JP2014065075A - Ultrasonic vibration device using a plurality of rotary longitudinal vibration cylinders - Google Patents

Ultrasonic vibration device using a plurality of rotary longitudinal vibration cylinders Download PDF

Info

Publication number
JP2014065075A
JP2014065075A JP2012232343A JP2012232343A JP2014065075A JP 2014065075 A JP2014065075 A JP 2014065075A JP 2012232343 A JP2012232343 A JP 2012232343A JP 2012232343 A JP2012232343 A JP 2012232343A JP 2014065075 A JP2014065075 A JP 2014065075A
Authority
JP
Japan
Prior art keywords
vibration
cylinders
longitudinal
cylinder
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012232343A
Other languages
Japanese (ja)
Other versions
JP6047367B2 (en
Inventor
Jiromaru Tsujino
次郎丸 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsujino Jiromaru
Original Assignee
Tsujino Jiromaru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsujino Jiromaru filed Critical Tsujino Jiromaru
Priority to JP2012232343A priority Critical patent/JP6047367B2/en
Publication of JP2014065075A publication Critical patent/JP2014065075A/en
Application granted granted Critical
Publication of JP6047367B2 publication Critical patent/JP6047367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a large capacity ultrasonic vibration device, uniform in the relative vibrational amplitude distribution between a plurality of rotary vibration cylinders capable of vibration processing of a wide sample for various strong ultrasonic wave applications.SOLUTION: Cylinders 1 and 2 driven by a longitudinal vibration device and vibrating in the longitudinal and radial direction, are deviatively installed by about 1/4 wave length of longitudinal vibration, and are formed in a structure for continuously vibrationally processing a thin film and a thin plate sample of various materials 7 inserted between the vibration cylinders 1 and 2 by relative vibration amplitude of the longitudinal and radial directional vibration along the cylinders 1 and 2 between the cylinders 1 and 2 by rotating the vibration cylinders 1 and 2 in a state of impressing static pressurization force. The relative vibration distribution is further uniformized by joining a plurality of these rotary vibration cylinders, and vibration capacity is also increased.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、広幅のプラスチックシート、プラスチックネット、金属薄板、セラミックス、薄膜積層部品、多積層薄膜部品等を連続振動加工(溶接、切削、研磨、切断、塑性加工等)する大容量超音波振動装置に関する。  The present invention is a large-capacity ultrasonic vibration device that continuously vibrates (welding, cutting, polishing, cutting, plastic working, etc.) a wide plastic sheet, plastic net, metal thin plate, ceramics, thin film laminated part, multi-laminated thin film part, etc. About.

従来、超音波振動装置としては加工対象に垂直または平行な振動を印加する単一の振動装置を用いた超音波プラスチック溶接装置または各種の超音波振動加工装置が知られている。
従来技術は、単一の縦振動装置を用いて加工試料に振動を印加するものである。
Conventionally, as an ultrasonic vibration device, an ultrasonic plastic welding device or various ultrasonic vibration processing devices using a single vibration device that applies a vertical or parallel vibration to a workpiece is known.
The conventional technology applies vibration to a processed sample using a single longitudinal vibration device.

発明が解決しようとする課題Problems to be solved by the invention

しかしながら、従来技術では、単一の振動装置を用いるため振動工具の大きさに限界が有り、また振動加工試料の片側から振動を印加しており、広幅で長い加工試料に効率よく連続的に振動エネルギを提供することは困難であり応用範囲に限界があった。  However, in the prior art, there is a limit to the size of the vibration tool because a single vibration device is used, and vibration is applied from one side of the vibration processing sample, so that vibration can be efficiently and continuously applied to a wide and long processing sample. It is difficult to provide energy and the range of application is limited.

このため、広幅のプラスチックシート、ネットや金属薄膜等の各種材料の連続振動加工を可能にするためプラスチック溶接、各種材料の塑性加工等の超音波加工用が可能な超音波振動装置が切望されていた。  Therefore, in order to enable continuous vibration processing of various materials such as wide plastic sheets, nets and metal thin films, an ultrasonic vibration device capable of ultrasonic processing such as plastic welding and plastic processing of various materials has been desired. It was.

本発明の課題は、縦振動および径方向振動する数波長以上の長い振動シリンダーを複数個設置しこのシリンダー間に試料を挿入し静圧力を印加して広幅試料の上下両面から相対振動を印加し、シリンダーを回転させ連続的に振動加工を行う、相対振動振幅が一様な振動印加効率の良い、大容量の超音波振動装置を提供することにある。  The object of the present invention is to install a plurality of long vibration cylinders of several wavelengths or longer that vibrate longitudinally and radially, insert a sample between the cylinders, apply a static pressure, and apply relative vibration from both the upper and lower surfaces of a wide sample. Another object of the present invention is to provide a large-capacity ultrasonic vibration device that rotates a cylinder and continuously performs vibration processing, has a uniform relative vibration amplitude and good vibration application efficiency.

課題を解決するための手段Means for solving the problem

この課題を解決するために本発明は、振動加工試料を2個の振動シリンダー間に挿入し、静圧力を印加した状態で、試料の上下から縦振動および径方向振動を印加し、試料上下間の相対縦振動および相対径方向振動により振動加工を行うが、振動シリンダーの長さに沿った相対振動は2個の振動シリンダー位置を縦振動1/4波長長さずらして設置し、2個のシリンダー同一位相および逆位相で交互に駆動することによりほぼ一様な相対振動振幅分布が得られることを見出してなされたものである。  In order to solve this problem, the present invention applies a longitudinal vibration and a radial vibration from above and below the sample while inserting a vibration processing sample between two vibration cylinders and applying a static pressure. Vibration processing is performed by relative longitudinal vibration and relative radial vibration, but the relative vibration along the length of the vibration cylinder is set by shifting the position of the two vibration cylinders by shifting the length of the longitudinal vibration by 1/4 wavelength. The inventors have found that a substantially uniform relative vibration amplitude distribution can be obtained by alternately driving the cylinder in the same phase and in the opposite phase.

請求項1の発明は、2個の振動シリンダー位置を縦振動1/4波長長さ程度ずらして設置し、2個のシリンダーの振動位相を適当な周期で同一位相および逆位相で交互に駆動することにより2個の振動シリンダー間の相対振動振幅が振動シリンダーの長さに沿ってほぼ一様となり、端部を除く振動シリンダー長さ全体に亘って加工試料に上下から相対縦振動振幅および径方向振動振幅を印加し、振動シリンダーを回転させ一様な連続振動加工を行う構造とした大容量の超音波振動装置である。  According to the first aspect of the present invention, the positions of the two vibration cylinders are shifted by about a quarter wavelength length of the longitudinal vibration, and the vibration phases of the two cylinders are alternately driven with the same phase and the opposite phase at an appropriate period. As a result, the relative vibration amplitude between the two vibration cylinders becomes substantially uniform along the length of the vibration cylinder, and the relative longitudinal vibration amplitude and radial direction of the processed sample from above and below over the entire length of the vibration cylinder excluding the end. This is a large-capacity ultrasonic vibration device having a structure in which vibration amplitude is applied and a vibration cylinder is rotated to perform uniform continuous vibration processing.

請求項2の発明は、請求項1の発明において更に、2個のシリンダーの振動位相を同一位相および逆位相で交互に駆動する目的で、振動シリンダーの共振周波数を僅かに異ならせ、その周波数差ΔfHzで振動シリンダーの振動位相差を変化させ、振動シリンダーに沿ってほぼ一様な縦および径方向振動分布を得る構造とした大容量の超音波振動装置である。  According to a second aspect of the present invention, in addition to the first aspect of the invention, for the purpose of alternately driving the vibration phases of the two cylinders in the same phase and the opposite phase, the resonance frequencies of the vibration cylinders are slightly different from each other. This is a large-capacity ultrasonic vibration device having a structure in which the vibration phase difference of the vibration cylinder is changed at ΔfHz to obtain substantially uniform longitudinal and radial vibration distribution along the vibration cylinder.

請求項3の発明は、請求項1の発明において更に2個以上の振動シリンダーを設置位置を変えて配置し振動シリンダーに沿ってより一様な縦および径方向振動分布を得る構造とした大容量の超音波振動装置である。The invention of claim 3 has a large capacity in the structure of the invention of claim 1 in which two or more vibration cylinders are arranged at different positions to obtain a more uniform longitudinal and radial vibration distribution along the vibration cylinder. This is an ultrasonic vibration device.

作用Action

超音波振動でプラスチック材料の超音波溶接を、2個の振動装置を用いて溶接試料の上下から同一周波数で逆位相で振動を印加する場合に、溶接強度は上下の振動速度の和で決まり、上下の振動速度をVuおよびVLとすると、必要な振動速度Vrは
Vr=Vu+VL となることが知られている。
単一の振動源を用いた場合には、溶接部の負荷抵抗をRLとすると溶接に必要なパワPは
P=(1/2)RlVr となる
上下から同時に振動を印加した場合には、上下の必要な振動速度 Vu、VLを片側から振動を印加する場合の1/2Vu=VL=Vr/2 とした場合の必要パワPuLは

Figure 2014065075
となり、上下の振動速度が1/2になることにより、必要な全パワは1/2になる。実際にも有効な結果が得られている。
この効果は2個の振動シリンダーで振動を印加する場合にも同様でより有効な振動加工効果が得られる。振動方向が試料に平行および垂直方向な振動を上下から同時に印加した場合にも有効な効果が得られている。When ultrasonic vibration of plastic material is applied by ultrasonic vibration and vibration is applied from the top and bottom of the welded sample at the same frequency and in opposite phase using two vibration devices, the welding strength is determined by the sum of the top and bottom vibration speeds, It is known that when the upper and lower vibration speeds are Vu and VL, the necessary vibration speed Vr is Vr = Vu + VL.
When a single vibration source is used, if the load resistance of the weld is RL, the power P required for welding is P = (1/2) Rl * Vr 2 when vibration is applied simultaneously from above and below. Is the required power PuL when 1/2 Vu = VL = Vr / 2 when the vibration is applied from one side to the upper and lower required vibration speeds Vu and VL.
Figure 2014065075
Thus, when the vertical vibration speed is halved, the total power required is halved. In fact, effective results have been obtained.
This effect is the same when a vibration is applied by two vibration cylinders, and a more effective vibration machining effect can be obtained. An effective effect is also obtained when vibrations whose vibration directions are parallel and perpendicular to the sample are simultaneously applied from above and below.

縦振動シリンダーは直径寸法が縦振動波長λの1/4に比して細い場合には直径方向の振動は小であるが、λ/4に比して大きい場合には縦振動振幅の半分以上の振動振幅で振動する。縦振動シリンダーの位置xによる振動分布は
縦振動振幅分布 ξl=Alcos(kx)・sin(2πft+θ) (m)
径方向振動振幅分布 ξr=Arsin(kx+π/2)・sin(2πft+θ) (m)
となる。ここでAl、Arは振動振幅、κは波長定数、fは周波数、tは時間である。
2個の縦振動シリンダーを同一位置で組み合わせた場合の振動シリンダー間の相対振動振幅は振動位相差を180°変化させて駆動しても場所により0の場所が生じる。
2個の縦振動シリンダーを縦振動の1/4波長(π/2)程度ずらして設置し、振動位相差を180°時間的に変化させることによりほぼ一様なシリンダー間の相対振動振幅分布が得られる。
When the diameter of the longitudinal vibration cylinder is smaller than 1/4 of the longitudinal vibration wavelength λ, the vibration in the diametrical direction is small, but when it is larger than λ / 4, it is more than half of the longitudinal vibration amplitude. It vibrates with the vibration amplitude of. The vibration distribution according to the position x of the longitudinal vibration cylinder is the longitudinal vibration amplitude distribution ξl = Alcos (kx) · sin (2πft + θ) (m)
Radial vibration amplitude distribution ξr = Arsin (kx + π / 2) · sin (2πft + θ) (m)
It becomes. Here, Al and Ar are vibration amplitudes, κ is a wavelength constant, f is a frequency, and t is time.
When two longitudinal vibration cylinders are combined at the same position, the relative vibration amplitude between the vibration cylinders is 0 depending on the location even if the vibration phase difference is changed by 180 °.
Two longitudinal vibration cylinders are installed with a shift of about 1/4 wavelength (π / 2) of the longitudinal vibration, and the vibration phase difference is changed over time by 180 °, so that a substantially uniform relative vibration amplitude distribution between the cylinders can be obtained. can get.

振動シリンダーの一方の駆動位相差を180°時間的に変化させることに代えて、2個の振動シリンダーの共振周波数をΔf変えることにより振動位相がΔf回秒変化し、ほぼ一様なシリンダー間の相対振動振幅分布が得られる。  Instead of changing the driving phase difference of one of the vibrating cylinders by 180 ° over time, changing the resonance frequency of the two vibrating cylinders by Δf changes the vibration phase by Δf times, resulting in a substantially uniform cylinder A relative vibration amplitude distribution is obtained.

従って、この振動シリンダー表面に適当な縦振動の微細な滑り止めの凹凸、振動加工用のパターン等を加工することにより大容量の広幅の連続超音波振動加工装置を提供することが出来る。Therefore, a large-capacity continuous ultrasonic vibration machining apparatus having a large capacity can be provided by processing fine anti-slip irregularities with appropriate longitudinal vibrations, vibration machining patterns, and the like on the surface of the vibration cylinder.

図1は本発明の広幅試料の連続振動加工を行う大容量の超音波振動装置の原理を示すブロック図、図2および図3はアルミニウム合金縦振動シリンダーの直径が細い場合および太い場合の径方向振動分布をレーザードップラー振動計による測定結果の例を示す実測図、図4は縦振動の1/4波長ずらして設置した2個の振動シリンダーの同位相の場合の縦振動および径方向振動振幅分布、図5は縦振動の1/4波長長さずらして設置した2個の振動シリンダーの振動位相を時間的に180°変化させ和を取った場合の縦振動および径方向振動振幅分布の計算値で25%程度の変動で一様な振動加工が可能である。  FIG. 1 is a block diagram showing the principle of a large-capacity ultrasonic vibration apparatus that performs continuous vibration processing of a wide sample according to the present invention, and FIGS. 2 and 3 are radial directions when the diameter of an aluminum alloy longitudinal vibration cylinder is thin and thick. Fig. 4 shows an example of the vibration distribution measured by a laser Doppler vibrometer. Fig. 4 shows the longitudinal vibration and radial vibration amplitude distribution in the case of two vibration cylinders installed with a shift of 1/4 wavelength of the longitudinal vibration. Fig. 5 shows calculated values of longitudinal vibration and radial vibration amplitude distribution when the vibration phases of two vibration cylinders installed with a ¼ wavelength length shift of longitudinal vibration are temporally changed by 180 ° and the sum is taken. Therefore, uniform vibration machining is possible with a fluctuation of about 25%.

図1に示すように、各振動シリンダー▲1▼▲2▼は一端を縦振動駆動装置▲3▼▲4▼で駆動し、他端にシリンダー保持・回転駆動可能な受動縦振動系▲5▼▲6▼を設置している。縦振動駆動装置はボルト締めランジュバン形振動子(BLT)▲11▼および速度変成用のホーン▲12▼からなる縦振動系を速度変成用ホーンの振動ノード部を縦振動1/4波長の円筒ノードサポーター▲13▼で支持し、ノードサポーターの他端はサポーターの振動をノードサポーターに比して音響インピーダンス・質量の大で振動エネルギを反射する金属ベース▲14▼に設置している。さらに振動源後部に回転時に超音波振動子に給電するためのスリップリング▲15▼を設置している。受動振動系▲6▼も縦振動系▲6▼に円筒ノードサポータ−▲13▼、金属ベース▲14▼を設置している。この金属ベース▲14▼はほとんど振動しないので保持、回転駆動に使用できる。振動シリンダーは端部近くのノード部をローラー付き1/4波長ノードサポーターで保持できる。振動シリンダーの質量があまり大でなければノードサポーターで支持せず、この部分を用いて振動加工可能な幅を拡げることが出来る。  As shown in FIG. 1, each vibration cylinder (1) (2) is driven at one end by a longitudinal vibration drive device (3) (4) and the other end is a passive longitudinal vibration system (5) capable of holding and rotating the cylinder. (6) is installed. The longitudinal vibration drive device is a longitudinal vibration system composed of a bolted Langevin type vibrator (BLT) (11) and a speed-transforming horn (12), and the vibration node portion of the speed-transforming horn is a cylindrical node having a quarter-wavelength longitudinal vibration It is supported by a supporter (13), and the other end of the node supporter is installed on a metal base (14) that reflects vibration energy of the supporter with a larger acoustic impedance and mass than the node supporter. Further, a slip ring {circle over (15)} for supplying power to the ultrasonic vibrator at the time of rotation is installed at the rear of the vibration source. The passive vibration system (6) is also provided with a cylindrical node supporter (13) and a metal base (14) in the longitudinal vibration system (6). Since this metal base (14) hardly vibrates, it can be used for holding and rotating. The vibration cylinder can hold the node near the end with a 1/4 wavelength node supporter with a roller. If the mass of the vibration cylinder is not too large, it will not be supported by the node supporter, and this part can be used to expand the width that can be vibrated.

図1では縦振動駆動装置▲4▼▲6▼と受動振動装置▲5▼▲6▼を振動シリンダーの異なる端部に設置しているが、縦振動駆動装置の寸法によっては同一側に設置できる また振動容量を更に大にするためは両端部に縦振動駆動装置を設置して並列駆動できる。In FIG. 1, the longitudinal vibration drive device (4) (6) and the passive vibration device (5) (6) are installed at different ends of the vibration cylinder, but depending on the dimensions of the vertical vibration drive device, they can be installed on the same side. Further, in order to further increase the vibration capacity, longitudinal vibration drive devices can be installed at both ends to drive in parallel.

図2および図3は直径50mmおよび110mm、長さ515mmのアルミニウム合金棒を縦振動振幅12.3μm(片振動振幅)で駆動し、長さに沿って2波長振動させて径方向の振動振幅をレーザードップラー振動計で測定した結果である。直径が太くなると音速が遅くなり共振周波数は異なるが、音速の1/4波長より僅かに細い直径50mmの場合には径方向振動振幅が縦振動の約2.4%であるのに対して1/4波長の2倍近い直径110mmの場合には約50%の径方向振動振幅が得られる。
させ
FIGS. 2 and 3 show that a 50 mm and 110 mm diameter, 515 mm long aluminum alloy rod is driven with a longitudinal vibration amplitude of 12.3 μm (single vibration amplitude), and oscillated by two wavelengths along the length to obtain a radial vibration amplitude. It is the result measured with a laser Doppler vibrometer. When the diameter is increased, the sound speed is decreased and the resonance frequency is different. However, when the diameter is 50 mm, which is slightly narrower than a quarter wavelength of the sound speed, the radial vibration amplitude is about 2.4% of the longitudinal vibration. For a diameter of 110 mm, which is nearly twice the / 4 wavelength, a radial vibration amplitude of about 50% is obtained.
Let

柔らかい加工試料の場合で試料に平行な振動(縦振動)より垂直な振動(径方向振動)が有効な場合には、振動シリンダーの材質、直径の選択によってより有効な振動モードの振動シリンダーの選択が可能である。  In the case of a soft processed sample, when vibration (radial vibration) perpendicular to the specimen is effective (vertical vibration), it is possible to select a vibration cylinder with a more effective vibration mode by selecting the material and diameter of the vibration cylinder. Is possible.

2個の直径105mmのアルミニウム合金振動シリンダーの共振周波数をΔf=300Hzとし19.35kHzおよび19.65kHzとすると、縦振動13.5波長の場合の各振動シリンダーの長さは音速の実測値を使用して3,263.1mmおよび3,323.5mmとなり,振動加工幅は約3,000mmとなる。全長が僅かに異なるが設置位置を全長に亘って平均化することにより相対振動振幅分布に大きな影響はない。この直径105mmのアルミニウム合金振動シリンダーはシリンダーの片端駆動で縦振動振幅15μm以上で全長に亘って均一に振動した。また径方向振動振幅は縦振動の約50%である。  Assuming that the resonance frequency of two aluminum alloy vibrating cylinders with a diameter of 105 mm is Δf = 300 Hz and 19.35 kHz and 19.65 kHz, the length of each vibrating cylinder in the case of a longitudinal vibration of 13.5 wavelengths uses the measured value of sound velocity. Thus, 3,263.1 mm and 3,323.5 mm are obtained, and the vibration processing width is about 3,000 mm. Although the total length is slightly different, the relative vibration amplitude distribution is not greatly affected by averaging the installation positions over the entire length. This aluminum alloy vibrating cylinder having a diameter of 105 mm vibrated uniformly over the entire length with a longitudinal vibration amplitude of 15 μm or more by driving one end of the cylinder. The radial vibration amplitude is about 50% of the longitudinal vibration.

振動シリンダーの材質としてはステンレス鋼、鉄鋼、アルミニウム合金が使用できるがアルミニウム合金の場合には表面に滑り止めの細い溝を加工した後に硬質アルマイト、硬質クロームメッキ等の表面処理を施し耐久性を増加させることができる。  Stainless steel, steel, and aluminum alloy can be used as the material of the vibration cylinder, but in the case of aluminum alloy, surface treatment such as hard anodized and hard chrome plating is applied after processing a non-slip groove on the surface to increase durability. Can be made.

試料の種類によっては静加圧力の大きさにより振動加工効果が異なるが、振動シリンダーを上下に配置した場合には上部シリンダーの自重、さらにバネまたは空気シリンダー等を用いることにより最適な静加圧力を印加することができる。  Depending on the type of sample, the effect of vibration processing varies depending on the magnitude of the static pressure, but when the vibration cylinder is placed vertically, the optimum static pressure can be achieved by using the weight of the upper cylinder, spring or air cylinder, etc. Can be applied.

上記の例では充実シリンダーを用いているが重量を軽減するために中空のパイプ状振動体を用いることもできる。  In the above example, a solid cylinder is used, but in order to reduce the weight, a hollow pipe-like vibrating body can also be used.

発明の効果Effect of the invention

以上のように本発明によれば、広幅の加工試料を連続的にほぼ一様に振動加工する振動体の剛性に富んだ大容量の超音波複合振動装置を得ることができる。  As described above, according to the present invention, it is possible to obtain a large-capacity ultrasonic composite vibration device that is rich in rigidity of a vibrating body that continuously and uniformly vibrates a wide processed sample.

図1は本発明の上部および下部に振動シリンダーを設置した超音波振動装置の原理を示すブロック図である。  FIG. 1 is a block diagram showing the principle of an ultrasonic vibration device in which vibration cylinders are installed in the upper and lower parts of the present invention. 図2は、振動シリンダー直径が縦振動1/4波長に近い50mmの振動シリンダーに沿った径方向振動分布の測定例である。  FIG. 2 is a measurement example of the radial vibration distribution along a 50 mm vibration cylinder whose vibration cylinder diameter is close to the longitudinal vibration quarter wavelength. 図3は、振動シリンダー直径が縦振動1/4波長の2倍に近い110mmの振動シリンダーに沿った径方向振動分布の測定例である。  FIG. 3 is a measurement example of the radial vibration distribution along a 110 mm vibration cylinder whose vibration cylinder diameter is close to twice the longitudinal vibration quarter wavelength. 2個の振動シリンダーを縦振動1/4波長位置をずらして設置した縦振動分布および径方向振動分布を示す。  2 shows a longitudinal vibration distribution and a radial vibration distribution in which two vibration cylinders are installed with the longitudinal vibration 1/4 wavelength position shifted. 縦振動の1/4波長長さずらして設置した2個の振動シリンダーの振動位相を時間的に180°変化させ和を取った場合の縦振動および径方向振動振幅分布である。  FIG. 6 shows longitudinal vibration and radial vibration amplitude distributions when the vibration phases of two vibration cylinders installed by shifting the length of a quarter wavelength of the longitudinal vibration are 180 ° temporally and summed.

▲3▼ 上下に配置した長さ数波長以上の回転する縦および径方向振動シリンダー
▲3▼▲4▼ 振動シリンダー駆動用のスリップリングにより給電する縦振動駆動装置
▲5▼▲6▼ 振動シリンダー保持および回転駆動用の受動振動系
▲7▼ プラスチック等の薄膜または薄板状の重ね合わせた溶接または振動加工試料
▲8▼ 溶接部静加圧力
▲9▼ 振動シリンダー回転方向
▲10▼ 縦振動1/4波長長さの振動シリンダーのノード部ローラーサポーター
▲11▼ 超音波振動子(BLT)
▲12▼ 振動速度変成用ホーン
▲13▼ 縦振動系保持用の縦振動1/4波長長さの円筒状ノードサポーター
▲14▼ ノードサポーター保持用質量部
▲15▼ 超音波振動子給電用スリップリング
▲15▼’ 超音波振動子給電用ケーブル
▲ 3 ▼ Vertical and radial vibration cylinders rotating several wavelengths above and below, arranged in the top and bottom ▲ 3 ▼ ▲ 4 ▼ Longitudinal vibration drive device powered by slip ring for driving vibration cylinders ▲ 5 ▼ ▲ 6 ▼ Holding vibration cylinders And passive vibration system for rotational drive (7) Welded or vibration processed specimens of plastic or other thin film or thin plate shape (8) Static pressure applied to welded part (9) Vibration cylinder rotation direction (10) Longitudinal vibration 1/4 Wavelength length vibration cylinder node roller supporter (11) Ultrasonic transducer (BLT)
▲ 12 ▼ Vibration velocity transformation horn ▲ 13 ▼ Longitudinal vibration 1/4 wave length cylindrical node supporter for holding longitudinal vibration system ▲ 14 ▼ Mass part for holding node supporter ▲ 15 ▼ Slip ring for feeding ultrasonic transducer ▲ 15 ▼ 'Ultrasonic vibrator power supply cable

Claims (3)

縦振動源で駆動する縦および径方向振動するシリンダー▲1▼および▲2▼を縦振動1/4波長程度ずらして設置し、縦振動駆動装置▲3▼および▲4▼により振動位相を変化させて縦駆動してシリンダー▲1▼および▲2▼間のシリンダーに沿った縦および径方向振動の相対振動振幅を一様化した振動シリンダー▲1▼および▲2▼間に挿入した各種材料の薄膜、薄板試料▲7▼を静加圧力▲8▼を印加した状態で振動シリンダーを回転させることにより振動加工試料の両面から振動を印加し高効率で連続的に振動加工する構造とした超音波振動装置    Longitudinal and radial cylinders (1) and (2) driven by a longitudinal vibration source are installed with a shift of 1/4 wavelength of the longitudinal vibration, and the vibration phase is changed by the longitudinal vibration drive devices (3) and (4). Thin films of various materials inserted between the vibration cylinders {1} and {2} with the relative vibration amplitude of the longitudinal and radial vibrations along the cylinder between the cylinders {1} and {2} made uniform Ultrasonic vibration with a structure that continuously vibrates with high efficiency by applying vibration from both sides of the vibration processing sample by rotating the vibration cylinder while applying a static pressure (8) to the thin plate sample (7) apparatus 共振周波数が僅かに異なる2個の振動シリンダーを用い共振周波数の差により振動位相を変化させ相対振動振幅を一様にした請求項1に記載の大容量超音波振動装置。  2. The large-capacity ultrasonic vibration device according to claim 1, wherein two vibration cylinders having slightly different resonance frequencies are used to change the vibration phase according to the difference between the resonance frequencies to make the relative vibration amplitude uniform. またこれらの回転振動シリンダー装置位置を変化させ複数結合して更に相対振動分布が一様な振動容量を増加させた構造としてなる請求項1に記載の大容量超音波振動装置。  2. The large-capacity ultrasonic vibration device according to claim 1, wherein a plurality of these vibration vibration cylinder device positions are changed and combined to further increase the vibration capacity with a uniform relative vibration distribution.
JP2012232343A 2012-09-25 2012-09-25 Ultrasonic vibration device using multiple rotating longitudinal vibration cylinders Expired - Fee Related JP6047367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232343A JP6047367B2 (en) 2012-09-25 2012-09-25 Ultrasonic vibration device using multiple rotating longitudinal vibration cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012232343A JP6047367B2 (en) 2012-09-25 2012-09-25 Ultrasonic vibration device using multiple rotating longitudinal vibration cylinders

Publications (2)

Publication Number Publication Date
JP2014065075A true JP2014065075A (en) 2014-04-17
JP6047367B2 JP6047367B2 (en) 2016-12-21

Family

ID=50741978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232343A Expired - Fee Related JP6047367B2 (en) 2012-09-25 2012-09-25 Ultrasonic vibration device using multiple rotating longitudinal vibration cylinders

Country Status (1)

Country Link
JP (1) JP6047367B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096623A (en) * 1999-09-28 2001-04-10 Seidensha Electronics Co Ltd Ultrasonic joining method and device therefor
JP2005511323A (en) * 2001-12-18 2005-04-28 キンバリー クラーク ワールドワイド インコーポレイテッド Nip adjustment for rigid ultrasonic coupling apparatus and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096623A (en) * 1999-09-28 2001-04-10 Seidensha Electronics Co Ltd Ultrasonic joining method and device therefor
JP2005511323A (en) * 2001-12-18 2005-04-28 キンバリー クラーク ワールドワイド インコーポレイテッド Nip adjustment for rigid ultrasonic coupling apparatus and method

Also Published As

Publication number Publication date
JP6047367B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
ES2294148T3 (en) ULTRASONIC UNION OR PROCESSING ROTATING DEVICE ABLE TO PERFORM A HIGH SPEED INTERMITTENT PROCESS.
JP3200086B2 (en) Rotary ultrasonic horn
JP5020963B2 (en) Disc-shaped cutting tool and cutting device
JP6758715B2 (en) Vibration excitation method, ultrasonic processing method and ultrasonic transmission method of Langevin type ultrasonic oscillator
JP6397807B2 (en) Ultrasonic composite vibration welding method
JP7368862B2 (en) Vibration device, vibration method, and vibration transfer device
JPWO2014017460A1 (en) Support structure of ultrasonic vibrator with tool
Li et al. Improvement in polishing effect of silicon wafer due to low-amplitude megasonic vibration assisting chemical-mechanical polishing
Ide et al. A low-profile design for the noncontact ultrasonically levitated stage
JP2011245574A5 (en) Processing equipment and processing tools
Ji et al. A novel ultrasonic surface machining tool utilizing elastic traveling waves
JP2011183510A (en) Ultrasonic-vibration-assisted grinding method and device therefor
JP6047367B2 (en) Ultrasonic vibration device using multiple rotating longitudinal vibration cylinders
JP6673961B2 (en) Ultrasonic compound vibration processing equipment
Seemann A linear ultrasonic traveling wave motor of the ring type
JP2006205140A (en) Ultrasonic machining apparatus
Wu et al. Development of an ultrasonic elliptic-vibration shoe centerless grinding technique
JP2008212916A (en) Apparatus for generating ultrasonic complex vibration
JP2012006136A (en) Ultrasonic cleaning device used in wire saw machine
JPWO2017082350A1 (en) Excitation method of longitudinal and torsional vibration of Langevin type ultrasonic transducer
Tsujino et al. Welding characteristics of 27 kHz and 40 kHz complex vibration ultrasonic metal welding systems
Wu et al. A new centerless grinding technique without employing a regulating wheel
JP7311098B2 (en) Vibration cutting device, vibration device and cutting method
JP6793912B2 (en) Vibration processing equipment and vibration processing method
JP6821187B2 (en) Support structure of Langevin type ultrasonic oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6047367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees