JP2014066568A - Storage battery system and charge amount calculation method - Google Patents

Storage battery system and charge amount calculation method Download PDF

Info

Publication number
JP2014066568A
JP2014066568A JP2012211042A JP2012211042A JP2014066568A JP 2014066568 A JP2014066568 A JP 2014066568A JP 2012211042 A JP2012211042 A JP 2012211042A JP 2012211042 A JP2012211042 A JP 2012211042A JP 2014066568 A JP2014066568 A JP 2014066568A
Authority
JP
Japan
Prior art keywords
storage battery
charge amount
time
current
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012211042A
Other languages
Japanese (ja)
Other versions
JP6007704B2 (en
Inventor
Keiji Miyake
圭二 三宅
Katsuyoshi Fujita
勝義 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012211042A priority Critical patent/JP6007704B2/en
Publication of JP2014066568A publication Critical patent/JP2014066568A/en
Application granted granted Critical
Publication of JP6007704B2 publication Critical patent/JP6007704B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To easily calculate the amount of charge of a storage battery.SOLUTION: Map data is stored in a storage section 15 when the amount of charge in a state in which different types of storage batteries (lead acid battery Pb and nickel hydrogen battery Ni) are interconnected in parallel is calculated. In this map data, charge amount data of the storage battery when a predetermined amount of current flows in response to charge/discharge of the storage battery is associated with time data until the direction of the current flowing between the storage batteries in a non-load state after the predetermined amount of current flows changes. In the non-load state after charge or after discharge, a time measurement section 16 measures the time until the direction of the current flowing between the storage batteries changes. A control section 14 calculates the amount of charge of the storage battery on the basis of the time and map data.

Description

本発明は、並列に接続された複数の蓄電池の充電量を算出する算出部を有する蓄電池システム、及びその充電量算出方法に関する。   The present invention relates to a storage battery system having a calculation unit that calculates the charge amounts of a plurality of storage batteries connected in parallel, and a charge amount calculation method thereof.

EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、当該車両の原動機となる電動機(モータ)への供給電力を蓄える蓄電池が搭載されている。そして、蓄電池の充電量(SOC)を算出する方法として、例えば、特許文献1の充電率推定方法が知られている。特許文献1の充電率推定方法は、車両が無負荷状態である時の電圧を所定時間毎に測定し、その測定電圧を用いて開回路電圧の時間特性を近似する4次以上の指数減衰関数の係数を決定し、その係数に基づき算出される開回路電圧の収束値から充電率を推定する。   A vehicle such as an EV (Electric Vehicle) or a PHV (Plug in Hybrid Vehicle) is equipped with a storage battery that stores electric power supplied to an electric motor (motor) serving as a prime mover of the vehicle. As a method for calculating the charge amount (SOC) of the storage battery, for example, the charge rate estimation method of Patent Document 1 is known. The charging rate estimation method disclosed in Patent Document 1 measures a voltage when the vehicle is in a no-load state at every predetermined time, and uses the measured voltage to approximate a time characteristic of an open circuit voltage to an exponential decay function of the fourth or higher order. And the charging rate is estimated from the convergence value of the open circuit voltage calculated based on the coefficient.

特開2005−43339号公報JP 2005-43339 A

特許文献1の充電率推定方法では、電圧の測定をある程度長時間(例えば、6時間程度)に亘って行わないと、蓄電池の充電率を推定することができない。つまり、特許文献1の充電率推定方法は、長時間の電圧測定や、その結果を計算式に反映させるなど、充電率を推定するために複雑な処理を要する。   In the charging rate estimation method of Patent Document 1, it is impossible to estimate the charging rate of the storage battery unless the voltage is measured for a long time (for example, about 6 hours). That is, the charging rate estimation method of Patent Document 1 requires complicated processing to estimate the charging rate, such as long-time voltage measurement and reflecting the result in a calculation formula.

この発明は、このような従来の技術に存在する問題点に着目してなされたものであり、その目的は、蓄電池の充電量を容易に算出することにある。   The present invention has been made paying attention to such problems existing in the prior art, and an object thereof is to easily calculate the charge amount of the storage battery.

上記問題点を解決するために、請求項1に記載の発明は、種類の異なる蓄電池を並列に接続した電池部と、蓄電池間を流れる電流を計測する電流計測部と、前記電流計測部の計測結果をもとに、充電後又は放電後の無負荷状態時に蓄電池間を流れる電流の向きが変化するまでの時間を計測する時間計測部と、前記蓄電池の充電量を算出するための算出用情報を記憶する記憶部と、前記時間計測部が計測した計測時間と前記算出用情報をもとに、前記蓄電池の充電量を算出する算出部と、を備えたことを要旨とする。   In order to solve the above problems, the invention described in claim 1 is a battery unit in which different types of storage batteries are connected in parallel, a current measurement unit that measures a current flowing between the storage batteries, and a measurement by the current measurement unit. Based on the results, a time measurement unit that measures the time until the direction of the current flowing between the storage batteries changes in a no-load state after charging or discharging, and calculation information for calculating the charge amount of the storage battery And a calculation unit that calculates the charge amount of the storage battery based on the measurement time measured by the time measurement unit and the calculation information.

これによれば、時間計測部が計測する時間と算出用情報をもとに蓄電池の充電量を算出するので、蓄電池の充電量を容易に算出することができる。つまり、電流の向きが変化するまでの時間の計測によって充電量を算出するので、処理を簡素化できる。   According to this, since the charge amount of the storage battery is calculated based on the time measured by the time measuring unit and the calculation information, the charge amount of the storage battery can be easily calculated. That is, the amount of charge is calculated by measuring the time until the direction of the current changes, so that the processing can be simplified.

請求項2に記載の発明は、請求項1に記載の蓄電池システムにおいて、前記算出用情報は、蓄電池の充放電に伴って所定量の電流が流れた場合の前記蓄電池の充電量データと、前記所定量の電流が流れた後の無負荷状態時に蓄電池間を流れる電流の向きが変化するまでの時間データと、を対応付けたマップデータであり、前記算出部は、前記マップデータから前記計測時間に相当する時間データに対応付けられた充電量データを抽出することにより、前記蓄電池の充電量を算出することを要旨とする。   According to a second aspect of the present invention, in the storage battery system according to the first aspect, the calculation information includes charge amount data of the storage battery when a predetermined amount of current flows along with charge / discharge of the storage battery, and Map data that correlates time data until the direction of the current flowing between the storage batteries changes in a no-load state after a predetermined amount of current flows, and the calculation unit calculates the measurement time from the map data The gist is to calculate the charge amount of the storage battery by extracting the charge amount data associated with the time data corresponding to.

また、請求項3に記載の発明は、請求項2に記載の蓄電システムにおいて、前記蓄電池間の電圧を計測する電圧計測部を備え、前記マップデータには、前記充電量データに対してさらに前記電流の向きが変化した時の前記蓄電池間の電圧データが対応付けられており、前記算出部は、前記マップデータから前記計測時間に相当する時間データと前記電流の向きが変化した時に前記電圧計測部によって計測された電圧に相当する電圧データとに対応付けられた充電量データを抽出することにより、前記蓄電池の充電量を算出することを要旨とする。   Moreover, the invention according to claim 3 is the power storage system according to claim 2, further comprising a voltage measuring unit that measures a voltage between the storage batteries, and the map data further includes the charge amount data in relation to the charge amount data. Voltage data between the storage batteries when the direction of current changes is associated, and the calculation unit measures the voltage when the time data corresponding to the measurement time and the direction of the current change from the map data. The gist is to calculate a charge amount of the storage battery by extracting charge amount data associated with voltage data corresponding to the voltage measured by the unit.

請求項2又は請求項3の発明によれば、記憶部に算出用情報としてマップデータを予め記憶しておき、そのマップデータをもとに蓄電池の充電量を算出するので、蓄電池の充電量を容易に算出することができる。つまり、複雑な演算処理やその演算のために多くの情報を取得する必要がないので、処理を簡素化できる。   According to the invention of claim 2 or claim 3, map data is stored in advance as calculation information in the storage unit, and the charge amount of the storage battery is calculated based on the map data. It can be easily calculated. That is, since it is not necessary to acquire a large amount of information for complicated calculation processing or the calculation, the processing can be simplified.

請求項4に記載の発明は、並列に接続された種類の異なる蓄電池の充電量を算出する充電量算出方法であって、蓄電池間を流れる電流の計測結果をもとに、充電後又は放電後の無負荷状態時に蓄電池間を流れる電流の向きが変化するまでの時間を計測し、その計測された時間と前記蓄電池の充電量を算出するための算出用情報を用いて前記蓄電池の充電量を算出することを要旨とする。これによれば、請求項1に記載の発明と同様の作用効果を得ることができる。   The invention according to claim 4 is a charge amount calculation method for calculating a charge amount of different types of storage batteries connected in parallel, and after charging or after discharging based on a measurement result of a current flowing between the storage batteries. Measure the time until the direction of the current flowing between the storage batteries changes in the no-load state, and calculate the charge amount of the storage battery using the measured time and the calculation information for calculating the charge amount of the storage battery. The gist is to calculate. According to this, the same effect as the invention of the first aspect can be obtained.

請求項5に記載の発明は、請求項3に記載の充電量算出方法において、前記算出用情報は、蓄電池の充放電に伴って所定量の電流が流れた場合の前記蓄電池の充電量データと、前記所定量の電流が流れた後の無負荷状態時に蓄電池間を流れる電流の向きが変化するまでの時間データと、を対応付けたマップデータであり、前記マップデータから計測された時間に相当する時間データに対応付けられた充電量データを抽出することにより、前記蓄電池の充電量を算出することを要旨とする。これによれば、請求項2に記載の発明と同様の作用効果を得ることができる。   According to a fifth aspect of the present invention, in the charge amount calculation method according to the third aspect, the calculation information includes charge amount data of the storage battery when a predetermined amount of current flows along with charge / discharge of the storage battery. , Map data that correlates time data until the direction of the current flowing between the storage batteries changes in a no-load state after the predetermined amount of current flows, and corresponds to the time measured from the map data The gist is to calculate the charge amount of the storage battery by extracting the charge amount data associated with the time data. Accordingly, the same effect as that attained by the 2nd aspect can be attained.

請求項6に記載の発明は、請求項5に記載の充電量算出方法において、前記マップデータには、前記充電量データに対してさらに前記電流の向きが変化した時の前記蓄電池間の電圧データが対応付けられており、前記電流の向きが変化するまでの時間とともに前記電流が変化した時の蓄電池間の電圧を計測し、前記計測時間に相当する時間データと前記電圧に相当する電圧データに対応付けられた充電量データを抽出することにより、前記蓄電池の充電量を算出することを要旨とする。これによれば、請求項2,3に記載の発明と同様の作用効果を得ることができる。   The invention according to claim 6 is the charge amount calculation method according to claim 5, wherein the map data includes voltage data between the storage batteries when the direction of the current further changes with respect to the charge amount data. Is measured, and the voltage between the storage batteries when the current changes along with the time until the direction of the current changes, and the time data corresponding to the measurement time and the voltage data corresponding to the voltage are measured. The gist is to calculate the charge amount of the storage battery by extracting the associated charge amount data. According to this, the effect similar to the invention of Claim 2 and 3 can be acquired.

本発明によれば、蓄電池の充電量を容易に算出することができる。   According to the present invention, the charge amount of the storage battery can be easily calculated.

第1の実施形態における蓄電池システムの構成を示すブロック図。The block diagram which shows the structure of the storage battery system in 1st Embodiment. 充電後の各蓄電池の充電量を説明する説明図。Explanatory drawing explaining the charge amount of each storage battery after charge. 電流の向きか変わる時間を説明する説明図。Explanatory drawing explaining the time when the direction of an electric current changes. 充電中に各蓄電池に流れる電流量を示すグラフ。The graph which shows the electric current amount which flows into each storage battery during charge. 充電中に各蓄電池に流れる電流量を示すグラフ。The graph which shows the electric current amount which flows into each storage battery during charge. 充電中に各蓄電池に流れる電流量を示すグラフ。The graph which shows the electric current amount which flows into each storage battery during charge. 充電後に流れる還流電流の電流量を示すグラフ。The graph which shows the electric current amount of the reflux current which flows after charge. 充電後に流れる還流電流の電流量を示すグラフ。The graph which shows the electric current amount of the reflux current which flows after charge. 充電後に流れる還流電流の電流量を示すグラフ。The graph which shows the electric current amount of the reflux current which flows after charge. 充電量を算出するためのマップデータを説明する説明図。Explanatory drawing explaining the map data for calculating charge amount. 充電量の算出処理を示すフローチャート。The flowchart which shows the calculation process of charge amount. 第2の実施形態における蓄電池システムの構成を示すブロック図。The block diagram which shows the structure of the storage battery system in 2nd Embodiment. 充電後に流れる還流電流の電流量を示すグラフ。The graph which shows the electric current amount of the reflux current which flows after charge. 充電後に流れる還流電流の電流量を示すグラフ。The graph which shows the electric current amount of the reflux current which flows after charge. (a),(b)は充電量を算出するためのマップデータを説明する説明図。(A), (b) is explanatory drawing explaining the map data for calculating charge amount.

(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図1〜図11にしたがって説明する。
図1に示すように、EVやPHVなどの車両10には、当該車両10に搭載された電力供給対象となる負荷11への供給電力を蓄える電池部12を有する蓄電池システム13が搭載されている。負荷11は、車両10の原動機となる電動機(モータ)や、補機類などである。また、本実施形態の電池部12は、複数の蓄電池を並列に接続して構成される。より詳しくは、種類の異なる蓄電池を並列に接続して構成される。本実施形態では、種類の異なる蓄電池として、第1の蓄電池となる鉛蓄電池Pbと、第2の蓄電池となるニッケル水素電池Niと、が並列に接続されている。なお、電池部12を構成する各蓄電池は、同一種類の単電池を組電池化したものである。
(First embodiment)
A first embodiment of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, a vehicle 10 such as an EV or a PHV is equipped with a storage battery system 13 having a battery unit 12 that stores power supplied to a load 11 that is a power supply target mounted on the vehicle 10. . The load 11 is an electric motor (motor) that becomes a prime mover of the vehicle 10, auxiliary machines, and the like. The battery unit 12 of the present embodiment is configured by connecting a plurality of storage batteries in parallel. More specifically, different types of storage batteries are connected in parallel. In this embodiment, as different types of storage batteries, a lead storage battery Pb serving as a first storage battery and a nickel hydride battery Ni serving as a second storage battery are connected in parallel. In addition, each storage battery which comprises the battery part 12 is what assembled the cell of the same kind into an assembled battery.

蓄電池システム13は、算出部としての制御部14と、記憶部15と、時間計測部16と、を有するコントローラ17を備えている。制御部14は、所定の演算処理を行うECU(エレクトロニックコントロールユニット)などのコンピュータで構成される。記憶部15は、蓄電池の充電量を算出するための制御プログラムや、算出用情報としてのマップデータなどの各種情報を記憶する。時間計測部16は、時間を計測するタイマで構成される。   The storage battery system 13 includes a controller 17 having a control unit 14 as a calculation unit, a storage unit 15, and a time measurement unit 16. The control unit 14 is configured by a computer such as an ECU (Electronic Control Unit) that performs predetermined arithmetic processing. The memory | storage part 15 memorize | stores various information, such as a control program for calculating the charge amount of a storage battery, and map data as information for calculation. The time measuring unit 16 includes a timer that measures time.

また、蓄電池システム13は、外部電源18に接続される図示しない充電用プラグを介して供給される電力を充電用の電力に変換して充電する充電器19を備えている。充電器19は、コントローラ17に接続されており、当該コントローラ17によって制御される。また、蓄電池システム13は、鉛蓄電池Pbに流れる電流を計測する第1の電流計測部としての電流計20と、ニッケル水素電池Niに流れる電流を計測する第2の電流計測部としての電流計21と、を備えている。電流計20,21は、コントローラ17に接続されており、計測結果をコントローラ17に送信する。   Further, the storage battery system 13 includes a charger 19 that converts electric power supplied via a charging plug (not shown) connected to the external power source 18 into electric power for charging and charges the electric power. The charger 19 is connected to the controller 17 and is controlled by the controller 17. In addition, the storage battery system 13 includes an ammeter 20 as a first current measurement unit that measures the current flowing through the lead storage battery Pb, and an ammeter 21 as a second current measurement unit that measures the current flowing through the nickel metal hydride battery Ni. And. The ammeters 20 and 21 are connected to the controller 17 and transmit measurement results to the controller 17.

本実施形態の蓄電池システム13では、記憶部15に記憶されている充電量算出用のマップデータMDを用いて、充放電後の各蓄電池の充電量(SOC)を算出する。マップデータMDは、シミュレーション結果をもとに事前に作成されている。SOC(State Of Charge )は、蓄電池の容量に対して充電されている充電量を比率で表したものである。   In the storage battery system 13 of this embodiment, the charge amount (SOC) of each storage battery after charge / discharge is calculated using the map data MD for charge amount calculation stored in the storage unit 15. The map data MD is created in advance based on the simulation result. The SOC (State Of Charge) represents the amount of charge charged with respect to the capacity of the storage battery as a ratio.

本実施形態で説明するシミュレーションでは、複数種類(本実施形態では3種類)の充電電流(所定量の電流に相当する)を、所定時間、流したときの各蓄電池の充電量を算出する。なお、充電量を算出する際には、充電開始時の各蓄電池の充電量を一定量に調整する。また、上記シミュレーションでは、充電後の無負荷状態時に蓄電池間に流れる還流電流の測定を行う。無負荷状態とは、電流を流していない状態である。しかし、蓄電池を並列に接続した場合は、電気的に無負荷状態としても、個々の蓄電池には電流が流れている場合がある。このときに流れる電流が、還流電流である。つまり、種類の異なる蓄電池は、その内部抵抗が相違している。このため、充放電時において各蓄電池へ入出力される電流量も内部抵抗の相違によって異なる。その結果、電気的に無負荷状態にすると、蓄電池間の電圧を平衡化させるために蓄電池間において前述した還流電流が流れる。この還流電流は、それぞれの蓄電池が本来の電位に戻るまで流れる。   In the simulation described in the present embodiment, the charge amount of each storage battery when a plurality of types (three types in the present embodiment) of charge currents (corresponding to a predetermined amount of current) is supplied for a predetermined time is calculated. In addition, when calculating charge amount, the charge amount of each storage battery at the time of a charge start is adjusted to a fixed amount. Moreover, in the said simulation, the reflux current which flows between storage batteries in the no-load state after charge is measured. The no-load state is a state where no current is flowing. However, when the storage batteries are connected in parallel, current may flow through the individual storage batteries even if they are electrically unloaded. The current flowing at this time is the reflux current. That is, different types of storage batteries have different internal resistances. For this reason, the amount of current input to and output from each storage battery during charging and discharging also varies depending on the difference in internal resistance. As a result, when the load is electrically unloaded, the above-described reflux current flows between the storage batteries in order to balance the voltage between the storage batteries. This reflux current flows until each storage battery returns to its original potential.

本実施形態で説明するシミュレーションにおいて還流電流の測定では、電流の流れる方向が変化するまでの時間を計測する。電流の流れる方向は、無負荷状態となる直前に流れていた電流によって異なる。つまり、還流電流は、無負荷状態となった時に、鉛蓄電池Pbとニッケル水素電池Niにおいて、電圧の高い蓄電池側から電圧の低い蓄電池側へ流れる。例えば、鉛蓄電池Pbとニッケル水素電池Niは、その内部抵抗を比較した場合、ニッケル水素電池Niの内部抵抗の方が鉛蓄電池Pbの内部抵抗に比して小さい。このため、充電時に流す充電電流は、ニッケル水素電池Ni側へ流れ易い。その結果、充電後の無負荷状態では、ニッケル水素電池Niから鉛蓄電池Pbへ向けて還流電流が流れる。そして、還流電流は、鉛蓄電池Pbとニッケル水素電池Niの電圧が均衡してくると向きが変化する。そして、本実施形態では、上記したシミュレーションの結果をもとに、図10に示すようなマップデータMDを事前に作成して記憶部15に記憶する。   In the simulation described in the present embodiment, in the measurement of the return current, the time until the direction in which the current flows changes is measured. The direction in which the current flows varies depending on the current that flows immediately before the no-load state. In other words, the reflux current flows from the high-voltage storage battery side to the low-voltage storage battery side in the lead storage battery Pb and the nickel-metal hydride battery Ni when the no-load state occurs. For example, when the internal resistances of the lead storage battery Pb and the nickel metal hydride battery Ni are compared, the internal resistance of the nickel metal hydride battery Ni is smaller than the internal resistance of the lead storage battery Pb. For this reason, the charging current that flows during charging tends to flow toward the nickel metal hydride battery Ni. As a result, in a no-load state after charging, a reflux current flows from the nickel metal hydride battery Ni toward the lead storage battery Pb. The direction of the reflux current changes when the voltages of the lead storage battery Pb and the nickel metal hydride battery Ni are balanced. In the present embodiment, map data MD as shown in FIG. 10 is created in advance and stored in the storage unit 15 based on the simulation results described above.

以下、シミュレーション結果の具体例を説明する。
充電後の各蓄電池(鉛蓄電池Pbとニッケル水素電池Ni)の充電量は、電流積算量から算出することができる。電流積算量は、充電時に蓄電池へ流れる電流量と時間の積算によって算出できる。
Hereinafter, specific examples of simulation results will be described.
The charge amount of each storage battery (lead storage battery Pb and nickel metal hydride battery Ni) after charging can be calculated from the current accumulated amount. The accumulated current amount can be calculated by integrating the amount of current flowing to the storage battery during charging and time.

図2に示すように、充電電流をIa,Ib,Ic[A]とした場合の鉛蓄電池Pbのそれぞれの充電量は、PD1,PD2,PD3となる。充電電流は、IaよりもIbが大きく、IbよりもIcが大きい。そして、鉛蓄電池Pbへ流れる電流量は、図4〜図6に符号「Pb」を付した一点鎖線で示すように、充電電流の大きさに比例して大きくなる。その結果、異なる充電電流を同一時間の間、鉛蓄電池Pbへ流した場合は、充電電流が大きいほど鉛蓄電池Pbの充電量も多くなる。つまり、図2に示す鉛蓄電池Pbの充電量は、PD1よりもPD2が多く、PD2よりもPD3が多くなる。これにより、鉛蓄電池Pbにおける充電電流と充電量の対応付けができる。なお、各充電電流Ia,Ib,Icは、例えば100[A]、150[A]、200[A]に設定される。   As shown in FIG. 2, when the charging current is Ia, Ib, Ic [A], the respective charge amounts of the lead storage battery Pb are PD1, PD2, and PD3. The charging current has a larger Ib than Ia and a larger Ic than Ib. Then, the amount of current flowing to the lead storage battery Pb increases in proportion to the magnitude of the charging current, as shown by the alternate long and short dash line with the sign “Pb” in FIGS. As a result, when different charging currents are supplied to the lead storage battery Pb for the same time, the charge amount of the lead storage battery Pb increases as the charging current increases. That is, the charge amount of the lead storage battery Pb shown in FIG. 2 is more PD2 than PD1 and more PD3 than PD2. Thereby, the charge current and charge amount in the lead storage battery Pb can be associated. The charging currents Ia, Ib, and Ic are set to 100 [A], 150 [A], and 200 [A], for example.

また、図2に示すように、充電電流をIa,Ib,Ic[A]とした場合のニッケル水素電池Niのそれぞれの充電量は、ND1,ND2,ND3となる。そして、ニッケル水素電池Niへ流れる電流量は、図4〜図6に符号「Ni」を付した実線で示すように、充電電流の大きさに比例して大きくなる。その結果、異なる充電電流を同一時間の間、ニッケル水素電池Niへ流した場合は、充電電流が大きいほどニッケル水素電池Niの充電量も多くなる。つまり、図2に示す充電量は、ND1よりもND2が多く、ND2よりもND3が多い。これにより、ニッケル水素電池Niにおける充電電流と充電量の対応付けができる。   Further, as shown in FIG. 2, when the charging currents are Ia, Ib, and Ic [A], the respective charge amounts of the nickel metal hydride battery Ni are ND1, ND2, and ND3. The amount of current flowing to the nickel metal hydride battery Ni increases in proportion to the magnitude of the charging current, as shown by the solid line with the sign “Ni” in FIGS. As a result, when different charging currents are supplied to the nickel metal hydride battery Ni for the same time, the charge amount of the nickel metal hydride battery Ni increases as the charging current increases. That is, the amount of charge shown in FIG. 2 is larger than ND1 and more than ND2. Thereby, the charge current and charge amount in the nickel metal hydride battery Ni can be associated.

なお、鉛蓄電池Pbとニッケル水素電池Niの内部抵抗は、鉛蓄電池Pbよりもニッケル水素電池Niの方が小さい。つまり、ニッケル水素電池Niは、鉛蓄電池Pbよりも電流が流れ易い。このため、図4〜図6に示すように、同一の充電電流とした場合であっても、鉛蓄電池Pbよりもニッケル水素電池Niの方が流れる電流量が大きくなる。これにより、充電電流を流す時間を同一時間とした場合、その時間内における鉛蓄電池Pbとニッケル水素電池Niの充電量は、鉛蓄電池Pbよりもニッケル水素電池Niの方が多くなる。   The internal resistance of the lead storage battery Pb and the nickel metal hydride battery Ni is smaller in the nickel metal hydride battery Ni than in the lead storage battery Pb. That is, the nickel-metal hydride battery Ni flows more easily than the lead storage battery Pb. For this reason, as shown in FIGS. 4-6, even if it is a case where it is set as the same charging current, the electric current amount which the nickel hydride battery Ni flows rather than the lead acid battery Pb becomes large. Thereby, when the time which flows charging current is made into the same time, the amount of charge of lead acid battery Pb and nickel metal hydride battery Ni in that time becomes larger in nickel metal hydride battery Ni than lead acid battery Pb.

そして、蓄電池の充電後、無負荷状態になると、蓄電池間には還流電流が流れる。還流電流の向きが変化する時間は、充電時に各蓄電池へ流した充電電流の大きさと、その充電電流を流した時間に依存して変化する。すなわち、図3に示すように、還流電流の向きが変化する時間[s]は、充電電流Ia,Ib,Ic毎に時間T1,T2,T3となる。   And if it will be in a no-load state after charge of a storage battery, a reflux current will flow between storage batteries. The time for which the direction of the reflux current changes varies depending on the magnitude of the charging current supplied to each storage battery during charging and the time for which the charging current is supplied. That is, as shown in FIG. 3, the time [s] during which the direction of the reflux current changes becomes time T1, T2, T3 for each charging current Ia, Ib, Ic.

還流電流の向きが変化する時間[s]は、充電電流Ia,Ib,Icに応じて、図7〜図9に示すように異なる。図7〜図9において、符号「Pb」を付した一点鎖線は鉛蓄電池Pb側の還流電流の変遷を示し、符号「Ni」を付した実線はニッケル水素電池Ni側の還流電流の変遷を示す。これらの図から理解できるように、充電後は、ニッケル水素電池Niから鉛蓄電池Pbへ向けて還流電流が流れる。そして、その還流電流の向きは、時間の経過によって鉛蓄電池Pbからニッケル水素電池Niへ向けて流れる方向に変化する。また、還流電流の向きが変化する時間[s]は、図7〜図9に示すように、充電電流が大きいほど長くなる。つまり、図3に示す時間T1〜T3は、時間T1よりも時間T2が長く、時間T2よりも時間T3が長い。なお、時間T1,T2,T3は、90[s]、150[s]、180[s]程度の時間となる。   The time [s] during which the direction of the reflux current changes varies depending on the charging currents Ia, Ib, and Ic as shown in FIGS. 7 to 9, the alternate long and short dash line with the symbol “Pb” indicates the transition of the reflux current on the lead storage battery Pb side, and the solid line with the symbol “Ni” indicates the transition of the reflux current on the nickel metal hydride battery Ni side. . As can be understood from these figures, after charging, a reflux current flows from the nickel metal hydride battery Ni to the lead storage battery Pb. The direction of the reflux current changes in the direction of flowing from the lead storage battery Pb toward the nickel metal hydride battery Ni as time elapses. Moreover, as shown in FIGS. 7 to 9, the time [s] for changing the direction of the reflux current becomes longer as the charging current is larger. That is, the times T1 to T3 shown in FIG. 3 are longer than the time T1 and longer than the time T2. The times T1, T2, and T3 are about 90 [s], 150 [s], and 180 [s].

このようなシミュレーション結果をまとめると、図10に示すマップデータMDを作成することができる。上記のシミュレーション結果では、蓄電池に対して充電電流を変更して流した場合に充電電流毎の各蓄電池の充電量が算出されているとともに、充電電流毎に還流電流の向きが変化する時間が算出されている。このため、還流電流の向きが変化する時間は、充電電流と対応することから、その充電電流を流した場合の各蓄電池の充電量とも対応することになる。したがって、図10に示すように、蓄電池毎に、図2に示す充電量と、図3に示す還流電流の向きが変化する時間と、を対応付けたマップデータMDを作成することができる。本実施形態では、図2に示す充電量が、蓄電池の充電に伴って所定量の電流が流れた場合の蓄電池の充電量データとなる。また、本実施形態では、図3に示す還流電流の向きが変化する時間が、所定量の電流が流れた後の無負荷状態時に蓄電池間を流れる電流の向きが変化するまでの時間データとなる。   By summarizing such simulation results, the map data MD shown in FIG. 10 can be created. In the above simulation results, when the charging current is changed for the storage battery, the amount of charge of each storage battery is calculated for each charging current, and the time for the direction of the return current to change for each charging current is calculated. Has been. For this reason, since the time when the direction of the reflux current changes corresponds to the charging current, it also corresponds to the charge amount of each storage battery when the charging current flows. Therefore, as shown in FIG. 10, for each storage battery, map data MD in which the charge amount shown in FIG. 2 is associated with the time during which the direction of the return current shown in FIG. 3 changes can be created. In the present embodiment, the charge amount shown in FIG. 2 becomes the charge amount data of the storage battery when a predetermined amount of current flows along with the charge of the storage battery. In the present embodiment, the time when the direction of the return current shown in FIG. 3 changes is time data until the direction of the current flowing between the storage batteries changes in a no-load state after a predetermined amount of current flows. .

以下、制御部14によって蓄電池の充電量を算出する手順を、図11にしたがって説明する。
充放電後、制御部14は、時間計測部16に時間の計測を開始させる。また、制御部14は、電流計20,21の計測結果として、鉛蓄電池Pb側の電流量とニッケル水素電池Ni側の電流量をそれぞれ取得する(ステップS10)。また、制御部14は、取得した電流量をもとに還流電流の向きが変化したか否かを判定する(ステップS11)。
Hereinafter, the procedure for calculating the charge amount of the storage battery by the control unit 14 will be described with reference to FIG.
After charging and discharging, the control unit 14 causes the time measurement unit 16 to start measuring time. Further, the control unit 14 acquires the current amount on the lead storage battery Pb side and the current amount on the nickel metal hydride battery Ni side as the measurement results of the ammeters 20 and 21, respectively (step S10). Further, the control unit 14 determines whether or not the direction of the return current has changed based on the acquired amount of current (step S11).

そして、制御部14は、還流電流の向きが変化したことを検出した場合はステップS11を肯定判定してステップS12に移行する。一方、制御部14は、還流電流の向きが変化したことを検出していない場合はステップS11を否定判定してステップS10に移行し、ステップS10からの処理を繰り返す。   If the control unit 14 detects that the direction of the reflux current has changed, the control unit 14 makes an affirmative determination in step S11 and proceeds to step S12. On the other hand, when it is not detected that the direction of the return current has changed, the control unit 14 makes a negative determination in step S11, proceeds to step S10, and repeats the processing from step S10.

ステップS12に移行した制御部14は、時間計測部16の計測結果として時間、すなわち還流電流の向きが変化した時間を取得する。次に、制御部14は、記憶部15に記憶してあるマップデータMDを参照する(ステップS13)。そして、制御部14は、ステップS12で取得した時間をもとにマップデータMDから各蓄電池の充電量(SOC)を取得する(ステップS14)。例えば、制御部14は、時間T1を取得している場合、マップデータMDから、鉛蓄電池Pbの充電量としてPD1を取得するとともに、ニッケル水素電池Niの充電量としてND1を取得する。このように時間をもとにマップデータMDから充電量を取得することにより、制御部14は、鉛蓄電池Pbとニッケル水素電池Niの充電量を算出する。つまり、上記の処理により、時間を計測するという簡便な処理により、蓄電池の充電量が算出(推定)される。   Control part 14 which shifted to Step S12 acquires time, ie, time when the direction of return current changed, as a measurement result of time measurement part 16. Next, the control unit 14 refers to the map data MD stored in the storage unit 15 (step S13). And the control part 14 acquires the charge amount (SOC) of each storage battery from map data MD based on the time acquired by step S12 (step S14). For example, when acquiring the time T1, the control unit 14 acquires PD1 as the charge amount of the lead storage battery Pb and ND1 as the charge amount of the nickel metal hydride battery Ni from the map data MD. Thus, by acquiring the charge amount from the map data MD based on the time, the control unit 14 calculates the charge amounts of the lead storage battery Pb and the nickel metal hydride battery Ni. That is, the amount of charge of the storage battery is calculated (estimated) by a simple process of measuring time by the above process.

次に、本実施形態の蓄電池システム13の作用を説明する。
記憶部15には、シミュレーションで事前に算出した各蓄電池の充電量と還流電流の向きが変化する時間を対応付けたマップデータMDが記憶されている。このため、制御部14は、各蓄電池の充電量を算出する場合、蓄電池間を流れる電流を各電流計20,21の計測結果をもとに監視する。そして、制御部14は、各電流計20,21の計測結果をもとに還流電流の向きが変化したことを検出した場合、時間計測部16から時間を取得する。つまり、このとき取得した時間が、還流電流の向きが変化した時間となる。そして、制御部14は、取得した時間と記憶部15のマップデータMDをもとに、各蓄電池(鉛蓄電池Pbとニッケル水素電池Ni)の充電量を算出する。
Next, the effect | action of the storage battery system 13 of this embodiment is demonstrated.
The storage unit 15 stores map data MD in which the amount of charge of each storage battery calculated in advance by simulation is associated with the time when the direction of the reflux current changes. For this reason, the control part 14 monitors the electric current which flows between storage batteries based on the measurement result of each ammeter 20,21, when calculating the charge amount of each storage battery. When the control unit 14 detects that the direction of the reflux current has changed based on the measurement results of the ammeters 20 and 21, the control unit 14 acquires time from the time measurement unit 16. That is, the time acquired at this time is the time when the direction of the reflux current is changed. And the control part 14 calculates the charge amount of each storage battery (lead storage battery Pb and nickel metal hydride battery Ni) based on the acquired time and the map data MD of the memory | storage part 15. FIG.

したがって、本実施形態によれば、以下に示す効果を得ることができる。
(1)時間計測部16が計測する時間と算出用情報(マップデータMD)をもとに蓄電池(鉛蓄電池Pbとニッケル水素電池Ni)の充電量を算出するので、蓄電池の充電量を容易に算出することができる。つまり、電流の向きが変化するまでの時間を計測すれば良く、処理を簡素化できる。
Therefore, according to the present embodiment, the following effects can be obtained.
(1) Since the charge amount of the storage battery (lead storage battery Pb and nickel metal hydride battery Ni) is calculated based on the time measured by the time measuring unit 16 and the calculation information (map data MD), the charge amount of the storage battery can be easily Can be calculated. That is, it is only necessary to measure the time until the current direction changes, and the processing can be simplified.

(2)記憶部15にマップデータMDを予め記憶しておき、そのマップデータMDをもとに蓄電池(鉛蓄電池Pbとニッケル水素電池Ni)の充電量を算出するので、蓄電池の充電量を容易に算出することができる。つまり、複雑な演算処理やその演算のために多くの情報を取得する必要がないので、処理を簡素化できる。   (2) Since the map data MD is stored in the storage unit 15 in advance and the charge amount of the storage battery (lead storage battery Pb and nickel metal hydride battery Ni) is calculated based on the map data MD, the charge amount of the storage battery is easy. Can be calculated. That is, since it is not necessary to acquire a large amount of information for complicated calculation processing or the calculation, the processing can be simplified.

(3)また、マップデータMDを使用するので、データの更新や変更などを容易に行うことができる。また、マップデータMDから充電量を算出するので、取得したデータによって生じ得る演算誤差などの影響を受けることなく、より精度の高い充電量を算出することができる。   (3) Since the map data MD is used, data can be easily updated or changed. Further, since the charge amount is calculated from the map data MD, it is possible to calculate the charge amount with higher accuracy without being affected by a calculation error or the like that may be caused by the acquired data.

(4)本実施形態の充電量算出方法を用いることで、種類の異なる蓄電池を並列接続した電池部12を有する蓄電池システム13を構築しても、各蓄電池の充電量を容易に、かつ精度良く算出することができる。つまり、蓄電池システム13を構築する場合に要求される仕様に柔軟に対応可能な電池部12を構成することができる。   (4) Even if the storage battery system 13 having the battery unit 12 in which different types of storage batteries are connected in parallel is constructed by using the charge amount calculation method of the present embodiment, the charge amount of each storage battery can be easily and accurately set. Can be calculated. That is, it is possible to configure the battery unit 12 that can flexibly cope with specifications required when the storage battery system 13 is constructed.

(第2の実施形態)
以下、第2の実施形態を図12〜図15にしたがって説明する。
なお、以下に説明する実施形態では、既に説明した実施形態と同一構成について同一符号を付すなどして、その重複する説明を省略又は簡略する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to FIGS.
Note that, in the embodiments described below, the same reference numerals are given to the same configurations as those of the embodiments already described, and redundant descriptions thereof are omitted or simplified.

図12に示すように、本実施形態の蓄電池システム13は、鉛蓄電池Pbとニッケル水素電池Niの間の電圧を計測する電圧計測部としての電圧計22を備えている。電圧計22は、コントローラ17に接続されており、計測結果をコントローラ17に送信する。   As shown in FIG. 12, the storage battery system 13 of this embodiment includes a voltmeter 22 as a voltage measurement unit that measures a voltage between the lead storage battery Pb and the nickel metal hydride battery Ni. The voltmeter 22 is connected to the controller 17 and transmits a measurement result to the controller 17.

図13及び図14に示すように、充電後の無負荷状態時に蓄電池間に流れる還流電流の流れる向きが変化するまでの時間Txは、充電を行う前の蓄電池の初期充電量(初期SOC)などの要因で、異なる充電電流で充電した場合であっても同一時間となる場合がある。このため、本実施形態では、上記のように時間Txが同一時間となる場合でも、充電量(SOC)を算出し得るように構成されている。   As shown in FIGS. 13 and 14, the time Tx until the flow direction of the reflux current flowing between the storage batteries changes in the no-load state after charging is the initial charge amount (initial SOC) of the storage battery before charging, etc. For this reason, even when charging is performed with different charging currents, the same time may occur. For this reason, in this embodiment, it is comprised so that charge amount (SOC) can be calculated even when time Tx becomes the same time as mentioned above.

本実施形態では、還流電流の流れる向きが変化する時の蓄電池間の電圧を電圧計22によって計測し、その計測結果を、充電量の算出に加味している。蓄電池間の電圧は、図13及び図14に示すように、蓄電池間を流れる還流電流の大小によって変化する。例えば、図13に示すように最大電流I1の還流電流が流れる場合の電圧V1と、図14に示すように最大電流I1よりも大きい最大電流I2の還流電流が流れる場合の電圧V2を比較すると、最大電流I2の還流電流が流れる場合の方が電圧は大きくなる。このため、本実施形態では、無負荷状態時に流れる還流電流の大小に応じて電圧が変化することに着目し、還流電流の向きが変化する時間とその時の電圧をもとに各蓄電池の充電量を算出し得るようにマップデータMDを構築している。   In this embodiment, the voltmeter 22 measures the voltage between the storage batteries when the flow direction of the reflux current changes, and the measurement result is added to the calculation of the charge amount. As shown in FIGS. 13 and 14, the voltage between the storage batteries changes depending on the magnitude of the reflux current flowing between the storage batteries. For example, when comparing the voltage V1 when the return current of the maximum current I1 flows as shown in FIG. 13 and the voltage V2 when the return current of the maximum current I2 larger than the maximum current I1 flows as shown in FIG. The voltage becomes larger when the return current of the maximum current I2 flows. For this reason, in this embodiment, focusing on the fact that the voltage changes according to the magnitude of the return current flowing in the no-load state, the amount of charge of each storage battery based on the time when the direction of the return current changes and the voltage at that time The map data MD is constructed so that can be calculated.

図15(a),(b)に示すように、本実施形態のマップデータMD1,MD2は、各蓄電池の充電量に対して、還流電流の流れる向きが変化するまでの時間Ta1〜Tanとその時の電圧V1〜Vnを対応付けている。なお、図15(a)に示すマップデータMD1は鉛蓄電池Pbの充電量を示すマップデータであり、図15(b)に示すマップデータMD2はニッケル水素電池Niの充電量を示すマップデータである。そして、これらのマップデータMD1,MD2は、事前にシミュレーションを行い、その結果をもとに構築している。つまり、初期充電量を異ならせた状態で所定の充電電流を流して充電し、その時の還流電流の向きが変化する時間と電圧を抽出する。そして、上記の抽出を複数の充電電流で行い、その結果をもとに、時間Ta1〜Tan、電圧V1〜Vn、及び充電量Pb1−1〜Pbn−n,Ni1−1〜Nin−nを対応付けることでマップデータMD1,MD2を構築する。なお、マップデータMD1,MD2における電圧V1〜Vnが電圧データとなる。   As shown in FIGS. 15A and 15B, the map data MD1 and MD2 of the present embodiment include the times Ta1 to Tan and the time until the flow direction of the return current changes with respect to the charge amount of each storage battery. Are associated with each other. Note that the map data MD1 shown in FIG. 15A is map data indicating the charge amount of the lead storage battery Pb, and the map data MD2 shown in FIG. 15B is map data indicating the charge amount of the nickel metal hydride battery Ni. . These map data MD1 and MD2 are constructed based on the result of a simulation performed in advance. That is, charging is performed by flowing a predetermined charging current in a state where the initial charging amount is different, and the time and voltage at which the direction of the reflux current changes at that time are extracted. Then, the above extraction is performed with a plurality of charging currents, and based on the results, time Ta1 to Tan, voltages V1 to Vn, and charge amounts Pb1-1 to Pbn-n, Ni1-1 to Nin-n are associated. Thus, the map data MD1 and MD2 are constructed. The voltages V1 to Vn in the map data MD1 and MD2 are voltage data.

以下、本実施形態の蓄電池システム13の作用を説明する。
制御部14は、記憶部15に記憶しているマップデータMD1,MD2を用いて各蓄電池の充電量を算出する。つまり、制御部14は、充放電後、時間計測部16に時間の計測を開始させるとともに、各電流計20,21の計測結果をもとに還流電流の向きが変化したか否かを判定する。そして、制御部14は、還流電流の向きが変化したことを検出すると、その時の時間を時間計測部16から取得するとともに、その時の蓄電池間の電圧を電圧計22から取得する。これにより、制御部14は、取得した時間と電圧をもとにマップデータMD1,MD2から各蓄電池の充電量(SOC)を取得する。例えば、制御部14は、時間T1と電圧V1を取得している場合、マップデータMD1から鉛蓄電池Pbの充電量としてPb1−1を取得するとともに、マップデータMD2からニッケル水素電池Niの充電量としてNi1−1を取得する。
Hereinafter, the operation of the storage battery system 13 of the present embodiment will be described.
The control unit 14 calculates the charge amount of each storage battery using the map data MD1, MD2 stored in the storage unit 15. That is, the control unit 14 causes the time measurement unit 16 to start measuring time after charging and discharging, and determines whether or not the direction of the reflux current has changed based on the measurement results of the ammeters 20 and 21. . And if the control part 14 detects that the direction of a return current changed, while acquiring the time at that time from the time measurement part 16, it acquires the voltage between the storage batteries at that time from the voltmeter 22. FIG. Thereby, the control part 14 acquires the charge amount (SOC) of each storage battery from map data MD1, MD2 based on the acquired time and voltage. For example, when acquiring the time T1 and the voltage V1, the control unit 14 acquires Pb1-1 as the charge amount of the lead storage battery Pb from the map data MD1, and as the charge amount of the nickel metal hydride battery Ni from the map data MD2. Acquire Ni1-1.

したがって、本実施形態によれば、第1の実施形態の効果(1)〜(4)に加えて、以下に示す効果を得ることができる。
(5)還流電流の向きが変化する時間Txが同一の場合であっても、マップデータMD1,MD2をもとに還流電流の向きが変化した時の時間とその時の蓄電池間の電圧から各蓄電池の充電量を容易に算出することができる。したがって、充電量を算出する場合には時間と電圧を計測すれば良いので、処理を簡素化することができる。また、充電量の算出精度を向上させることができる。
Therefore, according to this embodiment, in addition to the effects (1) to (4) of the first embodiment, the following effects can be obtained.
(5) Even if the time Tx during which the direction of the return current changes is the same, each storage battery is determined from the time when the direction of the return current changes based on the map data MD1, MD2 and the voltage between the storage batteries at that time. The amount of charge can be easily calculated. Therefore, when calculating the charge amount, it is only necessary to measure time and voltage, so that the processing can be simplified. In addition, the calculation accuracy of the charge amount can be improved.

なお、上記実施形態は以下のように変更してもよい。
○ 実施形態で説明したマップデータMDは、充電時のシミュレーション結果をもとに作成されているが、同様に放電時のシミュレーション結果をもとにマップデータを作成することもできる。そして、これらのマップデータを記憶部15に記憶しておくことで、充放電後の蓄電池の充電量を算出することができる。
In addition, you may change the said embodiment as follows.
The map data MD described in the embodiment is created based on the simulation result at the time of charging. Similarly, the map data can be created based on the simulation result at the time of discharging. And by storing these map data in the memory | storage part 15, the charge amount of the storage battery after charging / discharging is computable.

○ 実施形態で説明したマップデータMDは、3種類の充電電流をもとに作成されているが、4種類以上の充電電流をもとに作成しても良い。
○ 時間を係数として、演算式を用いて充電量を算出しても良い。
The map data MD described in the embodiment is created based on three types of charging currents, but may be created based on four or more types of charging currents.
○ The amount of charge may be calculated using an arithmetic expression using time as a coefficient.

○ 蓄電池の組み合わせを変更しても良い。例えば、鉛蓄電池Pbとリチウムイオン電池を組み合わせても良い。また、鉛蓄電池Pbとキャパシタを組み合わせても良い。
○ 3種類以上の蓄電池を並列に接続した電池部12に変更しても良い。例えば、鉛蓄電池Pbと、ニッケル水素電池Niと、リチウムイオン電池とを並列に接続しても良い。
○ The combination of storage batteries may be changed. For example, a lead storage battery Pb and a lithium ion battery may be combined. Moreover, you may combine lead storage battery Pb and a capacitor.
O You may change to the battery part 12 which connected three or more types of storage batteries in parallel. For example, a lead storage battery Pb, a nickel metal hydride battery Ni, and a lithium ion battery may be connected in parallel.

○ 蓄電池システム13は、EVやPHVなどの車両10に限らず、蓄電池の電力で電動機を駆動させる、例えばフォークリフトなどの産業用車両に搭載しても良い。また、蓄電池システム13は、車載用に限らず、定置用に具体化しても良い。   The storage battery system 13 is not limited to the vehicle 10 such as EV or PHV, but may be mounted on an industrial vehicle such as a forklift that drives the electric motor with the power of the storage battery. Moreover, the storage battery system 13 may be embodied not only for in-vehicle use but for stationary use.

次に、上記実施形態及び別例から把握できる技術的思想を以下に追記する。
(イ)蓄電池に蓄えられた電力によって負荷を駆動させる車両に搭載されていることを特徴とする請求項1〜請求項3のうち何れか一項に記載の蓄電池システム。
Next, a technical idea that can be grasped from the above embodiment and another example will be added below.
(A) The storage battery system according to any one of claims 1 to 3, wherein the storage battery system is mounted on a vehicle that drives a load with electric power stored in the storage battery.

(ロ)第1の蓄電池と、前記第1の蓄電池に並列に接続されるとともに、前記第1の蓄電池とは異なる種類の第2の蓄電池と、前記第1の蓄電池へ流れる電流を計測する第1の電流計測部と、前記第2の蓄電池へ流れる電流を計測する第2の電流計測部と、前記第1の電流計測部及び前記第2の電流計測部の計測結果をもとに、充電後又は放電後の無負荷状態時に前記第1の蓄電池と前記第2の蓄電池の間を流れる電流の向きが変化するまでの時間を計測する時間計測部と、前記第1の蓄電池と前記第2の蓄電池の充電量を算出するための算出用情報を記憶する記憶部と、前記時間と前記算出用情報をもとに、前記第1の蓄電池及び前記第2の蓄電池の充電量を算出する算出部と、を備えたことを特徴とする蓄電池システム。   (B) a first storage battery, a second storage battery connected in parallel to the first storage battery, a second storage battery of a type different from the first storage battery, and a current flowing through the first storage battery; Charging based on the measurement results of the first current measurement unit, the second current measurement unit that measures the current flowing to the second storage battery, and the first current measurement unit and the second current measurement unit A time measuring unit for measuring a time until a direction of a current flowing between the first storage battery and the second storage battery changes in a no-load state after or after discharge, the first storage battery, and the second storage A storage unit for storing calculation information for calculating the charge amount of the storage battery, and a calculation for calculating the charge amounts of the first storage battery and the second storage battery based on the time and the calculation information And a storage battery system.

(ハ)第1の蓄電池と、前記第1の蓄電池に並列に接続されるとともに、前記第1の蓄電池とは異なる種類の第2の蓄電池と、前記第1の蓄電池へ流れる電流を計測する第1の電流計測部と、前記第2の蓄電池へ流れる電流を計測する第2の電流計測部と、前記第1の電流計測部及び前記第2の電流計測部の計測結果をもとに、充電後又は放電後の無負荷状態時に前記第1の蓄電池と前記第2の蓄電池の間を流れる電流の向きが変化するまでの時間を計測する時間計測部と、前記電流の向きが変化した時の各蓄電池間の電圧を計測する電圧計測部と、前記第1の蓄電池と前記第2の蓄電池の充電量を算出するための算出用情報を記憶する記憶部と、前記時間、前記電圧、及び前記算出用情報をもとに、前記第1の蓄電池及び前記第2の蓄電池の充電量を算出する算出部と、を備えたことを特徴とする蓄電池システム。   (C) a first storage battery, a second storage battery connected in parallel to the first storage battery, a second storage battery of a different type from the first storage battery, and a current flowing through the first storage battery; Charging based on the measurement results of the first current measurement unit, the second current measurement unit that measures the current flowing to the second storage battery, and the first current measurement unit and the second current measurement unit A time measuring unit for measuring the time until the direction of the current flowing between the first storage battery and the second storage battery changes in a no-load state after or after discharging, and when the direction of the current changes A voltage measuring unit that measures a voltage between the storage batteries, a storage unit that stores calculation information for calculating a charge amount of the first storage battery and the second storage battery, the time, the voltage, and the Based on the calculation information, the first storage battery and the second storage battery Battery system characterized by comprising a, a calculation unit for calculating an amount of charge.

(ニ)第1の蓄電池と、前記第1の蓄電池に並列に接続されるとともに前記第1の蓄電池とは異なる種類の第2の蓄電池の充電量を算出する充電量算出方法であって、前記第1の蓄電池と前記第2の蓄電池に流れる電流の計測結果をもとに、充電後又は放電後の無負荷状態時に前記第1の蓄電池と前記第2の蓄電池の間を流れる電流の向きが変化するまでの時間を計測し、その計測時間と前記蓄電池の充電量を算出すための算出用情報を用いて前記第1の蓄電池と前記第2の蓄電池の充電量を算出することを特徴とする充電量算出方法。   (D) a charge amount calculation method for calculating a charge amount of a second storage battery that is connected in parallel to the first storage battery and the first storage battery and is different from the first storage battery, Based on the measurement result of the current flowing through the first storage battery and the second storage battery, the direction of the current flowing between the first storage battery and the second storage battery in the no-load state after charging or discharging is determined. It measures the time until it changes, and calculates the charge amounts of the first storage battery and the second storage battery using the measurement time and information for calculating the charge amount of the storage battery. Charge amount calculation method.

(ホ)第1の蓄電池と、前記第1の蓄電池に並列に接続されるとともに前記第1の蓄電池とは異なる種類の第2の蓄電池の充電量を算出する充電量算出方法であって、前記第1の蓄電池と前記第2の蓄電池に流れる電流の計測結果をもとに、充電後又は放電後の無負荷状態時に前記第1の蓄電池と前記第2の蓄電池の間を流れる電流の向きが変化するまでの時間を計測するとともに前記電流が変化した時の各蓄電池間の電圧を計測し、計測時間、電圧及び前記蓄電池の充電量を算出すための算出用情報を用いて前記第1の蓄電池と前記第2の蓄電池の充電量を算出することを特徴とする充電量算出方法。   (E) a charge amount calculation method for calculating a charge amount of a first storage battery and a second storage battery that is connected in parallel to the first storage battery and is different from the first storage battery; Based on the measurement result of the current flowing through the first storage battery and the second storage battery, the direction of the current flowing between the first storage battery and the second storage battery in the no-load state after charging or discharging is determined. Measure the time until change, measure the voltage between the storage batteries when the current changes, and use the calculation information for calculating the measurement time, the voltage and the charge amount of the storage battery, the first A charge amount calculation method for calculating a charge amount of a storage battery and the second storage battery.

Pb…鉛蓄電池、Ni…ニッケル水素電池、T1〜T3…時間、MD,MD1,MD2…マップデータ、12…電池部、13…蓄電池システム、14…制御部、15…記憶部、16…時間計測部、20,21…電流計、22…電圧計。   Pb: lead storage battery, Ni: nickel metal hydride battery, T1-T3: time, MD, MD1, MD2 ... map data, 12: battery unit, 13 ... storage battery system, 14 ... control unit, 15 ... storage unit, 16 ... time measurement Part, 20, 21 ... ammeter, 22 ... voltmeter.

Claims (6)

種類の異なる蓄電池を並列に接続した電池部と、
蓄電池間を流れる電流を計測する電流計測部と、
前記電流計測部の計測結果をもとに、充電後又は放電後の無負荷状態時に蓄電池間を流れる電流の向きが変化するまでの時間を計測する時間計測部と、
前記蓄電池の充電量を算出するための算出用情報を記憶する記憶部と、
前記時間計測部が計測した計測時間と前記算出用情報をもとに、前記蓄電池の充電量を算出する算出部と、を備えたことを特徴とする蓄電池システム。
A battery unit in which different types of storage batteries are connected in parallel;
A current measuring unit for measuring the current flowing between the storage batteries;
Based on the measurement result of the current measuring unit, a time measuring unit that measures the time until the direction of the current flowing between the storage batteries changes in a no-load state after charging or discharging, and
A storage unit for storing calculation information for calculating the charge amount of the storage battery;
A storage battery system comprising: a calculation unit that calculates a charge amount of the storage battery based on the measurement time measured by the time measurement unit and the information for calculation.
前記算出用情報は、蓄電池の充放電に伴って所定量の電流が流れた場合の前記蓄電池の充電量データと、前記所定量の電流が流れた後の無負荷状態時に蓄電池間を流れる電流の向きが変化するまでの時間データと、を対応付けたマップデータであり、
前記算出部は、前記マップデータから前記計測時間に相当する時間データに対応付けられた充電量データを抽出することにより、前記蓄電池の充電量を算出する請求項1に記載の蓄電池システム。
The calculation information includes the charge amount data of the storage battery when a predetermined amount of current flows along with charge / discharge of the storage battery, and the current flowing between the storage batteries in a no-load state after the predetermined amount of current flows. Map data that correlates time data until the direction changes,
The storage battery system according to claim 1, wherein the calculation unit calculates a charge amount of the storage battery by extracting charge amount data associated with time data corresponding to the measurement time from the map data.
前記蓄電池間の電圧を計測する電圧計測部を備え、
前記マップデータには、前記充電量データに対してさらに前記電流の向きが変化した時の前記蓄電池間の電圧データが対応付けられており、
前記算出部は、前記マップデータから前記計測時間に相当する時間データと前記電流の向きが変化した時に前記電圧計測部によって計測された電圧に相当する電圧データとに対応付けられた充電量データを抽出することにより、前記蓄電池の充電量を算出する請求項2に記載の蓄電池システム。
A voltage measuring unit for measuring the voltage between the storage batteries,
The map data is associated with voltage data between the storage batteries when the direction of the current further changes with respect to the charge amount data,
The calculation unit obtains charge amount data associated with time data corresponding to the measurement time from the map data and voltage data corresponding to the voltage measured by the voltage measurement unit when the direction of the current changes. The storage battery system according to claim 2, wherein the amount of charge of the storage battery is calculated by extraction.
並列に接続された種類の異なる蓄電池の充電量を算出する充電量算出方法であって、
蓄電池間を流れる電流の計測結果をもとに、充電後又は放電後の無負荷状態時に蓄電池間を流れる電流の向きが変化するまでの時間を計測し、その計測時間と前記蓄電池の充電量を算出するための算出用情報を用いて前記蓄電池の充電量を算出することを特徴とする充電量算出方法。
A charge amount calculation method for calculating the charge amount of different types of storage batteries connected in parallel,
Based on the measurement result of the current flowing between the storage batteries, measure the time until the direction of the current flowing between the storage batteries changes in the no-load state after charging or discharging, and the measurement time and the charge amount of the storage battery A charge amount calculation method, wherein the charge amount of the storage battery is calculated using calculation information for calculation.
前記算出用情報は、蓄電池の充放電に伴って所定量の電流が流れた場合の前記蓄電池の充電量データと、前記所定量の電流が流れた後の無負荷状態時に蓄電池間を流れる電流の向きが変化するまでの時間データと、を対応付けたマップデータであり、前記マップデータから前記計測時間に相当する時間データに対応付けられた充電量データを抽出することにより、前記蓄電池の充電量を算出する請求項4に記載の充電量算出方法。   The calculation information includes the charge amount data of the storage battery when a predetermined amount of current flows along with charge / discharge of the storage battery, and the current flowing between the storage batteries in a no-load state after the predetermined amount of current flows. Map data that correlates time data until the direction changes, and by extracting charge amount data associated with time data corresponding to the measurement time from the map data, the charge amount of the storage battery The charge amount calculation method according to claim 4, wherein the charge amount is calculated. 前記マップデータには、前記充電量データに対してさらに前記電流の向きが変化した時の前記蓄電池間の電圧データが対応付けられており、
前記電流の向きが変化するまでの時間とともに前記電流が変化した時の蓄電池間の電圧を計測し、前記計測時間に相当する時間データと前記電圧に相当する電圧データに対応付けられた充電量データを抽出することにより、前記蓄電池の充電量を算出する請求項5に記載の充電量算出方法。
The map data is associated with voltage data between the storage batteries when the direction of the current further changes with respect to the charge amount data,
Measure the voltage between the storage batteries when the current changes along with the time until the direction of the current changes, and charge amount data associated with the time data corresponding to the measurement time and the voltage data corresponding to the voltage The charge amount calculation method according to claim 5, wherein the charge amount of the storage battery is calculated by extracting the charge amount.
JP2012211042A 2012-09-25 2012-09-25 Storage battery system and charge amount calculation method Expired - Fee Related JP6007704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012211042A JP6007704B2 (en) 2012-09-25 2012-09-25 Storage battery system and charge amount calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012211042A JP6007704B2 (en) 2012-09-25 2012-09-25 Storage battery system and charge amount calculation method

Publications (2)

Publication Number Publication Date
JP2014066568A true JP2014066568A (en) 2014-04-17
JP6007704B2 JP6007704B2 (en) 2016-10-12

Family

ID=50743125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012211042A Expired - Fee Related JP6007704B2 (en) 2012-09-25 2012-09-25 Storage battery system and charge amount calculation method

Country Status (1)

Country Link
JP (1) JP6007704B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678463A (en) * 1992-08-27 1994-03-18 Hitachi Ltd Secondary battery device and method of measuring residual capacity
JP2003134689A (en) * 2001-10-24 2003-05-09 Shin Kobe Electric Mach Co Ltd Power supply system
JP2004025979A (en) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd Power supply system for travelling vehicle
JP2007122882A (en) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd Charge state balance recovery method of battery system
JP2008226511A (en) * 2007-03-09 2008-09-25 Hitachi Ltd Charge and discharge control device, and railroad vehicle using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678463A (en) * 1992-08-27 1994-03-18 Hitachi Ltd Secondary battery device and method of measuring residual capacity
JP2003134689A (en) * 2001-10-24 2003-05-09 Shin Kobe Electric Mach Co Ltd Power supply system
JP2004025979A (en) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd Power supply system for travelling vehicle
JP2007122882A (en) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd Charge state balance recovery method of battery system
JP2008226511A (en) * 2007-03-09 2008-09-25 Hitachi Ltd Charge and discharge control device, and railroad vehicle using it

Also Published As

Publication number Publication date
JP6007704B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
CN104422917B (en) The fault detection of current sensor in range
CN106324318B (en) Method for measuring battery current
CN104237795B (en) The unbalance detection of multiple battery units is measured by identical voltage sensor
JP2013158087A (en) Power storage system and charged state estimation method
US9755281B2 (en) Method for connecting battery cells in a battery, battery, and monitoring device
JP5741389B2 (en) A method for estimating a full charge capacity of a power storage device and a power storage system.
US20150303532A1 (en) Battery System and Associated Method for Determining the Internal Resistance of Battery Cells or Battery Modules of Said Battery System
CN102565716A (en) Apparatus for calculating residual capacity of secondary battery
CN103389466A (en) Electric storage device management apparatus, electric storage device pack, electric storage device management program, and method of estimating state of charge
JPWO2016140152A1 (en) Battery control device and vehicle system
JP2015040832A (en) Power storage system and method of estimating full charge capacity of power storage device
JPWO2012137456A1 (en) Remaining life judgment method
JP2014044149A (en) Method for estimating deterioration of lithium ion battery
JP2013171691A (en) Power storage system
JP5409840B2 (en) Apparatus for estimating cell state of battery pack
CN115038611A (en) Battery power limit estimation based on RC model
CN102890245A (en) Method for determining a charge acceptance, and method for charging a rechargeable battery
JP2013121242A (en) Soc estimation device and battery pack
JP2015118022A (en) Battery temperature estimation system
JP2012220344A (en) Cell voltage measurement device
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP5904916B2 (en) Battery soundness calculation device and soundness calculation method
JP6164147B2 (en) Battery control system and control method thereof
JP5768772B2 (en) Power storage system and charging rate estimation method
JP2013096785A (en) Battery deterioration determination device and battery deterioration determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R151 Written notification of patent or utility model registration

Ref document number: 6007704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees