JP2014071554A - Power controller - Google Patents

Power controller Download PDF

Info

Publication number
JP2014071554A
JP2014071554A JP2012215378A JP2012215378A JP2014071554A JP 2014071554 A JP2014071554 A JP 2014071554A JP 2012215378 A JP2012215378 A JP 2012215378A JP 2012215378 A JP2012215378 A JP 2012215378A JP 2014071554 A JP2014071554 A JP 2014071554A
Authority
JP
Japan
Prior art keywords
power
power controller
solar cell
switching
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012215378A
Other languages
Japanese (ja)
Other versions
JP5987609B2 (en
Inventor
Toshio Okamura
敏男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012215378A priority Critical patent/JP5987609B2/en
Publication of JP2014071554A publication Critical patent/JP2014071554A/en
Application granted granted Critical
Publication of JP5987609B2 publication Critical patent/JP5987609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a power controller that prevents heat generation in a switching element according to the maximum switching frequency of a specific switching element due to, in conventional power controllers, switching operation of consecutively shunting or open-circuiting a connection between a specific power source and the specific switching element that are optionally selected to determine an operating region for shunt or open circuit of each of the plurality of power sources.SOLUTION: The power controller includes: a plurality of backflow prevention elements respectively series-connected to a plurality of power sources for supplying power; a plurality of switching elements parallel-connected to the respective power sources, series-connected to the respective backflow prevention elements, and switching to shunt or open-circuit the connection to the respective power sources; an error amplifier outputting an error amplification signal indicating excess and shortage in a power supply state of the plurality of power sources; and a calculation drive part determining a ratio between power supply and shunt for each of the power sources by comparing the error amplification signal with a reference value to sequentially switch the respective switching elements.

Description

本発明は、電力の供給量を制御する電力制御器に関するものである。   The present invention relates to a power controller that controls a supply amount of power.

人工衛星では、凡そ50Vもしくは100Vの安定化された電圧をバス電源として供給するために電力制御器が利用されている。   In an artificial satellite, a power controller is used to supply a stabilized voltage of about 50V or 100V as a bus power source.

従来の人工衛星用の電力制御器として、日照時に複数の太陽電池アレイから発生する電力を負荷への供給電力として利用し、発生電力余剰分は特定の太陽電池アレイ出力を短絡(以下、シャントと呼ぶ)することで、バス電圧の上昇を抑えるバス電圧制御を行うものが知られている。この電力制御器は、技術試験衛星(ETSシリーズ)、通信放送技術衛星(例えばCOMETS)、地球観測衛星(例えばJERS−1)、気象衛星(例えばMTSAT−2)等、様々な用途をもった衛星に採用されている。   As a conventional power controller for artificial satellites, the power generated from a plurality of solar cell arrays during sunlight is used as the power supplied to the load, and the surplus generated power short-circuits a specific solar cell array output (hereinafter referred to as a shunt). It is known to perform bus voltage control that suppresses an increase in bus voltage. This power controller is a satellite having various uses such as a technical test satellite (ETS series), a communication broadcasting technology satellite (eg COMETS), an earth observation satellite (eg JERS-1), and a meteorological satellite (eg MTSAT-2). Has been adopted.

この電力制御器では、個々の太陽電池アレイの出力をシャント又は開放することで、複数の太陽電池アレイから発生する電力又は電流の合計値を調節してバス電圧制御を行っている。このバス電圧制御では、バス電圧の変動に応じて各太陽電池アレイをシーケンシャルにシャント又は開放するように、個々の太陽電池アレイ毎に、予め許容されるバス電圧変動幅に対応したシャント又は開放の動作領域が割振られる。このシャント又は開放動作とバス電圧を平滑化するために設けられたキャパシタバンクからなる負帰還発振制御(通称バンバン制御という)の動作によって、バス電圧が規定の変動幅の範囲で安定化されている(例えば、非特許文献1参照)。   In this power controller, bus voltage control is performed by adjusting the total value of power or current generated from a plurality of solar cell arrays by shunting or opening the outputs of individual solar cell arrays. In this bus voltage control, each solar cell array is shunted or opened in a sequential manner according to the bus voltage variation, and each solar cell array is shunted or opened corresponding to the bus voltage variation range allowed in advance. The operating area is allocated. By this shunt or open operation and the operation of negative feedback oscillation control (commonly referred to as bang-bang control) composed of a capacitor bank provided to smooth the bus voltage, the bus voltage is stabilized within a specified fluctuation range. (For example, refer nonpatent literature 1).

S.Kuwajima, et al., “Digital sequential shunt regulator for solar power conditioning of engineering test satellite (ETS-V), ”Power Electronics Specialists Conference 1988 (PESC ’88), IEEE, April 1988S. Kuwajima, et al., “Digital sequential shunt regulator for solar power conditioning of engineering test satellite (ETS-V),” Power Electronics Specialists Conference 1988 (PESC '88), IEEE, April 1988

また、バス電圧を平滑化するために設けられたキャパシタバンクの位置に、キャパシタバンクに替わってバッテリを直結して、バス電圧を安定化させる代わりにバッテリの充電電流を同様な原理で安定化させる電力制御器がある。この方式の電力制御器として、バッテリ充電電流の変動に応じて各太陽電池アレイをシーケンシャルにシャント又は開放するように、個々の太陽電池アレイ毎に、予め許容されるバッテリ充電電流変動幅に対応したシャント又は開放の動作領域が割振られている電力制御器(呼称バッテリバス方式)が考案されている。   In addition, instead of the capacitor bank, a battery is directly connected to a capacitor bank provided for smoothing the bus voltage, and instead of stabilizing the bus voltage, the charging current of the battery is stabilized by the same principle. There is a power controller. As a power controller of this system, each solar cell array corresponds to a battery charge current fluctuation range that is allowed in advance so that each solar cell array is shunted or opened sequentially according to the fluctuation of the battery charge current. A power controller (named battery bus system) has been devised in which a shunt or open operating area is allocated.

このような電力制御器においては、要求される発生電力の大きさに応じて太陽電池アレイの構成段数が決定される。従来、太陽電池アレイの構成段数は10段から40段程度で構成されており、予め許容されるバス電圧又はバッテリ充電電流変動幅の範囲内で個々の太陽電池アレイのシャント又は開放の動作領域が、この構成段数で分割して割振られる。   In such a power controller, the number of constituent stages of the solar cell array is determined according to the required generated power. Conventionally, the number of stages of the solar cell array is 10 to 40, and the shunt or open operation area of each solar cell array is within the range of the allowable bus voltage or battery charge current fluctuation range. , And divided by this number of constituent stages.

このため、シャント側に固定又は開放側に固定する太陽電池アレイの中で1段のみがシャントと開放を任意の時間比率で繰返すバンバン制御動作を行う。この繰返し周期は装置を構成する要素の定数や制御目標によって決定され、最大周波数が定まっている。   For this reason, only one stage in the solar cell array fixed on the shunt side or fixed on the open side performs a bang-bang control operation that repeats the shunt and open at an arbitrary time ratio. This repetition period is determined by the constants of the elements constituting the apparatus and the control target, and the maximum frequency is determined.

このバンバン制御動作においては、太陽電池アレイのシャント又は開放動作時の急峻な電流変化による周辺機器への有害な電磁界ノイズの発生を抑制するために、電流変化率を抑制するソフトオン/オフ駆動を伴う。このソフトオン/オフ駆動は、太陽電池アレイをシャントもしくは開放するための電界効果トランジスタから成るスイッチ素子を能動領域で駆動する事で行われているため、スイッチ素子は発熱を伴い、最大周波数でバンバン制御動作している時が最大発熱条件となる。   In this bang-bang control operation, soft on / off drive that suppresses the rate of change of current to suppress the generation of harmful electromagnetic field noise to peripheral devices due to the steep current change during shunt or open operation of the solar cell array Accompanied by. This soft on / off drive is performed by driving a switch element composed of a field effect transistor for shunting or opening the solar cell array in an active region. Therefore, the switch element generates heat and is bang-banged at the maximum frequency. The maximum heat generation condition is during control operation.

このバンバン制御動作は電力制御器の動作条件によって任意の太陽電池アレイで行われるため、全てのスイッチ素子はこの最大発熱条件に耐える様、部品の選定及び放熱設計を行う必要がある。このため装置の小型軽量化を阻害することとなっていた。   Since this bang-bang control operation is performed in an arbitrary solar cell array depending on the operating conditions of the power controller, it is necessary to select parts and design the heat dissipation so that all switch elements can withstand this maximum heat generation condition. For this reason, it has been impeded to reduce the size and weight of the apparatus.

また、装置を構成する要素の定数変更や制御目標を緩和して最大周波数を下げる事でスイッチ素子の発熱量を下げる事ができるが、この場合は装置の主要性能(例えばバス電圧又はバッテリ充電電流変動幅を小さくする要求性能)の低下を招くことに繋がる。   In addition, it is possible to reduce the calorific value of the switch element by changing the constants of the elements constituting the device and relaxing the control target to lower the maximum frequency. In this case, the main performance of the device (for example, bus voltage or battery charging current) This leads to a decrease in required performance for reducing the fluctuation range.

上述したように、従来の電力制御器はバス電圧又はバッテリ充電電流の変動に応じて各太陽電池アレイをシーケンシャルにシャント又は開放するように、個々の太陽電池アレイのシャント又は開放の動作領域を決定する。このため、任意の太陽電池アレイの内1段のみがバンバン制御動作を行い、この最大繰返し周波数とソフトオン/オフ駆動により、太陽電池アレイをシャントもしくは開放するためのスイッチ素子には大きな発熱を伴うという問題があった。また、全てのスイッチ素子はこの最大発熱条件に耐える様、部品の選定及び放熱設計を行う必要があるため、装置の小型軽量化を阻害することとなっていた。   As described above, the conventional power controller determines the shunt or open operating area of each solar array so that each solar array is shunted or opened sequentially in response to changes in bus voltage or battery charging current. To do. For this reason, only one stage of an arbitrary solar cell array performs bang-bang control operation, and the switch element for shunting or opening the solar cell array is accompanied by a large heat generation by this maximum repetition frequency and soft on / off drive. There was a problem. In addition, since all switch elements need to select components and design heat dissipation so as to withstand this maximum heat generation condition, it has been difficult to reduce the size and weight of the device.

また、装置を構成する要素の定数変更や制御目標を緩和して最大周波数を下げる事でこの発熱を下げる事もできるが、この場合は装置の主要性能の低下を招くことに繋がるという問題があった。   In addition, it is possible to reduce this heat generation by reducing the maximum frequency by changing the constants of the elements that make up the device and by reducing the control target. However, in this case, there is a problem that the main performance of the device is reduced. It was.

本発明は、係る課題を解決するためになされたものであり、予め許容されるバス電圧又はバッテリ充電電流変動幅の範囲内で、個々の電源(例えば太陽電池アレイ)をシャントもしくは開放するためのスイッチ素子にかかる発熱を抑制して、より小型化が可能な電力制御器を提供することを目的とする。   The present invention has been made to solve such a problem, and is for shunting or opening individual power sources (for example, solar cell arrays) within a range of a bus voltage or a battery charging current fluctuation range that is allowed in advance. An object of the present invention is to provide a power controller that can suppress heat generation of a switch element and can be further miniaturized.

この発明による電力制御器は、電力を供給する複数の電源とそれぞれ直列に接続され、上記それぞれの電源への電流の逆流を防止する複数の逆流防止素子と、上記それぞれの電源と並列に接続されるとともに上記それぞれの逆流防止素子と直列に接続され、上記それぞれの電源との接続を短絡もしくは開放に切換える複数のスイッチ素子と、上記複数の電源による電力の供給状態の過不足分を示す誤差増幅信号を出力する誤差増幅器と、上記誤差増幅信号と基準値との比較により、上記それぞれの電源毎に電力の供給とシャントの割合を決定して上記それぞれのスイッチ素子を順に切換動作させる演算駆動部と、を備えたものである。   The power controller according to the present invention is connected in series to a plurality of power supplies that supply power, and is connected in parallel to the plurality of backflow prevention elements for preventing a backflow of current to each of the power supplies. In addition, a plurality of switch elements connected in series with the respective backflow prevention elements and switching the connection with the respective power supplies to short circuit or open, and error amplification indicating the excess or deficiency of the power supply state by the plurality of power supplies An error amplifier that outputs a signal, and an arithmetic drive unit that sequentially switches each of the switch elements by determining a power supply and a shunt ratio for each of the power sources by comparing the error amplified signal with a reference value. And.

本発明によれば、電源(例えば太陽電池アレイ)をシャントもしくは開放するための個々のスイッチ素子の発熱を低減することが可能となり、部品の選定及び放熱設計を緩和して小型の電力制御器を提供することが可能となる。   According to the present invention, it becomes possible to reduce the heat generation of individual switch elements for shunting or opening a power source (for example, a solar cell array), and it is possible to reduce the selection of parts and the design of heat dissipation and to reduce the size of the power controller. It becomes possible to provide.

実施の形態1に係る電力制御器の構成を示す回路図である。3 is a circuit diagram showing a configuration of a power controller according to Embodiment 1. FIG. 実施の形態1に係る電力制御器の動作を示すタイミングチャートである。3 is a timing chart illustrating an operation of the power controller according to the first embodiment. 実施の形態1に係る電力制御器の、スイッチ素子の発熱を説明する図である。It is a figure explaining the heat_generation | fever of a switch element of the power controller which concerns on Embodiment 1. FIG. 実施の形態2に係る電力制御器の構成を示す回路図である。6 is a circuit diagram showing a configuration of a power controller according to Embodiment 2. FIG.

以下、本発明の実施の形態について、図を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施の形態1.
図1は、本発明に係る実施の形態1による電力制御器1の構成を示す回路図である。図1において、複数の太陽電池アレイSA1〜SAn(nは3以上の整数)は、それぞれ電力バス2を介して、負荷6とバッテリ5に並列に接続される。複数の太陽電池アレイSA1〜SAnは、負荷6とバッテリ5に電力を供給する。電力制御器1は、この太陽電池アレイSA1〜SAnの余剰電力を短絡(シャント)するものであって、太陽電池アレイSA1〜SAnに接続される。電力制御器1は、電界効果トランジスタから構成されるスイッチ素子SW1〜SWnと、ダイオードから構成される逆流防止素子D1〜Dnと、演算駆動部A1〜Anと、誤差増幅器3と、タイミング信号発生部4と、電流検出部8とを備えている。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing a configuration of a power controller 1 according to Embodiment 1 of the present invention. In FIG. 1, a plurality of solar cell arrays SA <b> 1 to SAn (n is an integer of 3 or more) are connected in parallel to a load 6 and a battery 5 via a power bus 2. The plurality of solar cell arrays SA <b> 1 to SAn supply power to the load 6 and the battery 5. The power controller 1 short-circuits (shunts) surplus power of the solar cell arrays SA1 to SAn, and is connected to the solar cell arrays SA1 to SAn. The power controller 1 includes switching elements SW1 to SWn composed of field effect transistors, backflow prevention elements D1 to Dn composed of diodes, arithmetic drivers A1 to An, an error amplifier 3, and a timing signal generator. 4 and a current detection unit 8.

電力制御器1は、日照時に複数の太陽電池アレイSA1〜SAnから発生する電力を、負荷6への供給電力及びバッテリ5への充電電力として与える。また、電力制御器1は、太陽電池アレイSA1〜SAnの発生電力の余剰分について、太陽電池アレイSA1〜SAnの出力を任意の時間間隔でシャントすることで、バッテリ5の充電電流Ichgの上昇を抑えるような充電電流制御を行う。   The power controller 1 supplies power generated from the plurality of solar cell arrays SA1 to SAn during sunshine as supply power to the load 6 and charge power to the battery 5. Further, the power controller 1 shunts the output of the solar cell arrays SA1 to SAn at an arbitrary time interval for the surplus power generated by the solar cell arrays SA1 to SAn, thereby increasing the charging current Ichg of the battery 5. Charge current control is performed to suppress it.

各太陽電池アレイSA1〜SAnは、各スイッチ素子SW1〜SWnのドレイン端子とソース端子の間にそれぞれ並列に接続され、各太陽電池アレイSA1〜SAnと各スイッチ素子SW1〜SWnのそれぞれの接続回路が電力バス2に接続されている。   Each solar cell array SA1 to SAn is connected in parallel between the drain terminal and the source terminal of each switch element SW1 to SWn, and each connection circuit of each solar cell array SA1 to SAn and each switch element SW1 to SWn is connected to each other. Connected to the power bus 2.

また、各太陽電池アレイSA1〜SAnの正端子と各スイッチ素子SW1〜SWnのドレイン端子側の接続点は、各逆流防止素子D1〜Dnのアノード端子側にそれぞれ直列に接続される。逆流防止素子D1〜Dnのカソード端子側は電力バス2に接続される。各演算駆動部A1〜Anの出力端子は、各スイッチ素子SW1〜SWnのゲート端子にそれぞれ接続される。また、各演算駆動部A1〜Anの第1の入力端子は、誤差増幅器3の出力端子に接続される。誤差増幅器3の出力信号である誤差増幅信号Driveは、各演算駆動部A1〜Anに入力される。誤差増幅器3の入力端子は、電流検出部8に接続される。誤差増幅器3は、電流検出部8によって検出される充電電流Ichgの変動分に比例した信号として誤差増幅信号Driveを生成する。   Further, the connection points on the positive terminals of the solar cell arrays SA1 to SAn and the drain terminals of the switch elements SW1 to SWn are connected in series to the anode terminal sides of the backflow prevention elements D1 to Dn, respectively. The cathode terminal side of the backflow prevention elements D1 to Dn is connected to the power bus 2. The output terminals of the arithmetic drive units A1 to An are connected to the gate terminals of the switch elements SW1 to SWn, respectively. The first input terminals of the arithmetic drive units A1 to An are connected to the output terminal of the error amplifier 3. An error amplification signal Drive that is an output signal of the error amplifier 3 is input to each of the arithmetic drive units A1 to An. The input terminal of the error amplifier 3 is connected to the current detector 8. The error amplifier 3 generates the error amplification signal Drive as a signal proportional to the fluctuation amount of the charging current Ichg detected by the current detection unit 8.

また、タイミング信号発生部4の出力端子は、各演算駆動部A1〜Anの第2の入力端子に接続される。演算駆動部A1〜Anには、タイミング信号発生部4から出力されるタイミング信号t1〜tnがそれぞれに対応して周期Tpeで入力されている。更に、演算駆動部A1〜Anの第3の入力端子は、基準電圧に接続される。演算駆動部A1〜Anには、当該基準電圧の基準値Vthが規定されている。   The output terminal of the timing signal generator 4 is connected to the second input terminal of each of the arithmetic drivers A1 to An. Timing signals t1 to tn output from the timing signal generator 4 are input to the arithmetic drivers A1 to An with a period Tpe corresponding to each. Further, the third input terminals of the arithmetic drive units A1 to An are connected to a reference voltage. A reference value Vth of the reference voltage is defined for the arithmetic drive units A1 to An.

演算駆動部A1〜Anは、誤差増幅器3から出力される誤差増幅信号Driveと、基準値Vthに基づき演算処理を行う。この演算処理により、演算駆動部A1〜Anは対応する太陽電池アレイSA1〜SAnから適切な電力を負荷6へ供給しつつ、充電電流Ichgを制御目標値Ichg(max)及び制御許容誤差ΔIchgに収める様に、供給とシャントの割合を決定する。また、演算駆動部A1〜Anは、それぞれタイミング信号発生部4から入力されるタイミング信号t1〜tnに従ったタイミングでこの演算処理を行い、当該タイミングに対応する各スイッチ素子SW1〜SWnについて、そのタイミング信号t1〜tnの発生する周期Tpeに対応した電力供給とシャントの割合からシャント時間を決定して、スイッチ素子SW1〜SWnをそれぞれ駆動する。   The arithmetic drive units A1 to An perform arithmetic processing based on the error amplification signal Drive output from the error amplifier 3 and the reference value Vth. By this calculation processing, the calculation driving units A1 to An supply appropriate electric power from the corresponding solar cell arrays SA1 to SAn to the load 6, and the charging current Ichg falls within the control target value Ichg (max) and the control allowable error ΔIchg. Similarly, determine the ratio of supply and shunt. The arithmetic driving units A1 to An perform the arithmetic processing at timings according to the timing signals t1 to tn input from the timing signal generating unit 4, respectively, and switch elements SW1 to SWn corresponding to the timings The shunt time is determined from the ratio of the power supply and the shunt corresponding to the period Tpe in which the timing signals t1 to tn are generated, and the switch elements SW1 to SWn are respectively driven.

ここで、タイミング信号t1〜tnは均等な位相差tphをもっており、位相差tphの値は電力制御器1の主要性能要求から定められる最大周波数を確保するように値が決まる。また、周期Tpeは、位相差tphの値を太陽電池アレイ構成段数n倍した値に設定されている。電力制御器1全体としては、位相差tphにより定まる最大周波数で供給とシャントのスイッチング動作が行われる。また、個々のスイッチ素子SW1〜SWnにおいては、位相差tphにより定まる最大周波数の1/n倍となる、周期Tpeにより定まる周波数でスイッチング動作が行われる。かくして、演算駆動部A1〜Anおよびスイッチ素子SW1〜SWnにより、それぞれが対応する太陽電池アレイSA1〜SAnから負荷及びバッテリへの電力の供給が制御される。   Here, the timing signals t1 to tn have an equal phase difference tph, and the value of the phase difference tph is determined so as to ensure the maximum frequency determined from the main performance requirements of the power controller 1. The period Tpe is set to a value obtained by multiplying the value of the phase difference tph by n times the number of solar cell array constituent stages. The power controller 1 as a whole performs supply and shunt switching operations at the maximum frequency determined by the phase difference tph. In each of the switch elements SW1 to SWn, a switching operation is performed at a frequency determined by the cycle Tpe, which is 1 / n times the maximum frequency determined by the phase difference tph. Thus, the power supply to the load and the battery from the solar cell arrays SA1 to SAn respectively corresponding to the arithmetic driving units A1 to An and the switch elements SW1 to SWn is controlled.

本実施の形態1で示す太陽電池アレイSA1〜SAnは、電力を供給する電源の一例であり、同様の機能をもつ他の電源に置き換えてもよい。本実施の形態1では、太陽電池アレイSA1〜SAnは人工衛星に搭載されているものとするが、宇宙ステーション、宇宙基地や地上等に設置されていてもよい。逆流防止素子D1〜Dnは、それぞれ対応する太陽電池アレイSA1〜SAnへの電流の逆流を防止する逆流防止素子の一例であり、同様の機能をもつ他の逆流防止素子に置き換えてもよい。本実施の形態1では、スイッチ素子SW1〜SWnとして電界効果トランジスタ(FET)を用いるが、他のスイッチ素子を用いてもよい。   Solar cell arrays SA1 to SAn shown in the first embodiment are examples of power supplies that supply power, and may be replaced with other power supplies having similar functions. In the first embodiment, the solar cell arrays SA1 to SAn are mounted on the artificial satellite, but may be installed on a space station, a space base, the ground, or the like. The backflow prevention elements D1 to Dn are examples of backflow prevention elements that prevent backflow of current to the corresponding solar cell arrays SA1 to SAn, and may be replaced with other backflow prevention elements having a similar function. In the first embodiment, field effect transistors (FETs) are used as the switch elements SW1 to SWn, but other switch elements may be used.

次に、図1を用いて本実施の形態1による電力制御器1の動作について説明する。
人工衛星の日照モードにおける電力制御動作において、n段からなる(太陽電池アレイ構成段数がnである)太陽電池アレイSA1〜SAnの発生電力がそれぞれに対応する逆流防止素子D1〜Dnを経由して、電力バス2に接続された負荷6と、バッテリ5に供給される。誤差増幅器3は、負荷電流Iloadの変動に伴って生じる充電電流Ichgの一定の変動範囲における変動分を、電力の供給状態の過不足分として検出して、当該変動分を誤差増幅信号Driveに変換する。
なお、充電電流Ichgは位相差tphからなる最大周波数でスイッチング動作を行う事によるリップル電流を伴うが、誤差増幅器3は積分定数を有しており、誤差増幅信号Driveはこのリップル電流分を平均化した結果として表されることとなる。
Next, the operation of the power controller 1 according to the first embodiment will be described with reference to FIG.
In the power control operation in the sunlight mode of the artificial satellite, the generated power of the solar cell arrays SA1 to SAn composed of n stages (the number of the solar cell array constituent stages is n) passes through the corresponding backflow prevention elements D1 to Dn. The load 6 connected to the power bus 2 and the battery 5 are supplied. The error amplifier 3 detects the fluctuation in the constant fluctuation range of the charging current Ichg caused by the fluctuation of the load current Iload as the excess or deficiency of the power supply state, and converts the fluctuation into the error amplification signal Drive. To do.
The charging current Ichg is accompanied by a ripple current due to switching operation at the maximum frequency consisting of the phase difference tph, but the error amplifier 3 has an integral constant, and the error amplification signal Drive averages this ripple current. As a result.

誤差増幅信号Driveは、定数A、Bにおいて、式(1)で表される。   The error amplification signal Drive is expressed by Equation (1) in the constants A and B.

Figure 2014071554
Figure 2014071554

式(1)における定数A、Bは、誤差増幅信号Driveの最大値Drive(max)において、式(2)、(3)で表される。   The constants A and B in Expression (1) are expressed by Expressions (2) and (3) in the maximum value Drive (max) of the error amplification signal Drive.

Figure 2014071554
Figure 2014071554

式(1)におけるDrive(max)は、太陽電池アレイ発生電流Istr1〜nにおいて、式(4)で表される。   Drive (max) in Expression (1) is expressed by Expression (4) in the solar cell array generated currents Istr1 to n.

Figure 2014071554
Figure 2014071554

ここで、式(4)において、Σ(Istr1〜n)は、全ての太陽電池アレイ発生電流Istr1〜nの合計値を表す。   Here, in formula (4), Σ (Istr1 to n) represents the total value of all the solar cell array generated currents Istr1 to n.

この誤差増幅信号Driveは、誤差増幅器3から演算駆動部A1〜Anに伝達される。
演算駆動部A1〜Anは、誤差増幅信号Driveと基準値Vthとの対比に基づき演算処理を行い、適切な電力を負荷6へ供給しつつ充電電流Ichgを制御目標値Ichg(max)及び制御許容誤差ΔIchgに収める様に、電力供給量の割合ONdutyを決定する。
電力供給量の割合ONdutyは、式(5)で表される。
The error amplification signal Drive is transmitted from the error amplifier 3 to the arithmetic driving units A1 to An.
The arithmetic drive units A1 to An perform arithmetic processing based on the comparison between the error amplification signal Drive and the reference value Vth, and supply the charging current Ichg to the control target value Ichg (max) and the control allowance while supplying appropriate power to the load 6. The power supply rate ONduty is determined so as to be within the error ΔIchg.
The ratio ONduty of the power supply amount is expressed by Expression (5).

Figure 2014071554
Figure 2014071554

この演算処理はタイミング信号発生部4から供給されるタイミング信号t1〜tnに従って行われる。   This arithmetic processing is performed according to the timing signals t1 to tn supplied from the timing signal generator 4.

式(5)の演算処理結果による電力供給量の割合ONdutyから、タイミング信号t1〜tnの発生周期Tpeに対するシャント時間tshuntが決定され、スイッチ素子SW1〜SWnが駆動される。この間は対応する太陽電池アレイSA1〜SAnの発生電力は、スイッチ素子SW1〜SWnによって短絡(シャント)されるため、その発生電力は電力バス2に供給されない。   The shunt time tshunt with respect to the generation period Tpe of the timing signals t1 to tn is determined from the ratio ONduty of the power supply amount based on the calculation processing result of Expression (5), and the switch elements SW1 to SWn are driven. During this time, the generated power of the corresponding solar cell arrays SA1 to SAn is short-circuited (shunted) by the switch elements SW1 to SWn, so that the generated power is not supplied to the power bus 2.

シャント時間tshuntは、式(6)で表される。   The shunt time tshunt is expressed by equation (6).

Figure 2014071554
Figure 2014071554

これらの動作によって、太陽電池アレイSA1〜SAnから電力バス2に供給される電力量が加減され、充電電流Ichgが一定の変動範囲内に制御される。   By these operations, the amount of power supplied from the solar cell arrays SA1 to SAn to the power bus 2 is adjusted, and the charging current Ichg is controlled within a certain fluctuation range.

図2はタイミング信号t1〜tnとスイッチ素子SW1〜SWnの動作のタイミングを示す図である。図2において、電力制御器1全体としては、タイミング信号t1〜tnの位相差tphからなる最大周波数でシャント時間tshuntが決定更新されながらスイッチング動作が行われ、個々のスイッチ素子SW1〜SWnにおいてはその最大周波数の1/nとなる周期Tpeからなる周波数でスイッチング動作が行われることを示している。   FIG. 2 is a diagram showing timings of operations of the timing signals t1 to tn and the switch elements SW1 to SWn. In FIG. 2, the power controller 1 as a whole performs a switching operation while the shunt time tshunt is determined and updated at the maximum frequency consisting of the phase difference tph of the timing signals t1 to tn. It shows that the switching operation is performed at a frequency having a period Tpe that is 1 / n of the maximum frequency.

図3は太陽電池アレイSA1〜SAnをシャントもしくは開放するためのスイッチング動作において、スイッチ素子にかかる発熱を示す図であり、(a)はソフトオン駆動時間においてスイッチ素子にかかる発熱、(b)はソフトオフ駆動時間においてスイッチ素子にかかる発熱を示している。図3において、スイッチング動作は太陽電池アレイSA1〜SAnのシャント又は開放動作時の急峻な電流変化による周辺機器への有害な電磁界ノイズの発生を抑制するために、シャント電流は電流変化率を抑制するソフトオン/オフ駆動を伴っている。このソフトオン/オフ駆動時間中にスイッチ素子にはスイッチング動作毎にシャント電流とスイッチ素子SW1〜SWnにかかる電圧の積に相当する発熱が生じる。   FIG. 3 is a diagram showing heat generation applied to the switch element in the switching operation for shunting or opening the solar cell arrays SA1 to SAn. FIG. 3A shows heat generation applied to the switch element during the soft-on drive time, and FIG. It shows the heat generated by the switch element during the soft-off drive time. In FIG. 3, the shunt current suppresses the rate of current change in order to suppress the generation of harmful electromagnetic noise to peripheral devices due to the steep current change during the shunt or open operation of the solar cell arrays SA1 to SAn. With soft on / off drive. During the soft on / off drive time, the switch element generates heat corresponding to the product of the shunt current and the voltage applied to the switch elements SW1 to SWn for each switching operation.

従来の電力制御器は充電電流Ichgの変動に応じて各太陽電池アレイをシーケンシャルにシャント又は開放するように、個々の太陽電池アレイSA1〜SAnのシャント又は開放の動作領域を決定するため、任意の太陽電池アレイSA1〜SAnの内1段のみに集中してスイッチング動作を行っていた。電力制御器を構成する各要素の定数や制御目標から成る最大周波数でこの発熱が生じるため、全てのスイッチ素子が最大周波数によるスイッチングで生じる発熱に耐えるものである必要があり、この発熱条件に耐える様、部品の選定及び放熱設計を行う必要があるため、電力制御器の小型軽量化を阻害することとなっていた。   The conventional power controller determines the shunt or open operating area of each of the solar cell arrays SA1 to SAn so that each solar cell array is shunted or opened sequentially according to the fluctuation of the charging current Ichg. Switching operations are concentrated on only one of the solar cell arrays SA1 to SAn. Since this heat generation occurs at the maximum frequency consisting of the constants and control targets of each element constituting the power controller, all switch elements must withstand the heat generated by switching at the maximum frequency. Since it is necessary to select parts and design heat dissipation, it has been impeded to reduce the size and weight of the power controller.

そこで、本実施の形態1では、図2に示す通り、電力制御器1全体としては、最大周波数でスイッチング動作が行われつつ、個々のスイッチ素子SW1〜SWnにおいてはその最大周波数の1/nの周波数でスイッチング動作が行われるため、スイッチ素子に要求される発熱条件が抑制される。   Therefore, in the first embodiment, as shown in FIG. 2, the power controller 1 as a whole performs a switching operation at the maximum frequency, and the individual switching elements SW1 to SWn have 1 / n of the maximum frequency. Since the switching operation is performed at the frequency, the heat generation condition required for the switch element is suppressed.

なお、本実施の形態1の説明で用いた誤差増幅信号Driveを示す式(1)は、充電電流Ichgの変化に対して正比例する例を示したが、反比例する例に適用する場合でも同様な原理で式の形態を置き換えればよい。   The equation (1) indicating the error amplification signal Drive used in the description of the first embodiment shows an example that is directly proportional to the change in the charging current Ichg, but the same applies when applied to an inversely proportional example. What is necessary is just to replace the form of a formula in principle.

また、本実施の形態1の説明における誤差増幅器3、タイミング信号発生部4、演算駆動部A1〜n、基準値Vthは、相当する動作をディジタル回路のプログラムで構成して、ディジタル信号処理で行うようにしてもよい。   Further, the error amplifier 3, the timing signal generation unit 4, the arithmetic drive units A1 to n, and the reference value Vth in the description of the first embodiment are configured by a digital circuit program and corresponding operations are performed by digital signal processing. You may do it.

かくして、本実施の形態1では、電力制御器において、太陽電池アレイの全構成段数に対して均等な位相差を持って割振られた共通のサンプリング周期に応じて、制御目標値に対する誤差増幅信号から、太陽電池アレイ毎にシャントもしくは開放の時間比率を決定してシャントもしくは開放するスイッチング動作を行うことで、装置の主要性能の低下を招くこと無く、装置を構成する要素の定数や制御目標から確定される最大周波数を太陽電池アレイの全構成段数で除した値に至るまで、個々の太陽電池アレイのスイッチング周波数を下げる事ができる。   Thus, in the first embodiment, in the power controller, from the error amplification signal for the control target value according to the common sampling period allocated with an equal phase difference with respect to the total number of stages of the solar cell array. By determining the shunt or open time ratio for each solar cell array and performing a shunt or open switching operation, it is determined from the constants and control targets of the elements that make up the device without degrading the main performance of the device The switching frequency of each solar cell array can be lowered until the maximum frequency is divided by the total number of stages of the solar cell array.

したがって、太陽電池アレイをシャントもしくは開放するための個々のスイッチ素子の発熱を削減する事が可能となり、部品の選定及び放熱設計を緩和して電力制御器の小型化を実現することができる。   Therefore, it is possible to reduce the heat generation of individual switch elements for shunting or opening the solar cell array, and it is possible to reduce the size of the power controller by relaxing the selection of parts and the heat radiation design.

以上説明した通り、本実施の形態1による電力制御器1は、電力を供給する複数の電源である太陽電池アレイSA1〜SAnとそれぞれ直列に接続され、上記それぞれの太陽電池アレイSA1〜SAnへの電流の逆流を防止する複数の逆流防止素子D1〜Dnと、上記それぞれの電源と並列に接続されるとともに上記それぞれの逆流防止素子と直列に接続され、上記それぞれの電源との接続を短絡(シャント)もしくは開放に切換える複数のスイッチ素子SW1〜SWnと、上記複数の電源による電力の供給状態の過不足分に応じて誤差増幅信号Driveを出力する誤差増幅器3と、上記誤差増幅信号を基準値Vthと比較して上記それぞれの電源からの電力供給量の割合ONdutyを決定する演算駆動部A1〜Anを備え、それぞれの電源毎に位相差tphを有し周期Tpeでスイッチ素子のスイッチング動作を行い、電力供給量の割合に基づいたシャントもしくは開放の時間比率で上記それぞれの電源からの電力供給量の割合が制御される様にする事で、スイッチ素子のスイッチング動作が電力制御器全体としては、装置を構成する要素の定数や制御目標から確定される最大周波数で行われつつ、個々のスイッチ素子においてはその1/nの周波数で行われる事を特徴とする。   As described above, the power controller 1 according to the first embodiment is connected in series with the solar cell arrays SA1 to SAn, which are a plurality of power supplies that supply power, and is connected to each of the solar cell arrays SA1 to SAn. A plurality of backflow prevention elements D1 to Dn that prevent backflow of current are connected in parallel to the respective power supplies and connected in series to the respective backflow prevention elements, and the connection to each of the power supplies is short-circuited (shunted). ) Or a plurality of switch elements SW1 to SWn that are switched to open, an error amplifier 3 that outputs an error amplification signal Drive according to the excess or deficiency of the power supply state by the plurality of power supplies, and the error amplification signal as a reference value Vth Are provided with arithmetic drive units A1 to An that determine the ratio ONduty of the amount of power supplied from each power source, and the phase difference tph is determined for each power source. The switch element performs switching operation with a period Tpe, and the ratio of the power supply amount from each power source is controlled by the shunt or open time ratio based on the ratio of the power supply amount. The switching operation of the element is performed at the maximum frequency determined from the constants of the elements constituting the device and the control target for the entire power controller, while the individual switching elements are performed at the 1 / n frequency. Features.

即ち、本実施の形態1による電力制御器1は、電力を供給する複数の電源(太陽電池アレイSA1〜SAn)とそれぞれ直列に接続され、上記それぞれの電源への電流の逆流を防止する複数の逆流防止素子(D1〜Dn)と、上記それぞれの電源と並列に接続されるとともに上記それぞれの逆流防止素子(D1〜Dn)と直列に接続され、上記それぞれの電源との接続を短絡もしくは開放に切換える複数のスイッチ素子(SW1〜SWn)と、上記複数の電源による電力の供給状態の過不足分を示す誤差増幅信号を出力する誤差増幅器(3)と、上記誤差増幅信号と基準値(Vth)との比較により、上記それぞれの電源毎に電力の供給とシャントの割合を決定して上記それぞれのスイッチ素子(SW1〜SWn)を順に切換動作させる演算駆動部(A1〜An)と、を備えている。また、上記演算駆動部(A1〜An)に対して、上記スイッチ素子(SW1〜SWn)毎の切換動作のタイミング信号を出力するタイミング信号発生部(4)を備えている。また、上記タイミング信号は、上記複数のスイッチ素子(SW1〜SWn)のそれぞれに対して均等な位相差(tph)をもって出力され、上記個々のスイッチ素子(SW1〜SWn)におけるタイミング信号の発生周期(Tpe)は上記位相差よりも十分長く、当該発生周期は上記位相差に上記電源の構成台数(n)を乗じた値によって設定される。また、上記複数のタイミング信号間の位相差(tph)を周期とする周波数で上記複数の電源全体との接続が切換えられ、上記それぞれのスイッチ素子(SW1〜SWn)の個々のタイミング信号の発生周期(Tpe)により、タイミング信号間の位相差を周期とする周波数よりもより低い周波数で、上記それぞれの電源との接続が切換えられる。また、上記それぞれの電源から電力を供給される負荷に並列にバッテリ(5)が接続され、上記誤差増幅器(3)は、上記バッテリ(5)の充電電流の変動から上記電力の供給状態の過不足分を検出して誤差増幅信号を出力する。   That is, the power controller 1 according to the first embodiment is connected in series with a plurality of power supplies (solar cell arrays SA1 to SAn) that supply power, and prevents a backflow of current to each of the power supplies. The backflow prevention elements (D1 to Dn) are connected in parallel with the respective power supplies and connected in series with the respective backflow prevention elements (D1 to Dn), and the connection with the respective power supplies is short-circuited or opened. A plurality of switching elements (SW1 to SWn) to be switched, an error amplifier (3) for outputting an error amplification signal indicating an excess or deficiency of the power supply state by the plurality of power supplies, the error amplification signal and a reference value (Vth) In comparison with the above, the power supply and the shunt ratio are determined for each of the respective power supplies, and the calculation driving for sequentially switching the respective switch elements (SW1 to SWn) And (A1~An), is equipped with a. In addition, a timing signal generator (4) is provided for outputting a timing signal for switching operation for each of the switching elements (SW1 to SWn) to the arithmetic driving units (A1 to An). Further, the timing signal is output with an equal phase difference (tph) to each of the plurality of switch elements (SW1 to SWn), and the timing signal generation period (in the individual switch elements (SW1 to SWn)) ( Tpe) is sufficiently longer than the phase difference, and the generation period is set by a value obtained by multiplying the phase difference by the number (n) of the power supplies. In addition, the connection with the whole of the plurality of power sources is switched at a frequency having a phase difference (tph) between the plurality of timing signals as a cycle, and the generation cycle of each timing signal of each of the switch elements (SW1 to SWn). With (Tpe), the connection with the respective power sources is switched at a frequency lower than the frequency having the phase difference between the timing signals as a cycle. In addition, a battery (5) is connected in parallel to a load to which power is supplied from each of the power sources, and the error amplifier (3) detects an excess of the power supply state from fluctuations in the charging current of the battery (5). The shortage is detected and an error amplification signal is output.

これにより、太陽電池アレイの全構成段数に対して均等な位相差を持って割振られたサンプリング周期に応じて、制御目標値に対する誤差増幅信号から、太陽電池アレイ毎にシャントもしくは開放の時間比率を決定してシャントもしくは開放するスイッチング動作を行うことで、装置の主要性能の低下を招くこと無く、装置を構成する要素の定数や制御目標から確定される最大周波数を太陽電池アレイの全構成段数で除した値に至るまで、個々の太陽電池アレイの最大スイッチング周波数を下げる事ができるため、太陽電池アレイをシャントもしくは開放するための個々のスイッチ素子の発熱を削減する事が可能となり、部品の選定及び放熱設計を緩和して、小型の電力制御器を提供することが可能となる。   As a result, the shunt or open time ratio for each solar cell array is calculated from the error amplification signal for the control target value in accordance with the sampling period allocated with an equal phase difference with respect to the total number of stages of the solar cell array. By performing a switching operation that determines or shunts or opens, the maximum frequency determined from the constants of the elements constituting the device and the control target is not affected by the total number of stages of the solar cell array, without causing deterioration in the main performance of the device. Since the maximum switching frequency of the individual solar cell array can be lowered to the value obtained by dividing, it is possible to reduce the heat generation of the individual switch elements for shunting or opening the solar cell array, and the selection of parts In addition, the heat dissipation design can be relaxed and a small power controller can be provided.

実施の形態2.
図4は、本発明に係る実施の形態2による電力制御器1の構成を示す回路図である。図4の電力制御器1は、図1に示したものと異なり、電力バス2にバッテリ5は直結されておらず、図1の電力バス2が接続される位置に、バス電圧を平滑化するために設けられたキャパシタバンク7を備えている。なお、図4において、図1と同一符号のものは同一もしくは同一相当のものである。
Embodiment 2. FIG.
FIG. 4 is a circuit diagram showing a configuration of the power controller 1 according to the second embodiment of the present invention. 4 differs from that shown in FIG. 1 in that the battery 5 is not directly connected to the power bus 2 and the bus voltage is smoothed to a position where the power bus 2 in FIG. 1 is connected. For this purpose, a capacitor bank 7 is provided. In FIG. 4, the same reference numerals as those in FIG. 1 are the same or equivalent.

太陽電池アレイSA1〜SAnの出力を負荷6へ供給又はシャントする動作と、それに伴うキャパシタバンク7の充放電によるバス電圧Vbusの増減から、バス電圧Vbusが規定の変動幅の範囲内に収まるようにバス電圧制御が行われる。   From the operation of supplying or shunting the outputs of the solar cell arrays SA1 to SAn to the load 6 and the accompanying increase / decrease of the bus voltage Vbus due to charging / discharging of the capacitor bank 7, the bus voltage Vbus falls within the specified fluctuation range. Bus voltage control is performed.

誤差増幅器3は、バス電圧Vbusの変動分に比例した信号として誤差増幅信号Driveを生成し、バス電圧Vbusを制御目標値Vbus(max)及び制御許容誤差ΔVbusに収める様に、供給とシャントの割合を決定する。   The error amplifier 3 generates an error amplification signal Drive as a signal proportional to the fluctuation of the bus voltage Vbus, and the ratio of supply and shunt so that the bus voltage Vbus falls within the control target value Vbus (max) and the control allowable error ΔVbus. To decide.

誤差増幅信号Driveは、定数A、Bにおいて、式(7)で表される。   The error amplification signal Drive is expressed by Expression (7) in the constants A and B.

Figure 2014071554
Figure 2014071554

式(7)における定数A、Bは、式(8)、(9)で表される。   Constants A and B in equation (7) are expressed by equations (8) and (9).

Figure 2014071554
Figure 2014071554

この誤差増幅信号Driveは、増幅器3から演算駆動部A1〜Anに伝達される。演算駆動部A1〜Anは、誤差増幅信号Driveと基準値Vthとの対比に基づき演算処理を行い、適切な電力を負荷6へ供給しつつバス電圧Vbusを制御目標値Vbus(max)及び制御許容誤差ΔVbusに収める様に、電力供給量の割合ONdutyを決定する。   The error amplification signal Drive is transmitted from the amplifier 3 to the arithmetic driving units A1 to An. The arithmetic driving units A1 to An perform arithmetic processing based on the comparison between the error amplification signal Drive and the reference value Vth, and supply the bus voltage Vbus to the control target value Vbus (max) and the control allowance while supplying appropriate power to the load 6. The power supply rate ONduty is determined so as to be within the error ΔVbus.

電力供給量の割合ONdutyは、上記実施の形態1で説明した上記式(5)で表される。   The ratio ONduty of the power supply amount is expressed by the above formula (5) described in the first embodiment.

シャント時間tshuntは、上記実施の形態1で説明した上記式(6)で表される。   The shunt time tshunt is expressed by the above equation (6) described in the first embodiment.

これらの動作によって、太陽電池アレイSA1〜SAnから電力バス2に供給される電力量が加減され、バス電圧Vbusが一定の変動範囲内に制御される。   By these operations, the amount of power supplied from the solar cell arrays SA1 to SAn to the power bus 2 is adjusted, and the bus voltage Vbus is controlled within a certain fluctuation range.

その他は図1の電力制御器1の構成と同じ構成要素からなり、図1と同様にバス電圧の制御が行われる。なお、本実施の形態2の説明で用いた誤差増幅信号Driveを示す式(7)は、バス電圧Vbusの変化に対して正比例する例を示したが、反比例する例に適用する場合でも同様な原理で式の形態を置き換えればよい。   The other components are the same as those of the power controller 1 shown in FIG. 1, and the bus voltage is controlled in the same manner as in FIG. The equation (7) indicating the error amplification signal Drive used in the description of the second embodiment shows an example that is directly proportional to the change of the bus voltage Vbus, but the same applies when applied to an inversely proportional example. What is necessary is just to replace the form of a formula in principle.

誤差増幅信号Drive及び演算駆動部A1〜Anは、本実施の形態2においても実施の形態1で説明した動作と同じ効果が得られるため、電力制御器として同様の特徴を有する。   The error amplification signal Drive and the arithmetic driving units A1 to An have the same characteristics as the power controller because the same effect as the operation described in the first embodiment can be obtained also in the second embodiment.

また、本実施の形態2の説明における誤差増幅器3、タイミング信号発生部4、演算駆動部A1〜An、基準値Vthは、実施の形態1と同じく相当する動作をディジタル回路のプログラムで構成して、ディジタル信号処理で行うようにしてもよい。   In addition, the error amplifier 3, the timing signal generation unit 4, the arithmetic drive units A1 to An, and the reference value Vth in the description of the second embodiment are configured in the same manner as in the first embodiment by a digital circuit program. Alternatively, digital signal processing may be used.

本実施の形態2による電力制御器1は、電力を供給する複数の電源(太陽電池アレイSA1〜SAn)とそれぞれ直列に接続され、上記それぞれの電源への電流の逆流を防止する複数の逆流防止素子(D1〜Dn)と、上記それぞれの電源と並列に接続されるとともに上記それぞれの逆流防止素子と直列に接続され、上記それぞれの電源との接続を短絡もしくは開放に切換える複数のスイッチ素子(SW1〜SWn)と、上記複数の電源による電力の供給状態の過不足分を示す誤差増幅信号を出力する誤差増幅器(3)と、上記誤差増幅信号と基準値(Vth)との比較により、上記それぞれの電源毎に電力の供給とシャントの割合を決定して上記それぞれのスイッチ素子を順に切換動作させる演算駆動部(A1〜An)とを備えて、それぞれの電源(太陽電池アレイSA1〜SAn)から電力を供給される負荷に並列にキャパシタバンク(7)が接続され、上記誤差増幅器(3)は、上記キャパシタバンク(7)の電圧変動から上記電力の供給状態の過不足分を検出して誤差増幅信号を出力する。これによって、例えば人工衛星に搭載して使用される太陽電池の電源安定化及び非安定化バスを介して、供給される電力の供給量を制御する電力制御器に適用することができる。   The power controller 1 according to the second embodiment is connected in series with a plurality of power supplies (solar cell arrays SA1 to SAn) that supply power, and a plurality of backflow preventions that prevent backflow of current to the respective power supplies. A plurality of switch elements (SW1) that are connected in parallel to the respective elements (D1 to Dn) and the respective power supplies and are connected in series to the respective backflow prevention elements, and for switching the connection to the respective power supplies to short circuit or open. To SWn), an error amplifier (3) that outputs an error amplification signal indicating an excess or deficiency of the power supply state by the plurality of power supplies, and a comparison between the error amplification signal and a reference value (Vth). A power supply and a shunt ratio are determined for each power source, and each of the switch elements is operated in turn to perform a switching operation (A1 to An). A capacitor bank (7) is connected in parallel to a load to which power is supplied from the sources (solar cell arrays SA1 to SAn), and the error amplifier (3) supplies the power from voltage fluctuations of the capacitor bank (7). An excess or deficiency in the state is detected and an error amplification signal is output. Thus, for example, the present invention can be applied to a power controller that controls the supply amount of power supplied via a power stabilization and non-stabilization bus of a solar cell mounted on an artificial satellite.

1 電力制御器、2 電力バス、3 誤差増幅器、4 タイミング信号発生部、5 バッテリ、6 負荷、7 キャパシタバンク、8 電流検出部、A1〜An 演算駆動部、D1〜Dn 逆流防止素子、Drive 誤差増幅信号、Istr1〜Istrn 太陽電池アレイ発生電力、Iload 負荷電流、Ichg 充電電流、SA1〜SAn 太陽電池アレイ、SW1〜SWn スイッチ素子、t1〜tn タイミング信号、tph 位相差、Tpe 周期、Vbus バス電圧、Vth 基準値。   DESCRIPTION OF SYMBOLS 1 Power controller, 2 Power bus, 3 Error amplifier, 4 Timing signal generation part, 5 Battery, 6 Load, 7 Capacitor bank, 8 Current detection part, A1-An calculation drive part, D1-Dn Backflow prevention element, Drive error Amplified signal, Istr1 to Istrn Solar cell array generated power, Iload load current, Ichg charging current, SA1 to SAn solar cell array, SW1 to SWn switch element, t1 to tn timing signal, tph phase difference, Tpe period, Vbus bus voltage, Vth reference value.

Claims (7)

電力を供給する複数の電源とそれぞれ直列に接続され、上記それぞれの電源への電流の逆流を防止する複数の逆流防止素子と、
上記それぞれの電源と並列に接続されるとともに上記それぞれの逆流防止素子と直列に接続され、上記それぞれの電源との接続を短絡もしくは開放に切換える複数のスイッチ素子と、
上記複数の電源による電力の供給状態の過不足分を示す誤差増幅信号を出力する誤差増幅器と、
上記誤差増幅信号と基準値との比較により、上記それぞれの電源毎に電力の供給とシャントの割合を決定して上記それぞれのスイッチ素子を順に切換動作させる演算駆動部と、
を備えた電力制御器。
A plurality of backflow prevention elements that are connected in series with a plurality of power supplies that supply power, and that prevent backflow of current to each of the power supplies,
A plurality of switch elements connected in parallel with the respective power sources and connected in series with the respective backflow prevention elements, and switching the connection with the respective power sources to short circuit or open;
An error amplifier that outputs an error amplification signal indicating an excess or deficiency of the power supply state by the plurality of power supplies;
Comparing the error amplification signal with a reference value, an arithmetic drive unit that determines the ratio of power supply and shunt for each power source and sequentially switches the switch elements;
With power controller.
上記演算駆動部に対して、上記スイッチ素子毎の切換動作のタイミング信号を出力するタイミング信号発生部を備えたことを特徴とした請求項1に記載の電力制御器。   2. The power controller according to claim 1, further comprising a timing signal generation unit that outputs a timing signal of a switching operation for each of the switching elements to the arithmetic driving unit. 上記タイミング信号は、上記複数のスイッチ素子のそれぞれに対して均等な位相差をもって出力され、上記個々のスイッチ素子におけるタイミング信号の発生周期は上記位相差よりも十分長く、当該発生周期は上記位相差に上記電源の構成台数を乗じた値によって設定されることを特徴とした請求項2に記載の電力制御器。   The timing signal is output with an equal phase difference to each of the plurality of switch elements, and the generation period of the timing signal in the individual switch elements is sufficiently longer than the phase difference, and the generation period is the phase difference. The power controller according to claim 2, wherein the power controller is set by a value obtained by multiplying the number of power supplies by the number of power supplies. 上記複数のタイミング信号間の位相差を周期とする周波数で上記複数の電源全体との接続が切換えられ、
上記それぞれのスイッチ素子の個々のタイミング信号の発生周期により、タイミング信号間の位相差を周期とする周波数よりもより低い周波数で、上記それぞれの電源との接続が切換えられることを特徴とした請求項1から請求項3の何れか1項に記載の電力制御器。
The connection with the whole of the plurality of power supplies is switched at a frequency having a phase difference between the plurality of timing signals as a period
The connection with each of the power supplies is switched at a frequency lower than a frequency having a phase difference between the timing signals as a period depending on a generation period of each timing signal of each of the switch elements. The power controller according to any one of claims 1 to 3.
上記それぞれの電源から電力を供給される負荷に並列にバッテリが接続され、
上記誤差増幅器は、上記バッテリの充電電流の変動から上記電力の供給状態の過不足分を検出して誤差増幅信号を出力することを特徴とした請求項1から請求項4の何れか1項に記載の電力制御器。
A battery is connected in parallel to the load supplied with power from each of the power sources,
5. The error amplifier according to claim 1, wherein the error amplifier detects an excess / deficiency of the power supply state from a change in a charging current of the battery and outputs an error amplification signal. 6. The power controller described.
上記それぞれの電源から電力を供給される負荷に並列にキャパシタバンクが接続され、
上記誤差増幅器は、上記キャパシタバンクの電圧変動から上記電力の供給状態の過不足分を検出して誤差増幅信号を出力することを特徴とした請求項1から請求項4の何れか1項に記載の電力制御器。
A capacitor bank is connected in parallel to the load supplied with power from each of the power sources,
5. The error amplifier according to claim 1, wherein the error amplifier detects an excess or deficiency of the power supply state from a voltage fluctuation of the capacitor bank and outputs an error amplification signal. 6. Power controller.
上記電源は太陽電池であることを特徴とした請求項1から請求項6の何れか1項に記載の電力制御器。   The power controller according to any one of claims 1 to 6, wherein the power source is a solar battery.
JP2012215378A 2012-09-28 2012-09-28 Power controller Expired - Fee Related JP5987609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012215378A JP5987609B2 (en) 2012-09-28 2012-09-28 Power controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012215378A JP5987609B2 (en) 2012-09-28 2012-09-28 Power controller

Publications (2)

Publication Number Publication Date
JP2014071554A true JP2014071554A (en) 2014-04-21
JP5987609B2 JP5987609B2 (en) 2016-09-07

Family

ID=50746723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215378A Expired - Fee Related JP5987609B2 (en) 2012-09-28 2012-09-28 Power controller

Country Status (1)

Country Link
JP (1) JP5987609B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145362A1 (en) * 2016-02-26 2017-08-31 三菱電機株式会社 Electrical power control device
WO2020157884A1 (en) 2019-01-31 2020-08-06 三菱電機株式会社 Power controller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017516A (en) * 1983-07-11 1985-01-29 Toshiba Corp Solar power generator
JPH0236736A (en) * 1988-07-27 1990-02-06 Toshiba Corp Solar power generator
JPH03285528A (en) * 1990-03-30 1991-12-16 Kyocera Corp Solar generating system
JP2011087379A (en) * 2009-10-14 2011-04-28 Mitsubishi Electric Corp Power controller
JP2013179722A (en) * 2010-06-30 2013-09-09 Sanyo Electric Co Ltd Energy management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017516A (en) * 1983-07-11 1985-01-29 Toshiba Corp Solar power generator
JPH0236736A (en) * 1988-07-27 1990-02-06 Toshiba Corp Solar power generator
JPH03285528A (en) * 1990-03-30 1991-12-16 Kyocera Corp Solar generating system
JP2011087379A (en) * 2009-10-14 2011-04-28 Mitsubishi Electric Corp Power controller
JP2013179722A (en) * 2010-06-30 2013-09-09 Sanyo Electric Co Ltd Energy management system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145362A1 (en) * 2016-02-26 2017-08-31 三菱電機株式会社 Electrical power control device
US11070054B2 (en) 2016-02-26 2021-07-20 Mitsubishi Electric Corporation Power controller
WO2020157884A1 (en) 2019-01-31 2020-08-06 三菱電機株式会社 Power controller
US11387816B2 (en) 2019-01-31 2022-07-12 Mitsubishi Electric Corporation Power controller

Also Published As

Publication number Publication date
JP5987609B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
EP2201659B1 (en) Two-stage charge equalization method and apparatus for series-connected battery string
US9973832B2 (en) Sensor node and method of controlling sensor node
US10523042B2 (en) Master-slave charging circuit with slave charger input current sensing and adaptive battery current limiting
US20160105096A1 (en) Power factor correction controller and power supply apparatus using the same
US20140203780A1 (en) System and method for active charge and discharge current balancing in multiple parallel-connected battery packs
US20120062189A1 (en) Switching regulator and control circuit and control method thereof
Yau et al. Maximum power point tracking and optimal Li-ion battery charging control for photovoltaic charging system
JP2011259695A (en) Converter circuit and electronic system comprising the same
US20130257409A1 (en) Control circuit for dc-dc converter, dc-dc converter, and control method of dc-dc converter
US10090691B2 (en) Power generation system of renewable-energy-based electric power generator and DC power source combiner provided with reverse current prevention device capable of preventing power loss in power generation system
JP5987609B2 (en) Power controller
US20090001813A1 (en) Configurable input high power dc-dc converter
US10063090B2 (en) Solar power generation device and control method of solar power generation device
JP2013207861A (en) Charge and discharge circuit
CN206274644U (en) The oscillator and inductance converter used with reference to inductance converter
US20140152104A1 (en) Multi-Output Switching Regulator and Multi-Output Power Supply Method
EP3421379B1 (en) Electrical power control device
KR101737461B1 (en) System for obtaining a driving power source to the power generation of the solar cell and method therefor
KR20160058999A (en) Multiple output switched capacitor dc-dc converter
JP6119560B2 (en) Power controller
JP5423306B2 (en) Power controller
US9000737B2 (en) Maximum power extraction device
US9917516B2 (en) DC-DC converter with input voltage responsive lookup table control
JP2014079047A (en) Dc/dc converter
CN110663164B (en) Power converter pre-driver system with multiple power modes

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R151 Written notification of patent or utility model registration

Ref document number: 5987609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees