が増加するからである。また、内部にリチウムシリケート相を有するSiOは、内部にリチウムシリケート相を有していないSiOに比べた場合、充電量は同一であるにも関わらず、充電時の膨張度合いが小さくなる。したがって、充放電時の膨張収縮量の差が小さくなり、負極合剤層での剥離等が抑制されるからと考えられる。
尚、熱処理時に用いるリチウム化合物としては、LiOHに限らず、LiCO、LiCl、又はLiFでも同様の効果を発現することが確認できた。また、これら以外のリチウム化合物であっても、同様の効果を発現すると推測できる。
Batteries A1 to A4 using SiO X having a lithium silicate phase inside have improved initial charge / discharge efficiency and cycle characteristics as compared to battery Z using SiO X having no lithium silicate phase inside. I understand. This is because if SiO X before charge / discharge has a lithium silicate phase in advance, the amount of lithium taken away by Li 4 SiO 4 generated at the time of initial charge is small, and the amount of lithium that can be involved in charge / discharge increases. Because it does. In addition, SiO X having a lithium silicate phase inside has a smaller degree of expansion during charging although the charge amount is the same as SiO X having no lithium silicate phase inside. Therefore, it is considered that the difference in expansion and contraction during charge / discharge is reduced, and peeling at the negative electrode mixture layer is suppressed.
As the lithium compound used in the heat treatment is not limited to LiOH, Li 2 CO 3, LiCl , or LiF to express same effect it was confirmed. Moreover, it can be estimated that even if it is lithium compounds other than these, the same effect is expressed.

〈第2実施例〉
(実施例1)
LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを2モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は0.5モル%であった。
このようにして作製した電池を、以下、電池B1と称する。
<Second embodiment>
(Example 1)
When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 2 mol% of LiOH was added to SiO X. When SiO X after the heat treatment was analyzed by XRD, a peak of Li 2 SiO 3 which is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 0.5 mol%.
The battery thus produced is hereinafter referred to as battery B1.

(実施例2)
LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを50モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は12.5モル%であった。
このようにして作製した電池を、以下、電池B2と称する。
(Example 2)
When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 50 mol% of LiOH was added to SiO X. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 12.5 mol%.
The battery thus produced is hereinafter referred to as battery B2.

(実施例3)
LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを80モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は20モル%であった。
このようにして作製した電池を、以下、電池B3と称する。
(Example 3)
When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 80 mol% of LiOH was added to SiO X. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 20 mol%.
The battery thus produced is hereinafter referred to as battery B3.

(実施例4)
LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを100モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は25モル%であった。
このようにして作製した電池を、以下、電池B4と称する。
Example 4
When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 100 mol% of LiOH was added to SiO X. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 25 mol%.
The battery thus produced is hereinafter referred to as battery B4.

(実験)
上記電池B1〜B4を、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表2に示す。尚、表2には電池A1、Zの結果についても記載している。
(Experiment)
The batteries B1 to B4 were charged / discharged under the same conditions as those shown in the experiment of the first embodiment, and the initial charge / discharge efficiency shown by the above formula (3) and the 10 shown by the above formula (4) were used. The capacity retention rate at the cycle was examined, and the results are shown in Table 2. Table 2 also shows the results of the batteries A1 and Z.

Figure 2014071948
Figure 2014071948

内部にリチウムシリケート相を有するSiOを用いた電池A1、B1〜B4は、内部にリチウムシリケート相を有していないSiOを用いた電池Zに比べて、初回充放電効率が高く、サイクル特性も良好であることがわかった。また、電池A1、B1〜B4を比較した場合、SiO中のリチウムシリケート相の割合が高いほど、初回充放電効率が高く、サイクル特性も良好であることがわかった。更に、SiO中のリチウムシリケート相の割合が12.5モル%以上の電池B2〜B4では、負極活物質としてSiOを用いた場合の理論充放電効率(75%)を越える初回充放電効率を示すことが確認できた。 Batteries A1, B1 to B4 using SiO X having a lithium silicate phase inside have higher initial charge / discharge efficiency and cycle characteristics than battery Z using SiO X having no lithium silicate phase inside. Was also found to be good. Moreover, when comparing batteries A1 and B1 to B4, it was found that the higher the ratio of the lithium silicate phase in SiO X , the higher the initial charge / discharge efficiency and the better the cycle characteristics. Furthermore, in the batteries B2 to B4 in which the ratio of the lithium silicate phase in SiO X is 12.5 mol% or more, the initial charge / discharge efficiency exceeding the theoretical charge / discharge efficiency (75%) when SiO X is used as the negative electrode active material. It was confirmed that

以上より、SiO中のリチウムシリケート相の割合は0.5モル%以上25モル%以下であることが望ましい。SiO中のリチウムシリケート相の割合が0.5モル%未満の場合には、リチウムシリケート相を形成した効果が低くなり、当該割合が25モル%を超えると、充放電容量が低下する。 From the above, it is desirable that the proportion of the lithium silicate phase in SiO X is 0.5 mol% or more and 25 mol% or less. When the proportion of the lithium silicate phase in SiO X is less than 0.5 mol%, the effect of forming the lithium silicate phase is reduced, and when the proportion exceeds 25 mol%, the charge / discharge capacity decreases.

〈第3実施例〉
(実施例1)
原料としてのSiO(熱処理前のSiO)として、平均一次粒子径が1.0μmであるSiO(x=0.93、炭素被覆量10質量%)を用いたこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。
このようにして作製した電池を、以下、電池C1と称する。
<Third embodiment>
Example 1
As SiO X (SiO X before heat treatment) as a raw material, SiO X (x = 0.93, a carbon coating amount of 10 mass%) Average primary particle diameter of 1.0μm Except for using, the first A battery was fabricated in the same manner as in Example 1 of the example. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%.
The battery thus produced is hereinafter referred to as battery C1.

(実施例2)
原料としてのSiO(熱処理前のSiO)として、平均一次粒子径が15.0μmであるSiO(x=0.93、炭素被覆量10質量%)を用いたこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。
このようにして作製した電池を、以下、電池C2と称する。
(Example 2)
As SiO X (SiO X before heat treatment) as a raw material, SiO X (x = 0.93, a carbon coating amount of 10 mass%) Average primary particle size of 15.0μm Except for using, the first A battery was fabricated in the same manner as in Example 1 of the example. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%.
The battery thus produced is hereinafter referred to as battery C2.

(実験)
上記電池C1、C2を、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表3に示す。尚、表3には電池A1、Zの結果についても記載している。
(Experiment)
The batteries C1 and C2 were charged / discharged under the same conditions as those shown in the experiment of the first example, and the initial charge / discharge efficiency shown by the above formula (3) and the 10 shown by the above formula (4). The capacity retention rate at the cycle was examined, and the results are shown in Table 3. Table 3 also shows the results of the batteries A1 and Z.

Figure 2014071948
Figure 2014071948

内部にリチウムシリケート相を有するSiOを用いた電池A1、C1、C2は、内部にリチウムシリケート相を有していないSiOを用いた電池Zに比べて、初回充放電効率が高く、サイクル特性も良好であることがわかった。したがって、SiOの平均一次粒子径は、1μm以上15μm以下であることが好ましい。尚、SiOの平均一次粒子径が1μm未満の場合には、粒子表面積が大きいため、電解液の副反応が起こり易くなる。一方、SiOの平均一次粒子径が15μmを超える場合は、化成処理時にリチウムがSiO内部まで拡散せず、多くのリチウムシリケート相がSiO表面に形成されるため、容量低下や負荷特性の低下を招くことがある。 Cell A1, C1, C2 using a SiO X having an internal lithium silicate phase, than the batteries Z using the SiO X having no internal lithium silicate phase, high initial charge and discharge efficiency, cycle characteristics Was also found to be good. Therefore, the average primary particle diameter of SiO X is preferably 1 μm or more and 15 μm or less. In addition, when the average primary particle diameter of SiO X is less than 1 μm, the particle surface area is large, so that a side reaction of the electrolytic solution easily occurs. On the other hand, when the average primary particle diameter of SiO X exceeds 15 μm, lithium does not diffuse to the inside of the SiO X during the chemical conversion treatment, and many lithium silicate phases are formed on the surface of the SiO X. May cause a drop.

〈第4実施例〉
(実施例1)
熱処理後のSiOを、ろ液のpHが8.0になるまで純水で水洗、濾過して、熱処理後のSiOの表面から未反応のリチウム化合物を除去したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池D1と称する。
<Fourth embodiment>
Example 1
The SiO X after heat treatment, washed with pure water until pH of the filtrate reached 8.0, and filtered, except that removal of the lithium compound unreacted from the surface of the SiO X after the heat treatment, the first A battery was fabricated in the same manner as in Example 1 of the example.
The battery thus produced is hereinafter referred to as battery D1.

(実施例2)
以下のような処理を、熱処理前に施したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。
SiOとLiOHとを混合する際、LiOHを予め水に溶解させた液に、所定量のSiOと、非イオン性界面活性剤(商品名:SNウエット980、サンノプコ社製ポリエーテル系界面活性剤)とを添加して、分散させた。尚、非イオン性界面活性剤の添加量は、固形分の総量に対して1質量%とした。次いで、上記分散液を温度110℃に設定した恒温槽で乾燥し、溶媒である水を除去した後、熱処理を行った。
このようにして作製した電池を、以下、電池D2と称する。
(Example 2)
A battery was fabricated in the same manner as in Example 1 of the first example except that the following treatment was performed before the heat treatment.
When mixing SiO X and LiOH, a predetermined amount of SiO X and a nonionic surfactant (trade name: SN Wet 980, polyether-based surfactant manufactured by San Nopco Co., Ltd.) are added to a solution in which LiOH is previously dissolved in water. Agent) was added and dispersed. In addition, the addition amount of the nonionic surfactant was 1 mass% with respect to the total amount of solid content. Next, the dispersion was dried in a thermostatic bath set at a temperature of 110 ° C., water as a solvent was removed, and heat treatment was performed.
The battery thus produced is hereinafter referred to as battery D2.

(実施例3)
熱処理後のSiOを、ろ液のpHが8.0になるまで純水で水洗、濾過して、熱処理後のSiOの表面から未反応リチウム化合物を除去したこと以外は、上記第4実施例の実施例2と同様にして電池を作製した。
このようにして作製した電池を、以下、電池D3と称する。
Example 3
The SiO X after heat treatment, washed with pure water until pH of the filtrate reached 8.0, and filtered, except that to remove unreacted lithium compound from the surface of the SiO X after the heat treatment, the fourth embodiment A battery was fabricated in the same manner as in Example 2.
The battery thus produced is hereinafter referred to as battery D3.

(実験)
上記電池D1〜D3を、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表4に示す。尚、表4には電池A1の結果についても記載している。
(Experiment)
The batteries D1 to D3 were charged / discharged under the same conditions as those shown in the experiment of the first embodiment, and the initial charge / discharge efficiency shown by the above formula (3) and the 10 shown by the above formula (4). The capacity retention rate at the cycle was examined, and the results are shown in Table 4. Table 4 also shows the results of battery A1.

Figure 2014071948
Figure 2014071948

熱処理後の水洗を行った電池D1は、水洗を行わなかった電池A1よりも、初回充放電効率及びサイクル特性が向上したことがわかる。電池D1の如く水洗を行えば、熱処理時の未反応物であるリチウム化合物を除去することができるので、負極活物質粒子の表面抵抗が低下する。したがって、放電時に負極活物質粒子間の導電パスが十分に形成されるからと考えられる。   It turns out that the battery D1 which performed the water washing after heat processing improved the first time charge / discharge efficiency and cycling characteristics rather than the battery A1 which did not wash with water. Washing with water as in the battery D1 can remove the lithium compound that is an unreacted substance during the heat treatment, so that the surface resistance of the negative electrode active material particles decreases. Therefore, it is considered that a sufficient conductive path is formed between the negative electrode active material particles during discharge.

また、熱処理前のSiOとリチウム化合物とを混合する際、予め界面活性剤を用いて湿式処理を行った電池D2は、熱処理前のSiOとリチウム化合物とを単に乾式混合した電池A1よりも、初回充放電効率及びサイクル特性が向上したことがわかる。電池D1の如く界面活性剤を添加して湿式で混練すれば、SiO表面により微細なLiOHが均一に析出する。このため、熱処理時に、より均一なリチウムシリケート相が形成されたことによると考えられる。 In addition, when mixing SiO X before the heat treatment and the lithium compound, the battery D2, which has been wet-treated using a surfactant in advance, is more than the battery A1 simply dry-mixing the SiO X and the lithium compound before the heat treatment. It can be seen that the initial charge / discharge efficiency and the cycle characteristics were improved. When a surfactant is added and wet-kneaded as in the battery D1, fine LiOH is uniformly deposited on the SiO X surface. For this reason, it is considered that a more uniform lithium silicate phase was formed during the heat treatment.

更に、界面活性剤を用いた湿式処理と化成処理後の水洗処理とを行った電池D3は、一方の処理しか行っていない電池D1、D2に比べて、初回充放電効率及びサイクル特性が向上していることがわかる。したがって、2つの処理を組み合わせることで、更に特性を改善できる。
尚、上記実験結果より、SiO表面にLiOHを均一に配置させるのが好ましいことがわかったが、このような状態とするには、上記湿式処理に限定するものではなく、乾式処理であっても達成できる。
Further, the battery D3 that has been subjected to the wet treatment using the surfactant and the water washing treatment after the chemical conversion treatment has improved initial charge / discharge efficiency and cycle characteristics compared to the batteries D1 and D2 that have been subjected to only one treatment. You can see that Therefore, the characteristics can be further improved by combining the two processes.
Incidentally, from the above experimental results, it was found that preferable to uniformly arrange the LiOH to SiO X surface, in such a state, not limited to the above wet process, a dry process Can also be achieved.

〈第5実施例〉
(実施例)
原料としてのSiO(熱処理前のSiO)として、炭素被覆していないSiO(X=0.93、平均一次粒子径5.0μm)を用いると共に、熱処理後に、CVD法を用いて、SiOの表面に炭素を被覆(SiOに対する炭素の割合は10質量%)したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。
このようにして作製した電池を、以下、電池Eと称する。
<Fifth embodiment>
(Example)
As SiO X (SiO X before heat treatment) as a raw material, SiO X (X = 0.93, the average primary particle diameter 5.0 .mu.m) which is not carbon coating with use of, after the heat treatment, by a CVD method, SiO A battery was fabricated in the same manner as in Example 1 of the first example except that the surface of X was coated with carbon (the ratio of carbon to SiO X was 10% by mass). When SiO X after the heat treatment was analyzed by XRD, a peak of Li 2 SiO 3 which is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%.
The battery thus produced is hereinafter referred to as battery E.

(実験)
上記電池Eを、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表5に示す。尚、表5には電池A1の結果についても記載している。
(Experiment)
The battery E was charged / discharged under the same conditions as those shown in the experiment of the first example, and the initial charge / discharge efficiency shown by the above formula (3) and the 10th cycle shown by the above formula (4). Table 5 shows the results. Table 5 also describes the results of battery A1.

Figure 2014071948
Figure 2014071948

熱処理後に炭素被覆を行った電池Eは、熱処理前に炭素被覆を行った電池A1よりも、初回充放電効率及びサイクル特性が向上していることがわかる。熱処理後には、未反応物であるリチウム化合物がSiOの粒子表面に付着しているため、粒子間の導電性が低下する。そのため、化成処理後に炭素被覆を行えば、粒子表面の抵抗が下がって、粒子間の導電パスが十分に形成されるからである。尚、化成処理後に水洗を行い、その後に炭素被覆を行えば、更に粒子表面抵抗が低減するので、初回充放電効率やサイクル特性が一層向上するものと考えられる。 It can be seen that the battery E with the carbon coating after the heat treatment has improved initial charge / discharge efficiency and cycle characteristics than the battery A1 with the carbon coating before the heat treatment. After the heat treatment, the unreacted lithium compound adheres to the surface of the SiO X particles, so that the conductivity between the particles decreases. Therefore, if the carbon coating is performed after the chemical conversion treatment, the resistance of the particle surface is lowered, and the conductive path between the particles is sufficiently formed. In addition, it is thought that the initial charge / discharge efficiency and the cycle characteristics are further improved because the particle surface resistance is further reduced by washing with water after the chemical conversion treatment and then coating with carbon.

本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源で、特に高容量が必要とされる用途に適用することができる。また、高温での連続駆動が要求される高出力用途で、電気自動車や電動工具といった電池の動作環境が厳しい用途にも展開が期待できる。   The present invention can be applied to a drive power source of a mobile information terminal such as a mobile phone, a notebook personal computer, and a PDA, for example, in applications that require a particularly high capacity. In addition, it can be expected to be used in high output applications that require continuous driving at high temperatures, and in applications where the battery operating environment is severe, such as electric vehicles and power tools.

Claims (6)

SiO(0.8≦X≦1.2)とリチウム化合物とを混合して、SiOの表面にリチウム化合物を付着させる第1ステップと、
上記表面にリチウム化合物が付着したSiOを熱処理して、上記SiO中にリチウムシリケート相を形成する第2ステップと、
を備える負極活物質の製造方法。
A first step of mixing SiO X (0.8 ≦ X ≦ 1.2) and a lithium compound to adhere the lithium compound to the surface of SiO X ;
A second step of heat-treating SiO X with a lithium compound adhered to the surface to form a lithium silicate phase in the SiO X ;
A method for producing a negative electrode active material comprising:
上記第2ステップにおいて、熱処理の温度が上記リチウム化合物の融点以上である、請求項1に記載の負極活物質の製造方法。   The method for producing a negative electrode active material according to claim 1, wherein in the second step, the temperature of the heat treatment is equal to or higher than the melting point of the lithium compound. 上記第1ステップにおいて、リチウム化合物とSiOとを溶媒に分散した後、乾燥して、SiO表面にリチウム化合物を析出させる、請求項1又は2に記載の負極活物質の製造方法。 3. The method for producing a negative electrode active material according to claim 1, wherein, in the first step, the lithium compound and SiO X are dispersed in a solvent and then dried to precipitate the lithium compound on the SiO X surface. 上記第1ステップにおいて、リチウム化合物とSiOとを溶媒に分散する際、該溶媒に分散剤及び/又は界面活性剤を添加する、請求項3に記載の負極活物質の製造方法。 The method for producing a negative electrode active material according to claim 3, wherein in the first step, when the lithium compound and SiO X are dispersed in a solvent, a dispersant and / or a surfactant is added to the solvent. 上記第1ステップにおいて、SiOとして、表面に炭素被覆されたSiOを用いる、請求項1〜4の何れか1項に記載の負極活物質の製造方法。 In the first step, as SiO X, using the SiO X, which is a carbon coating on the surface, method of preparing a negative active material according to any one of claims 1-4. 上記第2ステップの後に、リチウムシリケート相が形成されたSiOの表面に炭素被覆する第3ステップを備える、請求項1〜4の何れか1項に記載の負極活物質の製造方法。 Above after the second step, a third step of the carbon coating on the surface of the SiO X lithium silicate phases are formed, a manufacturing method of the negative electrode active material according to any one of claims 1-4.
JP2012214842A 2012-09-27 2012-09-27 Method for producing negative electrode active material Active JP6092558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012214842A JP6092558B2 (en) 2012-09-27 2012-09-27 Method for producing negative electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012214842A JP6092558B2 (en) 2012-09-27 2012-09-27 Method for producing negative electrode active material

Publications (2)

Publication Number Publication Date
JP2014071948A true JP2014071948A (en) 2014-04-21
JP6092558B2 JP6092558B2 (en) 2017-03-08

Family

ID=50746998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214842A Active JP6092558B2 (en) 2012-09-27 2012-09-27 Method for producing negative electrode active material

Country Status (1)

Country Link
JP (1) JP6092558B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146513A (en) * 2013-01-29 2014-08-14 Sumitomo Osaka Cement Co Ltd Electrode material and electrode, and lithium ion battery
WO2014148043A1 (en) * 2013-03-22 2014-09-25 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2016066508A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016066506A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode active material particles
JP2016066529A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2016098306A1 (en) * 2014-12-15 2016-06-23 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode of lithium ion secondary cell, and method for producing such powder
WO2017038320A1 (en) * 2015-08-28 2017-03-09 株式会社大阪チタニウムテクノロジーズ Li-CONTAINING SILICON OXIDE POWER AND METHOD FOR PRODUCING SAME
WO2017170751A1 (en) * 2016-03-29 2017-10-05 株式会社大阪チタニウムテクノロジーズ Li-containing silicon oxide powder
WO2017208627A1 (en) * 2016-05-30 2017-12-07 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
WO2019112390A1 (en) * 2017-12-08 2019-06-13 주식회사 엘지화학 Anode active material for lithium secondary battery and method for manufacturing same
KR102101392B1 (en) * 2019-12-03 2020-04-17 주식회사 로브 Method for manufacturing Ni-Co-Mn composite precursor doped with heterogeneous nano-particle
CN111133613A (en) * 2017-10-19 2020-05-08 株式会社Lg化学 Negative electrode active material, negative electrode including the same, and secondary battery including the negative electrode
CN111316483A (en) * 2017-11-09 2020-06-19 株式会社Lg化学 Negative electrode active material, negative electrode including the same, and secondary battery including the negative electrode
JP2020115443A (en) * 2019-01-18 2020-07-30 日立化成株式会社 Lithium ion secondary battery negative electrode material, lithium ion secondary battery, and manufacturing method for lithium ion secondary battery negative electrode materials
EP3694029A4 (en) * 2017-11-09 2020-12-09 LG Chem, Ltd. Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
EP3694030A4 (en) * 2017-11-09 2020-12-09 LG Chem, Ltd. Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
CN112751029A (en) * 2019-10-30 2021-05-04 贝特瑞新材料集团股份有限公司 Silica composite negative electrode material, preparation method thereof and lithium ion battery
JP2021521622A (en) * 2018-09-28 2021-08-26 貝特瑞新材料集団股▲ふん▼有限公司Btr New Material Group Co., Ltd. Negative electrode material for lithium ion secondary battery, its manufacturing method and use
WO2021200343A1 (en) * 2020-03-30 2021-10-07 パナソニックIpマネジメント株式会社 Secondary battery
CN114050269A (en) * 2021-11-29 2022-02-15 上海兰钧新能源科技有限公司 Negative electrode material and preparation method and application thereof
CN114388738A (en) * 2021-12-29 2022-04-22 湖北亿纬动力有限公司 Silicon-based negative electrode material and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160328A (en) * 2001-09-05 2003-06-03 Shin Etsu Chem Co Ltd Lithium-containing silicon oxide powder and method for production thereof
JP2007294423A (en) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd Silicon-silicon oxide-lithium based composite and its manufacturing method as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2009277485A (en) * 2008-05-14 2009-11-26 Toyota Motor Corp METHOD OF MANUFACTURING Si/C COMPLEX TYPE NEGATIVE ELECTRODE ACTIVE MATERIAL
JP2010155775A (en) * 2008-12-04 2010-07-15 Toda Kogyo Corp Powder of lithium complex compound particle, method for producing the same, and nonaqueous electrolyte secondary cell
JP2011034861A (en) * 2009-08-04 2011-02-17 Sumitomo Metal Mining Co Ltd Positive electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2011222153A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and its manufacturing method, and lithium ion secondary battery
JP2011222151A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and method for producing the material, and lithium ion secondary battery
JP2012069518A (en) * 2010-08-24 2012-04-05 Sekisui Chem Co Ltd Carbon particle for electrode, negative electrode material for lithium ion secondary battery and method for producing carbon particle for electrode
JP2012119093A (en) * 2010-11-29 2012-06-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method thereof, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2013251097A (en) * 2012-05-31 2013-12-12 Toyota Industries Corp Nonaqueous electrolytic secondary battery
JP2014532267A (en) * 2011-10-24 2014-12-04 エルジー・ケム・リミテッド Method for manufacturing negative electrode active material, negative electrode active material, and lithium secondary battery including the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160328A (en) * 2001-09-05 2003-06-03 Shin Etsu Chem Co Ltd Lithium-containing silicon oxide powder and method for production thereof
JP2007294423A (en) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd Silicon-silicon oxide-lithium based composite and its manufacturing method as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2009277485A (en) * 2008-05-14 2009-11-26 Toyota Motor Corp METHOD OF MANUFACTURING Si/C COMPLEX TYPE NEGATIVE ELECTRODE ACTIVE MATERIAL
JP2010155775A (en) * 2008-12-04 2010-07-15 Toda Kogyo Corp Powder of lithium complex compound particle, method for producing the same, and nonaqueous electrolyte secondary cell
JP2011034861A (en) * 2009-08-04 2011-02-17 Sumitomo Metal Mining Co Ltd Positive electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2011222153A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and its manufacturing method, and lithium ion secondary battery
JP2011222151A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and method for producing the material, and lithium ion secondary battery
JP2012069518A (en) * 2010-08-24 2012-04-05 Sekisui Chem Co Ltd Carbon particle for electrode, negative electrode material for lithium ion secondary battery and method for producing carbon particle for electrode
JP2012119093A (en) * 2010-11-29 2012-06-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method thereof, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2014532267A (en) * 2011-10-24 2014-12-04 エルジー・ケム・リミテッド Method for manufacturing negative electrode active material, negative electrode active material, and lithium secondary battery including the same
JP2013251097A (en) * 2012-05-31 2013-12-12 Toyota Industries Corp Nonaqueous electrolytic secondary battery

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146513A (en) * 2013-01-29 2014-08-14 Sumitomo Osaka Cement Co Ltd Electrode material and electrode, and lithium ion battery
WO2014148043A1 (en) * 2013-03-22 2014-09-25 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2016066508A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016066506A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode active material particles
JP2016066529A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN107004847B (en) * 2014-12-15 2019-10-29 株式会社大阪钛技术 The cathode powder and its manufacturing method of lithium ion secondary battery
WO2016098306A1 (en) * 2014-12-15 2016-06-23 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode of lithium ion secondary cell, and method for producing such powder
CN107004847A (en) * 2014-12-15 2017-08-01 株式会社大阪钛技术 The negative pole powder and its manufacture method of lithium rechargeable battery
JPWO2016098306A1 (en) * 2014-12-15 2017-08-31 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode of lithium ion secondary battery and method for producing the same
JPWO2017038320A1 (en) * 2015-08-28 2018-06-14 株式会社大阪チタニウムテクノロジーズ Li-containing silicon oxide powder and method for producing the same
EP3343678A4 (en) * 2015-08-28 2019-01-09 OSAKA Titanium technologies Co., Ltd. Li-CONTAINING SILICON OXIDE POWER AND METHOD FOR PRODUCING SAME
CN107851789A (en) * 2015-08-28 2018-03-27 株式会社大阪钛技术 Silicon oxide powder containing Li and its manufacture method
US10875775B2 (en) 2015-08-28 2020-12-29 Osaka Titanium Technologies Co., Ltd. Li-containing silicon oxide powder and production method thereof
WO2017038320A1 (en) * 2015-08-28 2017-03-09 株式会社大阪チタニウムテクノロジーズ Li-CONTAINING SILICON OXIDE POWER AND METHOD FOR PRODUCING SAME
US10427943B2 (en) 2015-08-28 2019-10-01 Osaka Titanium Technologies Co., Ltd. Li-containing silicon oxide powder and production method thereof
CN108701826A (en) * 2016-03-29 2018-10-23 株式会社大阪钛技术 Monox powder containing Li
JPWO2017170751A1 (en) * 2016-03-29 2019-01-17 株式会社大阪チタニウムテクノロジーズ Li-containing silicon oxide powder
WO2017170751A1 (en) * 2016-03-29 2017-10-05 株式会社大阪チタニウムテクノロジーズ Li-containing silicon oxide powder
CN108701826B (en) * 2016-03-29 2021-04-16 株式会社大阪钛技术 Lithium-containing silicon oxide powder
JPWO2017208627A1 (en) * 2016-05-30 2019-02-28 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
US11658289B2 (en) 2016-05-30 2023-05-23 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
CN109155409A (en) * 2016-05-30 2019-01-04 信越化学工业株式会社 The preparation method of negative electrode active material, mixing negative electrode active material material and negative electrode active material
US11139469B2 (en) 2016-05-30 2021-10-05 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
WO2017208627A1 (en) * 2016-05-30 2017-12-07 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
CN109155409B (en) * 2016-05-30 2021-08-31 信越化学工业株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
CN111133613A (en) * 2017-10-19 2020-05-08 株式会社Lg化学 Negative electrode active material, negative electrode including the same, and secondary battery including the negative electrode
EP3675247A4 (en) * 2017-10-19 2020-11-04 LG Chem, Ltd. Negative active material, negative electrode comprising negative active material, and secondary battery comprising negative electrode
CN111133613B (en) * 2017-10-19 2022-08-23 株式会社Lg新能源 Negative electrode active material, negative electrode including the same, and secondary battery including the negative electrode
CN111316483A (en) * 2017-11-09 2020-06-19 株式会社Lg化学 Negative electrode active material, negative electrode including the same, and secondary battery including the negative electrode
EP3694031A4 (en) * 2017-11-09 2020-12-09 LG Chem, Ltd. Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
EP3694030A4 (en) * 2017-11-09 2020-12-09 LG Chem, Ltd. Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
JP2021501976A (en) * 2017-11-09 2021-01-21 エルジー・ケム・リミテッド Negative electrode active material, negative electrode containing the negative electrode active material, and secondary battery containing the negative electrode
EP3694029A4 (en) * 2017-11-09 2020-12-09 LG Chem, Ltd. Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
JP2023009168A (en) * 2017-11-09 2023-01-19 エルジー エナジー ソリューション リミテッド Negative electrode active material, negative electrode including that negative electrode active material, and secondary battery including that negative electrode
US11664487B2 (en) 2017-12-08 2023-05-30 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery and method for preparing the same
WO2019112390A1 (en) * 2017-12-08 2019-06-13 주식회사 엘지화학 Anode active material for lithium secondary battery and method for manufacturing same
US11296312B2 (en) 2017-12-08 2022-04-05 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery and method for preparing the same
JP2021521622A (en) * 2018-09-28 2021-08-26 貝特瑞新材料集団股▲ふん▼有限公司Btr New Material Group Co., Ltd. Negative electrode material for lithium ion secondary battery, its manufacturing method and use
JP7061229B2 (en) 2018-09-28 2022-04-27 貝特瑞新材料集団股▲ふん▼有限公司 Negative electrode material for lithium ion secondary battery, its manufacturing method and use
JP2020115443A (en) * 2019-01-18 2020-07-30 日立化成株式会社 Lithium ion secondary battery negative electrode material, lithium ion secondary battery, and manufacturing method for lithium ion secondary battery negative electrode materials
CN112751029A (en) * 2019-10-30 2021-05-04 贝特瑞新材料集团股份有限公司 Silica composite negative electrode material, preparation method thereof and lithium ion battery
KR102101392B1 (en) * 2019-12-03 2020-04-17 주식회사 로브 Method for manufacturing Ni-Co-Mn composite precursor doped with heterogeneous nano-particle
WO2021200343A1 (en) * 2020-03-30 2021-10-07 パナソニックIpマネジメント株式会社 Secondary battery
CN114050269A (en) * 2021-11-29 2022-02-15 上海兰钧新能源科技有限公司 Negative electrode material and preparation method and application thereof
CN114388738A (en) * 2021-12-29 2022-04-22 湖北亿纬动力有限公司 Silicon-based negative electrode material and preparation method and application thereof
CN114388738B (en) * 2021-12-29 2024-01-02 湖北亿纬动力有限公司 Silicon-based anode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP6092558B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6092558B2 (en) Method for producing negative electrode active material
JP6092885B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the negative electrode active material
CN110800142B (en) Negative active material for lithium secondary battery and method for preparing same
JP6204197B2 (en) Positive electrode active material for lithium secondary battery having total particle concentration gradient, method for producing the same, and lithium secondary battery including the same
KR101681739B1 (en) Lithium iron phosphate positive electrode active material modified by graphene, preparation method and lithium ion secondary battery thereof
Wu et al. Sol–gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries
JPWO2012164724A1 (en) Solid electrolyte material, solid battery, and method for producing solid electrolyte material
JP5756781B2 (en) Silicon composite, method for producing the same, negative electrode active material, and non-aqueous secondary battery
TW200805749A (en) Lithium manganese secondary battery
JP2015512130A (en) ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
JP2015201388A (en) Cathode active material for non-aqueous secondary battery and manufacturing method for the same
EP3675252A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
JP2019503551A (en) Method for producing positive electrode active material and positive electrode active material produced thereby
CN110431109A (en) Preparation includes the method for irreversible additive in anode materials for lithium secondary cells, the positive electrode comprising irreversible additive prepared therefrom and comprising the lithium secondary battery of the positive electrode
CN109461880A (en) Negative pole piece and battery
US10164255B2 (en) Silicon material and negative electrode of secondary battery
JP6001095B2 (en) Glass of V2O5-LiBO2, V2O5-NiO-LiBO2 obtained by mixing nitrogen doped as cathode active material and reduced graphite oxide, and composites thereof
JP2016058129A (en) Lithium ion battery and lithium ion battery separator
JP6232931B2 (en) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP5544981B2 (en) Method for producing electrode active material
KR101722960B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2013069567A (en) Electrode active material and method for manufacturing the same, and lithium ion battery
JP2009283307A (en) Method of manufacturing silicon/c compound-type negative electrode active material
KR102505370B1 (en) Cathode Active Material for Lithium Secondary Battery
JP2021086834A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170209

R150 Certificate of patent or registration of utility model

Ref document number: 6092558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350