JP2014066465A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014066465A
JP2014066465A JP2012213392A JP2012213392A JP2014066465A JP 2014066465 A JP2014066465 A JP 2014066465A JP 2012213392 A JP2012213392 A JP 2012213392A JP 2012213392 A JP2012213392 A JP 2012213392A JP 2014066465 A JP2014066465 A JP 2014066465A
Authority
JP
Japan
Prior art keywords
protection
compressor
pipe connection
short pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012213392A
Other languages
Japanese (ja)
Other versions
JP5907846B2 (en
Inventor
Yuki Arai
有騎 新井
Fukuji Tsukada
福治 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012213392A priority Critical patent/JP5907846B2/en
Publication of JP2014066465A publication Critical patent/JP2014066465A/en
Application granted granted Critical
Publication of JP5907846B2 publication Critical patent/JP5907846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress frequent generation of protection stop of a compressor even in short pipe connection and to improve user's comfortableness.SOLUTION: An air conditioner constituting a refrigeration cycle by connecting an outdoor unit and an indoor unit by connection pipes includes: a protection control part which monitors a physical quantity concerned with the refrigeration cycle, and when the monitored physical quantity reaches a protection control determination value, starts protection control so that a compressor should not be stopped; a protection stop part which when the monitored physical quantity reaches a protection stop determination value, stops protection of the compressor; short pipe connection determination means for determining short pipe connection in which a length of a connection pipe is a set value or less; and a protection control correction part which when the short pipe connection determination means determines the short pipe connection, corrects the protection control determination value to avoid the protection stop.

Description

本発明は、室外機と室内機が接続配管により接続された空気調和機に係り、特に接続する接続配管の長さによって余剰冷媒が変化するものに関する。   The present invention relates to an air conditioner in which an outdoor unit and an indoor unit are connected by a connection pipe, and more particularly to a type in which surplus refrigerant changes depending on the length of the connection pipe to be connected.

本技術分野の背景技術として、特開平04−003866号公報(特許文献1)がある。この公報には、吸入過熱度または吐出過熱度を用いて冷媒量判定を行っている。また、特開平04−151475号公報(特許文献2)がある。この公報には、吸入過熱度と吐出過熱度、室内・室外温度、所定の標準長さに対する配管長比から冷媒量判定を行っている。   As background art in this technical field, there is JP-A-04-003866 (Patent Document 1). In this publication, the refrigerant amount is determined by using the suction superheat degree or the discharge superheat degree. Japanese Patent Laid-Open No. 04-151475 (Patent Document 2) is available. In this publication, the refrigerant amount is determined from the suction superheat degree and the discharge superheat degree, the indoor / outdoor temperature, and the pipe length ratio with respect to a predetermined standard length.

特開平04−003866号公報Japanese Patent Laid-Open No. 04-003866 特開平04−151475号公報Japanese Patent Laid-Open No. 04-151475

空気調和機の据付作業を軽減するため、出荷段階から一定冷媒量を室外機に封入することで、室外機と室内機を接続する配管(以下、接続配管と呼ぶ)が所定の長さまで据付時の冷媒封入を不要(以下、チャージレスと呼ぶ)とした空気調和機がある。一方、前記空気調和機はデメリットとして、接続配管長さの短い短配管接続で据付けた場合、サイクル容積が小さく余剰冷媒が発生する。よって、同じ冷媒封入量で接続配管長さの長い長配管接続に比べ、運転過渡時の圧縮機吐出側の高圧圧力が上昇しやすい。この高圧圧力の上昇抑制・下降を目的として保護制御があるが、想定する圧力上昇勾配を超える場合には、高圧圧力保護によって圧縮機を保護停止に至る事がある。このような圧縮機の保護停止が繰り返し行われるとユーザの快適性を損ねる虞がある。
そこで本発明は、短配管接続の場合であっても上記したような圧縮機の保護停止が頻発することを抑制し、ユーザの快適性向上を図ることを目的とする。
To reduce the installation work of the air conditioner, when a certain amount of refrigerant is sealed in the outdoor unit from the shipping stage, the pipe connecting the outdoor unit and the indoor unit (hereinafter referred to as connection pipe) is installed to a predetermined length. There is an air conditioner that does not need to be filled with refrigerant (hereinafter referred to as chargeless). On the other hand, when the air conditioner is installed with a short pipe connection having a short connection pipe length as a disadvantage, the cycle volume is small and surplus refrigerant is generated. Therefore, the high-pressure pressure on the compressor discharge side at the time of operation transition is likely to increase as compared to a long pipe connection with the same refrigerant filling amount and a long connection pipe length. There is protection control for the purpose of suppressing and lowering the increase of the high pressure, but if the pressure increase gradient is exceeded, the compressor may be stopped by high pressure protection. If such a compressor protection stop is repeatedly performed, the user's comfort may be impaired.
Therefore, an object of the present invention is to suppress frequent stoppage of the compressor as described above even in the case of a short pipe connection, and to improve user comfort.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、「周波数制御可能な圧縮機と、室外熱交換器と、冷媒流量の調整可能な室外膨張弁と、前記室外熱交換器に送風する室外ファンと、を有する室外機と、室内熱交換器と、冷媒流量の調整可能な室内膨張弁と、前記室内熱交換器に送風する室内ファンと、を有する室内機を備え、前記室外機と前記室内機とを接続配管で接続して冷凍サイクルを構成する空気調和機において、冷凍サイクルに関する物理量を監視して、監視物理量が保護制御判断値に至ると前記圧縮機が停止すべき状態にならないように保護制御を開始する保護制御部と、前記監視物理量が保護停止判断値に至ると前記圧縮機の保護停止を行う保護停止部と、前記接続配管の長さが設定値以下である短配管接続となっていることを判定する短配管接続判定手段と、前記短配管接続判定手段により前記短配管接続となっていると判定した場合に、前記保護停止を回避するように前記保護制御判断値を修正する保護制御修正部と、を備えた」ことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above-described problems. To give an example of the above, “a compressor capable of frequency control, an outdoor heat exchanger, an outdoor expansion valve whose refrigerant flow rate can be adjusted, and the outdoor An outdoor unit having an outdoor fan that blows air to the heat exchanger, an indoor heat exchanger, an indoor expansion valve with adjustable refrigerant flow rate, and an indoor fan that blows air to the indoor heat exchanger An air conditioner that configures a refrigeration cycle by connecting the outdoor unit and the indoor unit with a connection pipe, and monitoring the physical quantity related to the refrigeration cycle, and when the monitored physical quantity reaches a protection control judgment value, the compressor A protection control unit for starting protection control so as not to be stopped, a protection stop unit for stopping protection of the compressor when the monitored physical quantity reaches a protection stop judgment value, and a length of the connection pipe are set. Is less than or equal to the value When the short pipe connection determining means for determining that the pipe is connected and the short pipe connection determining means determines that the short pipe connection is established, the protection control determination is performed so as to avoid the protection stop. And a protection control correcting unit that corrects the value ”.

本発明によれば、短配管接続であっても、空気調和機保護による圧縮機の保護停止の頻発を抑制し、連続運転を可能とすることでユーザの快適性を向上させることができる。
ADVANTAGE OF THE INVENTION According to this invention, even if it is a short piping connection, the user's comfort can be improved by suppressing the frequent stop of the protection stop of the compressor by air conditioner protection, and enabling a continuous driving | operation.

本発明を実施する空気調和機の冷凍サイクル系統図Refrigeration cycle system diagram of an air conditioner implementing the present invention 本発明を実施する空気調和機のアクチュエータ制御値演算の構成例Configuration example of actuator control value calculation of an air conditioner implementing the present invention 本発明を実施する空気調和機における短配管接続判定を行うフロー図The flowchart which performs the short piping connection determination in the air conditioner which implements this invention

以下、実施例1について図面を用いて説明する。   Hereinafter, Example 1 will be described with reference to the drawings.

本実施例では、冷房運転モードの試運転時の短配管接続判定による空気調和機保護制御の閾値変更を行う例を説明する。
出荷段階から一定冷媒量を室外機に封入したチャージレス機能を有する空気調和機では、デメリットとして、接続配管長の短い短配管接続において、サイクル容積が小さく短配管接続状態となる。そこで以下に説明する実施例では短配管接続状態を判定することで、高圧圧力の保護がかかる閾値を低く設定変更し、高圧圧力上昇の抑制を厳しくし、空気調和機保護による運転停止に至ることなく連続運転を可能とした。それにより快適性が確保され、据付時の冷媒量調整やスイッチ設定などの手間を無くす事が出来た。
In the present embodiment, an example will be described in which the threshold value of the air conditioner protection control is changed based on the short pipe connection determination during the trial operation in the cooling operation mode.
In an air conditioner having a chargeless function in which a constant amount of refrigerant is sealed in an outdoor unit from the shipping stage, as a demerit, in a short pipe connection with a short connection pipe length, the cycle volume is small and a short pipe connection state is established. Therefore, in the embodiment described below, by determining the short pipe connection state, the threshold at which the protection of the high pressure is protected is changed to a low setting, the suppression of the increase of the high pressure is severe, and the operation is stopped by the air conditioner protection. Continuous operation is possible. As a result, comfort was ensured, and it was possible to eliminate the hassle of adjusting the amount of refrigerant and setting switches during installation.

ここで空気調和機据付時に適正冷媒量を封入する作業は、据付時の最も時間を要する項目として挙げられており、一定の配管長までであれば空気調和機据付時に冷媒量封入を不要とした、出荷段階から一定冷媒量を室外機に封入したチャージレス機能を有する空気調和機がある。一方、前記空気調和機はデメリットとして、接続配管長の短い短配管接続において、サイクル容積が小さく短配管接続状態となる。冷媒封入が適正量の場合に比べ、運転過渡時の高圧圧力が上昇しやすく、高圧圧力の上昇抑制・下降を目的とした保護制御が間に合わず、高圧圧力保護による運転停止に至る事がある。運転停止に至れば快適性を損ねるため、据付時に冷媒量を適正量に調整する、または短配管接続へ対応した制御へ設定を変更するスイッチの切替えなど据付作業の手間となっている。以下、この課題を解決するための本発明の実施例について説明する。   Here, the work of filling the proper amount of refrigerant at the time of air conditioner installation is listed as the most time-consuming item at the time of installation, and it is not necessary to enclose the amount of refrigerant at the time of air conditioner installation up to a certain pipe length There is an air conditioner having a chargeless function in which a constant amount of refrigerant is sealed in an outdoor unit from the shipment stage. On the other hand, as a disadvantage, the air conditioner has a short cycle connection and a short pipe connection state in a short pipe connection with a short connection pipe length. Compared with an appropriate amount of refrigerant filled, the high pressure during operation transients is likely to rise, and protection control aimed at suppressing and lowering the increase in high pressure is not in time, resulting in shutdown due to high pressure protection. In order to impair the comfort when the operation is stopped, installation work such as switching the switch to adjust the refrigerant amount to an appropriate amount at the time of installation or changing the setting to control corresponding to the short pipe connection is required. Examples of the present invention for solving this problem will be described below.

図1は、本実施例の空気調和機構成の例であり、サイクル構成部品、運転モードによる冷媒の流れ方向、センサ類、制御部、リモコンスイッチを示す。図1において、室外機は1の圧縮機、2の四方弁、3aの室外熱交換器、4aの室外ファン、5aの室外膨張弁、6のアキュムレータ、7aのガス阻止弁、7bの液阻止弁、20の制御部で構成されている。1の圧縮機はインバータを用いた運転容量の可変な容積式圧縮機であり、4aの室外ファンはDCモータにより駆動し風量調整が可能となっている。5aの室外膨張弁は暖房運転時の流量調整弁であり、冷房運転時にも余剰冷媒保有量調整等に用いることも出来る。7a、7bの阻止弁はボールバルブなど開閉操作可能なものである。室内機は3bの室内熱交換器、4bの室内ファン、5bの室内膨張弁で構成されている。4bの室内ファンは複数の風量タップを有しており、リモコン風量設定により決定される。5bの室内膨張弁は冷房運転時の流量調整弁であり、暖房運転時にも余剰冷媒保有量調整等に用いられる。室外機と室内機をつなぐガス冷媒と液冷媒の流路となる接続配管は8a、8bである。   FIG. 1 is an example of an air conditioner configuration of the present embodiment, and shows a cycle component, a refrigerant flow direction according to an operation mode, sensors, a control unit, and a remote control switch. In FIG. 1, the outdoor unit is a compressor 1, a two-way valve 3, a 3a outdoor heat exchanger, an outdoor fan 4a, an outdoor expansion valve 5a, an accumulator 6a, a gas blocking valve 7a, and a liquid blocking valve 7b. , 20 control units. The compressor 1 is a positive displacement compressor using an inverter and the operation capacity is variable. The outdoor fan 4a is driven by a DC motor, and the air volume can be adjusted. The outdoor expansion valve 5a is a flow rate adjustment valve during heating operation, and can also be used for adjusting excess refrigerant holding amount during cooling operation. The blocking valves 7a and 7b can be opened and closed such as ball valves. The indoor unit includes a 3b indoor heat exchanger, a 4b indoor fan, and a 5b indoor expansion valve. The indoor fan 4b has a plurality of air volume taps and is determined by the remote controller air volume setting. The indoor expansion valve 5b is a flow rate adjustment valve at the time of cooling operation, and is used for adjusting the excess refrigerant holding amount at the time of heating operation. Connection pipes 8a and 8b serve as flow paths for the gas refrigerant and the liquid refrigerant that connect the outdoor unit and the indoor unit.

なお、図1は室内機が1台の接続構成であるが、2台以上の複数台でもよい。測定用のセンサ類は、高圧側圧力を測定する圧力センサA、異常となる高圧圧力に達した場合の保護に用いる高圧遮断装置B、圧縮機吐出冷媒温度の測定に用いるセンサC、外気温度の測定に用いるセンサD、室内温度を測定するセンサEで構成されている。他制御目的に応じて測定用の圧力・温度センサを取付けても良い。   Although FIG. 1 shows a connection configuration with one indoor unit, a plurality of two or more units may be used. Sensors for measurement include pressure sensor A for measuring the high-pressure side pressure, high-pressure shut-off device B used for protection when abnormal high pressure is reached, sensor C used for measuring compressor discharge refrigerant temperature, outside air temperature It consists of a sensor D used for measurement and a sensor E that measures the room temperature. A pressure / temperature sensor for measurement may be attached according to other control purposes.

図2は、本実施例の空気調和機の制御部20において行われるアクチュエータの制御値演算の構成例を示す。各アクチュエータは、制御値演算パラメータに示す圧力・温度センサの測定値や、リモコンスイッチ21の温度・風量設定、使用温度条件により制御部が演算処理することで、制御量を調整され、冷凍サイクルの運転制御を行う。   FIG. 2 shows a configuration example of the actuator control value calculation performed in the controller 20 of the air conditioner of the present embodiment. For each actuator, the control amount is adjusted by the control unit according to the measured value of the pressure / temperature sensor indicated in the control value calculation parameter, the temperature / air volume setting of the remote control switch 21 and the operating temperature condition, and the refrigeration cycle is adjusted. Perform operation control.

冷房運転モードによって、短配管接続判定を行う試運転時の冷媒の流れを図1に基づき説明する。冷房運転の冷媒の流れ方向は実線の矢印で示している。圧縮機1から吐出された高圧高温のガス冷媒は四方弁2を通過し室外熱交換機3aへ流入する。室外ファン4aの送風風量により室外熱交換器3aを介して空気へ放熱し、高圧高温のガス冷媒は凝縮して高圧の液冷媒となる。室外熱交換器3aを出た高圧液冷媒は室外膨張弁5a、液阻止弁6b、接続液配管7bを通過し、室内機へと流入する。室内機へ流入した高圧液冷媒は室内膨張弁5bにより減圧され、低圧低温液冷媒となり室内熱交換器3bへ流入する。室内ファン4bの送風風量により室内熱交換器3bを介して空気から吸熱し、低圧低温の液冷媒は蒸発して低圧ガス冷媒となる。室内熱交換器3bを出た低圧ガス冷媒は接続ガス管8aから室外機へ流入し、ガス阻止弁6a、四方弁2を通過して、アキュムレータにてガス冷媒に混合する液冷媒を分離され、ガス冷媒のみ圧縮機1へ吸入され、再び圧縮されて高圧高温のガス冷媒として圧縮機1から吐出される。この冷凍サイクル中で、室内熱交換器にて空気から吸熱する作用により、熱交換器を通過した空気が冷風として室内機から吹き出されることで冷房運転を行う。   The flow of the refrigerant at the time of the trial operation in which the short pipe connection determination is performed in the cooling operation mode will be described with reference to FIG. The direction of refrigerant flow in the cooling operation is indicated by solid arrows. The high-pressure and high-temperature gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and flows into the outdoor heat exchanger 3a. Heat is radiated to the air through the outdoor heat exchanger 3a by the amount of air blown by the outdoor fan 4a, and the high-pressure and high-temperature gas refrigerant is condensed to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant exiting the outdoor heat exchanger 3a passes through the outdoor expansion valve 5a, the liquid blocking valve 6b, and the connection liquid pipe 7b, and flows into the indoor unit. The high-pressure liquid refrigerant that has flowed into the indoor unit is decompressed by the indoor expansion valve 5b, becomes low-pressure low-temperature liquid refrigerant, and flows into the indoor heat exchanger 3b. The indoor fan 4b absorbs heat from the air through the indoor heat exchanger 3b by the amount of air blown from the indoor fan 4b, and the low-pressure and low-temperature liquid refrigerant evaporates into a low-pressure gas refrigerant. The low-pressure gas refrigerant exiting the indoor heat exchanger 3b flows into the outdoor unit from the connecting gas pipe 8a, passes through the gas blocking valve 6a and the four-way valve 2, and is separated from the liquid refrigerant mixed with the gas refrigerant by the accumulator, Only the gas refrigerant is sucked into the compressor 1, compressed again, and discharged from the compressor 1 as a high-pressure and high-temperature gas refrigerant. In this refrigeration cycle, the cooling operation is performed by the air that has passed through the heat exchanger blown out from the indoor unit as cold air by the action of absorbing heat from the air in the indoor heat exchanger.

次に、冷房運転安定時のアクチュエータ制御値から短配管接続を判定する方法を図2に基づいて説明する。各アクチュエータは各種温度や圧力など目標とする制御対象があるため、短配管接続特有のアクチュエータの挙動から短配管接続の判定をする際は、制御仕様によって判定に選定するアクチュエータを変える必要がある。例として示す、図2の制御仕様は、圧縮機はサイクル状態に関わらず一意的に目標周波数が決まり、室外膨張弁は開度を全開に固定、室内膨張弁は圧縮機から吐出される冷媒の過熱度を所定の目標値にする開度に演算、室外ファンは高圧圧力に目標値を設けて風量制御することで冷房運転を行うものとする。   Next, a method for determining the short pipe connection from the actuator control value when the cooling operation is stable will be described with reference to FIG. Since each actuator has a target to be controlled such as various temperatures and pressures, it is necessary to change the actuator to be selected for determination according to the control specifications when determining the short pipe connection from the behavior of the actuator peculiar to the short pipe connection. As an example, the control specifications in FIG. 2 are such that the target frequency is uniquely determined regardless of the cycle state of the compressor, the outdoor expansion valve is fixed at the fully open position, and the indoor expansion valve is the refrigerant discharged from the compressor. It is assumed that the degree of superheat is calculated to an opening that sets a predetermined target value, and the outdoor fan performs cooling operation by providing a target value for high pressure and controlling the air volume.

本制御仕様で全室運転かつ室内設定風量最大として冷房運転を行った場合、短配管接続により顕在化するアクチュエータ制御値の変化傾向は、室外ファン風量と室内膨張弁開度に現れる。短配管接続により生じた余剰冷媒は凝縮器となる室外熱交換器またはアキュムレータへ溜める必要があり、室外熱交換器へ溜める場合で考えると、圧縮機周波数の制御値に差がない場合、室内膨張弁の開度を小さく絞って冷媒循環量を抑えることとなる。また、凝縮器である室外熱交換器内に液冷媒が溜まれば、高圧圧力は上昇傾向にあるため、室外ファン風量は目標高圧圧力に留めるために大きくなる。以上のことから、冷房運転時においては、室外ファン風量が大きく、室内機膨張弁開度が小さいことが短配管接続の判定基準となる。   In this control specification, when all-room operation is performed and the cooling operation is performed with the maximum indoor set air volume, the change tendency of the actuator control value that is manifested by the short pipe connection appears in the outdoor fan air volume and the indoor expansion valve opening. Excess refrigerant generated by the short pipe connection needs to be stored in the outdoor heat exchanger or accumulator that becomes the condenser. Considering the case of storing in the outdoor heat exchanger, if there is no difference in the control value of the compressor frequency, the indoor expansion The amount of refrigerant circulation is suppressed by reducing the opening of the valve. Further, if the liquid refrigerant accumulates in the outdoor heat exchanger, which is a condenser, the high-pressure pressure tends to increase, so the outdoor fan air volume increases to keep the target high-pressure. From the above, during cooling operation, the criterion for short pipe connection is that the outdoor fan air volume is large and the indoor unit expansion valve opening is small.

そこで、様々な運転条件における適正冷媒封入時のアクチュエータ制御値を、データテーブルとして制御部へ記憶させておくことで、試運転時の運転条件(温度条件やリモコン設定条件)と一致するデータテーブル中のアクチュエータ制御値と比較することで、短配管接続であるかどうかを判定する。   Therefore, by storing the actuator control value at the time of proper refrigerant filling under various operating conditions in the control unit as a data table, in the data table that matches the operating conditions (temperature conditions and remote control setting conditions) at the time of trial operation By comparing with the actuator control value, it is determined whether or not it is a short pipe connection.

短配管接続判定を行う流れを図3のフローチャートに基づき説明する。まず判定のタイミングは試運転中とし、次に運転モードを把握する(本実施例では冷房運転)。次に冷房運転の安定をアクチュエータの制御値の安定から判断し、短配管接続判定を行う。短配管接続であると判定した場合は制御部20へ記憶し、保護制御の閾値を変更する。   The flow for performing the short pipe connection determination will be described based on the flowchart of FIG. First, the timing of determination is during trial operation, and then the operation mode is grasped (cooling operation in this embodiment). Next, the stability of the cooling operation is determined from the stability of the control value of the actuator, and the short pipe connection determination is performed. If it is determined that the connection is a short pipe connection, it is stored in the control unit 20 and the threshold value for protection control is changed.

より詳細に説明すると本実施例の空気調和機は、監視物理量が保護停止判断値に至ると圧縮機1の保護停止を行う保護停止部を備えている。この保護停止部の一例としては図1の高圧遮断装置Bであり、高圧遮断装置Bは圧縮機1の吐出側の冷媒圧力が所定の保護停止判断値に至ると圧縮機1の保護停止を行う。   More specifically, the air conditioner of the present embodiment includes a protection stop unit that stops protection of the compressor 1 when the monitored physical quantity reaches the protection stop determination value. An example of the protection stop unit is the high-pressure shut-off device B in FIG. 1, and the high-pressure shut-off device B stops the compressor 1 when the refrigerant pressure on the discharge side of the compressor 1 reaches a predetermined protection stop judgment value. .

また、制御部20は、冷凍サイクルに関する物理量を監視して、監視物理量が保護制御判断値に至ると圧縮機が停止すべき状態にならないように保護制御を開始する保護制御部22(図示せず)を備えている。つまり、上記した圧縮機1の保護停止が頻発するとユーザの快適性を損なう虞があるため、監視物理量が保護停止判断値に至る前に保護制御判断値に至ると圧縮機が停止すべき状態にならないように保護制御を開始するものである。   Further, the control unit 20 monitors a physical quantity related to the refrigeration cycle, and when the monitored physical quantity reaches the protection control determination value, the protection control unit 22 (not shown) starts protection control so that the compressor does not stop. ). That is, if the above-described protection stop of the compressor 1 frequently occurs, the user's comfort may be impaired. Therefore, if the monitored physical quantity reaches the protection control determination value before reaching the protection stop determination value, the compressor should be stopped. Protection control is started so as not to become.

たとえば、監視物理量が圧縮機1の吐出側の冷媒圧力である場合には、保護停止判断値は保護制御判断値よりも大きい値であり、保護制御を開始すると、圧縮機1の吐出側の冷媒圧力が上昇傾向から下降傾向へと徐々に移行するように保護制御部22は、圧縮機1の周波数を下げるように制御することで圧縮機が停止すべき状態にならないようにする。   For example, when the monitored physical quantity is the refrigerant pressure on the discharge side of the compressor 1, the protection stop determination value is larger than the protection control determination value, and when the protection control is started, the refrigerant on the discharge side of the compressor 1 is started. The protection control unit 22 controls the frequency of the compressor 1 to be lowered so that the pressure is gradually shifted from an upward trend to a downward trend so that the compressor is not in a state to be stopped.

しかしながら、このように保護停止が頻発することを抑制していたとしても短配管接続となっている場合には、想定する圧力上昇勾配を超える場合があり、圧縮機の保護停止によって圧縮機を保護停止に至る事があり、圧縮機の保護停止が繰り返し行われる虞がある。   However, even if the frequent stoppage of protection is suppressed in this way, if the short pipe connection is used, the assumed pressure rise gradient may be exceeded, and the compressor is protected by stopping the protection of the compressor. There is a possibility of stopping, and there is a possibility that the protection of the compressor is repeatedly stopped.

そこで本実施例の制御部20は、接続配管の長さが設定値以下である短配管接続となっていることを判定する短配管接続判定手段23(図示せず)と、短配管接続判定手段23により短配管接続となっていると判定した場合に、保護停止を回避するように保護制御判断値を修正する保護制御修正部24(図示せず)と、を備えたものである。   Therefore, the control unit 20 according to the present embodiment includes a short pipe connection determination unit 23 (not shown) that determines that the length of the connection pipe is a short pipe connection that is equal to or less than a set value, and a short pipe connection determination unit. 23, a protection control correcting unit 24 (not shown) that corrects the protection control judgment value so as to avoid the protection stop when it is determined that the short pipe connection is established.

たとえば、監視物理量が圧縮機1の吐出側の冷媒圧力である場合には、短配管接続の場合、この吐出側冷媒圧力が上昇傾向にあるため、保護停止部(高圧遮断装置B)により圧縮機1を保護停止することが多くなる虞がある。そこで、本実施例では上記した短配管接続判定手段23及び保護制御修正部24を備えたことにより、短配管接続判定手段23により短配管接続と判定した場合に、保護制御修正部24は保護制御判断値を下げるように変更することで保護停止を回避するように修正するものである。   For example, when the monitored physical quantity is the refrigerant pressure on the discharge side of the compressor 1, the discharge-side refrigerant pressure tends to increase when the short pipe is connected. There is a possibility that the protection of 1 is frequently stopped. Therefore, in the present embodiment, the short pipe connection determining means 23 and the protection control correcting section 24 are provided, so that when the short pipe connection determining means 23 determines that the short pipe is connected, the protection control correcting section 24 performs the protection control. It is modified so as to avoid the protection stop by changing the judgment value to be lowered.

また、監視物理量として圧縮機1の吐出側の冷媒温度を監視する場合には、保護制御部22により、この吐出側冷媒温度が保護制御判断値に至ると、圧縮機1が停止すべき状態にならないように保護制御を開始するものであるが、さらに、短配管接続判定手段23により短配管接続と判定した場合に、保護制御修正部24は保護制御判断値(吐出側冷媒温度の設定値)を下げるように変更することで保護停止を回避するように修正する。   When monitoring the refrigerant temperature on the discharge side of the compressor 1 as a monitored physical quantity, the protection control unit 22 puts the compressor 1 in a state to be stopped when the discharge side refrigerant temperature reaches the protection control determination value. Protection control is started so as not to occur, but when the short pipe connection determining means 23 determines that the short pipe is connected, the protection control correcting unit 24 determines the protection control determination value (set value of the discharge side refrigerant temperature). It is modified so as to avoid the protection stop by changing to lower.

なお、上記した圧縮機1の吐出側の冷媒圧力は、吐出側に圧力センサを設けてもよく、あるいは凝縮器の液管温度を検知する温度センサを備えることで、該温度センサの検出値から圧縮機吐出側圧力を推定して用いてもよい。   The refrigerant pressure on the discharge side of the compressor 1 described above may be provided with a pressure sensor on the discharge side, or by providing a temperature sensor for detecting the liquid pipe temperature of the condenser, from the detected value of the temperature sensor. The compressor discharge side pressure may be estimated and used.

前述の通り圧縮機1の吐出側の冷媒圧力は凝縮器の液管温度により推定できることから、凝縮器の液管温度を吐出側の冷媒圧力の代わりの判断値に用いて前記「吐出側の冷媒圧力」を「凝縮器の液管温度」に読み替えて制御してもよい。つまり、監視物理量として室内熱交換器又は室外熱交換器のうち凝縮器として作用する熱交換器の液管温度を監視するようにしてもよく、保護停止判断値は保護制御判断値よりも大きい値となる。この場合には、吐出側の冷媒圧力が保護制御判断値に達する場合に対応する凝縮器の液管温度を保護制御判断値として記憶し、また、吐出側の冷媒圧力が保護停止判断値に達する場合に対応する凝縮器の液管温度を保護停止判断値として記憶する。これにより、保護制御部22、保護停止部、保護制御修正部は吐出側の冷媒圧力の場合と同様に制御することが可能となる。   As described above, since the refrigerant pressure on the discharge side of the compressor 1 can be estimated from the liquid pipe temperature of the condenser, the “liquid refrigerant on the discharge side” is used by using the liquid pipe temperature of the condenser as a judgment value instead of the refrigerant pressure on the discharge side. “Pressure” may be read and read as “condenser liquid tube temperature”. That is, as the monitored physical quantity, the liquid pipe temperature of the heat exchanger acting as a condenser of the indoor heat exchanger or the outdoor heat exchanger may be monitored, and the protection stop judgment value is larger than the protection control judgment value. It becomes. In this case, the condenser liquid pipe temperature corresponding to the case where the discharge side refrigerant pressure reaches the protection control judgment value is stored as the protection control judgment value, and the discharge side refrigerant pressure reaches the protection stop judgment value. The condenser liquid tube temperature corresponding to the case is stored as a protection stop judgment value. Accordingly, the protection control unit 22, the protection stop unit, and the protection control correction unit can be controlled similarly to the case of the refrigerant pressure on the discharge side.

また、監視物理量として圧縮機1の吸込み側の冷媒圧力を監視して、上記した短配管接続における制御を行うこともできる。この場合には、圧縮機1の吸込み側に圧力センサを設けてもよく、あるいは減圧後の蒸発器の液管温度を検知する温度センサを備え、該温度センサの検出値から圧縮機吸入側圧力を推定して用いてもよい。   Moreover, the refrigerant pressure on the suction side of the compressor 1 can be monitored as a monitored physical quantity, and the control in the short pipe connection can be performed. In this case, a pressure sensor may be provided on the suction side of the compressor 1, or a temperature sensor for detecting the liquid pipe temperature of the evaporator after decompression is provided, and the compressor suction side pressure is determined from the detected value of the temperature sensor. May be estimated and used.

監視物理量として圧縮機1の吸込み側の冷媒圧力を監視する場合には、保護制御部22により、この吸込み側の冷媒圧力が保護制御判断値に至ると、圧縮機1が停止すべき状態にならないように保護制御を開始するものであるが、さらに、短配管接続判定手段23により短配管接続と判定した場合に、保護制御修正部24は保護制御判断値(吸込み側冷媒圧力の設定値)を上げるように変更することで保護停止を回避するように修正する。   When monitoring the refrigerant pressure on the suction side of the compressor 1 as a monitored physical quantity, the compressor 1 does not enter a state to be stopped when the refrigerant pressure on the suction side reaches the protection control judgment value by the protection control unit 22. However, when the short pipe connection determination means 23 determines that the short pipe is connected, the protection control correction unit 24 sets the protection control determination value (the set value of the suction side refrigerant pressure). It is modified so that the protection stop is avoided by changing to raise.

なお、上記した圧縮機1の吸込み側の冷媒圧力は、吸込み側に圧力センサを設けてもよく、あるいは減圧後の蒸発器液管温度を検知する温度センサを備えることで、該温度センサの検出値から圧縮機吐出側圧力を推定して用いてもよい。   The refrigerant pressure on the suction side of the compressor 1 described above may be provided with a pressure sensor on the suction side, or provided with a temperature sensor that detects the evaporator liquid pipe temperature after decompression, thereby detecting the temperature sensor. The compressor discharge side pressure may be estimated from the value and used.

前述の通り圧縮機1の吸込み側の冷媒圧力は減圧後の蒸発器液管温度により推定できることから、減圧後の蒸発器液管温度を吸込み側の冷媒圧力の代わりの判断値に用いて前記「吸込み側の冷媒圧力」を「減圧後の蒸発器液管温度」に読み替えて制御してもよい。つまり、監視物理量として室内熱交換器又は室外熱交換器のうち蒸発器として作用する熱交換器の液管温度を監視するようにしてもよく、保護停止判断値は保護制御判断値よりも小さい値となる。この場合には、吸込み側の冷媒圧力が保護制御判断値に達する場合に対応する蒸発器の液管温度を保護制御判断値として記憶し、また、吸込み側の冷媒圧力が保護停止判断値に達する場合に対応する蒸発器の液管温度を保護停止判断値として記憶する。これにより、保護制御部22、保護停止部、保護制御修正部は吐出側の冷媒圧力の場合と同様に制御することが可能となる。   As described above, since the refrigerant pressure on the suction side of the compressor 1 can be estimated from the evaporator liquid pipe temperature after decompression, the evaporator liquid pipe temperature after decompression is used as a judgment value instead of the refrigerant pressure on the suction side. The “refrigerant pressure on the suction side” may be read as “evaporator liquid pipe temperature after decompression” for control. That is, as the monitored physical quantity, the liquid pipe temperature of the heat exchanger acting as an evaporator of the indoor heat exchanger or the outdoor heat exchanger may be monitored, and the protection stop judgment value is smaller than the protection control judgment value. It becomes. In this case, the liquid pipe temperature of the evaporator corresponding to the case where the suction side refrigerant pressure reaches the protection control judgment value is stored as the protection control judgment value, and the suction side refrigerant pressure reaches the protection stop judgment value. The liquid pipe temperature of the evaporator corresponding to the case is stored as a protection stop judgment value. Accordingly, the protection control unit 22, the protection stop unit, and the protection control correction unit can be controlled similarly to the case of the refrigerant pressure on the discharge side.

また、監視物理量として圧縮機吐出側圧力を吸入側圧力で除した比で定義される圧力比を監視する場合には、保護制御部22により、この圧力比が保護制御判断値に至ると、圧縮機1が停止すべき状態にならないように保護制御を開始するものであるが、さらに、短配管接続判定手段23により短配管接続と判定した場合に、保護制御修正部24は保護制御判断値(圧縮機吐出側圧力を吸入側圧力で除した比で定義される圧力比の設定値)を下げるように変更することで保護停止を回避するように修正する。   When monitoring the pressure ratio defined by the ratio of the compressor discharge side pressure divided by the suction side pressure as the monitored physical quantity, the protection control unit 22 compresses the compression ratio when the pressure ratio reaches the protection control judgment value. The protection control is started so that the machine 1 does not stop. However, when the short pipe connection determining means 23 determines that the short pipe is connected, the protection control correcting unit 24 sets the protection control judgment value ( Correction is made so as to avoid the protection stop by changing to lower the pressure ratio set value defined by the ratio of the compressor discharge side pressure divided by the suction side pressure.

なお、上記した圧縮機吐出側圧力を吸入側圧力で除した比で定義される圧力比は、凝縮器液管温度と減圧後の蒸発器液管温度を検知する温度センサを有し、それを元に圧縮機吐出側圧力と吸入側圧力を推定して用いてもよい。   The pressure ratio defined by the ratio obtained by dividing the compressor discharge side pressure by the suction side pressure has a temperature sensor that detects the condenser liquid pipe temperature and the evaporator liquid pipe temperature after depressurization. Originally, the compressor discharge side pressure and the suction side pressure may be estimated and used.

上記した短配管接続判定は空気調和機据付後に行う試運転に行うことが望ましい。   It is desirable that the short pipe connection determination described above is performed in a test operation performed after the air conditioner is installed.

以上のように短配管接続判定を行い、短配管接続と判定した場合に、保護制御修正部24により保護停止を回避するように修正することで、保護停止が頻発することを抑制するため、短配管接続の場合におけるユーザの快適性を向上することが可能となる。   When the short pipe connection is determined as described above, and it is determined that the short pipe is connected, the protection control correction unit 24 corrects the protection stop so as to avoid frequent protection stop. It is possible to improve user comfort in the case of pipe connection.

なお、上記したように冷房運転を行っている場合に短配管接続判定手段23は、室外ファン4aの風量が設定風量以上となる状態が設定時間経過した場合に短配管接続となっていると判定するとよい。あるいは、室内膨脹弁5bの開度が設定開度以下となる状態が設定時間経過した場合に短接続配管と判定してもよく、室外ファン4aとのアンド条件としてもよい。さらに上記制御仕様の圧縮機制御を、サイクル状態(圧縮機吐出冷媒圧力や戸出冷媒温度など)から目標周波数を演算して周波数可変を行う制御の場合においては、判定基準として、圧縮機1の周波数が設定周波数以下となる状態が設定時間経過した場合を加えてもよい。   In addition, when performing the cooling operation as described above, the short pipe connection determination unit 23 determines that the short pipe connection is established when a set time elapses when the air volume of the outdoor fan 4a is equal to or greater than the set air volume. Good. Alternatively, it may be determined as a short connection pipe when a set time has elapsed when the opening of the indoor expansion valve 5b is equal to or less than the set opening, or an AND condition with the outdoor fan 4a may be used. Further, in the case where the compressor control of the above control specification is a control in which the target frequency is calculated from the cycle state (compressor discharge refrigerant pressure, outlet refrigerant temperature, etc.) and the frequency is varied, the frequency of the compressor 1 is used as a criterion. A case where the set time elapses in a state where the frequency becomes equal to or lower than the set frequency may be added.

また、この場合に記憶装置に記憶するアクチュエータ(室外ファン4a、室内膨脹弁5b、圧縮機4)の短配管接続の判定値は、外気温度、室内空気温度、リモコン設定温度、リモコン設定風量によって変化するため、これらを空気調和機の使用範囲で組合せた条件毎に変化させて設定するようにするとよい。   In this case, the determination value of the short piping connection of the actuator (outdoor fan 4a, indoor expansion valve 5b, compressor 4) stored in the storage device varies depending on the outside air temperature, the room air temperature, the remote control set temperature, and the remote control set air volume. Therefore, it is preferable to change and set them for each condition combined in the use range of the air conditioner.

本実施例では、暖房運転モードの試運転時の短配管接続判定による空気調和機保護制御の閾値変更を行う例を説明する。本実施例の空気調和機構成の例と、制御部20において行われるアクチュエータの制御値演算の構成例は、図1と図2に基づいて前述の通りである。   In this embodiment, an example will be described in which the threshold value of the air conditioner protection control is changed based on the short pipe connection determination during the trial operation in the heating operation mode. The example of the air conditioner configuration of the present embodiment and the configuration example of the actuator control value calculation performed in the control unit 20 are as described above with reference to FIGS. 1 and 2.

暖房運転モードによって、短配管接続判定を行う試運転時の冷媒の流れを図1に基づき説明する。暖房運転の冷媒の流れ方向は破線の矢印で示している。圧縮機1から吐出された高圧高温のガス冷媒は四方弁2、ガス阻止弁6a、接続ガス配管8aを通過し、室内機の室内熱交換器3bへと流入する。室内熱交換器3bへ流入した高圧高温ガス冷媒は、室内ファン4bの送風風量により室内熱交換器3aを介して空気へ放熱し、高圧高温のガス冷媒は凝縮して高圧の液冷媒となる。室内熱交換器3bを出た高圧液冷媒は室内膨張弁5b、接続液配管7b、液阻止弁6bを通過し、室外機へと流入する。室外機へ流入した高圧液冷媒は室外膨張弁5aにより減圧され、低圧低温液冷媒となり室外熱交換器3aへ流入する。室外ファン4aの送風風量により室外熱交換器3aを介して空気から吸熱し、低圧低温の液冷媒は蒸発して低圧ガス冷媒となる。室外熱交換器3aを出た低圧ガス冷媒は、四方弁2を通過し、アキュムレータにてガス冷媒に混合する液冷媒を分離され、ガス冷媒のみ圧縮機1へ吸入され、再び圧縮されて高圧高温のガス冷媒として圧縮機1から吐出される。この冷凍サイクル中で、室内熱交換器にて空気へ放熱する作用により、熱交換器を通過した空気が温風として室内機から吹き出されることで暖房運転を行う。   The flow of the refrigerant at the time of the trial operation for performing the short pipe connection determination in the heating operation mode will be described with reference to FIG. The flow direction of the refrigerant in the heating operation is indicated by a dashed arrow. The high-pressure and high-temperature gas refrigerant discharged from the compressor 1 passes through the four-way valve 2, the gas blocking valve 6a, and the connection gas pipe 8a, and flows into the indoor heat exchanger 3b of the indoor unit. The high-pressure and high-temperature gas refrigerant that has flowed into the indoor heat exchanger 3b radiates heat to the air via the indoor heat exchanger 3a by the amount of air blown by the indoor fan 4b, and the high-pressure and high-temperature gas refrigerant condenses into high-pressure liquid refrigerant. The high-pressure liquid refrigerant exiting the indoor heat exchanger 3b passes through the indoor expansion valve 5b, the connecting liquid pipe 7b, and the liquid blocking valve 6b, and flows into the outdoor unit. The high-pressure liquid refrigerant that has flowed into the outdoor unit is decompressed by the outdoor expansion valve 5a, becomes low-pressure low-temperature liquid refrigerant, and flows into the outdoor heat exchanger 3a. The outdoor fan 4a absorbs heat from the air via the outdoor heat exchanger 3a, and the low-pressure and low-temperature liquid refrigerant evaporates into a low-pressure gas refrigerant. The low-pressure gas refrigerant that has exited the outdoor heat exchanger 3a passes through the four-way valve 2, the liquid refrigerant mixed with the gas refrigerant is separated by the accumulator, and only the gas refrigerant is sucked into the compressor 1 and compressed again to be high-pressure and high-temperature. The gas refrigerant is discharged from the compressor 1. In this refrigeration cycle, the heating operation is performed by the air that has passed through the heat exchanger blown out from the indoor unit as warm air by the action of radiating heat to the air in the indoor heat exchanger.

次に、暖房運転安定時のアクチュエータ制御値から短配管接続を判定する方法を図2に基づいて説明する。各アクチュエータは各種温度や圧力など目標とする制御対象があるため、短配管接続特有のアクチュエータの挙動から短配管接続の判定をする際は、制御仕様によって判定に選定するアクチュエータを変える必要がある。例として示す、図2の制御仕様は、圧縮機は目標高圧圧力(吐出側冷媒圧力)となるよう周波数を調整し、室内膨張弁は圧縮機から吐出される冷媒の過熱度を一定の目標値にする開度に調整、室内膨張弁は開度を全開に固定、室外ファンは外気温度に対応した風量とすることで暖房運転を制御する。   Next, a method for determining the short pipe connection from the actuator control value when the heating operation is stable will be described with reference to FIG. Since each actuator has a target to be controlled such as various temperatures and pressures, it is necessary to change the actuator to be selected for determination according to the control specifications when determining the short pipe connection from the behavior of the actuator peculiar to the short pipe connection. As an example, the control specification of FIG. 2 adjusts the frequency so that the compressor becomes the target high pressure (discharge side refrigerant pressure), and the indoor expansion valve sets the superheat degree of the refrigerant discharged from the compressor to a constant target value. The heating operation is controlled by adjusting the opening degree to be adjusted, the indoor expansion valve is fixed at the opening degree, and the outdoor fan has an air volume corresponding to the outside air temperature.

本制御仕様で全室運転かつ室内設定風量最大として暖房運転を行った場合、短配管接続により顕在化するアクチュエータ制御値の変化傾向は、圧縮機周波数と室外膨張弁開度に現れる。短配管接続により生じた余剰冷媒は凝縮器となる室内熱交換器、またはアキュムレータへ溜める必要があり、室内熱交換器へ溜める場合で考えると、室外膨張弁の開度を小さく絞って冷媒循環量を抑える必要があり、凝縮器である室内熱交換器内に液冷媒が溜まれば、高圧圧力は上昇傾向にあるため、圧縮機周波数は目標高圧圧力に留めるため小さくなる。以上のことから、圧縮機周波数、室外機膨張弁開度ともに小さいことが短配管接続の判定基準となる。   When heating operation is performed with all-room operation and the maximum indoor set air volume in this control specification, the change tendency of the actuator control value that appears due to the short pipe connection appears in the compressor frequency and the outdoor expansion valve opening. The surplus refrigerant generated by the short pipe connection must be stored in the indoor heat exchanger or accumulator as a condenser. Considering the case of storing in the indoor heat exchanger, the amount of refrigerant circulation can be reduced by reducing the opening of the outdoor expansion valve. If the liquid refrigerant accumulates in the indoor heat exchanger, which is a condenser, the high-pressure pressure tends to increase, so the compressor frequency remains at the target high-pressure and becomes small. From the above, it is a criterion for short pipe connection that both the compressor frequency and the outdoor unit expansion valve opening are small.

そこで、データテーブルを制御部へ記憶させておくことで、試運転時の運転条件(温度条件やリモコン設定条件)と一致するデータテーブル中のアクチュエータ制御値と比較することで、短配管接続であるかどうかを判定できる。   Therefore, by storing the data table in the control unit, whether it is a short pipe connection by comparing with the actuator control value in the data table that matches the operating condition (temperature condition and remote control setting condition) at the time of trial operation Can be determined.

短配管接続判定を行う流れを図3のフローチャートに基づき説明する。まず判定のタイミングは試運転とし、運転モードを把握する(本実施例では暖房運転)。次に暖房運転の安定の判断とし、例えば高圧圧力や過熱度など目標から所定の範囲以内に到達したことで安定と判断した後、前記短配管接続判定を行う。短配管接続であると判定した場合は制御部20へ記憶し、保護制御の閾値を変更する。   The flow for performing the short pipe connection determination will be described based on the flowchart of FIG. First, the determination timing is a trial operation, and the operation mode is grasped (heating operation in this embodiment). Next, it is determined whether the heating operation is stable. For example, the short pipe connection determination is performed after it is determined that the heating operation is stable by reaching within a predetermined range from a target such as high pressure or superheat. If it is determined that the connection is a short pipe connection, it is stored in the control unit 20 and the threshold value for protection control is changed.

つまり、暖房運転を行っている場合に短配管接続判定手段23は、室外膨脹弁5aの開度が設定開度以下となる状態が設定時間経過した場合に短配管接続となっていると判定するとよい。又は、圧縮機1の周波数が設定周波数以下となる状態が設定時間経過した場合に、短配管接続となっていると判定してもよく、これらの条件をアンド条件としてもよい。   That is, when performing the heating operation, the short pipe connection determining unit 23 determines that the short pipe connection is established when a set time has elapsed when the opening of the outdoor expansion valve 5a is equal to or less than the set opening. Good. Alternatively, it may be determined that the short pipe connection is established when the set time has elapsed when the frequency of the compressor 1 is equal to or lower than the set frequency, and these conditions may be AND conditions.

また、この場合に記憶装置に記憶するアクチュエータ(室外ファン4a、室内膨脹弁5b、圧縮機4)の短配管接続の判定値は、外気温度、室内空気温度、リモコン設定温度、リモコン設定風量によって変化するため、これらを空気調和機の使用範囲で組合せた条件毎に変化させて設定するようにするとよい。
In this case, the determination value of the short piping connection of the actuator (outdoor fan 4a, indoor expansion valve 5b, compressor 4) stored in the storage device varies depending on the outside air temperature, the room air temperature, the remote control set temperature, and the remote control set air volume. Therefore, it is preferable to change and set them for each condition combined in the use range of the air conditioner.

1…圧縮機、2…四方弁、3a、3b…熱交換器、5a、5b…膨張弁、6…アキュムレータ、7a、7b…阻止弁、8a、8b…接続配管、20…制御部、21…リモコンスイッチ、22…保護制御部、23…短配管接続判定手段、24保護制御修正部。 DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four way valve, 3a, 3b ... Heat exchanger, 5a, 5b ... Expansion valve, 6 ... Accumulator, 7a, 7b ... Stop valve, 8a, 8b ... Connection piping, 20 ... Control part, 21 ... Remote control switch, 22 ... protection control unit, 23 ... short pipe connection determination means, 24 protection control correction unit.

Claims (5)

周波数制御可能な圧縮機と、室外熱交換器と、冷媒流量の調整可能な室外膨張弁と、前記室外熱交換器に送風する室外ファンと、を有する室外機と、
室内熱交換器と、冷媒流量の調整可能な室内膨張弁と、前記室内熱交換器に送風する室内ファンと、を有する室内機を備え、
前記室外機と前記室内機とを接続配管で接続して冷凍サイクルを構成する空気調和機において、
冷凍サイクルに関する物理量を監視して、監視物理量が保護制御判断値に至ると前記圧縮機が停止すべき状態にならないように保護制御を開始する保護制御部と、
前記監視物理量が保護停止判断値に至ると前記圧縮機の保護停止を行う保護停止部と、
前記接続配管の長さが設定値以下である短配管接続となっていることを判定する短配管接続判定手段と、
前記短配管接続判定手段により前記短配管接続となっていると判定した場合に、前記保護停止を回避するように前記保護制御判断値を修正する保護制御修正部と、を備えたことを特徴とする空気調和機。
An outdoor unit having a frequency-controllable compressor, an outdoor heat exchanger, an outdoor expansion valve with adjustable refrigerant flow rate, and an outdoor fan that blows air to the outdoor heat exchanger,
An indoor unit having an indoor heat exchanger, an indoor expansion valve with adjustable refrigerant flow rate, and an indoor fan that blows air to the indoor heat exchanger,
In the air conditioner that configures the refrigeration cycle by connecting the outdoor unit and the indoor unit with a connection pipe,
A protection control unit that monitors a physical quantity related to the refrigeration cycle, and starts protection control so that the compressor does not stop when the monitored physical quantity reaches a protection control determination value;
A protection stop unit for stopping protection of the compressor when the monitored physical quantity reaches a protection stop judgment value;
A short pipe connection determination means for determining that the length of the connection pipe is a short pipe connection which is equal to or less than a set value;
A protection control correction unit that corrects the protection control determination value so as to avoid the protection stop when the short pipe connection determination unit determines that the short pipe connection is established; Air conditioner to do.
請求項1に記載の空気調和機において、
冷房運転を行っている場合に前記短配管接続判定手段は、
前記室外ファンの風量が設定風量以上となる状態が設定時間経過した場合、前記室内膨脹弁の開度が設定開度以下となる状態が設定時間経過した場合、又は、前記圧縮機の周波数が設定周波数以下となる状態が設定時間経過した場合に、前記端配管接続となっていると判定することを特徴とする空気調和機。
In the air conditioner according to claim 1,
When performing cooling operation, the short pipe connection determining means is
When the set time has passed when the outdoor fan air flow is equal to or higher than the set air flow, when the open time of the indoor expansion valve is lower than the set open time, or when the compressor frequency is set An air conditioner that determines that the end pipe connection is established when a set time elapses in a state that is equal to or lower than a frequency.
請求項1に記載の空気調和機において、
暖房運転を行っている場合に前記短配管接続判定手段は、
前記室外膨脹弁の開度が設定開度以下となる状態が設定時間経過した場合、又は、前記圧縮機の周波数が設定周波数以下となる状態が設定時間経過した場合に、前記短配管接続となっていると判定することを特徴とする空気調和機。
In the air conditioner according to claim 1,
When performing the heating operation, the short pipe connection determining means is
The short pipe connection is established when a set time has elapsed when the opening of the outdoor expansion valve is less than or equal to a set opening, or when a set time has elapsed when the frequency of the compressor is below the set frequency. It is determined that the air conditioner is.
請求項1〜3の何れかに記載の空気調和機において、
前記監視物理量は前記圧縮機の吐出側の冷媒圧力であるか、あるいは、前記室内熱交換器又は前記室外熱交換器のうち凝縮器として作用する熱交換器の液管温度であり、前記保護停止判断値は前記保護制御判断値よりも大きい値であることを特徴とする空気調和機。
In the air conditioner in any one of Claims 1-3,
The monitored physical quantity is a refrigerant pressure on the discharge side of the compressor or a liquid pipe temperature of a heat exchanger acting as a condenser of the indoor heat exchanger or the outdoor heat exchanger, and the protection stop An air conditioner characterized in that the judgment value is larger than the protection control judgment value.
請求項1〜3の何れかに記載の空気調和機において、
前記監視物理量は前記圧縮機の吸込み側の冷媒圧力であるか、あるいは、前記室内熱交換器又は前記室外熱交換器のうち凝縮器として作用する熱交換器の液管温度であり、前記保護停止判断値は前記保護制御判断値よりも小さい値であることを特徴とする空気調和機。
In the air conditioner in any one of Claims 1-3,
The monitored physical quantity is a refrigerant pressure on the suction side of the compressor, or a liquid pipe temperature of a heat exchanger acting as a condenser of the indoor heat exchanger or the outdoor heat exchanger, and the protection stop The judgment value is a value smaller than the protection control judgment value.
JP2012213392A 2012-09-27 2012-09-27 Air conditioner Active JP5907846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012213392A JP5907846B2 (en) 2012-09-27 2012-09-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012213392A JP5907846B2 (en) 2012-09-27 2012-09-27 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014066465A true JP2014066465A (en) 2014-04-17
JP5907846B2 JP5907846B2 (en) 2016-04-26

Family

ID=50743037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012213392A Active JP5907846B2 (en) 2012-09-27 2012-09-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP5907846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017729A (en) * 2014-07-11 2016-02-01 日立アプライアンス株式会社 Air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171554A (en) * 1988-12-23 1990-07-03 Matsushita Electric Ind Co Ltd Heating overload control device for air conditioner
JPH0719641A (en) * 1993-06-29 1995-01-20 Mitsubishi Electric Corp Air conditioning apparatus
JPH1183211A (en) * 1997-09-03 1999-03-26 Daikin Ind Ltd High pressure protective controller for refrigerator
JP2001280756A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating unit
JP2002295915A (en) * 2001-03-30 2002-10-09 Mitsubishi Electric Corp Air conditioner
JP2008209021A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Multi-air conditioner
JP2009121812A (en) * 2007-09-28 2009-06-04 Daikin Ind Ltd Compressor operation control device and air conditioner using the same
JP2009204168A (en) * 2008-02-26 2009-09-10 Panasonic Corp Compressor protecting controlling device for air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171554A (en) * 1988-12-23 1990-07-03 Matsushita Electric Ind Co Ltd Heating overload control device for air conditioner
JPH0719641A (en) * 1993-06-29 1995-01-20 Mitsubishi Electric Corp Air conditioning apparatus
JPH1183211A (en) * 1997-09-03 1999-03-26 Daikin Ind Ltd High pressure protective controller for refrigerator
JP2001280756A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating unit
JP2002295915A (en) * 2001-03-30 2002-10-09 Mitsubishi Electric Corp Air conditioner
JP2008209021A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Multi-air conditioner
JP2009121812A (en) * 2007-09-28 2009-06-04 Daikin Ind Ltd Compressor operation control device and air conditioner using the same
JP2009204168A (en) * 2008-02-26 2009-09-10 Panasonic Corp Compressor protecting controlling device for air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017729A (en) * 2014-07-11 2016-02-01 日立アプライアンス株式会社 Air conditioner

Also Published As

Publication number Publication date
JP5907846B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
JP6595205B2 (en) Refrigeration cycle equipment
JP5414482B2 (en) Air conditioner
US9151522B2 (en) Air conditioner and control method thereof
WO2009119023A1 (en) Freezing apparatus
KR101117249B1 (en) A multi air conditioner system and electronic expansion valve opening degree control method of the multi air conditioner system
US8522568B2 (en) Refrigeration system
JP2018071886A (en) air conditioner
WO2010137344A1 (en) Air-conditioning device
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
CN105371545A (en) An air conditioner and a refrigerant circulation quantity adjusting method for a refrigeration system thereof
JP5511761B2 (en) Air conditioner
WO2012032699A1 (en) Refrigeration cycle device
JP2017036881A (en) Refrigeration/air conditioning device
US20180031287A1 (en) Refrigeration cycle system
JP2016003848A (en) Air conditioning system and control method for the same
JP6068121B2 (en) Air conditioner
JP2016166710A (en) Air-conditioning system
JP5907846B2 (en) Air conditioner
KR20110062455A (en) Air conditioning system
JP2015014372A (en) Air conditioner
KR101911272B1 (en) Air conditioner and Method for controlling it
JP6537629B2 (en) Air conditioner
CN113614469B (en) Air conditioner
JP2019020093A (en) Air conditioner
JP2019203688A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150902

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160322

R150 Certificate of patent or registration of utility model

Ref document number: 5907846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250