JP2014070991A - Biochemical reaction chip for analyzing plural samples, and analysis device thereof - Google Patents

Biochemical reaction chip for analyzing plural samples, and analysis device thereof Download PDF

Info

Publication number
JP2014070991A
JP2014070991A JP2012216827A JP2012216827A JP2014070991A JP 2014070991 A JP2014070991 A JP 2014070991A JP 2012216827 A JP2012216827 A JP 2012216827A JP 2012216827 A JP2012216827 A JP 2012216827A JP 2014070991 A JP2014070991 A JP 2014070991A
Authority
JP
Japan
Prior art keywords
sample
analysis chip
sample analysis
base material
chip according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012216827A
Other languages
Japanese (ja)
Other versions
JP6155591B2 (en
Inventor
Tomoyuki Ozawa
知之 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2012216827A priority Critical patent/JP6155591B2/en
Publication of JP2014070991A publication Critical patent/JP2014070991A/en
Application granted granted Critical
Publication of JP6155591B2 publication Critical patent/JP6155591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low cost sample analysis chip capable of performing simultaneous processing of a plurality of biochemical substances by a simple liquid feed method.SOLUTION: Disclosed is a sample analysis chip whose center of a circle does not exist on a base material when arranged in concentric circles on a device processing stage in spite of the fact that the base material is a right-left asymmetrical non-fan shape along a biochemical reaction processing structure, and a device for processing the sample analysis chip is provided. Processing is capable of being efficiently performed in a space saving manner by arrangement of the sample analysis chip in concentric circles.

Description

本発明は、生化学反応処理チップ及び、その分析方法に関する。   The present invention relates to a biochemical reaction processing chip and an analysis method thereof.

従来、例えばDNA反応、たんぱく質反応等の生化学反応の分野において、微量の試料サンプル溶液を処理する反応装置として、μ−TAS(Total Analysis System)やLab−on−Chipと呼ばれる技術が知られている。これは、1個のチップやカートリッジに複数の反応室(以下、ウェル)や流路を供えたものであり、複数の検体の解析、あるいは複数の反応を行うことができる。これらの技術はチップ及びカートリッジを小型化することで扱う薬品を少量にすることができ、様々なメリットがあるとされてきた。   Conventionally, in the field of biochemical reactions such as DNA reaction and protein reaction, as a reaction apparatus for processing a small amount of sample solution, a technique called μ-TAS (Total Analysis System) or Lab-on-Chip is known. Yes. This is a single chip or cartridge provided with a plurality of reaction chambers (hereinafter referred to as wells) and channels, and can analyze a plurality of specimens or perform a plurality of reactions. These techniques have been considered to have various merits by reducing the amount of chemicals handled by downsizing the chip and cartridge.

そのメリットとは例えば従来使用していた強酸や強アルカリ薬品の分量が微量化することで人体への影響や環境への影響が格段に低くなること、また、生化学反応等に用いられる高額な試薬類の消費量が微量化することで分析、反応に費やすコストを低減できること、などが挙げられる。   The benefits include, for example, the fact that the amount of strong acids and strong alkaline chemicals that have been used in the past has been reduced to a much lower level, and the impact on the human body and the environment will be significantly reduced. For example, the amount of reagents consumed can be reduced so that the cost of analysis and reaction can be reduced.

チップやカートリッジを用いて生化学反応を最も効率よく行うためには、複数のウェルにそれぞれ異なる種類の薬品や検体、酵素を配置し、これら薬品や検体、酵素と反応を起こす試薬を一本ないし数本の主導管からまとめてウェルに流し入れ、異なった複数の反応を生じさせる必要がある。   In order to perform biochemical reactions most efficiently using chips and cartridges, different types of chemicals, specimens, and enzymes are placed in multiple wells, and one or more reagents that react with these chemicals, specimens, and enzymes are used. It is necessary to pour into several wells from several main conduits to produce different reactions.

この手法を用いれば、複数種の検体を同じ試薬で同時に処理をしたり、また逆に一種類の検体に同時に複数の処理を施したりすることができ、従来かかっていた時間や手間、コストを大幅に減らすことが可能である。   By using this method, multiple types of specimens can be processed simultaneously with the same reagent, and conversely, multiple types of specimens can be processed simultaneously. This saves time, effort, and cost. It can be greatly reduced.

また、この際に反応に用いるサンプルや試薬は危険物であったり、感染性の生体試料で有る場合、可能な限りこのチップ内に留めておく事が好ましく、また蒸発や揮発によってチップ外に漏れる事も防がねばならない。 In addition, if the sample or reagent used for the reaction is a dangerous substance or an infectious biological sample, it is preferable to keep it in this chip as much as possible, and it will leak out of the chip by evaporation or volatilization. Things must also be prevented.

この種の手法を用いる際、複数の反応場に等量のサンプルを送液する技術と、各ウェルの中身を混ざり合わないようにする技術が重要となる。このようなウェルへの送液を行うチップについての先行技術としては以下のものが挙げられる。   When using this type of technique, a technique for feeding an equal amount of sample to a plurality of reaction fields and a technique for preventing the contents of each well from being mixed are important. The following is mentioned as a prior art about the chip | tip which performs liquid feeding to such a well.

特許文献1では、遠心力を用いて液をプロセスチャンバに送液する方法を示している。   Japanese Patent Application Laid-Open No. H10-228561 shows a method of sending a liquid to a process chamber using centrifugal force.

特許文献2では、サンプル装填領域を持つサンプル分画型の遠心送液システムを示している。   Patent Document 2 shows a sample fraction type centrifugal liquid feeding system having a sample loading region.

特許文献3では放射状に構造体が構成された遠心送液システムが示されている。
Patent Document 3 shows a centrifugal liquid feeding system in which structures are radially formed.

特許第4181046号Japanese Patent No. 4181406 特許第4499720号Japanese Patent No. 4499720 特表2004−529333号公報JP-T-2004-529333

しかしながら、特許文献1では、遠心力を用いて液をプロセスチャンバに送液する方法を示しているが、この方法ではプロセスチャンバに液を導入した後、プロセスチャンバに通じる各流路を物理的に潰す等をしてふさぐ必要があり、自動化や小型化に向かず、人の手による煩雑な作業が必要になる。仮に装填口の他端を開放しても、余剰液を廃棄する方法が必要であり、危険な薬品や感染性の生体試料には好ましくない。   However, Patent Document 1 shows a method of sending a liquid to a process chamber using centrifugal force. In this method, after introducing the liquid into the process chamber, each flow path leading to the process chamber is physically set. It needs to be crushed and closed, and is not suitable for automation or downsizing, and requires complicated work by human hands. Even if the other end of the loading port is opened, a method for discarding excess liquid is necessary, which is not preferable for dangerous chemicals or infectious biological samples.

また、特許文献2では、サンプル装填領域を持つサンプル分画型の遠心送液システムを示しているが、チャンネルの両端がサンプル装填を目的とした構造のため、加熱処理等のサンプル、試薬の蒸発を防止するためには蓋をする必要があり、実施例でも手技によるフィルムの貼付を必要としている。また、サンプル分画構造が放射状であるため、基材の面積を有効利用できず、大型化してしまう。   Patent Document 2 shows a sample fraction-type centrifugal liquid feeding system having a sample loading region. However, since both ends of the channel are designed for sample loading, evaporation of sample and reagent such as heat treatment is performed. In order to prevent this, it is necessary to put a lid, and even in the examples, it is necessary to apply a film by a technique. Moreover, since the sample fraction structure is radial, the area of the base material cannot be effectively used, and the size is increased.

また、特許文献3では放射状に構造体が構成された遠心送液システムが示されているが、不必要なサンプル溶液は開放廃棄ポートから外に放出される構造となっており、生化学反応を行う際には、前後の処理サンプルがコンタミネーションを起こしてしまう可能性があり、危険な薬品を使う事も、感染性の生体試料を用いる処理にも使用することができない。   Further, Patent Document 3 shows a centrifugal liquid feeding system in which structures are radially formed. However, unnecessary sample solution is released from an open waste port, and biochemical reaction is performed. When performing, there is a possibility that the processing sample before and after may cause contamination, and it is impossible to use dangerous chemicals or processing using an infectious biological sample.

本発明は、上述した事情に鑑みてなされたものであって、その目的は、簡易な送液方法でかつ各ウェルの液量ばらつきが少なく、加熱冷却や加温による化学反応、酵素反応を複数のサンプルに同時に行なうことができ且つ低コストの試料分析チップを提供することである。   The present invention has been made in view of the above-described circumstances, and its object is to provide a simple liquid feeding method with little variation in the amount of liquid in each well, and a plurality of chemical reactions and enzyme reactions by heating and cooling or heating. It is possible to provide a low-cost sample analysis chip that can be performed simultaneously on a plurality of samples.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明の試料分析チップは、基材上に複数の生化学処理構造を備え、該生化学処理構造は該基材の回転によってサンプル液の送液を行う仕組みを有し、該一つの生化学処理構造が少なくとも、複数の反応ウェルと、サンプルを反応ウェルに供給するための主流路と、主流路と反応ウェルを連通させる側路と、主流路にサンプルを供給するためのサンプル送液部と、余剰サンプルを保持するための余剰液貯留部と、余剰液貯留部の上方に向かって大気開放された空気抜き通路とを有し、前記主流路は反応ウェルよりも回転中心側に配されている事を特徴とし、上記生化学処理構造が該基材上に同心円状に配置された事を特徴とする。
In order to solve the above problems, the present invention proposes the following means.
The sample analysis chip of the present invention includes a plurality of biochemical processing structures on a base material, and the biochemical processing structure has a mechanism for feeding a sample liquid by rotation of the base material. The processing structure has at least a plurality of reaction wells, a main channel for supplying a sample to the reaction well, a side channel for communicating the main channel and the reaction well, and a sample feeding unit for supplying the sample to the main channel And a surplus liquid reservoir for holding the surplus sample, and an air vent passage that is open to the atmosphere above the surplus liquid reservoir, and the main flow path is disposed closer to the center of rotation than the reaction well. It is characterized in that the biochemical treatment structure is arranged concentrically on the substrate.

また、余剰液貯留部、サンプル送液部、主流路、反応ウェルの順に該回転の中心から距離が近い事が好ましい。 Further, it is preferable that the distance from the center of the rotation is short in the order of the surplus liquid storage part, the sample liquid supply part, the main flow path, and the reaction well.

また、前記余剰液貯留部は回転中心部に集合して形成されている事が好ましい。 Moreover, it is preferable that the said excess liquid storage part is gathered and formed in the rotation center part.

また、前記反応ウェルが基材の最外周部に配置される事で蛍光試料や色素等を基材側面から測光する事ができる。最外周部とは反応ウェルから基材側面までに測定を阻害する構造物が無い事をいう。 Further, the reaction well is arranged on the outermost peripheral portion of the base material, whereby a fluorescent sample, a dye or the like can be measured from the side surface of the base material. The outermost peripheral part means that there is no structure obstructing the measurement from the reaction well to the side surface of the substrate.

また、前記反応ウェルは外周部から3mm以内に配置される事が好ましい。 The reaction well is preferably arranged within 3 mm from the outer periphery.

また、前記主流路は波型に回転中心に近い山部と、回転中心から遠い谷部を有し、流路幅は、相対的に前記山部で小さく、前記谷部で大きいことが好ましい。   The main flow path preferably has a wave-like peak near the rotation center and a valley far from the rotation center, and the flow path width is relatively small at the peak and relatively large at the valley.

また、前記主流路の波型形状は左右対称形状である必要は無く、傾いた山型形状に形成する事によって基材の表面積を有効に利用し、本発明の試料分析チップを小型に作成することが可能となる。   Further, the corrugated shape of the main channel does not need to be a symmetrical shape, and the sample analysis chip of the present invention can be made small by effectively using the surface area of the substrate by forming it into an inclined mountain shape. It becomes possible.

また、前記ウェルは該基材に同心円状に配置されていることが好ましい。   The wells are preferably arranged concentrically on the substrate.

また、前記生化学処理構造は基材上に同心円状に配置され、且つ上記サンプル送液部の大気開放端も同心円状に配置されている事が好ましい。   Further, it is preferable that the biochemical treatment structure is arranged concentrically on the base material, and the air release end of the sample liquid feeding part is also arranged concentrically.

また、本発明の試料分析チップは、前記基材を回転させ、遠心力によるサンプル溶液の送液を行うための担持部が前記基材に設けられていることが好ましい。   In the sample analysis chip of the present invention, it is preferable that a support for rotating the substrate and feeding the sample solution by centrifugal force is provided on the substrate.

また、前記遠心のための担持部を前記基材の外周部に有することが好ましい。   Moreover, it is preferable to have the support part for the said centrifugation in the outer peripheral part of the said base material.

また、本発明の試料分析チップは、前記ウェル及び前記主流路が片側に形成された第一基材と、該第一基材と貼り合わせた第二基材とを有することが好ましい。   Moreover, it is preferable that the sample analysis chip of the present invention includes a first base material in which the well and the main channel are formed on one side, and a second base material bonded to the first base material.

また、前記サンプル送液部と前記空気抜き通路とは、いずれも前記主流路が形成されている側の面とは反対側の面において大気開放されていることが好ましく、前記上方に向かって大気開放された、とは基材の溝形状を下方に向けて設置を行い、上方に空気抜きが存在する事を示す。   Moreover, it is preferable that both the sample liquid feeding part and the air vent passage are open to the atmosphere on the surface opposite to the surface on which the main flow path is formed, and open upward to the atmosphere. “Done” means that the groove is formed with the groove shape of the base material facing downward, and there is an air vent upward.

また、前記余剰液貯留部における前記サンプル溶液の流通方向に直交する断面の面積は、前記主流路における前記サンプル溶液の流通方向に直交する断面の面積よりも大きいことが好ましい。   Moreover, it is preferable that the area of the cross section orthogonal to the flow direction of the sample solution in the surplus liquid storage part is larger than the area of the cross section orthogonal to the flow direction of the sample solution in the main channel.

また、前記余剰液貯留部の容積は、前記主流路の容積よりも大きいことが好ましいが、余剰サンプル溶液を保持するための容量が得られれば本発明の効果を活用する事は可能である。   Further, the volume of the surplus liquid reservoir is preferably larger than the volume of the main channel, but the effect of the present invention can be utilized if a capacity for holding the surplus sample solution is obtained.

また、前記余剰液貯留部の容積は、前記第一バッファ部の容積よりも大きく、前記第一バッファ部の容積と前記余剰液貯留部の容積との合計は、前記主流路の容積よりも大きいことが好ましいが、前述した事由によりこれに限定される物ではない。   Further, the volume of the excess liquid storage part is larger than the volume of the first buffer part, and the sum of the volume of the first buffer part and the volume of the excess liquid storage part is larger than the volume of the main flow path. Although it is preferable, it is not limited to this by the reason mentioned above.

また、前記サンプル送液部の他端及び前記空気抜き通路の他端を囲む壁状であって、前記流路に前記サンプル溶液が注入された後、前記サンプル送液部の他端及び前記空気抜き通路の他端を閉塞させることを目的とした、装置もしくは冶具によって変形し前記流路を密閉状態に保つことを可能としたリップ部を有することが好ましい。   Further, it is a wall shape surrounding the other end of the sample liquid feeding section and the other end of the air vent passage, and after the sample solution is injected into the flow path, the other end of the sample liquid feed section and the air vent path It is preferable to have a lip portion that can be deformed by an apparatus or a jig and that can keep the flow path in a sealed state for the purpose of closing the other end.

また、前記側路が、前記複数のウェルのうち当該側路が接続されたウェルと前記基材の回転中心とを結ぶ直線に対して傾いて形成されていることが好ましい。   Moreover, it is preferable that the said side path is inclined with respect to the straight line which connects the well to which the said side path was connected among the said several wells, and the rotation center of the said base material.

また、前記第一基材と前記第二基材との少なくともいずれかは光透過性材料で形成されていることが好ましい。   Moreover, it is preferable that at least any one of said 1st base material and said 2nd base material is formed with the light transmissive material.

また、前記第一基材が光透過性の樹脂材料であり、前記第二基材が金属材料であることが好ましい。   Moreover, it is preferable that said 1st base material is a transparent resin material, and said 2nd base material is a metal material.

本発明の試料分析方法は、本発明の試料分析チップを用いた試料分析方法であって、前記主流路に前記サンプル溶液を注入する工程と、前記基材を回転させて前記サンプル溶液を前記各ウェルに配液する工程と、を有することを特徴とする試料分析方法である。   The sample analysis method of the present invention is a sample analysis method using the sample analysis chip of the present invention, the step of injecting the sample solution into the main channel, and rotating the base material to each of the sample solutions. And a step of distributing the liquid to the well.

また、前記ウェルに前記サンプル溶液を配液する工程の後に、ミネラルオイルを前記各ウェルに配液する工程を有することが好ましい。   Moreover, it is preferable to have the process of distributing mineral oil to each said well after the process of distributing the said sample solution to the said well.

本発明の試料処理方法は、前記主流路に前記サンプルを注入する工程、前記基材を回転させて前記溶液を前記各ウェルに配液する工程、前記各ウェルを測光する工程を有することを特徴とする試料処理方法である。   The sample processing method of the present invention includes a step of injecting the sample into the main channel, a step of rotating the base material to distribute the solution to the wells, and a step of measuring the wells. This is a sample processing method.

本発明の遺伝子解析方法は、本発明の試料分析方法を用いたことを特徴とする遺伝子解析方法である。   The gene analysis method of the present invention is a gene analysis method characterized by using the sample analysis method of the present invention.

本発明の試料分析チップは、複数のサンプルを同時、または順次に効率良く処理する事が可能であり、小型で低コストな分析チップを作製する事が可能である。 The sample analysis chip of the present invention can efficiently process a plurality of samples simultaneously or sequentially, and can produce a small and low-cost analysis chip.

本発明の試料分析チップは、送液方法が簡易で各ウェルの液量ばらつきが少なく、加熱冷却や加温による化学反応、酵素反応を好適に行なうことができ且つ低コストである。   The sample analysis chip of the present invention is simple in liquid feeding method, has little variation in the amount of liquid in each well, can suitably perform chemical reaction and enzyme reaction by heating and cooling and heating, and is low in cost.

また、本発明の試料分析方法及び遺伝子解析方法によれば、分析精度及び再現性の高い分析を行なうことができる。   Moreover, according to the sample analysis method and gene analysis method of the present invention, analysis with high analysis accuracy and reproducibility can be performed.

また、本発明の試料分析方法及び遺伝子解析方法によれば、分析間での試料同士のコンタミネーションを防ぐ事ができる。   In addition, according to the sample analysis method and gene analysis method of the present invention, it is possible to prevent contamination between samples during analysis.

また、本発明の試料分析方法及び遺伝子解析方法によれば、危険な薬品や感染性の生体試料を安全に処理、分析する事ができる。   In addition, according to the sample analysis method and the gene analysis method of the present invention, dangerous chemicals and infectious biological samples can be safely processed and analyzed.

本発明の一実施形態の試料分析チップを示す第1面の平面図である。It is a top view of the 1st surface which shows the sample analysis chip of one embodiment of the present invention. 本発明の一実施形態の試料分析チップを示す第2面の平面図である。It is a top view of the 2nd surface which shows the sample analysis chip of one embodiment of the present invention. 同試料分析チップの第1面側の斜視図である。It is a perspective view of the 1st surface side of the sample analysis chip. 同試料分析チップの第2面側の斜視図である。It is a perspective view of the second surface side of the sample analysis chip. 本発明の一実施形態の試料分析チップを示す第1面の平面図である。It is a top view of the 1st surface which shows the sample analysis chip of one embodiment of the present invention. 本発明の一実施形態の試料分析チップを示す第2面の平面図である。It is a top view of the 2nd surface which shows the sample analysis chip of one embodiment of the present invention. 同試料分析チップの第1面側の斜視図である。It is a perspective view of the 1st surface side of the sample analysis chip. 同試料分析チップの第2面側の斜視図である。It is a perspective view of the second surface side of the sample analysis chip. 本発明における試料分析チップの分析方法の一例を示す構成図である。It is a block diagram which shows an example of the analysis method of the sample analysis chip | tip in this invention. 本発明における分析方法の一例を示す模式図である。It is a schematic diagram which shows an example of the analysis method in this invention. 本発明における試料分析チップの分析方法の一例を示す構成図である。It is a block diagram which shows an example of the analysis method of the sample analysis chip | tip in this invention. 本発明における分析方法の一例を示す模式図である。It is a schematic diagram which shows an example of the analysis method in this invention. 本発明における試料分析チップの一実施形態の簡略断面図である。It is a simplified sectional view of one embodiment of a sample analysis chip in the present invention.

本発明の一実施形態の試料分析チップについて図面に基づいて説明する。図1は、本実施形態の試料分析チップの一様態を示した第1面の平面図である。図2は、本実施形態の試料分析チップの一様態を示した第2面の平面図である。   A sample analysis chip according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of a first surface showing a uniform state of the sample analysis chip of the present embodiment. FIG. 2 is a plan view of a second surface showing a uniform state of the sample analysis chip of the present embodiment.

次に本発明の試料分析チップの製造方法について説明する。
まず、図1に示すように、成形型を使用した成形により、反応ウェル104及び流路(主流路106及び側路105を含む)を有する基材(第一基材)101を形成する。
Next, the manufacturing method of the sample analysis chip of the present invention will be described.
First, as shown in FIG. 1, a base material (first base material) 101 having a reaction well 104 and a flow path (including a main flow path 106 and a side path 105) is formed by molding using a molding die.

基材101は、厚さ方向の一方の面に、製造後のウェル104、主流路106、側路105、サンプル送液部102、空気抜き通路103、及び余剰液貯留部107なる溝状形状が形成されている。ここで、サンプル送液部102、空気抜き通路103は、基材101の厚さ方向の他方の面にも開口されている。また、前記他方の面に、サンプル送液部102、空気抜き通路103を囲む壁状形状を有するリップ部(不図示)を一体形成しても良い。   The base material 101 has a groove-like shape including a well 104, a main channel 106, a side channel 105, a sample liquid feeding unit 102, an air vent channel 103, and an excess liquid storage unit 107 after manufacturing on one surface in the thickness direction. Has been. Here, the sample liquid feeding section 102 and the air vent passage 103 are also opened on the other surface in the thickness direction of the substrate 101. Further, a lip portion (not shown) having a wall shape surrounding the sample liquid feeding portion 102 and the air vent passage 103 may be integrally formed on the other surface.

また、基材101の厚みが100μm〜3000μmの範囲にある場合、基材101の熱伝導性及び封止性の双方を好適に満足することができる。基材101の厚みが3000μmよりも大きいと、熱容量が大きくなり、熱応答性が低下するおそれがある。   Moreover, when the thickness of the base material 101 exists in the range of 100 micrometers-3000 micrometers, both the heat conductivity of the base material 101 and sealing performance can be satisfied suitably. When the thickness of the base material 101 is larger than 3000 μm, the heat capacity becomes large and the thermal responsiveness may be lowered.

基材101の材料としては、光透過性を有する樹脂を好適に使用することができる。また、ウェル104内における溶液に対して光学的分析(蛍光測定や比色測定など)をする場合には、基材101の透明性が高いことが好ましい。例えば、基材101の材料は、試料に影響を与えないものであれば特に制限はないが、特にポリプロピレン、ポリカーボネート、アクリルのいずれかを含む樹脂材料を用いれば、良好な可視光透過性を確保することができる。ポリプロピレンとしては、ホモポリプロピレンやポリプロピレンとポリエチレンとのランダム共重合体を使用することができる。また、アクリルとしては、ポリメタクリル酸メチル、または、メタクリル酸メチルとその他のメタクリル酸エステル、アクリル酸エステル、スチレンなどのモノマーとの共重合体を使用することができる。また、これらの樹脂材料を使用する場合、チップの耐熱性や強度を確保することもできる。樹脂材料以外としては、アルミニウム、銅、銀、ニッケル、真鍮、金等の金属材料を挙げることができる。金属材料を用いた場合、加えて熱伝導率及耐摩耗性等に優れる。   As a material for the base material 101, a resin having optical transparency can be suitably used. Further, when optical analysis (fluorescence measurement, colorimetric measurement, etc.) is performed on the solution in the well 104, it is preferable that the substrate 101 has high transparency. For example, the material of the base material 101 is not particularly limited as long as it does not affect the sample. However, if a resin material containing any of polypropylene, polycarbonate, and acrylic is used, good visible light transmission is ensured. can do. As polypropylene, homopolypropylene or a random copolymer of polypropylene and polyethylene can be used. Moreover, as an acryl, the copolymer of monomers, such as polymethyl methacrylate or methyl methacrylate, and other methacrylic acid ester, acrylic acid ester, styrene, can be used. Moreover, when using these resin materials, the heat resistance and intensity | strength of a chip | tip can also be ensured. Examples of the material other than the resin material include aluminum, copper, silver, nickel, brass, and gold. When a metal material is used, in addition, it has excellent thermal conductivity and wear resistance.

なお、基材101のウェル104の底部、もしくは外周方向の壁部を透明とすることで、蛍光等の検出・分析を外部から行うことができる。なお本発明における「透明」及び「光透過性」とは、形成した際の可視光域(波長350〜780nm)の全平均透過率が70%以上であるものとする。   In addition, by making the bottom part of the well 104 of the base material 101 or the wall part of the outer peripheral direction transparent, detection / analysis of fluorescence etc. can be performed from the outside. In the present invention, “transparent” and “light-transmitting” mean that the total average transmittance in the visible light region (wavelength 350 to 780 nm) when formed is 70% or more.

基材101の加工方法としては、樹脂材料の場合には、射出成形、真空成形等の各種樹脂成形法や、機械切削などを用いることができる。金属材料の場合には、厚手の基材を用いた研削加工やエッチング、薄手の金属シートにプレス加工や絞り加工を施すことで形成することができる。   As a processing method of the substrate 101, in the case of a resin material, various resin molding methods such as injection molding and vacuum molding, mechanical cutting, and the like can be used. In the case of a metal material, it can be formed by grinding or etching using a thick base material, or pressing or drawing a thin metal sheet.

また、基材101として特にポリプロピレン、ポリカーボネート、アクリルのいずれかを含む樹脂材料を用いた場合、良好な光透過性、耐熱性、強度を確保することができる。   In addition, when a resin material including any of polypropylene, polycarbonate, and acrylic is used as the base material 101, good light transmittance, heat resistance, and strength can be ensured.

図5、図6、図7、図8は本発明の試料分析チップの別の一形態である。   5, 6, 7, and 8 show another embodiment of the sample analysis chip of the present invention.

本発明の別の一形態では、反応ウェル104は円形ではなく、側路105の末端部がそのまま反応ウェルとして用いられている。   In another embodiment of the present invention, the reaction well 104 is not circular, and the end of the side passage 105 is used as it is as a reaction well.

主流路106は基材内で3本配置され、サンプル導入部102、空気抜き通路103、余剰液貯留部107それぞれを有して一基材内で3サンプルの試料分析が可能である。   Three main flow paths 106 are arranged in the base material, and each has a sample introduction part 102, an air vent passage 103, and an excess liquid storage part 107, and three samples can be analyzed in one base material.

図9は本発明の試料分析チップを処理するための一形態である。   FIG. 9 shows an embodiment for processing the sample analysis chip of the present invention.

本発明の一分析形態では、ウェル部104の上下を温調部材902で挟み込み、反応によって生じた蛍光波長等を測光装置901で読み取る事ができる。
図9では、温調部材902がチップ1000の表裏にあるが、どちらか片方でもよい。
In one analysis mode of the present invention, the upper and lower portions of the well portion 104 are sandwiched by the temperature adjustment member 902, and the fluorescence wavelength generated by the reaction can be read by the photometric device 901.
In FIG. 9, the temperature adjustment member 902 is on the front and back of the chip 1000, but either one may be used.

図10は本発明の一分析形態の測光方式の模式図であり、本発明の試料分析チップの外周形状を波型形状に形成する事により、ウェル内への励起、ウェル内からの発光面を大きく確保する事ができる。 FIG. 10 is a schematic diagram of a photometric method of an analysis form of the present invention. By forming the outer peripheral shape of the sample analysis chip of the present invention into a corrugated shape, excitation into the well and emission surface from the well are formed. It can be secured greatly.

図11は本発明の試料分析チップを処理するための別の一形態の斜視図である。 FIG. 11 is a perspective view of another embodiment for processing the sample analysis chip of the present invention.

図12は本発明の試料分析チップを処理するための別の一形態の平面模式図である。測光装置1001を矢印にそって走査し、ウェル内からの蛍光を含む電磁波を取得でき、かつ温調部材1002が試料分析チップの外周に沿った形状のため、密着面1003の面積が大きく、急加熱、急冷却を行う事ができる。 FIG. 12 is a schematic plan view of another embodiment for processing the sample analysis chip of the present invention. The photometric device 1001 is scanned along the arrow to acquire electromagnetic waves including fluorescence from within the well, and the temperature adjustment member 1002 has a shape along the outer periphery of the sample analysis chip. Heating and rapid cooling can be performed.

本発明の一分析形態ではウェル部104の第2面及び側面を、試料分析チップの外周形状に沿った温調部材1002で温調を行いつつ、測光装置1001を反応ウェル104の並びに沿って円周軌道でスキャニングして蛍光波長等の取得を行う事ができる。 In one analysis mode of the present invention, the photometric device 1001 is circularly arranged along the sequence of the reaction well 104 while the second surface and side surfaces of the well portion 104 are temperature-controlled by the temperature adjustment member 1002 along the outer peripheral shape of the sample analysis chip. It is possible to acquire the fluorescence wavelength and the like by scanning in the circumferential orbit.

図13は本発明の一実施形態の簡略した断面図であり、サンプル導入部102から主流路を通り空気抜き通路103まで第2面を上として模式図にしたものである。   FIG. 13 is a simplified cross-sectional view of one embodiment of the present invention, and is a schematic view with the second surface up from the sample introduction part 102 to the air vent passage 103 through the main flow path.

サンプル送液口102は送液するための部材、例えばピペットにより送液する場合、図13(b)の様なコーン形状であっても良い。 The sample liquid supply port 102 may have a cone shape as shown in FIG. 13B when liquid is supplied by a member for supplying liquid, for example, by a pipette.

また、余剰液貯留部107は主流路106に対して十分に断面積が広く、高さ方向にも広がっている事が望ましい。 Further, it is desirable that the surplus liquid reservoir 107 has a sufficiently large cross-sectional area with respect to the main channel 106 and also extends in the height direction.

サンプル送液部102、及び空気穴103には蓋をするためのリップ部501を作る事で上方への溶液の流出を防ぐ事が可能となり、反応中の内部の液の移動を最小限に抑える事が可能になるが、処理装置や別部材として蓋になるような機構を用意する場合や、反応液以外の溶液の流出が問題にならない場合は作る必要は無い。 It is possible to prevent the solution from flowing upward by making a lip portion 501 for covering the sample liquid feeding portion 102 and the air hole 103, and minimize the movement of the internal liquid during the reaction. However, it is not necessary to prepare a mechanism that serves as a lid as a processing device or a separate member, or when a solution other than the reaction solution does not cause a problem.

本発明の反応チップは、例えば核酸等の試料において生化学物質の検出や分析に用いることができる。特にSNPの変異の検出や、がんなどの遺伝子、生殖細胞や体細胞遺伝子の変異を検出する手法へ利用することができる。また、複数の溶液を混合する容器、反応容器として利用することが可能である。   The reaction chip of the present invention can be used for detection and analysis of biochemical substances in samples such as nucleic acids. In particular, it can be used for detection of mutations in SNPs and methods for detecting mutations in genes such as cancer, germ cells and somatic cells. Further, it can be used as a container or a reaction container for mixing a plurality of solutions.

101・・・ 基材
102・・・ サンプル送液部
103・・・ 空気抜き通路
104・・・ ウェル
105・・・ 側路
106・・・ 主流路
107・・・ 余剰液貯留部
DESCRIPTION OF SYMBOLS 101 ... Base material 102 ... Sample liquid feeding part 103 ... Air vent passage 104 ... Well 105 ... Side passage 106 ... Main flow path 107 ... Excess liquid storage part

Claims (19)

基材上に複数の生化学処理構造を備え、該生化学処理構造は該基材の回転によってサンプル液の送液を行う仕組みを有し、該一つの生化学処理構造が少なくとも、複数の反応ウェルと、サンプルを反応ウェルに供給するための主流路と、主流路と反応ウェルを連通させる側路と、主流路にサンプルを供給するためのサンプル送液部と、余剰サンプルを保持するための余剰液貯留部と、余剰液貯留部の上方に向かって大気開放された空気抜き通路とを有し、前記主流路は反応ウェルよりも回転中心側に配されている事を特徴とし、上記生化学処理構造が該基材上に同心円状に配置された事を特徴とした、試料分析チップ。   Provided with a plurality of biochemical treatment structures on a substrate, the biochemical treatment structure has a mechanism for feeding a sample liquid by rotation of the substrate, and the one biochemical treatment structure has at least a plurality of reactions. A well, a main channel for supplying the sample to the reaction well, a side channel for communicating the main channel and the reaction well, a sample liquid feeding unit for supplying the sample to the main channel, and for holding an excess sample A surplus liquid reservoir, and an air vent passage that is open to the atmosphere above the surplus liquid reservoir, wherein the main channel is disposed closer to the center of rotation than the reaction well. A sample analysis chip, characterized in that the treatment structures are arranged concentrically on the substrate. 余剰液貯留部、サンプル送液部、主流路、反応ウェルの順に該回転の中心から距離が近い事を特徴とした、請求項1に記載の試料分析チップ。 2. The sample analysis chip according to claim 1, wherein a distance from the center of the rotation is short in the order of an excess liquid storage part, a sample liquid supply part, a main flow path, and a reaction well. 前記余剰液貯留部は回転中心部に集合して形成されている事を特徴とした、請求項1に記載の試料分析チップ。 2. The sample analysis chip according to claim 1, wherein the surplus liquid storage part is formed by being gathered at a rotation center part. 3. 前記反応ウェルが基材の最外周部に配置される事で蛍光試料や色素等を基材側面から測光する事ができる事を特徴とした、請求項1に記載の試料分析チップ。 2. The sample analysis chip according to claim 1, wherein the reaction well is arranged on the outermost peripheral portion of the base material, whereby a fluorescent sample, a dye, or the like can be measured from the side surface of the base material. 前記反応ウェルは外周部から3mm以内に配置される事を特徴とした、請求項1に記載の試料分析チップ。 The sample analysis chip according to claim 1, wherein the reaction well is disposed within 3 mm from the outer periphery. 前記主流路は波型に回転中心に近い山部と、回転中心から遠い谷部を有し、流路幅は、相対的に前記山部で小さく、前記谷部で大きい事を特徴とした、請求項1に記載の試料分析チップ。   The main flow path has a peak part close to the rotation center in a corrugated form and a valley part far from the rotation center, and the flow path width is relatively small at the peak part and large at the valley part, The sample analysis chip according to claim 1. 前記主流路の波型形状は、傾いた山型形状に形成されている事を特徴とした、請求項1に記載の試料分析チップ。   The sample analysis chip according to claim 1, wherein the corrugated shape of the main channel is formed in an inclined mountain shape. 前記ウェルは該基材に同心円状に配置されている事を特徴とした、請求項1に記載の試料分析チップ。   The sample analysis chip according to claim 1, wherein the wells are arranged concentrically on the substrate. 前記生化学処理構造は基材上に同心円状に配置され、且つ上記サンプル送液部の大気開放端も同心円状に配置されている事を特徴とした、請求項1に記載の試料分析チップ。   2. The sample analysis chip according to claim 1, wherein the biochemical treatment structure is concentrically arranged on a base material, and an open end of the sample liquid feeding unit is also concentrically arranged. 前記試料分析チップは、前記基材を回転させ、遠心力によるサンプル溶液の送液を行うための担持部が前記基材に設けられている事を特徴とした、請求項1に記載の試料分析チップ。   2. The sample analysis according to claim 1, wherein the sample analysis chip is provided with a support for rotating the substrate and feeding the sample solution by centrifugal force. Chip. 前記遠心のための担持部を前記基材の外周部に有する事を特徴とした、請求項1に記載の試料分析チップ。   The sample analysis chip according to claim 1, further comprising a supporting portion for the centrifugation on an outer peripheral portion of the base material. 前記試料分析チップは、前記ウェル及び前記主流路が片側に形成された第一基材と、該第一基材と貼り合わせた第二基材とを有する事を特徴とした、請求項1に記載の試料分析チップ。   The sample analysis chip has a first base material in which the well and the main flow path are formed on one side, and a second base material bonded to the first base material. The sample analysis chip described. 前記サンプル送液部と前記空気抜き通路とは、いずれも前記主流路が形成されている側の面とは反対側の面において大気開放されている事を特徴とした、請求項1に記載の試料分析チップ。   2. The sample according to claim 1, wherein both the sample liquid feeding section and the air vent passage are open to the atmosphere on a surface opposite to a surface on which the main flow path is formed. Analysis chip. 前記余剰液貯留部における前記サンプル溶液の流通方向に直交する断面の面積は、前記主流路における前記サンプル溶液の流通方向に直交する断面の面積よりも大きい事を特徴とした、請求項1に記載の試料分析チップ。   The area of the cross section orthogonal to the flow direction of the sample solution in the surplus liquid storage part is larger than the area of the cross section orthogonal to the flow direction of the sample solution in the main flow path. Sample analysis chip. 前記サンプル送液部の他端及び前記空気抜き通路の他端を囲む壁状であって、弾性変形し前記流路を密閉状態に保つことを可能としたリップ部を有する事を特徴とした、請求項1に記載の試料分析チップ。   A wall shape surrounding the other end of the sample liquid feeding portion and the other end of the air vent passage, and having a lip portion that is elastically deformed and can keep the flow path sealed. Item 8. The sample analysis chip according to Item 1. 前記側路が、前記複数のウェルのうち当該側路が接続されたウェルと前記基材の回転中心とを結ぶ直線に対して傾いて形成されている事を特徴とした、請求項1に記載の試料分析チップ。   The said side path is inclined with respect to the straight line which connects the well to which the said side path was connected among these wells, and the rotation center of the said base material, It was characterized by the above-mentioned. Sample analysis chip. 前記第一基材と前記第二基材との少なくともいずれかは光透過性材料で形成されている事を特徴とした、請求項1に記載の試料分析チップ。   The sample analysis chip according to claim 1, wherein at least one of the first base material and the second base material is formed of a light transmissive material. 前記第一基材が光透過性の樹脂材料であり、前記第二基材が金属材料である事を特徴とした、請求項1に記載の試料分析チップ。   The sample analysis chip according to claim 1, wherein the first base material is a light-transmitting resin material, and the second base material is a metal material. 請求項1〜18のいずれか1項に記載の試料分析チップを用いた処理方法であって、前記主流路に前記サンプルを注入する工程、前記基材を回転させて前記溶液を前記各ウェルに配液する工程、前記各ウェルを測光する工程を有することを特徴とする試料処理方法。   A processing method using the sample analysis chip according to any one of claims 1 to 18, wherein the sample is injected into the main channel, and the substrate is rotated to put the solution into the wells. A sample processing method comprising a step of liquid distribution and a step of photometrically measuring each of the wells.
JP2012216827A 2012-09-28 2012-09-28 Sample analysis chip and analysis method for analyzing multiple samples Expired - Fee Related JP6155591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012216827A JP6155591B2 (en) 2012-09-28 2012-09-28 Sample analysis chip and analysis method for analyzing multiple samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012216827A JP6155591B2 (en) 2012-09-28 2012-09-28 Sample analysis chip and analysis method for analyzing multiple samples

Publications (2)

Publication Number Publication Date
JP2014070991A true JP2014070991A (en) 2014-04-21
JP6155591B2 JP6155591B2 (en) 2017-07-05

Family

ID=50746329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012216827A Expired - Fee Related JP6155591B2 (en) 2012-09-28 2012-09-28 Sample analysis chip and analysis method for analyzing multiple samples

Country Status (1)

Country Link
JP (1) JP6155591B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043196A1 (en) * 2014-09-16 2016-03-24 凸版印刷株式会社 Sample analysis chip
WO2017188441A1 (en) * 2016-04-28 2017-11-02 凸版印刷株式会社 Analysis device, analysis kit, and analysis system
CN108816301A (en) * 2018-08-09 2018-11-16 清华大学 Micro-fluidic chip and its packaging method, micro-fluidic chip encapsulation encapsulation accessory
CN113009136A (en) * 2020-08-21 2021-06-22 东莞东阳光医疗智能器件研发有限公司 Small-sized multi-index detection sample analysis device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529333A (en) * 2001-03-19 2004-09-24 ユィロス・アクチボラグ Structural unit that defines fluid function
WO2007116909A1 (en) * 2006-04-04 2007-10-18 Panasonic Corporation Panel for analyzing sample liquid
JP2008281500A (en) * 2007-05-14 2008-11-20 National Institute Of Advanced Industrial & Technology Microchip, and liquid dispensation method
US20080300148A1 (en) * 2007-06-04 2008-12-04 Samsung Electronics Co., Ltd. Microfluidic device for simultaneously conducting multiple analyses
JP2008546997A (en) * 2005-06-17 2008-12-25 オーミック・アクチボラゲット Optical reader
JP2009128367A (en) * 2007-11-24 2009-06-11 F Hoffmann La Roche Ag Analytical system and method for analyzing analyte contained in body fluid
WO2009111461A2 (en) * 2008-03-04 2009-09-11 University Of Utah Research Foundation Microfluidic flow cell
US20100071486A1 (en) * 2008-09-23 2010-03-25 Samsung Electronics Co., Ltd. Microfluidic device
WO2010113959A1 (en) * 2009-03-31 2010-10-07 凸版印刷株式会社 Sample analysis chip, sample analyzer using sample analysis chip, sample analysis method, and method of producing sample analysis chip
WO2011040504A1 (en) * 2009-09-30 2011-04-07 凸版印刷株式会社 Nucleic acid analyzer
JP2011196849A (en) * 2010-03-19 2011-10-06 Rohm Co Ltd Rotating analysis chip and measurement system using the same
US20110250695A1 (en) * 2009-10-14 2011-10-13 Roche Diagnostics Operations, Inc. Method, structure, device, kit and system for the automated analysis of liquid samples
US20120241035A1 (en) * 2011-03-25 2012-09-27 Ampoc Far-East Co., Ltd Microfluidic Device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529333A (en) * 2001-03-19 2004-09-24 ユィロス・アクチボラグ Structural unit that defines fluid function
JP2008546997A (en) * 2005-06-17 2008-12-25 オーミック・アクチボラゲット Optical reader
WO2007116909A1 (en) * 2006-04-04 2007-10-18 Panasonic Corporation Panel for analyzing sample liquid
JP2008281500A (en) * 2007-05-14 2008-11-20 National Institute Of Advanced Industrial & Technology Microchip, and liquid dispensation method
US20080300148A1 (en) * 2007-06-04 2008-12-04 Samsung Electronics Co., Ltd. Microfluidic device for simultaneously conducting multiple analyses
JP2009128367A (en) * 2007-11-24 2009-06-11 F Hoffmann La Roche Ag Analytical system and method for analyzing analyte contained in body fluid
WO2009111461A2 (en) * 2008-03-04 2009-09-11 University Of Utah Research Foundation Microfluidic flow cell
US20100071486A1 (en) * 2008-09-23 2010-03-25 Samsung Electronics Co., Ltd. Microfluidic device
WO2010113959A1 (en) * 2009-03-31 2010-10-07 凸版印刷株式会社 Sample analysis chip, sample analyzer using sample analysis chip, sample analysis method, and method of producing sample analysis chip
WO2011040504A1 (en) * 2009-09-30 2011-04-07 凸版印刷株式会社 Nucleic acid analyzer
US20110250695A1 (en) * 2009-10-14 2011-10-13 Roche Diagnostics Operations, Inc. Method, structure, device, kit and system for the automated analysis of liquid samples
JP2011196849A (en) * 2010-03-19 2011-10-06 Rohm Co Ltd Rotating analysis chip and measurement system using the same
US20120241035A1 (en) * 2011-03-25 2012-09-27 Ampoc Far-East Co., Ltd Microfluidic Device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043196A1 (en) * 2014-09-16 2016-03-24 凸版印刷株式会社 Sample analysis chip
JP2016061610A (en) * 2014-09-16 2016-04-25 凸版印刷株式会社 Sample analysis chip
US11559804B2 (en) 2016-04-28 2023-01-24 Toppan Printing Co., Ltd. Analysis devices, analysis kits, and analysis systems
JPWO2017188441A1 (en) * 2016-04-28 2019-02-28 凸版印刷株式会社 Analysis device, analysis kit, and analysis system
JP2021099344A (en) * 2016-04-28 2021-07-01 凸版印刷株式会社 analysis method
JP7036243B2 (en) 2016-04-28 2022-03-15 凸版印刷株式会社 analysis method
JP2022088401A (en) * 2016-04-28 2022-06-14 凸版印刷株式会社 analysis method
WO2017188441A1 (en) * 2016-04-28 2017-11-02 凸版印刷株式会社 Analysis device, analysis kit, and analysis system
JP7392749B2 (en) 2016-04-28 2023-12-06 Toppanホールディングス株式会社 analysis method
CN108816301A (en) * 2018-08-09 2018-11-16 清华大学 Micro-fluidic chip and its packaging method, micro-fluidic chip encapsulation encapsulation accessory
CN108816301B (en) * 2018-08-09 2024-06-11 清华大学 Microfluidic chip, packaging method thereof and packaging accessory for packaging microfluidic chip
CN113009136A (en) * 2020-08-21 2021-06-22 东莞东阳光医疗智能器件研发有限公司 Small-sized multi-index detection sample analysis device
CN113009136B (en) * 2020-08-21 2024-04-05 东莞东阳光医疗智能器件研发有限公司 Small multi-index detection sample analysis device

Also Published As

Publication number Publication date
JP6155591B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
US9453255B2 (en) Sample analysis chip, sample analysis method and gene analysis method
US7682565B2 (en) Assay apparatus and method using microfluidic arrays
EP2135626B1 (en) Strip for multiparametrics assays
US20060094108A1 (en) Thermal cycler for microfluidic array assays
CN102369443A (en) Sample analysis chip, sample analyzer using sample analysis chip, sample analysis method, and method of producing sample analysis chip
JP6323274B2 (en) Sample analysis chip
JPWO2005116202A1 (en) Reaction vessel, reaction measuring device, and liquid rotation processing device
JP2011196849A (en) Rotating analysis chip and measurement system using the same
JP6155591B2 (en) Sample analysis chip and analysis method for analyzing multiple samples
US7399628B2 (en) Body for flow-through cells and the use thereof
JP2011064475A (en) Sample analyzing chip, and device and method for analyzing sample using the same
JP6155589B2 (en) Biochemical reaction chip for treating or analyzing biochemical substances and analysis method thereof
JP2014219424A (en) Rotary analysis chip and measurement system using the same
JP2011080769A (en) Disk-like analyzing chip and measuring system using the same
US20090291025A1 (en) Microchip And Method Of Using The Same
JP2006349559A (en) Reaction container and substance detecting method using it
US6801875B1 (en) Methods, systems, and software for performing measurements
WO2020204067A1 (en) Flow channel device and inspection system
US8980621B2 (en) High-density multiwell-plate
JP6958547B2 (en) Reaction vessel and biochemical analysis method
JP2017053650A (en) Sample analysis chip, sample analysis method, and sample analysis device
WO2020100720A1 (en) Flow passage device for biogenic component examination and biogenic component examination system
JP2011214945A (en) Chip for biochemical reaction, and method of manufacturing the same
JP2020079726A (en) Chip for biological component inspection and biological component inspection system
Peng et al. Microfluidic microarray assembly and its applications to multi-sample DNA hybridization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6155591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees