JP2014066090A - Structure and method for coupling pieces of pipe material - Google Patents

Structure and method for coupling pieces of pipe material Download PDF

Info

Publication number
JP2014066090A
JP2014066090A JP2012212957A JP2012212957A JP2014066090A JP 2014066090 A JP2014066090 A JP 2014066090A JP 2012212957 A JP2012212957 A JP 2012212957A JP 2012212957 A JP2012212957 A JP 2012212957A JP 2014066090 A JP2014066090 A JP 2014066090A
Authority
JP
Japan
Prior art keywords
pipe
steel pipe
materials
pipe material
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012212957A
Other languages
Japanese (ja)
Other versions
JP5991116B2 (en
Inventor
Hidekatsu Asai
英克 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2012212957A priority Critical patent/JP5991116B2/en
Publication of JP2014066090A publication Critical patent/JP2014066090A/en
Application granted granted Critical
Publication of JP5991116B2 publication Critical patent/JP5991116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a structure and method for coupling pieces of pipe material, which needs almost no on-site welding and reduces almost no outer space of pieces of pipe material such as steel pipes, and ensures transmission of compressive axial force between the pieces of pipe material and improves load resistant performance of axial force of a pole.SOLUTION: A structure for coupling pieces of pipe material couples vertically pieces of pipe material, which are used for forming a pole of a building. A plurality of pieces of insertion material is inserted in parallel between the pieces of pipe material, which are vertically adjacent to each other, the plurality of pieces of insertion material being in surface contact with the end faces of the pieces of pipe material. A cement composite is filled in the pieces of pipe material across at least a coupling position of the pieces of pipe material. The contact surface between at least one of the pieces of pipe material and the piece of insertion material is tapered from a horizontal direction. A movement of the piece of insertion material in an outer radial direction of the piece of pipe material is restricted by the tapered surface, while a movement of the piece of insertion material in an inner radial direction of the piece of pipe material is restricted by the cement composite filled in the pieces of pipe material.

Description

本発明は、建物等の構造物の柱となる管材同士を上下方向に連結する連結構造、及び連結方法に関する。   The present invention relates to a connection structure and a connection method for connecting pipe members that are pillars of a structure such as a building in the vertical direction.

従来、建物等の構造物の柱となる管材には、例えば鋼管が使用されている。そして、上下方向に隣り合う鋼管同士の連結構造としては、溶接接合やボルト接合が一般的であり、例えば、特許文献1には溶接接合の一例が開示されている。   Conventionally, for example, a steel pipe is used as a pipe material that becomes a pillar of a structure such as a building. And as a connection structure of the steel pipes which adjoin the up-down direction, welding joining and bolt joining are common, for example, patent document 1 discloses an example of welding joining.

特開2002−242303号公報JP 2002-242303 A

ここで、前者の溶接接合の場合には、現場溶接になることが多いが、かかる現場溶接には高度な技量が要求されて品質管理が難しい。また、施工現場が屋外であることも多く、雨天時には中止になるなど天候の影響を受け易い。   Here, in the case of the former welding joining, in-situ welding is often performed, but high skill is required for such on-site welding, and quality control is difficult. In addition, the construction site is often outdoors and is easily affected by the weather, such as being canceled when it rains.

また、後者のボルト接合の場合には、鋼管の外側にスプライスプレートや高力ボルト等が配置されるが、そうすると、その分だけ、建物等の完成後に室内空間等として利用可能なスペースが減損し、また意匠性も悪くなる。   In the latter case, splice plates, high-strength bolts, etc. are arranged outside the steel pipe. However, the space that can be used as indoor space after the completion of the building is reduced accordingly. In addition, the design is also deteriorated.

一方、現場溶接を要しない連結構造として、図1Aの概略縦断面図に示すように、鋼管11u,11d内にコンクリート21を鋼管11u,11d同士に跨って充填することにより鋼管11u,11d同士を連結することが考えられる。そして、この連結構造によれば、ボルト接合で必要なスプライスプレート等も不要なことから、利用可能スペースの減損の問題も回避することができる。   On the other hand, as a connection structure that does not require field welding, as shown in the schematic longitudinal sectional view of FIG. 1A, the steel pipes 11u and 11d are filled with concrete 21 in the steel pipes 11u and 11d across the steel pipes 11u and 11d. It is possible to concatenate. Further, according to this connection structure, the splicing plate and the like necessary for bolt joining are not necessary, so that the problem of loss of usable space can be avoided.

但し、この連結構造では、図1Bの概略縦断面図に示すように、鋼管11u,11d同士の間に隙間Gが生じる可能性がある。例えば、本来鉛直方向に立設されるべき下の鋼管11dが、その施工誤差等に起因して鉛直方向から若干斜めに立設してしまった場合には、通常、これよりも上方の鋼管11uに対しては鉛直になるように修正をかけるが、そうすると、斜めに立設した下の鋼管11dと、その上に鉛直に立設する上の鋼管11uとの間に、図1Bのような隙間Gが形成されてしまう。   However, in this connection structure, as shown in the schematic longitudinal sectional view of FIG. 1B, there is a possibility that a gap G is generated between the steel pipes 11u and 11d. For example, in the case where the lower steel pipe 11d that should originally be erected in the vertical direction has been erected slightly obliquely from the vertical direction due to its construction error or the like, usually, the upper steel pipe 11u above this However, a gap as shown in FIG. 1B is formed between the lower steel pipe 11d erected obliquely and the upper steel pipe 11u erected vertically thereon. G is formed.

そして、このような隙間Gが生じると、鋼管11u,11d同士が互いの管端面11ua,11daにて適正に接触していないことから、鋼管11u,11dの管端面11ua,11daで圧縮軸力を受け難くなる。すなわち、圧縮軸力の伝達に鋼管11u,11dが寄与し難くなって当該圧縮軸力を専らコンクリート21で受けることになり、結果、全体として柱の圧縮軸力の耐荷重性能が低くなる虞がある。   When such a gap G occurs, the steel pipes 11u and 11d are not properly in contact with each other at the pipe end faces 11ua and 11da, so that the compression axial force is applied to the pipe end faces 11ua and 11da of the steel pipes 11u and 11d. It becomes difficult to receive. That is, the steel pipes 11u and 11d are unlikely to contribute to the transmission of the compression axial force, and the compression axial force is received exclusively by the concrete 21, and as a result, the load resistance performance of the compression axial force of the column may be lowered as a whole. is there.

本発明は、上記のような従来の問題に鑑みなされたものであって、その目的は、現場溶接をほぼ不要とし、鋼管等の管材の外側の空間を概ね減じずに済ませながらも、管材同士の間で圧縮軸力の伝達を確実に行えるようにして、柱の軸力の耐荷重性能を高めることにある。   The present invention has been made in view of the conventional problems as described above, and the purpose thereof is to make welding on site almost unnecessary, and without reducing the space outside the pipe material such as a steel pipe. It is to improve the load bearing performance of the axial force of the column by ensuring that the compression axial force can be transmitted between the two.

かかる目的を達成するために請求項1に示す発明は、
構造物の柱となる管材同士を上下方向に連結する管材の連結構造であって、
上下方向に隣り合う前記管材同士の間には、前記管材の管端面と面接触する複数の挟み材が互いに並列に介装されており、
前記管材内には、少なくとも前記管材同士の連結位置を跨いでセメント系組成物が充填されており、
前記管材同士のうちの少なくとも一方の管材と前記挟み材との接触面は、水平方向から傾斜したテーパー面になっており、
前記管材の管径方向の外方への前記挟み材の移動は、前記テーパー面によって拘束されているとともに、前記管径方向の内方への前記挟み材の移動は、前記管材内に充填された前記セメント系組成物によって拘束されていることを特徴とする。
In order to achieve this object, the invention shown in claim 1
A pipe connection structure that connects the pipes that are the pillars of the structure in the vertical direction,
Between the pipe materials adjacent to each other in the vertical direction, a plurality of sandwich materials that are in surface contact with the pipe end surface of the pipe material are interposed in parallel with each other,
The pipe material is filled with a cement-based composition across at least the connection position between the pipe materials,
The contact surface between at least one of the tube members and the sandwich member is a tapered surface inclined from the horizontal direction,
The movement of the pinching material outward in the pipe radial direction of the pipe is constrained by the tapered surface, and the movement of the pinching material inward in the pipe radial direction is filled in the pipe. Further, it is restricted by the cementitious composition.

上記請求項1に示す発明によれば、当該連結構造は、溶接接合及びボルト接合のどちらでもない。よって、現場溶接をほぼ不要にできるとともに、スプライスプレート等で管材の外側の空間を概ね減じずに済ませることができる。
また、挟み材は、その上下の管材の管端面と面接触している。よって、管材同士の間の圧縮軸力の伝達は、挟み材を介して確実に行われ、これにより、管材も圧縮軸力の伝達に有効に寄与し、結果、柱の軸力の耐荷重性能を高めることができる。
更に、管径方向の外方及び内方への挟み材の移動は、それぞれテーパー面及びセメント系組成物によって拘束されている。よって、挟み材が管材から脱落することは、テーパー面及びセメント系組成物によって有効に防止され、結果、挟み材を介して管材同士の間の圧縮軸力の伝達を確実且つ安定的に行うことができる。
また、複数の挟み材が並列に介装されているので、各挟み材を互いに独立に管径方向の外方へ移動することができて、管材の管端面と挟み材とを面接触状態に調整し易くなる。よって、管材同士の間で圧縮軸力をより確実に伝達可能となる。
According to the first aspect of the present invention, the connection structure is neither a weld joint nor a bolt joint. Therefore, on-site welding can be made almost unnecessary, and the space outside the pipe can be substantially reduced with a splice plate or the like.
The sandwiching material is in surface contact with the pipe end surfaces of the upper and lower pipes. Therefore, the transmission of the compression axial force between the pipe members is reliably performed via the sandwiching material, so that the pipe material also contributes effectively to the transmission of the compression axial force, and as a result, the load resistance performance of the column axial force. Can be increased.
Furthermore, the movement of the pinching material outward and inward in the tube diameter direction is restricted by the tapered surface and the cementitious composition, respectively. Therefore, it is effectively prevented by the taper surface and the cementitious composition that the pinching material falls off the pipe material, and as a result, the compression axial force between the pipe materials is reliably and stably transmitted via the pinching material. Can do.
In addition, since a plurality of sandwiching materials are interposed in parallel, each sandwiching material can be moved outward in the pipe radial direction independently of each other, and the tube end surface of the tubing and the sandwiching material are brought into a surface contact state. Easy to adjust. Therefore, it becomes possible to more reliably transmit the compression axial force between the pipe members.

請求項2に示す発明は、請求項1に記載の管材の連結構造であって、
前記管材の内周面には、前記管径方向の内方に突出する突出部が設けられており、
前記セメント系組成物内には、前記管材同士のうちの一方の管材の突出部の設置位置と、もう一方の管材の突出部の設置位置とを跨ぐように継手材が埋設されていることを特徴とする。
Invention of Claim 2 is the connection structure of the pipe material of Claim 1, Comprising:
On the inner peripheral surface of the tube material, a protruding portion protruding inward in the tube diameter direction is provided,
In the cementitious composition, a joint material is embedded so as to straddle the installation position of the protruding portion of one of the pipe materials and the installation position of the protruding portion of the other pipe material. Features.

上記請求項2に示す発明によれば、突出部と継手材とが上述の位置関係で配置されていることから、管材同士のうちの一方の管材に作用する引張軸力は、当該一方の管材の突出部と継手材との間のセメント系組成物の部分、継手材、もう一方の管材の突出部と継手材との間のセメント系組成物の部分を介して、当該もう一方の管材に速やかに伝達される。よって、管材同士の間で引張軸力の伝達を確実に行うことができて、結果、引張軸力に対する柱の耐荷重性能を高めることができる。   According to the second aspect of the present invention, since the projecting portion and the joint material are arranged in the above-described positional relationship, the tensile axial force acting on one pipe material among the pipe materials is the one pipe material. A portion of the cement-based composition between the protrusion of the pipe and the joint material, the joint material, and a portion of the cement-based composition between the protrusion of the other pipe and the joint material. Promptly communicated. Therefore, the tensile axial force can be reliably transmitted between the pipe members, and as a result, the load resistance performance of the column with respect to the tensile axial force can be enhanced.

請求項3に示す発明は、請求項1又は2に記載の管材の連結構造であって、
前記管材は、断面形状が矩形形状の矩形パイプであり、
前記矩形パイプの四つの各管壁部に対応させて、それぞれ前記挟み材が設けられていることを特徴とする。
Invention of Claim 3 is the connection structure of the pipe material of Claim 1 or 2, Comprising:
The pipe is a rectangular pipe having a rectangular cross-sectional shape,
The sandwiching material is provided corresponding to each of the four tube wall portions of the rectangular pipe.

上記請求項3に示す発明によれば、管材の管壁部毎に挟み材が設けられている。よって、仮に、管材同士の間の隙間の大きさが管壁部毎に異なる場合であっても、それぞれ、対応する管壁部の隙間の大きさに応じて各挟み材を管径方向の外方に移動することにより、各挟み材は、対応する隙間を埋めることができる。そして、これにより、各挟み材は、それぞれ対応する管壁部の管端面に面接触状態で管材同士の間に介装されるようになる。   According to the third aspect of the present invention, the sandwiching material is provided for each tube wall portion of the tube material. Therefore, even if the size of the gap between the pipe materials is different for each tube wall portion, each pinching material is removed in the pipe radial direction according to the size of the gap of the corresponding tube wall portion. By moving in the direction, each sandwich member can fill the corresponding gap. As a result, each sandwich member is interposed between the tube members in a surface contact state with the tube end surface of the corresponding tube wall portion.

請求項4に示す発明は、請求項1乃至3の何れかに記載の管材の連結構造であって、
前記管材同士の両方の管材は、それぞれ前記接触面として前記テーパー面を有していることを特徴とする。
Invention of Claim 4 is the connection structure of the pipe material in any one of Claim 1 thru | or 3, Comprising:
Both the pipe materials of the pipe materials have the tapered surface as the contact surface, respectively.

上記請求項4に示す発明によれば、両方の管材がそれぞれテーパー面を有しているので、管径方向の外方への挟み材の移動は確実に拘束される。   According to the fourth aspect of the present invention, since both the pipe materials have the tapered surfaces, the movement of the sandwiching material outward in the pipe radial direction is reliably restrained.

請求項5に示す発明は、構造物の柱となる管材同士を上下方向に連結する管材の連結方法であって、
前記管材同士のうちの少なくとも一方の管材の管端面に、水平方向から傾斜したテーパー面を形成するテーパー面形成工程と、
前記管端面の前記テーパー面に対応するテーパー面を有した挟み材を形成する挟み材形成工程と、
上下方向に隣り合う前記管材同士の間に、複数の前記挟み材が互いに並列に介装されるように、前記管材及び前記挟み材を配置する挟み材介装配置工程と、
前記テーパー面による前記管径方向の外方への移動の規制に抗しながら、前記挟み材を前記管材の管径方向の外方に移動することにより、前記挟み材と前記管材とを面接触状態にする面接触工程と、
前記面接触状態を保持しながら、前記管材内にセメント系組成物を、少なくとも前記管材同士の連結位置を跨ぐように充填するとともに、充填された前記セメント系組成物を固化するセメント系組成物充填固化工程と、を有することを特徴とする。
The invention shown in claim 5 is a pipe connecting method for connecting pipes to be pillars of a structure vertically.
A tapered surface forming step of forming a tapered surface inclined from the horizontal direction on the tube end surface of at least one of the tubular materials;
A sandwiching material forming step of forming a sandwiching material having a tapered surface corresponding to the tapered surface of the tube end surface;
A sandwiching material interposing step of placing the tubular material and the sandwiching material such that a plurality of the sandwiching materials are interposed in parallel between the tubular materials adjacent in the vertical direction;
The pinching material and the pipe material are brought into surface contact by moving the pinching material outward in the pipe radial direction of the pipe material while resisting the restriction of the outward movement of the pipe radial direction by the tapered surface. A surface contact process to make a state;
Filling the pipe with a cement-based composition so as to straddle at least the connecting position of the pipes while solidifying the cement-based composition filled, while maintaining the surface contact state And a solidifying step.

上記請求項5に示す発明によれば、請求項1に記載の管材の連結構造を形成することができる。   According to the fifth aspect of the present invention, the pipe connecting structure according to the first aspect can be formed.

請求項6に示す発明は、請求項5に記載の管材の連結方法であって、
前記挟み材介装配置工程では、前記挟み材が介装された前記管材同士の相対移動を拘束すべくエレクションピースによって前記管材同士を仮固定し、
前記面接触工程では、前記管材の外に設置したジャッキ部材によって前記挟み材を前記管径方向の外方に移動し、
前記セメント系組成物充填固化工程では、前記管材内に充填された前記セメント系組成物の固化後に、前記管材から前記エレクションピースを取り外すことを特徴とする。
The invention shown in claim 6 is the pipe connection method according to claim 5,
In the pinching material interposed arrangement step, the pipe materials are temporarily fixed by an erection piece to restrain relative movement between the pipe materials in which the pinching material is interposed,
In the surface contact step, the pinch member is moved outward in the tube radial direction by a jack member installed outside the tube member,
In the cement-based composition filling and solidifying step, the erection piece is removed from the pipe material after the cement-based composition filled in the pipe material is solidified.

上記請求項6に示す発明によれば、挟み材介装配置工程では、エレクションピースを用いて管材同士を仮固定するので、当該管材同士の位置決めを正確に行うことができる。また、セメント系組成物充填固化工程では、セメント系組成物の固化後に、管材からエレクションピースを取り外すので、管材の外側の空間を概ね減損せずに済む。   According to the sixth aspect of the present invention, since the tube members are temporarily fixed using the erection piece in the sandwiching material interposed arrangement step, the tubes can be accurately positioned. Further, in the cement-based composition filling and solidifying step, the erection piece is removed from the tube material after the cement-based composition is solidified, so that the space outside the tube material is not substantially lost.

本発明によれば、現場溶接をほぼ不要とし、鋼管等の管材の外側の空間を概ね減じずに済ませながらも、管材同士の間で圧縮軸力の伝達を確実に行えるようになり、柱の軸力の耐荷重性能を高めることができる。   According to the present invention, on-site welding is almost unnecessary, and it is possible to reliably transmit the compression axial force between the pipes while substantially reducing the space outside the pipes such as steel pipes. The load bearing performance of the axial force can be increased.

図1A及び図1Bは、それぞれ、参考例の連結構造の課題を示す概略縦断面図である。FIG. 1A and FIG. 1B are schematic longitudinal sectional views showing the problems of the connection structure of the reference example. 図2Aは、本実施形態に係る管材の連結構造の概略縦断面図であり、図2B及び図2Cは、それぞれ図2A中のB−B矢視図及びC−C矢視図である。FIG. 2A is a schematic longitudinal sectional view of a pipe connecting structure according to the present embodiment, and FIGS. 2B and 2C are a BB arrow view and a CC arrow view in FIG. 2A, respectively. 図3Aは、本実施形態の連結構造によって引張軸力が鋼管11u,11d同士の間で円滑に伝達される様子を示す概略縦断面図であり、図3Bは、同連結構造によって圧縮軸力が鋼管11u,11d同士の間で円滑に伝達される様子を示す概略縦断面図である。FIG. 3A is a schematic longitudinal sectional view showing a state in which a tensile axial force is smoothly transmitted between the steel pipes 11u and 11d by the connection structure of the present embodiment, and FIG. 3B shows a compression axial force by the connection structure. It is a schematic longitudinal cross-sectional view which shows a mode that it is smoothly transmitted between the steel pipes 11u and 11d. 挟み材31の概略拡大図である。2 is a schematic enlarged view of a pinch material 31. FIG. 図5A乃至図5Eは、上述の連結構造を形成する連結方法の説明図である。5A to 5E are explanatory views of a connection method for forming the above-described connection structure. 図6Aは、連結構造の変形例の概略縦断面図であり、図6B及び図6Cは、それぞれ図6A中のB−B矢視図及びC−C矢視図である。FIG. 6A is a schematic longitudinal sectional view of a modified example of the connection structure, and FIGS. 6B and 6C are a BB arrow view and a CC arrow view in FIG. 6A, respectively. 図7A及び図7Bは、その他の実施の形態を示す概略縦断面図である。7A and 7B are schematic longitudinal sectional views showing other embodiments.

===本実施形態===
図2Aは、本実施形態に係る管材の連結構造の概略縦断面図である。また、図2B及び図2Cは、それぞれ図2A中のB−B矢視図及びC−C矢視図である。なお、これらの図では、図の錯綜を防ぐ目的で、本来断面部に示すべきハッチングを省略していることがある。
=== This Embodiment ===
FIG. 2A is a schematic vertical cross-sectional view of a pipe connection structure according to the present embodiment. Moreover, FIG. 2B and FIG. 2C are the BB arrow directional view and CC arrow directional view in FIG. 2A, respectively. In these drawings, hatching that should originally be shown in the cross-sectional portion may be omitted for the purpose of preventing complication of the drawings.

図2A乃至図2Cに示すように、構造物の柱となる管材11は、例えば断面矩形形状の角形鋼管11(矩形パイプに相当)である。そして、かかる鋼管11,11…が、構造物の高さに対応する本数分、順次上下方向に直列に連結されて鋼管柱が形成されている。   As shown in FIGS. 2A to 2C, the tube material 11 serving as a pillar of the structure is, for example, a rectangular steel pipe 11 (corresponding to a rectangular pipe) having a rectangular cross section. And this steel pipe 11,11 ... is connected in series in the up-down direction for the number corresponding to the height of a structure, and the steel pipe pillar is formed.

ここで、本実施形態では、上下方向に隣り合う鋼管11,11同士の連結構造に対して所定の工夫を施している。そして、この工夫に基づいて、溶接構造やボルト止め構造を概ね不使用としながらも、連結されるべき鋼管11,11同士の間での引張軸力及び圧縮軸力の伝達を確実に行えるようにしている。   Here, in this embodiment, the predetermined device is given with respect to the connection structure of the steel pipes 11 and 11 adjacent to an up-down direction. And based on this device, it is possible to reliably transmit the tensile axial force and the compressive axial force between the steel pipes 11 and 11 to be connected while substantially not using the welding structure and the bolting structure. ing.

以下、この連結構造について詳細に説明するが、以下の説明では、上下方向に隣り合う鋼管11,11同士のうちで上方に位置する鋼管11のことを「上鋼管11u」とも言い、その下方に位置する鋼管11のことを「下鋼管11d」とも言う。また、鋼管11の半径方向のことを「管径方向」とも言い、鋼管11の長手方向のことを「管軸方向」とも言う。   Hereinafter, although this connection structure is demonstrated in detail, in the following description, the steel pipe 11 located above among the steel pipes 11 and 11 adjacent to an up-down direction is also called "upper steel pipe 11u", and the downward direction The steel pipe 11 positioned is also referred to as “lower steel pipe 11d”. In addition, the radial direction of the steel pipe 11 is also referred to as “tube diameter direction”, and the longitudinal direction of the steel pipe 11 is also referred to as “tube axis direction”.

この連結構造は、鋼管11u,11d同士の間で引張軸力の伝達に寄与する引張軸力伝達部材と、鋼管11u,11d同士の間で圧縮軸力の伝達に寄与する圧縮軸力伝達部材と、を有している。   This connection structure includes a tensile axial force transmission member that contributes to transmission of tensile axial force between the steel pipes 11u and 11d, and a compression axial force transmission member that contributes to transmission of compression axial force between the steel pipes 11u and 11d. ,have.

<<<引張軸力伝達部材>>>
引張軸力伝達部材は、鋼管11u,11dの内周面に突出部として一体に設けられた複数のコッター13,13…と、鋼管11u,11d内に鋼管11u,11d同士の連結位置Pjを跨いで密実に充填されたセメント系組成物としてのコンクリート21と、コンクリート21内に埋設された継手材としての棒状の複数の鉄筋15,15…と、を有している。
<<< Tensile axial force transmission member >>>
The tensile axial force transmission member straddles a plurality of cotters 13, 13... Integrally provided as protrusions on the inner peripheral surfaces of the steel pipes 11u, 11d, and a connecting position Pj between the steel pipes 11u, 11d in the steel pipes 11u, 11d. And concrete 21 as a cement-based composition densely filled with, and a plurality of bar-shaped reinforcing bars 15, 15... As a joint material embedded in the concrete 21.

ここで、コッター13,13…は、上鋼管11uの下端部の内周面及び下鋼管11dの上端部の内周面にそれぞれ設けられている。また、鉄筋15,15…は、鋼管11u,11dの内周面との間に間隔をあけながら、上記のコッター13,13…の全ての設置位置を上下方向に跨いで配置されている。よって、例えば図3Aの概略縦断面図のように引張軸力として上鋼管11uに上向きの力Fuが作用した場合には、当該引張軸力は、同図中に矢印で示すような経路で下鋼管11dに伝達される。すなわち、「上鋼管11uの鉛直引張応力」→「上鋼管11uのコッター13と鉄筋15との間のコンクリート21の部分21pの圧縮応力」→「鉄筋15の鉛直引張応力」→「鉄筋15と下鋼管11dのコッター13との間のコンクリート21の部分21pの圧縮応力」→「下鋼管11dの鉛直引張応力」の各態様を経て、下鋼管11dに伝達される。また、逆に、引張軸力として下鋼管11dに下向きの力が作用した場合には、当該引張軸力は、上述とは逆の流れで上鋼管11uへ伝達される。よって、上鋼管11uと下鋼管11dとの間で引張軸力を円滑且つ確実に伝達することができる。   Here, the cotters 13, 13,... Are provided on the inner peripheral surface of the lower end portion of the upper steel pipe 11u and the inner peripheral surface of the upper end portion of the lower steel pipe 11d, respectively. Further, the reinforcing bars 15, 15... Are arranged across the installation positions of the above cotters 13, 13... While being spaced from the inner peripheral surfaces of the steel pipes 11u, 11d. Therefore, for example, when an upward force Fu acts on the upper steel pipe 11u as a tensile axial force as shown in the schematic longitudinal sectional view of FIG. 3A, the tensile axial force is reduced along a path indicated by an arrow in the figure. It is transmitted to the steel pipe 11d. That is, “vertical tensile stress of the upper steel pipe 11u” → “compressive stress of the portion 21p of the concrete 21 between the cotter 13 and the reinforcing bar 15 of the upper steel pipe 11u” → “vertical tensile stress of the reinforcing bar 15” → “rebar 15 and lower It is transmitted to the lower steel pipe 11d through each aspect of “compressive stress of the portion 21p of the concrete 21 between the cotter 13 of the steel pipe 11d” → “vertical tensile stress of the lower steel pipe 11d”. Conversely, when a downward force acts on the lower steel pipe 11d as a tensile axial force, the tensile axial force is transmitted to the upper steel pipe 11u in a flow opposite to that described above. Therefore, the tensile axial force can be smoothly and reliably transmitted between the upper steel pipe 11u and the lower steel pipe 11d.

なお、この例では、図2Bに示すように、コッター13として、鋼製フラットバーを環状に湾曲してなる環状部材13を用いている。そのため、コッター13は、鋼管11u,11dの内周面の全周に亘って連続して設けられているが、何等これに限らない。例えば、コッター13として、環状部材13が分割されてなる複数の分割片(不図示)を用い、これら分断片を、各鋼管11u,11dの内周面の周方向に断続的に設けても良い。また、図2Aの例では、コッター13は、上鋼管11u及び下鋼管11dのそれぞれに対して複数の一例として二つずつ設けられているが、三つ以上設けても良いし、一つでも良い。更に、この例では、鋼管11u,11dへのコッター13の固定は、全周隅肉溶接でなされているが、鋼管11u,11dの内周面に一体に、つまり応力伝達可能に固定されるのであれば、何等全周隅肉溶接に限るものではなく、例えば断続隅肉溶接でも良い。   In this example, as shown in FIG. 2B, as the cotter 13, an annular member 13 formed by bending a steel flat bar in an annular shape is used. Therefore, although the cotter 13 is provided continuously over the entire circumference of the inner peripheral surfaces of the steel pipes 11u and 11d, it is not limited to this. For example, as the cotter 13, a plurality of divided pieces (not shown) obtained by dividing the annular member 13 may be used, and these pieces may be provided intermittently in the circumferential direction of the inner peripheral surface of each steel pipe 11u, 11d. . In the example of FIG. 2A, two cotters 13 are provided as a plurality of examples for each of the upper steel pipe 11u and the lower steel pipe 11d. However, three or more cotters 13 may be provided. . Further, in this example, the cotter 13 is fixed to the steel pipes 11u and 11d by whole-wall fillet welding, but is fixed integrally to the inner peripheral surface of the steel pipes 11u and 11d, that is, capable of transmitting stress. As long as it is present, it is not limited to all-around fillet welding, and for example, intermittent fillet welding may be used.

また、この図2Bの例では、継手材としての鉄筋15,15…は、鋼管11u,11dの周方向に間欠的に複数本並んで配置されており、これにより、引張軸力の伝達の安定化が図られている。そして、各鉄筋15は、自身の周囲のコンクリート21との付着力によって本固定及び本支持されている。但し、鋼管11u,11d内にコンクリート21が充填される前の時点(例えば図5A乃至図5Cの時点)では、鉄筋15を適宜な仮支持部材16で仮支持しなければならず、この図2A及び図2Bの例では、かかる仮支持部材16としてフープ筋16aと簪(かんざし)筋16b,16bとが使用されている。すなわち、各鉄筋15,15…をフープ筋16aに不図示のワイヤー等で仮固定するとともに、コッター13に掛け渡した簪筋16b,16b上に上記のフープ筋16aを載置することにより、各鉄筋15,15…が上鋼管11uに仮支持されている。ちなみに、当該仮支持部材16は、このままコンクリート21中に埋設されるが、基本的に鋼管11u,11d同士の間の引張軸力の伝達には概ね寄与しない。また、場合によっては、簪筋16b,16bを下鋼管11dのコッター13に掛け渡し、これにより鉄筋15を下鋼管11dに仮支持させても良い。   In the example of FIG. 2B, a plurality of reinforcing bars 15, 15... As joint members are arranged intermittently in the circumferential direction of the steel pipes 11u, 11d, thereby stabilizing the transmission of tensile axial force. It is planned. Each reinforcing bar 15 is permanently fixed and supported by the adhesive force with the surrounding concrete 21. However, before the concrete 21 is filled in the steel pipes 11u and 11d (for example, the time point in FIGS. 5A to 5C), the reinforcing bar 15 must be temporarily supported by an appropriate temporary support member 16, and this FIG. In the example of FIG. 2B, hoop muscles 16 a and heel muscles 16 b and 16 b are used as the temporary support member 16. That is, by temporarily fixing the reinforcing bars 15, 15... To the hoop bars 16 a with wires or the like (not shown) and placing the hoop bars 16 a on the barbs 16 b, 16 b spanned over the cotter 13, Reinforcing bars 15, 15... Are temporarily supported by the upper steel pipe 11u. Incidentally, the temporary support member 16 is embedded in the concrete 21 as it is, but basically does not contribute to the transmission of the tensile axial force between the steel pipes 11u and 11d. Moreover, depending on the case, the reinforcing bars 16b and 16b may be passed over the cotter 13 of the lower steel pipe 11d, and thereby the reinforcing bar 15 may be temporarily supported by the lower steel pipe 11d.

コンクリート21は、図2Aに示すように、互いに連通する上鋼管11uの下端部の管内空間S11uと下鋼管11dの上端部の管内空間S11dとの両者に対して選択的に充填されている。つまり、この図2Aの例では、コンクリート21は鋼管11u,11dの全長に亘っては充填されず、鋼管11u,11d同士の連結位置Pjを跨ぐように同連結位置Pjを含む所定範囲A21を充填対象範囲A21として選択的に充填されている。よって、例えば各鋼管11u,11dにおける上下方向の中央部には充填されず、これにより、この鋼管柱は、CFT(コンクリート充填鋼管)造ではなく、S(鉄骨)造として形成されている。   As shown in FIG. 2A, the concrete 21 is selectively filled into both the in-pipe space S11u at the lower end of the upper steel pipe 11u and the in-pipe space S11d at the upper end of the lower steel pipe 11d. That is, in the example of FIG. 2A, the concrete 21 is not filled over the entire length of the steel pipes 11u and 11d, but fills a predetermined range A21 including the connection position Pj so as to straddle the connection position Pj between the steel pipes 11u and 11d. The target range A21 is selectively filled. Therefore, for example, the steel pipe columns 11u and 11d are not filled in the central portion in the vertical direction, and this steel pipe column is formed not as a CFT (concrete filled steel pipe) structure but as an S (steel frame) structure.

かかる充填対象範囲A21は、上下一対の仕切り板17,17によって区画されている。すなわち、上の仕切り板17は、上鋼管11u内において連結位置Pjから所定距離だけ上方の位置に固定されており、また下の仕切り板17は、下鋼管11d内において連結位置Pjから所定距離だけ下方の位置に固定されている。そして、上の仕切り板17と下の仕切り板17との間に挟まれた管内空間S11u,S11dに連通するようにコンクリート21の注入孔h11が上鋼管11uに穿孔されており、当該注入孔h11から、同管内空間S11u,S11dにコンクリート21が充填されるようになっている。なお、注入孔h11は、下鋼管11dの方に形成されても良い。   The filling target range A21 is partitioned by a pair of upper and lower partition plates 17 and 17. That is, the upper partition plate 17 is fixed at a position above the connection position Pj by a predetermined distance in the upper steel pipe 11u, and the lower partition plate 17 is only a predetermined distance from the connection position Pj in the lower steel pipe 11d. It is fixed at a lower position. And the injection hole h11 of the concrete 21 is drilled in the upper steel pipe 11u so as to communicate with the in-pipe spaces S11u and S11d sandwiched between the upper partition plate 17 and the lower partition plate 17, and the injection hole h11 Therefore, the concrete 21 is filled in the pipe inner spaces S11u and S11d. The injection hole h11 may be formed toward the lower steel pipe 11d.

<<<圧縮軸力伝達部材>>>
図2Aに示すように、圧縮軸力伝達部材は、上下に隣り合う鋼管11u,11d同士の間に互いに並列に介装される複数の鋼製の挟み材31,31…を本体とする。図2A及び図2Cの例では、各挟み材31,31…は、それぞれ角形鋼管11u(11d)の四つの各管壁部11w,11w…にそれぞれ対応させて設けられおり、その結果、合計四つの挟み材31,31…が互い並設されている。そして、図2Aに示すように、各挟み材31は、上鋼管11uの管端面11ua及び下鋼管11dの管端面11daにそれぞれ面接触されている。よって、例えば図3Bの概略縦断面図のように圧縮軸力として上鋼管11uに下向きの力Fdが作用した場合には、同図中に矢印で示す経路で圧縮軸力は下鋼管11dに伝達される。すなわち、「上鋼管11uの鉛直圧縮応力」→「挟み材31の鉛直圧縮応力」→「下鋼管11dの鉛直圧縮応力」の各態様を経て、下鋼管11dに伝達される。また、逆に、圧縮軸力として下鋼管11dに上向きの力が作用した場合には、当該圧縮軸力は、上述とは逆の流れで上鋼管11uへ伝達される。よって、上鋼管11uと下鋼管11dとの間で圧縮軸力を円滑且つ確実に伝達することができる。
<<< Compressive axial force transmission member >>>
As shown in FIG. 2A, the compression axial force transmission member includes a plurality of steel sandwich members 31, 31... Interposed between the steel pipes 11 u and 11 d adjacent in the vertical direction in parallel. In the example of FIG. 2A and FIG. 2C, each sandwiching member 31, 31... Is provided corresponding to each of the four tube wall portions 11w, 11w... Of the square steel pipe 11u (11d). Two sandwich members 31, 31... Are arranged side by side. As shown in FIG. 2A, each sandwich member 31 is in surface contact with the pipe end face 11ua of the upper steel pipe 11u and the pipe end face 11da of the lower steel pipe 11d. Therefore, for example, when a downward force Fd acts on the upper steel pipe 11u as a compression axial force as shown in the schematic longitudinal sectional view of FIG. 3B, the compression axial force is transmitted to the lower steel pipe 11d through a path indicated by an arrow in FIG. Is done. That is, it is transmitted to the lower steel pipe 11d through each aspect of “vertical compressive stress of the upper steel pipe 11u” → “vertical compressive stress of the sandwiching material 31” → “vertical compressive stress of the lower steel pipe 11d”. Conversely, when an upward force acts on the lower steel pipe 11d as a compression axial force, the compression axial force is transmitted to the upper steel pipe 11u in a flow opposite to that described above. Therefore, the compression axial force can be smoothly and reliably transmitted between the upper steel pipe 11u and the lower steel pipe 11d.

また、図4の概略拡大図に示すように、上鋼管11uの管端面11ua及び下鋼管11dの管端面11daには、それぞれ、水平方向から傾斜したテーパー面11uat,11datが管壁部11w毎に形成されている。そのため、各挟み材31も、上鋼管11uの管端面11uaのテーパー面11uat及び下鋼管11dの管端面11daのテーパー面11datに対応させて、上下にそれぞれテーパー面31uat,31datを有している。そして、挟み材31の上側のテーパー面31uatは、管径方向の外方へ向かうに従って下降する傾斜勾配で形成されているが、下側のテーパー面31datの方は、管径方向の外方へ向かうに従って上昇する傾斜勾配に形成されている。これにより、挟み材31の縦断面形状、及び上鋼管11uの管端面11uaと下鋼管11dの管端面11daとの間の隙間の縦断面形状は、全体として管径方向の外方に向かうに従って先細りのくさび形をなしている。   Further, as shown in the schematic enlarged view of FIG. 4, the pipe end surface 11ua of the upper steel pipe 11u and the pipe end surface 11da of the lower steel pipe 11d are respectively tapered surfaces 11uat and 11dat inclined from the horizontal direction for each pipe wall portion 11w. Is formed. Therefore, each sandwich member 31 also has upper and lower tapered surfaces 31 uat and 31 dat respectively corresponding to the tapered surface 11 uat of the pipe end surface 11 ua of the upper steel pipe 11 u and the tapered surface 11 dat of the pipe end surface 11 da of the lower steel pipe 11 d. The upper tapered surface 31 uat of the sandwiching material 31 is formed with an inclination that descends as it goes outward in the tube radial direction, while the lower tapered surface 31 dat is outward in the tube radial direction. It is formed in a slope that rises as it goes. Thereby, the longitudinal cross-sectional shape of the sandwiching material 31 and the vertical cross-sectional shape of the gap between the pipe end surface 11ua of the upper steel pipe 11u and the pipe end surface 11da of the lower steel pipe 11d are tapered toward the outside in the pipe radial direction as a whole. It has a wedge shape.

よって、上側のテーパー面11uat,31uat同士の面接触、及び下側のテーパー面11dat,31dat同士の面接触に基づいて、挟み材31の管径方向の外方への移動が拘束(規制)される。他方、同挟み材31の管径方向の内方への移動は、鋼管11u,11d内に充填されたコンクリート21によって拘束(規制)される。そして、かかる挟み材31の内外の移動の拘束(規制)を通して、鋼管11u,11dからの挟み材31の脱落が有効に防止されており、その結果、鋼管11u,11d同士の間で圧縮軸力の伝達が安定して行われるようになっている。   Therefore, based on the surface contact between the upper tapered surfaces 11 uat and 31 uat and the surface contact between the lower tapered surfaces 11 dat and 31 dat, the outward movement of the sandwiching material 31 in the tube radial direction is restricted (restricted). The On the other hand, the inward movement of the sandwiching material 31 in the pipe radial direction is restricted (restricted) by the concrete 21 filled in the steel pipes 11u and 11d. Then, through the restraint (regulation) of the movement of the sandwiching material 31 inside and outside, the sandwiching material 31 is effectively prevented from falling off from the steel pipes 11u and 11d. As a result, the compression axial force is exerted between the steel pipes 11u and 11d. Is transmitted stably.

なお、挟み材31の各テーパー面31uat,31datの水平方向からの傾斜角度θu,θdは、0°よりも大きく90°よりも小さい角度範囲から選択された任意値に設定される。そして、図4の例では、上側のテーパー面31uatの傾斜角度θuと下側のテーパー面31datの傾斜角度θdとは互いに同じ角度にしているが、何等これに限らず、相違させても良い。   In addition, the inclination angles θu and θd from the horizontal direction of the tapered surfaces 31 uat and 31 dat of the sandwiching material 31 are set to arbitrary values selected from an angle range larger than 0 ° and smaller than 90 °. In the example of FIG. 4, the inclination angle θu of the upper taper surface 31 uat and the inclination angle θd of the lower taper surface 31 dat are the same angle, but the present invention is not limited to this and may be different.

ちなみに、上述のように鋼管11u,11d同士の間に複数の挟み材31,31…を互いに並列に介装する構成によれば、この鋼管柱の構築において各挟み材31,31…を上鋼管11uと下鋼管11dとの間に配置する際に、各挟み材31,31…をそれぞれ互いに独立に管径方向の外方へ移動することができる。よって、仮に四つの管壁部11w,11w…毎に管端面11ua,11da同士の間の隙間の大きさが異なる場合であっても、各隙間の大きさに応じて各挟み材31,31…を互いに独立に管径方向の外方に移動することにより、各挟み材31,31…をそれぞれ対応する管端面11ua,11daに確実に面接触させて当該隙間を完全に埋めることができる。よって、圧縮軸力の伝達を確実に行うことができる。   Incidentally, as described above, according to the configuration in which the plurality of sandwiching members 31, 31... Are interposed between the steel pipes 11u, 11d in parallel with each other, each sandwiching member 31, 31. When arrange | positioning between 11u and the lower steel pipe 11d, each pinching material 31,31 ... can be moved to the outward of a pipe radial direction mutually independently. Therefore, even if the size of the gap between the pipe end faces 11ua, 11da is different for each of the four pipe wall portions 11w, 11w,... Are moved independently of each other in the tube radial direction, so that the sandwiching materials 31, 31... Can be brought into surface contact with the corresponding tube end surfaces 11ua, 11da, respectively, and the gap can be completely filled. Therefore, it is possible to reliably transmit the compression axial force.

また、この図4の例では、各挟み材31は、鋼管11u,11dの外周面及び内周面から管径方向の側方に突出するような寸法に設計されている。よって、上鋼管11u及び下鋼管11dの各管端面11ua,11daとの接触面積を大きく確保することができて、このことは、圧縮軸力の伝達の安定化に寄与する。   Further, in the example of FIG. 4, each sandwiching member 31 is designed to have a dimension that protrudes laterally in the tube radial direction from the outer peripheral surface and inner peripheral surface of the steel pipes 11 u and 11 d. Therefore, it is possible to ensure a large contact area with the pipe end surfaces 11ua and 11da of the upper steel pipe 11u and the lower steel pipe 11d, which contributes to stabilization of transmission of the compression axial force.

図5A乃至図5Eは、上述の連結構造を形成する連結方法の説明図であり、何れの図も、上段に概略縦断面図を示し、下段には概略横断面図を示している。なお、これらの図では、図の錯綜を防ぐべく一部の構成を不図示としている。例えば、上段の図においては、鉄筋15を仮支持する仮支持部材16を不図示としており、また下段の図においてはコッター13を不図示としている。更に、上段の図では、コッター13と鉄筋15とが直接接触しているように図示されているが、実際には、図2Aのようにこれらの間には仮支持部材16が介装されていて直接接触はしていない。   5A to 5E are explanatory views of a connecting method for forming the above-described connecting structure, and in each figure, a schematic vertical sectional view is shown in the upper stage and a schematic horizontal sectional view is shown in the lower stage. In these drawings, some components are not shown in order to prevent the complication of the drawings. For example, in the upper drawing, the temporary support member 16 that temporarily supports the reinforcing bars 15 is not shown, and in the lower drawing, the cotter 13 is not shown. Furthermore, in the upper drawing, the cotter 13 and the reinforcing bar 15 are shown as being in direct contact with each other, but actually, a temporary support member 16 is interposed between them as shown in FIG. 2A. There is no direct contact.

図5Aに示すように、先ず、加工機械が装備された工場にて、上鋼管11uの管端面11ua及び下鋼管11dの管端面11daにそれぞれテーパー面11uat,11datを切削加工し(テーパー面形成工程)、また上下にテーパー面31uat,31datを有した挟み材31も形成する(挟み材形成工程)。また、これらと同時並行又は相前後して、上鋼管11uの下端部及び下鋼管11dの上端部にそれぞれエレクションピース41u,41dを溶接等で固定する。更に、これらと同時並行又は相前後して、上鋼管11u及び下鋼管11d内に、それぞれ仕切り板17,17を固定し、また上鋼管11u及び下鋼管11dにコッター13を固定する。   As shown in FIG. 5A, first, in a factory equipped with a processing machine, taper surfaces 11uat and 11dat are cut on the pipe end surface 11ua of the upper steel pipe 11u and the pipe end surface 11da of the lower steel pipe 11d, respectively (tapered surface forming step). In addition, a pinching material 31 having tapered surfaces 31 uat and 31 dat in the upper and lower sides is also formed (pinching material forming step). In parallel or in parallel with these, the erection pieces 41u and 41d are fixed to the lower end of the upper steel pipe 11u and the upper end of the lower steel pipe 11d, respectively, by welding or the like. Further, in parallel or in parallel with these, the partition plates 17 and 17 are fixed in the upper steel pipe 11u and the lower steel pipe 11d, respectively, and the cotter 13 is fixed to the upper steel pipe 11u and the lower steel pipe 11d.

次に、上鋼管11u及び下鋼管11dを施工現場へ搬入する。そして、下鋼管11dは、適宜な連結構造によって構造物の基礎(不図示)に固定されるか、或いは、既に施工現場に据え付け済みの鋼管(不図示)の上端部に、本実施形態の連結構造を介して連結される。   Next, the upper steel pipe 11u and the lower steel pipe 11d are carried into the construction site. Then, the lower steel pipe 11d is fixed to the foundation (not shown) of the structure by an appropriate connecting structure, or is connected to the upper end of the steel pipe (not shown) already installed at the construction site. Connected through structure.

そうしたら、図5Aに示すように、下鋼管11dの四つの各管壁部11wに対応させながら各挟み材31を、同下鋼管11dの管端面11daに載置する。また、上鋼管11uのコッター13に、フープ筋16a及び簪筋16bなどの仮支持部材16(図5Aでは不図示)を介して鉄筋15を仮支持させる。   Then, as shown to FIG. 5A, each pinching material 31 is mounted on the pipe end surface 11da of the lower steel pipe 11d, making it correspond to each four pipe wall parts 11w of the lower steel pipe 11d. Further, the steel bar 11 u is temporarily supported by the cotter 13 of the upper steel pipe 11 u via temporary support members 16 (not shown in FIG. 5A) such as the hoop bars 16 a and the barbs 16 b.

そうしたら、同図5Aに示すように、下鋼管11dの上方に上鋼管11uを位置させる。そして、上鋼管11uを下降することにより、上鋼管11uの管端から下方に一部飛び出した鉄筋15を下鋼管11d内に挿入しながら、上鋼管11uを下鋼管11dに載置し、これにより、図5Bに示すように、上鋼管11uの管端面11uaと下鋼管11dの管端面11daとの間に各挟み材31が介装された状態になる(挟み材介装配置工程)。   Then, as shown in FIG. 5A, the upper steel pipe 11u is positioned above the lower steel pipe 11d. Then, by lowering the upper steel pipe 11u, the upper steel pipe 11u is placed on the lower steel pipe 11d while inserting the reinforcing bar 15 partially protruding downward from the pipe end of the upper steel pipe 11u into the lower steel pipe 11d. As shown in FIG. 5B, each pinching material 31 is interposed between the pipe end surface 11ua of the upper steel pipe 11u and the pipe end surface 11da of the lower steel pipe 11d (the pinching material interposition process).

次に、図5Bに示すように、上鋼管11uのエレクションピース41uと下鋼管11dのエレクションピース41dとの両者に固定板43を掛け渡してボルト止めすることにより、固定板43を各エレクションピース41u,41dに締結固定する。これにより、上鋼管11uと下鋼管11dとは互いの相対移動が拘束された状態に仮固定される。   Next, as shown in FIG. 5B, by fixing the fixing plate 43 over both the erection piece 41u of the upper steel pipe 11u and the erection piece 41d of the lower steel pipe 11d and bolting, the fixing plate 43 is fixed to each erection piece 41u. , 41d. Thereby, the upper steel pipe 11u and the lower steel pipe 11d are temporarily fixed in a state in which the relative movement of each other is restricted.

そうしたら、図5Cに示すように、挟み材31毎に一対のジャッキ部材51,51を設置し、各ジャッキ部材51によって各挟み材31をそれぞれ管径方向の外方に移動する。なお、この移動時には、挟み材31のテーパー面31uat,31dat、及び上下鋼管11u,11dの管端面11ua,11daのテーパー面11uat,11datに基づいて、管径方向の外方の移動を拘束(規制)するような抵抗力が各挟み材31に作用するが、この抵抗力に抗いつつ各挟み材31を移動することによって、同挟み材31は、上鋼管11u及び下鋼管11dの管端面11ua,11daに対して面接触した状態にされる(面接触工程)。   Then, as shown in FIG. 5C, a pair of jack members 51, 51 are installed for each sandwich member 31, and each sandwich member 31 is moved outward in the tube radial direction by each jack member 51. At the time of this movement, the outward movement in the pipe radial direction is constrained (restricted) based on the tapered surfaces 31 uat and 31 dat of the sandwiching material 31 and the tapered end surfaces 11 ua and 11 da of the upper and lower steel pipes 11 u and 11 d. ) Acts on each pinching material 31, and by moving each pinching material 31 while resisting this resistance force, the pinching material 31 becomes the pipe end surfaces 11 ua and 11 a of the upper steel pipe 11 u and the lower steel pipe 11 d. 11 da is brought into surface contact (surface contact process).

ちなみに、かかるジャッキ部材51は、例えばボルト53が貫通された断面コ字状部材55を本体とする。すなわち、断面コ字状部材55は、接続部55aを介して一体に繋がった一対の脚部55b,55bを有する。そして、この接続部55aに上記のボルト53が貫通しており、当該ボルト53は脚部55bと平行な方向に進退可能である。よって、例えば、次のようにして挟み材31は外方に移動される。   Incidentally, the jack member 51 has, for example, a U-shaped cross-section member 55 through which a bolt 53 is penetrated as a main body. That is, the U-shaped member 55 has a pair of leg portions 55b and 55b that are integrally connected via the connection portion 55a. The bolt 53 passes through the connecting portion 55a, and the bolt 53 can advance and retreat in a direction parallel to the leg portion 55b. Therefore, for example, the sandwiching material 31 is moved outward as follows.

先ず、一方の脚部55bを上鋼管11uの外周面に当接させ、他方の脚部55bを下鋼管11dの外周面に当接させた状態で、ボルト53を回転することにより、ボルト53の先端部の雄ねじを挟み材31の雌ねじにねじ込む。そして、このねじ込みが進んでいくと、ボルト53の頭部が接続部55aに当接するようになるが、そうすると、この当接に基づいて、ボルト53は、同挟み材31を管径方向の外方に引き出すのに必要な反力を取ることができて、これにより、同挟み材31を管径方向の外方に引き出すことが可能となる。但し、ジャッキ部材51は、何等上記の構成に限るものではなく、別の種類のものを用いても良い。   First, by rotating the bolt 53 with one leg 55b abutting on the outer peripheral surface of the upper steel pipe 11u and the other leg 55b abutting on the outer peripheral surface of the lower steel pipe 11d, The male screw at the tip is screwed into the female screw of the sandwiching material 31. As the screwing progresses, the head of the bolt 53 comes into contact with the connecting portion 55a. Then, based on this contact, the bolt 53 removes the pinching material 31 from the tube radial direction. The reaction force required for pulling out in the direction can be taken, so that the pinching material 31 can be pulled out outward in the pipe radial direction. However, the jack member 51 is not limited to the above configuration, and another type of jack member may be used.

そうしたら、図5Dに示すように、上鋼管11uに穿孔された注入孔h11から鋼管11u,11d内にコンクリート21を充填するが、ここで、既述のように上鋼管11u内及び下鋼管11d内にはそれぞれ仕切り板17,17が予め固定されている。よって、これら上下の仕切り板17,17によって区画された充填対象範囲A21の空間に対してのみ選択的且つ密実にコンクリート21が充填される。そして、これにより、図5D及び図5Eに示すように、上下鋼管11u,11d内の鉄筋15やコッター13は、コンクリート21中に埋設される。また、挟み材31のうちで鋼管11u,11d内に位置する部分も、コンクリート21中に埋設される。   Then, as shown in FIG. 5D, the concrete 21 is filled into the steel pipes 11u and 11d from the injection hole h11 drilled in the upper steel pipe 11u. Here, as described above, the inside of the upper steel pipe 11u and the lower steel pipe 11d are filled. In each, partition plates 17 and 17 are fixed in advance. Therefore, the concrete 21 is selectively and densely filled only in the space of the filling target range A21 defined by the upper and lower partition plates 17 and 17. As a result, as shown in FIGS. 5D and 5E, the reinforcing bars 15 and the cotters 13 in the upper and lower steel pipes 11u and 11d are embedded in the concrete 21. Further, a portion of the sandwiching material 31 located in the steel pipes 11 u and 11 d is also embedded in the concrete 21.

そして、かかるコンクリート21が固化したら、図5Eに示すように、ジャッキ部材51を挟み材31及び上下鋼管11u,11dから取り外し、またエレクションピース41u,41dも、溶断等で上下鋼管11u,11dから取り外す(セメント系組成物充填固化工程)。そして、以上をもって、上下に隣り合う鋼管11u,11d同士が、本実施形態の連結構造で連結された状態になる。   When the concrete 21 is solidified, as shown in FIG. 5E, the jack member 51 is removed from the sandwiching material 31 and the upper and lower steel pipes 11u, 11d, and the erection pieces 41u, 41d are also removed from the upper and lower steel pipes 11u, 11d by fusing or the like. (Cementitious composition filling and solidifying step). And with the above, the steel pipes 11u and 11d adjacent up and down will be in the state connected by the connection structure of this embodiment.

図6A乃至図6Cは、連結構造の変形例の説明図である。図6Aは概略縦断面図であり、図6B及び図6Cは、それぞれ図6A中のB−B矢視図及びC−C矢視図である。   6A to 6C are explanatory diagrams of modified examples of the coupling structure. 6A is a schematic longitudinal cross-sectional view, and FIGS. 6B and 6C are a BB arrow view and a CC arrow view in FIG. 6A, respectively.

ここで、上述の実施形態との主な相違点は、この変形例の鋼管柱がS造ではなく、CFT造である点にある。すなわち、この変形例では、鋼管11u,11d内に仕切り板17は設けられず、コンクリート21が鋼管11u,11dの略全長に亘って充填されている点で相違し、これ以外の構成はほぼ同じである。よって、同図中において、前述の実施形態と同じ構成については同じ符号を付し、その説明については省略する。   Here, the main difference from the above-mentioned embodiment is that the steel pipe pillar of this modification is not S-structure but CFT-structure. That is, this modification is different in that the partition plate 17 is not provided in the steel pipes 11u and 11d, and the concrete 21 is filled over substantially the entire length of the steel pipes 11u and 11d, and other configurations are substantially the same. It is. Therefore, in the same figure, the same code | symbol is attached | subjected about the same structure as the above-mentioned embodiment, and the description is abbreviate | omitted.

上述したように、この変形例では、コンクリート21が上鋼管11uの略全長及び下鋼管11dの略全長に亘って充填されている。そして、これにより、CFT造の鋼管柱が形成されている。かかるコンクリート21の充填は、前述と同様に、上鋼管11u又は下鋼管11dに穿孔された注入孔h11(図2Aを参照)で行っても良いが、場合によっては、上鋼管11uの上方から上鋼管11u内及び下鋼管11d内にトレミー管を挿入して、当該トレミー管によりコンクリート21を充填しても良い。   As described above, in this modification, the concrete 21 is filled over substantially the entire length of the upper steel pipe 11u and the entire length of the lower steel pipe 11d. As a result, a CFT steel pipe column is formed. The filling of the concrete 21 may be performed by the injection hole h11 (see FIG. 2A) drilled in the upper steel pipe 11u or the lower steel pipe 11d, as described above. A tremy pipe may be inserted into the steel pipe 11u and the lower steel pipe 11d, and the concrete 21 may be filled with the tremy pipe.

なお、この変形例の連結構造を形成する連結方法も、図5A乃至図5Eで既述のS造の鋼管柱の場合とほぼ同じである。よって、その説明については省略する。   In addition, the connection method for forming the connection structure of this modified example is substantially the same as that of the S-steel pipe column described in FIGS. 5A to 5E. Therefore, the description is omitted.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The deformation | transformation as shown below is possible in the range which does not deviate from the summary.

上述の実施形態では、挟み材31として鋼製のものを例示したが、鋼管11u,11d同士の間に面接触で介装されて破損せずに圧縮軸力を伝達可能なものであれば、何等上述の鋼製に限らない。例えばアルミニウム合金等の金属製でも良いし、コンクリート等のセメント組成物であっても良い。   In the above-described embodiment, the sandwiching material 31 is exemplified by a steel material, but if it is capable of transmitting a compression axial force without being damaged by being in surface contact between the steel pipes 11u and 11d, It is not limited to the above-mentioned steel. For example, it may be made of a metal such as an aluminum alloy, or may be a cement composition such as concrete.

上述の実施形態では、図4に示すように上鋼管11uの管端面11ua及び下鋼管11dの管端面11daのどちらも、水平方向から傾いたテーパー面11uat,11datに形成されており、それに伴って挟み材31も上下にそれぞれテーパー面31uat,31datを有していたが、何等これに限らない。   In the above-described embodiment, as shown in FIG. 4, both the pipe end face 11ua of the upper steel pipe 11u and the pipe end face 11da of the lower steel pipe 11d are formed on the tapered surfaces 11uat and 11dat inclined from the horizontal direction. The sandwiching material 31 also has tapered surfaces 31 uat and 31 dat in the vertical direction, but the present invention is not limited to this.

例えば、図7Aに示すように、上鋼管11uの管端面11uaだけをテーパー面11uatとし、下鋼管11dの管端面11daを水平面11dahとしても良い。なお、この場合には、挟み材31についても、上だけにテーパー面31uatが形成され、下には水平面31dahが形成されることになる。また、これとは逆に、図7Bに示すように、下鋼管11dの管端面11daだけをテーパー面11datとし、上鋼管11uの管端面11uaを水平面11uahとしても良い。そして、この場合には、挟み材31の下にだけテーパー面31datが形成され、上には水平面31uahが形成される。   For example, as shown in FIG. 7A, only the pipe end face 11ua of the upper steel pipe 11u may be a tapered face 11uat, and the pipe end face 11da of the lower steel pipe 11d may be a horizontal plane 11dah. In this case, the pinching material 31 also has a tapered surface 31 uat formed only on the upper side, and a horizontal surface 31 dah formed on the lower side. On the contrary, as shown in FIG. 7B, only the pipe end surface 11da of the lower steel pipe 11d may be a tapered surface 11dat, and the pipe end surface 11ua of the upper steel pipe 11u may be a horizontal plane 11uah. In this case, a tapered surface 31dat is formed only under the sandwiching material 31, and a horizontal surface 31uah is formed thereon.

上述の実施形態では、柱をなす管材の一例として鋼管11u,11dを例示したが、何等これに限らない。例えば、アルミニウム合金等の金属製の管材でも良い。   In the above-described embodiment, the steel pipes 11u and 11d are illustrated as an example of the pipe material forming the pillar, but the present invention is not limited thereto. For example, a metal pipe such as an aluminum alloy may be used.

上述の実施形態では、管材の一例として断面矩形形状の角形鋼管11u,11dを例示したが、何等これに限らない。例えば、断面円形形状の円形(丸形)鋼管を用いても良いし、又は、断面三角形形状の鋼管でも良いし、更には、断面形状が5つ以上の角部を有する多角形形状の鋼管を用いても良い。なお、前者の円形鋼管の場合には、挟み材31として、鋼管の周方向に沿った平面視円弧形状の部材が互いに並列に複数設けられることになる。また、後者の多角形形状の鋼管の場合には、挟み材31が、多角形の各辺に対応する各管壁部に対応させてそれぞれ設けられることになる。   In the above-described embodiment, the rectangular steel pipes 11u and 11d having a rectangular cross section are illustrated as an example of the pipe material, but the present invention is not limited thereto. For example, a circular (round) steel pipe having a circular cross section may be used, or a steel pipe having a triangular cross section may be used. Furthermore, a polygonal steel pipe having a cross section having five or more corners may be used. It may be used. In the case of the former circular steel pipe, a plurality of members having a circular arc shape in plan view along the circumferential direction of the steel pipe are provided in parallel as the sandwiching material 31. Further, in the case of the latter polygonal steel pipe, the sandwiching material 31 is provided corresponding to each tube wall portion corresponding to each side of the polygon.

上述の実施形態では、セメント系組成物の一例としてコンクリート21を鋼管11u,11d内に充填したが、何等これに限らない。例えば、場合によってはモルタルを充填しても良い。   In the above-described embodiment, the concrete 21 is filled in the steel pipes 11u and 11d as an example of the cementitious composition, but is not limited thereto. For example, mortar may be filled in some cases.

上述の実施形態では、継手材として鉄筋15を用いていたが、何等これに限らない。すなわち、上下方向に長手方向を指向可能な部材であれば、鉄筋15の代わりに用いることができて、例えば、異形棒鋼や長手方向を有する鋼板等を用いても良い。   In the above-described embodiment, the reinforcing bar 15 is used as the joint material, but the present invention is not limited to this. In other words, any member that can point in the longitudinal direction in the vertical direction can be used in place of the reinforcing bar 15, and for example, a deformed steel bar or a steel plate having a longitudinal direction may be used.

上述の実施形態では、鉄筋15を鋼管11u,11dに仮支持する仮支持部材16としてフープ筋16aや簪筋16bを例示したが、何等これに限らない。すなわち、鋼管11u,11d内に充填されたコンクリート21が固化するまでの間、鉄筋15を概ね宙に浮いた状態に仮支持可能な部材であれば、上述のフープ筋16aや簪筋16b以外の部材を用いても良い。   In the above-described embodiment, the hoop bar 16a and the barb 16b are exemplified as the temporary support member 16 that temporarily supports the reinforcing bar 15 to the steel pipes 11u and 11d, but the present invention is not limited thereto. That is, as long as it is a member that can temporarily support the rebar 15 in a state of floating in the air until the concrete 21 filled in the steel pipes 11u and 11d is solidified, the members other than the hoop rebar 16a and the rebar 16b described above are used. A member may be used.

11 鋼管(管材)、
11u 上鋼管(管材)、11ua 管端面、
11uat テーパー面、11uah 水平面、
11d 下鋼管(管材)、11da 管端面、
11dat テーパー面、11dah 水平面、
11w 管壁部、
13 コッター(突出部)、
15 鉄筋(継手材)、
16 仮支持部材、16a フープ筋、16b 簪筋、
17 仕切り板、
21 コンクリート(セメント系組成物)、21p 部分、
31 挟み材、31uat 上側のテーパー面、31dat 下側のテーパー面、
31uah 水平面、31dah 水平面、
41u エレクションピース、41d エレクションピース、43 固定板、
51 ジャッキ部材、53 ボルト、
55 断面コ字状部材、55a 接続部、55b 脚部、
Pj 連結位置、A21 充填対象範囲、
S11u 管内空間、S11d 管内空間、
h11 注入孔、
Fu 引張軸力、Fd 圧縮軸力、
θu 傾斜角度、θd 傾斜角度、
11 Steel pipe (pipe material),
11u upper steel pipe (pipe material), 11ua pipe end face,
11uat taper surface, 11uah horizontal surface,
11d lower steel pipe (pipe material), 11da pipe end face,
11 dat taper surface, 11 dah horizontal surface,
11w pipe wall,
13 cotters (protrusions),
15 Rebar (joint material),
16 temporary support member, 16a hoop muscle, 16b gluteal muscle,
17 Partition plate,
21 concrete (cement-based composition), 21p part,
31 sandwiching material, 31uat upper tapered surface, 31dat lower tapered surface,
31 uah horizontal plane, 31 dah horizontal plane,
41u erection piece, 41d erection piece, 43 fixing plate,
51 jack members, 53 bolts,
55 U-shaped member in cross section, 55a connection part, 55b leg part,
Pj connection position, A21 filling target range,
S11u inner space, S11d inner space,
h11 injection hole,
Fu Tensile axial force, Fd compression axial force,
θu tilt angle, θd tilt angle,

Claims (6)

構造物の柱となる管材同士を上下方向に連結する管材の連結構造であって、
上下方向に隣り合う前記管材同士の間には、前記管材の管端面と面接触する複数の挟み材が互いに並列に介装されており、
前記管材内には、少なくとも前記管材同士の連結位置を跨いでセメント系組成物が充填されており、
前記管材同士のうちの少なくとも一方の管材と前記挟み材との接触面は、水平方向から傾斜したテーパー面になっており、
前記管材の管径方向の外方への前記挟み材の移動は、前記テーパー面によって拘束されているとともに、前記管径方向の内方への前記挟み材の移動は、前記管材内に充填された前記セメント系組成物によって拘束されていることを特徴とする管材の連結構造。
A pipe connection structure that connects the pipes that are the pillars of the structure in the vertical direction,
Between the pipe materials adjacent to each other in the vertical direction, a plurality of sandwich materials that are in surface contact with the pipe end surface of the pipe material are interposed in parallel with each other,
The pipe material is filled with a cement-based composition across at least the connection position between the pipe materials,
The contact surface between at least one of the tube members and the sandwich member is a tapered surface inclined from the horizontal direction,
The movement of the pinching material outward in the pipe radial direction of the pipe is constrained by the tapered surface, and the movement of the pinching material inward in the pipe radial direction is filled in the pipe. Further, the connecting structure of pipe materials, which is constrained by the cementitious composition.
請求項1に記載の管材の連結構造であって、
前記管材の内周面には、前記管径方向の内方に突出する突出部が設けられており、
前記セメント系組成物内には、前記管材同士のうちの一方の管材の突出部の設置位置と、もう一方の管材の突出部の設置位置とを跨ぐように継手材が埋設されていることを特徴とする管材の連結構造。
The pipe connection structure according to claim 1,
On the inner peripheral surface of the tube material, a protruding portion protruding inward in the tube diameter direction is provided,
In the cementitious composition, a joint material is embedded so as to straddle the installation position of the protruding portion of one of the pipe materials and the installation position of the protruding portion of the other pipe material. The connecting structure of the characteristic tube material.
請求項1又は2に記載の管材の連結構造であって、
前記管材は、断面形状が矩形形状の矩形パイプであり、
前記矩形パイプの四つの各管壁部に対応させて、それぞれ前記挟み材が設けられていることを特徴とする管材の連結構造。
The pipe connection structure according to claim 1 or 2,
The pipe is a rectangular pipe having a rectangular cross-sectional shape,
The pipe connection structure, wherein the sandwiching material is provided corresponding to each of the four pipe wall portions of the rectangular pipe.
請求項1乃至3の何れかに記載の管材の連結構造であって、
前記管材同士の両方の管材は、それぞれ前記接触面として前記テーパー面を有していることを特徴とする管材の連結構造。
It is the connection structure of the pipe material in any one of Claims 1 thru | or 3, Comprising:
Both the pipe materials of the said pipe materials have the said taper surface as said contact surface, respectively, The connection structure of the pipe materials characterized by the above-mentioned.
構造物の柱となる管材同士を上下方向に連結する管材の連結方法であって、
前記管材同士のうちの少なくとも一方の管材の管端面に、水平方向から傾斜したテーパー面を形成するテーパー面形成工程と、
前記管端面の前記テーパー面に対応するテーパー面を有した挟み材を形成する挟み材形成工程と、
上下方向に隣り合う前記管材同士の間に、複数の前記挟み材が互いに並列に介装されるように、前記管材及び前記挟み材を配置する挟み材介装配置工程と、
前記テーパー面による前記管径方向の外方への移動の規制に抗しながら、前記挟み材を前記管材の管径方向の外方に移動することにより、前記挟み材と前記管材とを面接触状態にする面接触工程と、
前記面接触状態を保持しながら、前記管材内にセメント系組成物を、少なくとも前記管材同士の連結位置を跨ぐように充填するとともに、充填された前記セメント系組成物を固化するセメント系組成物充填固化工程と、を有することを特徴とする管材の連結方法。
A pipe connecting method for connecting pipes to be pillars of a structure vertically.
A tapered surface forming step of forming a tapered surface inclined from the horizontal direction on the tube end surface of at least one of the tubular materials;
A sandwiching material forming step of forming a sandwiching material having a tapered surface corresponding to the tapered surface of the tube end surface;
A sandwiching material interposing step of placing the tubular material and the sandwiching material such that a plurality of the sandwiching materials are interposed in parallel between the tubular materials adjacent in the vertical direction;
The pinching material and the pipe material are brought into surface contact by moving the pinching material outward in the pipe radial direction of the pipe material while resisting the restriction of the outward movement of the pipe radial direction by the tapered surface. A surface contact process to make a state;
Filling the pipe with a cement-based composition so as to straddle at least the connecting position of the pipes while solidifying the cement-based composition filled, while maintaining the surface contact state And a solidifying step.
請求項5に記載の管材の連結方法であって、
前記挟み材介装配置工程では、前記挟み材が介装された前記管材同士の相対移動を拘束すべくエレクションピースによって前記管材同士を仮固定し、
前記面接触工程では、前記管材の外に設置したジャッキ部材によって前記挟み材を前記管径方向の外方に移動し、
前記セメント系組成物充填固化工程では、前記管材内に充填された前記セメント系組成物の固化後に、前記管材から前記エレクションピースを取り外すことを特徴とする管材の連結方法。
It is the connection method of the pipe material of Claim 5, Comprising:
In the pinching material interposed arrangement step, the pipe materials are temporarily fixed by an erection piece to restrain relative movement between the pipe materials in which the pinching material is interposed,
In the surface contact step, the pinch member is moved outward in the tube radial direction by a jack member installed outside the tube member,
In the cement-based composition filling and solidifying step, the erection piece is removed from the pipe material after the cement-based composition filled in the pipe material is solidified.
JP2012212957A 2012-09-26 2012-09-26 Pipe connection structure and connection method Expired - Fee Related JP5991116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012212957A JP5991116B2 (en) 2012-09-26 2012-09-26 Pipe connection structure and connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212957A JP5991116B2 (en) 2012-09-26 2012-09-26 Pipe connection structure and connection method

Publications (2)

Publication Number Publication Date
JP2014066090A true JP2014066090A (en) 2014-04-17
JP5991116B2 JP5991116B2 (en) 2016-09-14

Family

ID=50742733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212957A Expired - Fee Related JP5991116B2 (en) 2012-09-26 2012-09-26 Pipe connection structure and connection method

Country Status (1)

Country Link
JP (1) JP5991116B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51372B1 (en) * 1968-08-16 1976-01-07
JPS61185805U (en) * 1985-05-11 1986-11-19
JPH0626097A (en) * 1991-10-07 1994-02-01 Takenaka Komuten Co Ltd Joint method and joint structure of box section column in process of steel erection
JP2011032637A (en) * 2009-07-29 2011-02-17 Shimizu Corp Joint structure and joint method for steel pipe pole

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51372B1 (en) * 1968-08-16 1976-01-07
JPS61185805U (en) * 1985-05-11 1986-11-19
JPH0626097A (en) * 1991-10-07 1994-02-01 Takenaka Komuten Co Ltd Joint method and joint structure of box section column in process of steel erection
JP2011032637A (en) * 2009-07-29 2011-02-17 Shimizu Corp Joint structure and joint method for steel pipe pole

Also Published As

Publication number Publication date
JP5991116B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5131518B2 (en) Steel pipe pile and steel column joint structure
KR102075165B1 (en) Concrete filled tubular column and connecting structure of the same and construction method thereof
JP2017223072A (en) Method and structure for joining steel pipe
JP6271377B2 (en) Ramen structure
KR100862005B1 (en) Manufacturing method of segmental internally confined hollow concrete filled tube
JP2008075251A (en) Method and structure for joining precast reinforced concrete beam members together
JP6753029B2 (en) Reinforcing bar for attaching vertical bars and how to attach reinforcing vertical bars using the reinforcing bar
US20150027076A1 (en) Sleeve Device For Increasing Shear Capacity
JP2008144431A (en) Method and structure for joining precast reinforced concrete beam members
JP2009114755A (en) Joint structure of precast concrete column member, and method for joining precast concrete column members
JP4802111B2 (en) Long structure and steel rebar members
JP6478837B2 (en) Grout injection method
JP2010084503A (en) Structure and method for joining concrete column and steel-frame beam
JP2011032725A (en) Column leg structure
JP5991116B2 (en) Pipe connection structure and connection method
JP6256383B2 (en) Column and pile joining method and structure
JP2012017575A (en) Junction structure and junction method of precast concrete member
JP2007255006A (en) Method of joining steel column and precast pile
JP2005200994A (en) Joining structure of closed cross-sectional member
JP2017014766A (en) Grout injection method
JP2011084967A (en) Connection structure of column of building and prefabricated pile
JP2012057431A (en) Structure for connecting pile and steel column
JP6236997B2 (en) Pipe connection method
JP2001003448A (en) Column and beam connecting structure and connecting method therefor
JP2017082548A (en) Concrete foundation joint member and pile structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5991116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees