JP2014062348A - Water repellent fabric - Google Patents

Water repellent fabric Download PDF

Info

Publication number
JP2014062348A
JP2014062348A JP2012209561A JP2012209561A JP2014062348A JP 2014062348 A JP2014062348 A JP 2014062348A JP 2012209561 A JP2012209561 A JP 2012209561A JP 2012209561 A JP2012209561 A JP 2012209561A JP 2014062348 A JP2014062348 A JP 2014062348A
Authority
JP
Japan
Prior art keywords
water
repellent
jis
fluorine
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012209561A
Other languages
Japanese (ja)
Inventor
Rei Yasumitsu
玲 安光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2012209561A priority Critical patent/JP2014062348A/en
Publication of JP2014062348A publication Critical patent/JP2014062348A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water repellent fabric that hardly gums up to a roll while being processed, and has excellent washing durability.SOLUTION: A water repellent fabric comprises that a water repellent finishing agent is adhered to a fabric, wherein the water repellent finishing agent includes: an at least C8 perfluoroalkane acid and an at least C8 perfluoroalkene acid; and a fluorine-based water repellent agent (A) not including a precursor thereof, and a water repellent degree of a fabric by JIS L 1092 (spray test) is at least a third class by after 20 times (HL-20) of cleaning according to JIS L 0217 103.

Description

本発明は、布帛に撥水剤が付着した撥水布帛であって、加工時にロールにガムアップしにくく、かつ優れた洗濯耐久性を有する撥水布帛に関する。   The present invention relates to a water-repellent fabric having a water-repellent agent attached to the fabric, which is difficult to gum up on a roll during processing and has excellent washing durability.

フッ素系撥水剤は、炭素数8以上のパーフルオロアルカン酸や炭素数8以上のパーフルオロアルケン酸などを含むもの(以下、PFOA系撥水剤と称する)が従来使用されてきた。しかし、近年では、安全性や環境負荷に配慮して、炭素数8未満のフッ素系撥水剤(以下、非PFOA系撥水剤と称する)が志向されるようになってきている(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照)。   As the fluorine-based water repellent, those containing perfluoroalkanoic acid having 8 or more carbon atoms or perfluoroalkenoic acid having 8 or more carbon atoms (hereinafter referred to as PFOA water repellent) have been conventionally used. However, in recent years, in consideration of safety and environmental load, fluorine-based water repellents having less than 8 carbon atoms (hereinafter referred to as non-PFOA water-repellents) have come to be desired (for example, Patent Literature 1, Patent Literature 2, Patent Literature 3, and Patent Literature 4).

しかしながら、非PFOA系撥水剤は撥水性維持の観点から、乳化分散し難い疎水性のエチレン性フッ素系単量体を高率に共重合する必要があり、撥水加工剤が凝集したり、マングルロール上でガムアップしたりという問題が顕著になる傾向にあった。
また、炭素数6以下のパーフルオロアルキル基を有する単量体を高率に導入した非PFOAフッ素系撥水剤であるため、布帛表面に形成するフッ素系撥水剤の皮膜は粗硬で脆く洗濯で脱落し易く、その結果、撥水性、耐水圧、通気性などの洗濯耐久性が劣るという問題があった。
However, from the viewpoint of maintaining water repellency, the non-PFOA water repellent agent needs to copolymerize a hydrophobic ethylenic fluorine monomer that is difficult to emulsify and disperse at a high rate. The problem of gumming up on the mangle roll tended to become prominent.
In addition, since it is a non-PFOA fluorine-based water repellent with a high introduction of a monomer having a perfluoroalkyl group having 6 or less carbon atoms, the film of the fluorine-based water repellent formed on the fabric surface is coarse and brittle There was a problem that it was easy to fall off by washing, and as a result, the washing durability such as water repellency, water pressure resistance and breathability was poor.

特開2007−247090号公報JP 2007-247090 A 特開2007−247091号公報JP 2007-247091 A 特開2007−270374号公報JP 2007-270374 A 特開2010−150693号公報JP 2010-150693 A

本発明は上記の背景に鑑みなされたものであり、その目的は、加工時にロールにガムアップしにくく、かつ優れた洗濯耐久性を有する撥水布帛を提供することにある。   The present invention has been made in view of the above background, and an object of the present invention is to provide a water-repellent fabric that is difficult to gum up on a roll during processing and has excellent washing durability.

本発明者は上記の課題を達成するため鋭意検討した結果、フッ素系撥水剤と特定のアルコール体化合物とを混合して用いることにより、加工時にロールにガムアップしにくく、かつ優れた洗濯耐久性を有する撥水布帛が得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of diligent studies to achieve the above-mentioned problems, the present inventors have used a mixture of a fluorine-based water repellent and a specific alcohol compound, which makes it difficult to gum up a roll during processing and has excellent washing durability. The present inventors have found that a water-repellent fabric having a property can be obtained, and have further intensively studied to complete the present invention.

かくして、本発明によれば「布帛に撥水加工剤が付着してなる撥水布帛であって、前記撥水加工剤が炭素数8以上のパーフルオロアルカン酸および炭素数8以上のパーフルオロアルケン酸ならびにこれらの前駆体を含有しないフッ素系撥水剤(A)を含み、かつJIS L 1092(スプレー試験)による布帛の撥水度が、JIS L 0217 103に従う洗濯20回後(HL−20)で3級以上であることを特徴とする撥水布帛。」が提供される。   Thus, according to the present invention, “a water-repellent fabric formed by attaching a water-repellent agent to a fabric, wherein the water-repellent agent is a perfluoroalkanoic acid having 8 or more carbon atoms and a perfluoroalkene having 8 or more carbon atoms. The water repellency of the fabric according to JIS L 1092 (spray test) is 20 times after washing according to JIS L 0217 103 (HL-20), which contains an acid and a fluorine-based water repellent (A) not containing these precursors. And a water repellent fabric characterized by being a grade 3 or higher. "

その際、前記フッ素系撥水剤(A)が、炭素数8未満のパーフルオロアルキル基または炭素数8未満のパーフルオロアルケニル基を有するフッ素元素含有エチレン性不飽和単量体を用いてなる重合体であることが好ましい。また、前記撥水加工剤が、下記式(1)で表され、1013hPaの気圧における沸点が150〜250℃の範囲内にあるアルコール体化合物(B)を含むことが好ましい。
式(1)
X−R−Y
ただし、Xは、−H、−OH、−O(CHCZO)−H、−OC2m+1からなる群より選択されるいずれかである。また、Yは、−H、−OH、−O(CHCZO)−H、−OC2m+1からなる群より選択されるいずれかである。また、Rは−C2n−、および/または−C2n−2−、および/または−C2n−4−である。その際、ZはHまたはCHであり、n=2〜12、a=0〜3、m=1〜3である。
At that time, the fluorine-based water repellent (A) is a heavy polymer comprising a fluorine element-containing ethylenically unsaturated monomer having a perfluoroalkyl group having less than 8 carbon atoms or a perfluoroalkenyl group having less than 8 carbon atoms. It is preferably a coalescence. Moreover, it is preferable that the said water-repellent processing agent contains the alcohol compound (B) which is represented by following formula (1) and whose boiling point in the atmospheric pressure of 1013 hPa exists in the range of 150-250 degreeC.
Formula (1)
X-R-Y
However, X is either selected from the group consisting of —H, —OH, —O (CH 2 CZ 2 O) a —H, and —OC m Z 2m + 1 . Y is any selected from the group consisting of —H, —OH, —O (CH 2 CZ 2 O) a —H, and —OC m Z 2m + 1 . In addition, R is -C n Z 2n -, and / or -C n Z 2n-2 -, and / or -C n Z 2n-4 - a. In that case, Z is H or CH 3, n = 2~12, a = 0~3, an m = 1 to 3.

また、前記フッ素系撥水剤(A)と前記アルコール体化合物(B)との固形分質量比率が(前者:後者)1:0.1〜1:20の範囲内であることが好ましい。
また、JIS L 0217 103に従う洗濯20回後(HL−20)と洗濯0回(HL−0)とを対比して、JIS L 1092(静水圧法)による耐水度の低下率=[(HL−0耐水度)−(HL−20耐水度)]×100/(HL−0耐水度)が30%未満であることが好ましい。また、JIS L 0217 103に従う洗濯20回後(HL−20)と洗濯0回(HL−0)とを対比して、JIS L 1096 A法(フラジール形)による通気性の増加率=[(HL−20通気性)−(HL−0通気性)]×100/(HL−0通気性)が30%未満であることが好ましい。また、JIS L 0217 103に従う洗濯20回後(HL−20)と洗濯0回(HL−0)とを対比して、波長分散型蛍光X線分析装置によるフッ素元素特有の蛍光X線強度の低下率=[(HL−0前記蛍光X線強度)−(HL−20前記蛍光X線強度)]×100/(HL−0前記蛍光X線強度)が30%未満であることが好ましい。
Moreover, it is preferable that solid content mass ratio of the said fluorine-type water repellent (A) and the said alcohol body compound (B) exists in the range of 1: 0.1-1: 20 (the former: latter).
In addition, after 20 washings (HL-20) and 0 washings (HL-0) according to JIS L 0217 103, the reduction rate of water resistance by JIS L 1092 (hydrostatic pressure method) = [(HL− 0 water resistance)-(HL-20 water resistance)] × 100 / (HL-0 water resistance) is preferably less than 30%. Further, the rate of increase in air permeability according to JIS L 1096 A method (fragile type) is compared between 20 times after washing (HL-20) and 0 times (HL-0) in accordance with JIS L 0217 103 = [(HL −20 breathability) − (HL-0 breathability)] × 100 / (HL-0 breathability) is preferably less than 30%. In addition, a decrease in the fluorescent X-ray intensity peculiar to the fluorine element by the wavelength dispersive X-ray fluorescence analyzer by comparing 20 times after washing (HL-20) and 0 times after washing (HL-0) according to JIS L 0217 103 It is preferable that the ratio = [(HL-0 the fluorescent X-ray intensity) − (HL-20 the fluorescent X-ray intensity)] × 100 / (HL-0 the fluorescent X-ray intensity) is less than 30%.

本発明によれば、加工時にロールにガムアップしにくく、かつ優れた洗濯耐久性を有する撥水布帛が得られる。   According to the present invention, it is possible to obtain a water-repellent fabric that does not easily gum up on a roll during processing and has excellent washing durability.

マングル装置を模式的に示す図である。It is a figure which shows a mangle apparatus typically.

以下、本発明の実施の形態について詳細に説明する。
まず、フッ素系撥水剤(A)の種類は、生体に対する安全性や環境負荷に配慮する上で、パーフルオロオクタン酸、パーフルオロオクタンスルホン酸、炭素数8以上のパーフルオロアルカン酸、炭素数8以上のパーフルオロアルケン酸(以下、PFOA類縁物質と称する。)、および分解によりこれらに変化する前駆体(以下、PFOA前駆体と称する。)を含有しない撥水剤(非PFOA系撥水剤)である。なお、「含有しない」とは、高速液体クロマトグラフー質量分析計(LC−MS)または熱分解ガスクロマトグラフー質量分析計(PyGC−MS)で分析したときに前記物質が検出限界以下であるという意味である。
Hereinafter, embodiments of the present invention will be described in detail.
First, the type of the fluorine-based water repellent (A) is perfluorooctanoic acid, perfluorooctane sulfonic acid, perfluoroalkanoic acid having 8 or more carbon atoms, carbon number in consideration of safety to the living body and environmental load. 8 or more perfluoroalkenoic acids (hereinafter referred to as PFOA analogues) and water repellents (non-PFOA water repellents) that do not contain precursors (hereinafter referred to as PFOA precursors) that change to these upon decomposition. ). “Not contained” means that the substance is below the detection limit when analyzed by a high performance liquid chromatograph mass spectrometer (LC-MS) or a pyrolysis gas chromatograph mass spectrometer (PyGC-MS). It is.

ここで、前記フッ素系撥水剤(A)が、炭素数8未満のパーフルオロアルキル基または炭素数8未満のパーフルオロアルケニル基を有するフッ素元素含有エチレン性不飽和単量体を用いてなる重合体であることが好ましい。特に、前記フッ素系撥水剤(A)が、前記フッ素元素含有エチレン性不飽和単量体とフッ素元素を含まないエチレン性不飽和単量体との共重合体水分散体であるとより好ましい。   Here, the fluorine-based water repellent (A) is a heavy polymer comprising a fluorine element-containing ethylenically unsaturated monomer having a perfluoroalkyl group having less than 8 carbon atoms or a perfluoroalkenyl group having less than 8 carbon atoms. It is preferably a coalescence. In particular, the fluorine-based water repellent (A) is more preferably a copolymer aqueous dispersion of the fluorine element-containing ethylenically unsaturated monomer and the ethylenically unsaturated monomer not containing fluorine element. .

組成するエチレン性不飽和単量体として、アルキル(メタ)アクリレートが好ましい。含フッ素系エチレン性単量体ではパーフルオロヘキシルエチル(メタ)アクリレートが好適である。一方、フッ素元素を含まないエチレン性単量体ではメチル(メタ)アクリレート、エチル(メタ)アクリレート、(n,i,t)ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ベンジル(メタ)アクリレート等、架橋性エチレン性単量体ではN−メチロール(メタ)アクリルアミド、グリシジル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、クロロヒドロキシアルキル(メタ)クリレートなど、多官能性エチレン性単量体としてはエチレンジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、トリメチロールトリ(メタ)アクリレート等、カチオン性エチレン性単量体としてはN,N,N−トリメチル−N−(2−ヒドロキシ−3−メタクリロイルオキシプロピル)アンモニウムクロライドなどがあげられる。   As the ethylenically unsaturated monomer to be composed, alkyl (meth) acrylate is preferred. Perfluorohexylethyl (meth) acrylate is preferred as the fluorine-containing ethylenic monomer. On the other hand, in the ethylenic monomer which does not contain a fluorine element, methyl (meth) acrylate, ethyl (meth) acrylate, (n, i, t) butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octadecyl (meth) Multifunctional such as N-methylol (meth) acrylamide, glycidyl (meth) acrylate, hydroxyalkyl (meth) acrylate, chlorohydroxyalkyl (meth) acrylate, etc. for crosslinkable ethylenic monomers such as acrylate and benzyl (meth) acrylate Examples of the ethylenic monomer include ethylene di (meth) acrylate, glycerol tri (meth) acrylate, and trimethylol tri (meth) acrylate. Examples of the cationic ethylenic monomer include N, N, N-trimethyl-N- (2 -Hydroxy-3-meta Such Leroy oxy propyl) ammonium chloride.

これらエチレン性単量体の共重合体水分散体は、多くの場合、予めエチレン性単量体混合物にメチルイソブチルケトン、セロソルブアセテートのような揮発性有機溶剤を加え、アルキル第4級アンモニウム塩、アルキルベンジル第4級アンモニウム塩、アルキルイミダゾリニウム塩、アルキルアミン酢酸塩等のカチオン界面活性剤、場合によっては前記したカチオン基含有エチレン性不飽和単量体と、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフエニルエーテル、ポリオキシエチレンポリオキシプロピレンエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタンエステル、ポリオキシエチレンアルキルアミドエーテル、ポリオキシエチレンポリオキシプロピレンブロック共重合体等の非イオン界面活性剤で乳化水分散液にしてから水溶性ラジカル重合開始剤を用い乳化共重合させることが好ましい。   In many cases, these ethylene monomer copolymer aqueous dispersions are prepared by adding a volatile organic solvent such as methyl isobutyl ketone and cellosolve acetate to an ethylenic monomer mixture in advance, and then adding an alkyl quaternary ammonium salt, Cationic surfactants such as alkylbenzyl quaternary ammonium salts, alkylimidazolinium salts, and alkylamine acetates, and in some cases, the aforementioned cationic group-containing ethylenically unsaturated monomers, polyoxyethylene alkyl ethers, polyoxy Non-ionic such as ethylene alkyl phenyl ether, polyoxyethylene polyoxypropylene ether, polyoxyethylene fatty acid ester, polyoxyethylene sorbitan ester, polyoxyethylene alkylamide ether, polyoxyethylene polyoxypropylene block copolymer, etc. It is preferred that after the emulsified aqueous dispersion with surfactants to emulsion copolymerization using a water-soluble radical polymerization initiator.

また、水溶性ラジカル重合開始剤源として、例えば2,2−アゾビスー2−アミジノプロパン二塩酸塩等の水溶性アゾ化合物を使用して乳化重合し、固型分20〜30%水分散液を得ることが好ましい。
市販の非PFOA系撥水剤としては、アサヒガード AG−E082、AG−E092(明成化学製)、NKガード S−07、S−09、S−11、S−22(日華化学製)、ヌバN2114L、2116(クラリアント製)などが例示される。一方、従来タイプのPFOA系撥水剤としては、アサヒガード LS−317、GS−10(明成化学製)、NDN−7E、NDN−9E(日華化学)などが例示される。
In addition, as a water-soluble radical polymerization initiator source, for example, a water-soluble azo compound such as 2,2-azobis-2-amidinopropane dihydrochloride is used for emulsion polymerization to obtain a 20 to 30% solid dispersion in water. It is preferable.
As commercially available non-PFOA water repellents, Asahi Guard AG-E082, AG-E092 (manufactured by Meisei Chemical Co., Ltd.), NK Guard S-07, S-09, S-11, S-22 (manufactured by Nikka Chemical), Nuba N2114L, 2116 (manufactured by Clariant) and the like are exemplified. On the other hand, examples of conventional PFOA water repellents include Asahi Guard LS-317, GS-10 (manufactured by Meisei Chemical Co., Ltd.), NDN-7E, NDN-9E (Nikka Chemical), and the like.

本発明の撥水布帛は、前記のフッ素系撥水剤(A)を含む撥水加工剤が付着してなり、かつJIS L 1092(スプレー試験)による布帛の撥水度が、JIS L 0217 103に従う洗濯20回後(HL−20)で3級以上である。
その際、JIS L 1092(スプレー試験)による布帛の撥水度が、洗濯前(HL−0)で5級であることが好ましい。また、JIS L 1092(静水圧法)による耐水度の低下率=[(HL−0耐水度)−(HL−20耐水度)]×100/(HL−0耐水度)が30%未満であることが好ましい。また、JIS L 1096 A法(フラジール形)による通気性の増加率=[(HL−20通気性)−(HL−0通気性)]×100/(HL−0通気性)が30%未満であることが好ましい。また、波長分散型蛍光X線分析装置によるフッ素元素特有の蛍光X線強度の低下率=[(HL−0前記蛍光X線強度)−(HL−20前記蛍光X線強度)]×100/(HL−0前記蛍光X線強度)が30%未満であることが好ましい。
The water-repellent fabric of the present invention has a water-repellent finishing agent containing the fluorine-based water repellent (A) attached thereto, and the water repellency of the fabric according to JIS L 1092 (spray test) is JIS L 0217 103. It is grade 3 or more after 20 washings (HL-20).
At that time, the water repellency of the fabric according to JIS L 1092 (spray test) is preferably grade 5 before washing (HL-0). Further, the rate of decrease in water resistance according to JIS L 1092 (hydrostatic pressure method) = [(HL-0 water resistance) − (HL-20 water resistance)] × 100 / (HL-0 water resistance) is less than 30%. It is preferable. Further, the increase rate of air permeability according to JIS L 1096 A method (fragile type) = [(HL-20 air permeability) − (HL-0 air permeability)] × 100 / (HL-0 air permeability) is less than 30%. Preferably there is. Further, the decrease rate of the fluorescent X-ray intensity peculiar to the fluorine element by the wavelength dispersive X-ray fluorescence analyzer = [(HL-0 fluorescent X-ray intensity) − (HL-20 fluorescent X-ray intensity)] × 100 / ( HL-0 (fluorescent X-ray intensity) is preferably less than 30%.

このような洗濯耐久性を有する撥水布帛は、布帛に撥水加工剤が付着させる際に、撥水加工剤に、前記フッ素系撥水剤(A)とともに下記のアルコール体化合物(B)を含ませることにより得られる。
ここで、アルコール体化合物(B)は下記式(1)で表され、1013hPaの気圧における沸点が150〜250℃の範囲内にある。
式(1)
X−R−Y
ただし、Xは、−H、−OH、−O(CHCZO)−H、−OC2m+1からなる群より選択されるいずれかである。また、Yは、−H、−OH、−O(CHCZO)−H、−OC2m+1からなる群より選択されるいずれかである。また、Rは−C2n−、および/または−C2n−2−、および/または−C2n−4−である。その際、ZはHまたはCHであり、n=2〜12、a=0〜3、m=1〜3である。
The water-repellent fabric having such washing durability has the following alcohol compound (B) together with the fluorine-based water repellent (A) when the water-repellent finish is adhered to the fabric. It is obtained by including.
Here, alcohol body compound (B) is represented by following formula (1), and the boiling point in the atmospheric | air pressure of 1013 hPa exists in the range of 150-250 degreeC.
Formula (1)
X-R-Y
However, X is either selected from the group consisting of —H, —OH, —O (CH 2 CZ 2 O) a —H, and —OC m Z 2m + 1 . Y is any selected from the group consisting of —H, —OH, —O (CH 2 CZ 2 O) a —H, and —OC m Z 2m + 1 . In addition, R is -C n Z 2n -, and / or -C n Z 2n-2 -, and / or -C n Z 2n-4 - a. In that case, Z is H or CH 3, n = 2~12, a = 0~3, an m = 1 to 3.

前記アルコール体化合物(B)において、化学式に示すRが親油基、XおよびYが親水基であって水分散粒子の凝集抑制効果が得られる両親媒物質である。撥水加工剤にかかる両親媒物質が含まれることにより、加工時にロールにガムアップしにくい撥水加工剤が得られる。
前記沸点が150℃よりも小さいと、マングルロール絞り工程で揮散しやすく界面活性効果が持続し難いため好ましくない。逆に、前記沸点が250℃よりも大きいと、難揮散性のため加工製品に残存しやすく好ましくない。
また、前記アルコール体化合物(B)において、20℃の水に対する溶解度が水重量対比5重量%以上(より好ましくは10重量%以上)であることが好ましい。
In the alcohol compound (B), R shown in the chemical formula is a lipophilic group, X and Y are hydrophilic groups, and is an amphiphile capable of obtaining an aggregation-suppressing effect of water-dispersed particles. By including the amphiphile related to the water repellent finish, a water repellent finish that is difficult to gum up on the roll during processing can be obtained.
When the boiling point is lower than 150 ° C., it is not preferable because it is easily volatilized in the mangle roll squeezing step and the surface active effect is difficult to be sustained. On the other hand, if the boiling point is higher than 250 ° C., it tends to remain in the processed product due to difficulty of volatilization, which is not preferable.
In the alcohol compound (B), the solubility in water at 20 ° C. is preferably 5% by weight or more (more preferably 10% by weight or more) relative to the weight of water.

かかるアルコール体化合物(B)の具体例としては、例えば、2,5−ジメチル−3―ヘキシン−2,5−ジオール、3,6−ジメチル−4−オクチン−3,6−ジオール、4,7−ジメチル−5−デシン−4,7−ジオール等のアセチレンジオール類、および、メチルジグリコール、エチルジグリコール、プロピルジグリコール、ブチルジグリコール、イソブチルジグリコール、アリルグリコール、メチルプロピレントリグリコール、ブチルプロピレングリコール等のグリコール類が挙げられる。   Specific examples of the alcohol compound (B) include, for example, 2,5-dimethyl-3-hexyne-2,5-diol, 3,6-dimethyl-4-octyne-3,6-diol, 4,7 -Acetylene diols such as dimethyl-5-decyne-4,7-diol, and methyl diglycol, ethyl diglycol, propyl diglycol, butyl diglycol, isobutyl diglycol, allyl glycol, methylpropylene triglycol, butylpropylene And glycols such as glycol.

これらの中で、特に2,5−ジメチル−3−ヘキシン−2,5−ジオール、3,6−ジメチル−4−オクチン−3,6−ジオール等のアセチレンジオール、イソプロピルジグリコール、ブチルジグリコール、イソブチルジグリコール等のグリコールが、撥水加工工程において、フッ素系撥水剤(A)が受ける過酷な機械的シェア下でのフッ素系重合体粒子の安定化と、加工工程中の熱乾燥時における揮散性のバランスからみて特に好適である。   Among these, acetylene diol such as 2,5-dimethyl-3-hexyne-2,5-diol, 3,6-dimethyl-4-octyne-3,6-diol, isopropyl diglycol, butyl diglycol, Glycols such as isobutyl diglycol stabilize fluorine polymer particles under the severe mechanical share that the fluorine-based water repellent (A) receives in the water-repellent processing step, and heat drying during the processing step This is particularly preferable in view of the balance of volatility.

一方、本発明において、除外される好ましくないアルコール体化合物としては、例えばポリオキシエチレンポリオキシプロピレンブロック共重合体、ポリオキシプロピレンポリオキシエチレンポリオキシプロピレントリブロック共重合体、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルカノールアミンエーテル、ポリオキシエチレンポリオキシプロピレンアルカノールアミンエーテル等の、沸点が250℃超の難揮散性から非揮散性アルコール体化合物や、メタノール、エタノール、プロパノール、ブタノール、イソブタノール、メチルグリコール、エチルグリコール、等の、沸点が150℃未満の易揮散性アルコール体化合物、およびエチレングリコールアセテートに代表される水溶性、易揮散性のセロソルブアセテートがあげられる。   On the other hand, in the present invention, as an undesirable alcohol compound which is excluded, for example, polyoxyethylene polyoxypropylene block copolymer, polyoxypropylene polyoxyethylene polyoxypropylene triblock copolymer, polyoxyethylene alkyl ether, Non-volatile to non-volatile alcohol compounds having a boiling point of over 250 ° C, such as polyoxyethylene alkanolamine ether, polyoxyethylene polyoxypropylene alkanolamine ether, methanol, ethanol, propanol, butanol, isobutanol, methyl glycol , Ethyl glycol, etc., readily volatile alcohol compounds having a boiling point of less than 150 ° C., and water-soluble, easily volatile cellosolve acetate represented by ethylene glycol acetate And the like.

また、前記フッ素系撥水剤(A)と前記アルコール体化合物(B)との固形分質量比率としては、(前者:後者)1:0.1〜1:20(より好ましくは1:1〜1:10、特に好ましくは1:2〜1:5)の範囲内であることが好ましい。
ここで、繊維加工において加工剤の水分散粒子の吸着は、該分散粒子と繊維表面の荷電が重要であることが知られている。一般に繊維表面は負に荷電しているため、水分散共重合体である非PFOAフッ素系撥水剤が正に荷電していれば基本的には繊維表面に吸着するが、該荷電が高すぎる場合は、カチオン界面活性剤が浮遊している場合や、カチオン界面活性剤やカチオン性重合開始剤派生物が過剰に吸着している撥水能の低い分散粒子が偏在し、該偏在粒子が優先的に繊維に吸着し撥水能が低下したり加工ムラが生じ、安定した加工性能得られない。逆に、該電位が低すぎる場合は、当然繊維への吸着が低すぎ加工性能が得られないおそれがある。
Moreover, as solid content mass ratio of the said fluorine-type water repellent (A) and the said alcohol compound (B), (the former: the latter) 1: 0.1-1: 20 (more preferably 1: 1-1). 1:10, particularly preferably within the range of 1: 2 to 1: 5).
Here, it is known that in the fiber processing, for the adsorption of the water-dispersed particles of the processing agent, the charge of the dispersed particles and the fiber surface is important. Generally, since the fiber surface is negatively charged, if the non-PFOA fluorine-based water repellent, which is a water-dispersed copolymer, is positively charged, it is basically adsorbed on the fiber surface, but the charge is too high. When the cationic surfactant is floating, dispersed particles with low water repellency that are adsorbed excessively by the cationic surfactant or the cationic polymerization initiator derivative are unevenly distributed, and the unevenly distributed particles have priority. In particular, it is adsorbed on the fiber, resulting in a decrease in water repellency and uneven processing, resulting in failure to obtain stable processing performance. On the other hand, if the potential is too low, the adsorption to the fiber is naturally too low and processing performance may not be obtained.

また、繊維へのフッ素系撥水剤の最適な吸着には、好適なカチオン界面活性剤やカチオン性重合開始剤を適量に使用し、フッ素系共重合体粒子の正荷電の強さζ−電位を+5〜+80mV、より好ましくは+20〜+50mVの範囲に制御することが好ましい。
また、前記の撥水加工剤において、撥水性や撥油性の耐久力を向上させるため、トリアジン環含有化合物またはイソシアネート系化合物が含まれることが好ましい。より詳しくは、アルコキシメチルメラミン、メチロール尿素、アルコキシメチル尿素、尿素グリオキザール付加物、ブロックイソシアネート、非ブロックタイプ水分散性イソシアネート等のイソシアネート化合物、ポリグリシジル化合物等の架橋剤を併用することは好ましい。市販品としては、メラミン、尿素系ではベッカミン M−3、PM (DIC製)、380−K (ユニオン化成製)、イソシアネート化合物系ではメイカネート WEB(明成化学製)、バーノック DNW−5000(DIC製)、ポリグリシジル化合物系ではデナコール EX−313(ナガセ化成製)、エポライト 40−E(共栄社化学製)などがあげられる。
In addition, for the optimal adsorption of the fluorinated water repellent to the fiber, an appropriate amount of a suitable cationic surfactant or cationic polymerization initiator is used, and the positive charge strength ζ-potential of the fluorinated copolymer particles. Is preferably controlled in the range of +5 to +80 mV, more preferably +20 to +50 mV.
In addition, the water-repellent finishing agent preferably contains a triazine ring-containing compound or an isocyanate compound in order to improve the durability of water repellency and oil repellency. More specifically, it is preferable to use a crosslinking agent such as alkoxymethylmelamine, methylolurea, alkoxymethylurea, urea glyoxal adduct, isocyanate compounds such as blocked isocyanate and non-block type water-dispersible isocyanate, and polyglycidyl compounds. Commercially available products include becamine M-3, PM (manufactured by DIC), 380-K (manufactured by Union Kasei) for melamine and urea-based materials, Meikanate WEB (manufactured by Meisei Chemical), and Bernock DNW-5000 (manufactured by DIC) for isocyanate compounds. Examples of polyglycidyl compound-based compounds include Denacol EX-313 (manufactured by Nagase Kasei) and Epolite 40-E (manufactured by Kyoeisha Chemical).

さらには、前記の撥水加工剤において、従来、慣用されている静電気防止剤、消泡剤、浸透剤として有効なエタノール、プロパノール、セロソルブ類等の低沸点アルコール類を使用してもさしつかえない。その際、消泡剤としては、アデカネートB(旭電化製)、ノプコNXZ(ノプコ製)、FSアンチフオーム(ダウコーニング社製)などがあげられる。   Furthermore, low boiling alcohols such as ethanol, propanol and cellosolves which are conventionally used as antistatic agents, antifoaming agents and penetrants may be used in the water repellent finishing agent. In that case, examples of the antifoaming agent include Adecanate B (manufactured by Asahi Denka), Nopco NXZ (manufactured by Nopco), FS anti-form (manufactured by Dow Corning), and the like.

本発明の撥水加工剤には、前記のフッ素系撥水剤(A)とアルコール体化合物(B)とが含まれるので、撥水性(および/または撥油性)に優れており、しかも、撥水加工の工程でマングルロール絞りで過酷なシェアを受けても、凝集したり、マングルロール上でガムアップしたりするおそれがない。
本発明において、加工方法は、塗布やスプレーでもよいが必要に応じて架橋剤、静電気防止剤等の各種補助薬剤を配合した、液状の撥水加工剤を含浸・マングルロールによるウエットピックアップ絞り、熱乾燥、キュアリングのための熱セットする方法が好ましい。
その際、より好ましくはマングルロールによる絞りがウエットピックアップ50〜80%、熱乾燥が本発明のアルコール体化合物(B)が揮散する温度120〜140℃での熱風乾燥、キュアリングのための熱セットが温度170〜200℃での熱風セットである。
The water-repellent finishing agent of the present invention contains the above-mentioned fluorine-based water repellent (A) and alcohol compound (B), so that it is excellent in water repellency (and / or oil repellency) and repellent. There is no risk of agglomeration or gum-up on the mangle roll even if it receives a severe share with the mangle roll squeeze in the water processing step.
In the present invention, the processing method may be coating or spraying, but if necessary, blended with various auxiliary agents such as a crosslinking agent and antistatic agent, impregnated with a liquid water-repellent processing agent, wet pick-up squeezing with a mangle roll, heat A heat setting method for drying and curing is preferred.
At that time, more preferably, the drawing with a mangle roll is 50 to 80% wet pick-up, and the heat drying is hot air drying at 120 to 140 ° C. at which the alcohol compound (B) of the present invention is volatilized, and heat setting for curing. Is a hot air set at a temperature of 170-200 ° C.

本発明の撥水布帛としては、ポリエステル繊維を含む布帛が特に好ましい。
ここで、前記ポリエステル繊維はジカルボン酸成分とジグリコール成分とから製造される。ジカルボン酸成分としては、主としてテレフタル酸が用いられることが好ましく、グリコール成分としては主としてエチレングリコール、トリメチレングリコール及びテトラメチレングリコールから選ばれた1種以上のアルキレングリコールを用いることが好ましい。また、ポリエステル樹脂には、前記ジカルボン酸成分及びグリコール成分の他に第3成分を含んでいてもよい。該第3成分としては、カチオン染料可染性アニオン成分、例えば、ナトリウムスルホイソフタル酸;テレフタル酸以外のジカルボン酸、例えばイソフタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸;及びアルキレングリコール以外のグリコール化合物、例えばジエチレングリコール、ポリエチレングリコール、ビスフェノールA、ビスフェノールスルフォンの1種以上を用いることができる。かかるポリエステルとしては、マテリアルリサイクルまたはケミカルリサイクルされたポリエステルや、バイオマスすなわち生物由来の物質を原材料として得られたモノマー成分を使用してなるポリエチレンテレフタレート、ポリ乳酸、ステレオコンプレックスポリ乳酸であってもよい。さらには、特開2004−270097号公報や特開2004−211268号公報に記載されているような、特定のリン化合物およびチタン化合物を含む触媒を用いて得られたポリエステルでもよい。
As the water repellent fabric of the present invention, a fabric containing polyester fibers is particularly preferable.
Here, the polyester fiber is produced from a dicarboxylic acid component and a diglycol component. It is preferable that terephthalic acid is mainly used as the dicarboxylic acid component, and it is preferable to use one or more alkylene glycols selected from ethylene glycol, trimethylene glycol and tetramethylene glycol as the glycol component. Moreover, the polyester resin may contain a third component in addition to the dicarboxylic acid component and the glycol component. Examples of the third component include cationic dye dyeable anion components such as sodium sulfoisophthalic acid; dicarboxylic acids other than terephthalic acid such as isophthalic acid, naphthalenedicarboxylic acid, adipic acid, sebacic acid; and glycol compounds other than alkylene glycol. For example, one or more of diethylene glycol, polyethylene glycol, bisphenol A, and bisphenol sulfone can be used. Such polyester may be material recycled or chemically recycled polyester, or polyethylene terephthalate, polylactic acid, or stereocomplex polylactic acid using a monomer component obtained using biomass, that is, a biological material as a raw material. Furthermore, the polyester obtained using the catalyst containing the specific phosphorus compound and titanium compound which are described in Unexamined-Japanese-Patent No. 2004-270097 and 2004-21268 may be sufficient.

前記ポリエステル繊維の形状としては、短繊維でもよいし長繊維(マルチフィラメント)でもよいが、吸水性を向上させるため長繊維であることが好ましい。さらには、通常の仮撚捲縮加工が施された仮撚捲縮加工糸や2種以上の構成糸条を空気混繊加工や複合仮撚加工させた複合糸であってもよい。
その際、マルチフィラメントの単繊維繊度、総繊度、単糸数は、単繊維繊度0.1〜10.0dtex、総繊度20〜300dtex(より好ましくは20〜50dtex)、単糸数10〜200本(より好ましくは110〜200本)の範囲であることが好ましい。特に、優れた撥水性を得る上で単糸繊維繊度が2.0dtex以下(より好ましくは0.0001〜0.5dtex)であることが特に好ましい。
The polyester fiber may be a short fiber or a long fiber (multifilament), but is preferably a long fiber in order to improve water absorption. Furthermore, a false twisted crimped yarn subjected to a normal false twist crimping process or a composite yarn obtained by subjecting two or more kinds of constituent yarns to air-mixing or composite false twisting may be used.
At that time, the single filament fineness, the total fineness, and the number of single yarns of the multifilament are as follows: single fiber fineness 0.1 to 10.0 dtex, total fineness 20 to 300 dtex (more preferably 20 to 50 dtex), single yarn number 10 to 200 (more The range is preferably 110 to 200). In particular, in order to obtain excellent water repellency, the single yarn fiber fineness is particularly preferably 2.0 dtex or less (more preferably 0.0001 to 0.5 dtex).

また、前記ポリエステル繊維において、単糸繊維の断面形状には制限はなく、通常の円形断面のほかに三角、扁平、特開2004−52167号公報に記載のくびれ付扁平、十字形、六様形、あるいは中空形などの異型断面形状であってもよい。
また、前記の布帛において、布帛の組織としては、例えば、よこ編組織としては、平編、ゴム編、両面編、パール編、タック編、浮き編、片畔編、レース編、添え毛編等が例示され、たて編組織としては、シングルデンビー編、シングルアトラス編、ダブルコード編、ハーフ編、ハーフベース編、サテン編、ハーフトリコット編、裏毛編、ジャガード編等などが例示され、織物組織としては、平織、綾織、朱子織等の三原組織、変化組織、たて二重織、よこ二重織等の片二重組織、たてビロードなどが例示される。層数も単層でもよいし、2層以上の多層でもよい。なお、これらの織物や編物は常法により製造することができる。
Further, in the polyester fiber, the cross-sectional shape of the single yarn fiber is not limited, and in addition to a normal circular cross section, a triangular shape, a flat shape, a constricted flat shape described in JP-A-2004-52167, a cross shape, and a hexagonal shape Alternatively, it may have an irregular cross-sectional shape such as a hollow shape.
In the above-mentioned fabric, as the fabric structure, for example, the weft knitting structure includes flat knitting, rubber knitting, double-sided knitting, pearl knitting, tuck knitting, floating knitting, one-sided knitting, lace knitting, splicing knitting, etc. Examples of the warp knitting structure include single denby knitting, single atlas knitting, double cord knitting, half knitting, half base knitting, satin knitting, half tricot knitting, fleece knitting, jacquard knitting, etc. Examples of the structure include a three-layer structure such as plain weave, twill weave, and satin weave, a change structure, a single double structure such as a vertical double weave and a horizontal double weave, and a vertical velvet. The number of layers may be a single layer or a multilayer of two or more layers. In addition, these woven fabrics and knitted fabrics can be manufactured by a conventional method.

また、前記布帛には、通常の染色加工、減量加工、起毛加工、カレンダー加工、エンボス加工、蓄熱加工、吸汗加工、マイナスイオン加工などを適宜施してもよい。
前記布帛は、耐久性よく撥水性や撥油性に優れるので、シャツ、ユニフォーム、食品工場用白衣ユニフォーム、オフィスユニフォーム、化粧品販売員用ユニフォーム、アパレル衣料、スポーツ衣料、紳士衣料、婦人衣料、学生服などの衣料や、カーテン、枕カバー、カーシートなどとして好適に使用される。
In addition, the fabric may be appropriately subjected to normal dyeing processing, weight reduction processing, raising processing, calendering processing, embossing processing, heat storage processing, sweat absorption processing, negative ion processing, and the like.
Since the fabric is durable and excellent in water and oil repellency, shirts, uniforms, white coat uniforms for food factories, office uniforms, uniforms for cosmetic salespersons, apparel clothing, sports clothing, men's clothing, women's clothing, school clothes, etc. It is suitably used as clothing, curtains, pillow covers, car seats and the like.

以下、本発明を合成例、実施例、比較例を用いて説明するが、本発明は、この合成例、実施例、比較例に限定されるものではない。
実施例、比較例中の試験、物性、分析は下記の方法で行った。
Hereinafter, although this invention is demonstrated using a synthesis example, an Example, and a comparative example, this invention is not limited to this synthesis example, an Example, and a comparative example.
Tests, physical properties, and analyzes in Examples and Comparative Examples were performed by the following methods.

(1)撥水加工剤の評価
下記(2)の機械的安定性試験を経た供試布をマングルロールでピックアップ60%に絞り、130℃熱風循環乾燥機中で2分間乾燥後、170℃熱風循環乾燥機中で1分間熱セットし、各種特性評価を行った。
(1) Evaluation of water repellent finishing agent The test cloth which passed the mechanical stability test of the following (2) was squeezed to 60% with a mangle roll, dried for 2 minutes in a 130 ° C hot air circulating dryer, and then heated to 170 ° C hot air. Various characteristics were evaluated by heat setting for 1 minute in a circulating dryer.

(2)撥水加工剤の機械的安定性試験
表1に示す撥水加工剤配合液2Lをポリパッド(35×22×5cm)に入れて、図1に模式的に示すマングル装置(径12cm、巾44cm、狭窄のゴムロール二本装着)に設置し、供試布(ポリエステルフィラメントタフタ織物、経糸:ポリエチレンテレフタレートマルチフィラメント総繊度44dtex/144fil、経密度:211本/2.54cm、緯糸:ポリエチレンテレフタレートマルチフィラメント総繊度22dtex/72fil、緯密度:149本/2.54cm、試布片巾28cm、長さ80cm)を輪状に掛けた後、マングルロール加圧24.5N/cm(2.5kgf/cm)、布速度10m/分で、撥水加工剤配合液の含浸、絞りを5時間連続して行った後、撥水加工剤配合液中の凝集物量とマングルロール上ガムアップ量を目視評価した。判定は以下のように行った。(フッ素系撥水撥油剤配合液凝集物の判定)多い:××、中程度:×、少量:△、無:○(マングルロール上ガムアップの判定)多い:××、中程度:×、少量:△、無:○
(2) Mechanical stability test of water repellent finishing agent 2 L of the water repellent finishing agent mixture liquid shown in Table 1 was put in a polypad (35 × 22 × 5 cm), and the mangle device (diameter 12 cm, Installed on 44 cm wide, two narrow rubber rolls, test cloth (polyester filament taffeta fabric, warp: polyethylene terephthalate multifilament total fineness 44 dtex / 144 fil, warp density: 211 yarns / 2.54 cm, weft: polyethylene terephthalate multi A filament total fineness of 22 dtex / 72 fil, a weft density of 149 pieces / 2.54 cm, a sample cloth width of 28 cm, and a length of 80 cm was hung in a ring shape, and then a mangle roll pressure of 24.5 N / cm 2 (2.5 kgf / cm 2), a cloth speed of 10 m / min, impregnation of water-repellent agent formulation fluid, after performed the diaphragm 5 consecutive hours, water repellent Aggregation amount and mangle roll on gum-up amount of engineering blending solution was visually evaluated. The determination was performed as follows. (Judgment of fluorinated water and oil repellent compound liquid aggregates) Many: XX, Medium: x, Small amount: △, None: ○ (Determination of gum up on mangle roll) Many: xx, Medium: x, Small amount: △, None: ○

(3)撥水性
撥水性をJIS L 1092 5.2撥水度試験(スプレー試験)に基づき測定した。判定は以下のように行った。
撥水度5 表面に湿潤や水滴の付着がないもの
撥水度4 表面に湿潤しないが、小さな水滴の付着を示すもの
撥水度3 表面に小さな個々の水滴状の湿潤を示すもの
撥水度2 表面の半分に湿潤を示し、小さな個々の湿潤が布を浸透する状態を示すもの
撥水度1 表面全体に湿潤を示すもの
(3) Water repellency Water repellency was measured based on JIS L 1092 5.2 water repellency test (spray test). The determination was performed as follows.
Water repellency 5 No wetness or water droplets on the surface Water repellency 4 Water does not wet on the surface but shows small water droplets water repellency 3 Water repellency which shows small individual water droplets on the surface 2 Wetting on half of the surface, indicating that a small individual wetting penetrates the fabric Water repellency 1 Showing wetting on the entire surface

(4)洗濯
JIS L 0217 103法に基づき洗濯を実施した。
(4) Laundry Laundry was performed based on JIS L 0217 103 method.

(5)耐水圧
耐水圧をJIS L 1092法(低水圧法)に基づき測定した。
(5) Water pressure resistance The water pressure resistance was measured based on the JIS L 1092 method (low water pressure method).

(6)PFOA類縁物質および/またはPFOA前駆体物質の確認分析
高速液体クロマトグラフ−質量分析計(LC−MS)および熱分解ガスクロマトグラフ−質量分析計(PyGC−MS)で実施した。それぞれの分析条件は下記の通りである。
(LC−MS条件)
LC-MS-2020(島津製作所)
Column : Shimadzu Shim・puck FC-ODS(2.0mmI.D.×150mmL.)
Mobile phase A : 5 mmol/L Ammonium Acetate-water
Mobile phase B : acetonitrile
Time program : 35%B(0 min)→50%B(7.5-12min)→90%B(20min)→
35%B(20.01min)→stop(30min)
Flow rate : 0.2ml/min.
Injection volume : 10μL
Column Temp. : 40℃
Prove voltage : -3.5kV(ESI-Negative mode)
CDL Temp. : 250℃
Block heater temp. : 200℃
Nebulizing gas flow : 1.5L/min.
CDL voltage : using defnult value
Q-arry DC & RF voltage : using defnult values
Drying gas pressure : 0.1Mpa
Scan range : m/z 100-600
SIM : m/z 413 for PFOA(Segment 1 ; 0-12min.)
(PyGC−MS条件)
GC-MS-QP2010(島津製作所)
Column : FS Capirally Column CBPI-M-50-025 50m×0.2mmID
Column Temp : 60〜250℃ 10℃/min.
Injection Temp : 280℃
Pyrolysis Temp : 600℃
Ion Source Temp : 250℃
Erectron Energy : 70eV
Scanning Interval : 1sec.
Mass Range : m/z 35〜350
(6) Confirmation analysis of PFOA related substance and / or PFOA precursor substance It implemented with the high performance liquid chromatograph-mass spectrometer (LC-MS) and the pyrolysis gas chromatograph-mass spectrometer (PyGC-MS). Each analysis condition is as follows.
(LC-MS conditions)
LC-MS-2020 (Shimadzu Corporation)
Column: Shimadzu Shim / puck FC-ODS (2.0mmI.D. × 150mmL.)
Mobile phase A: 5 mmol / L Ammonium Acetate-water
Mobile phase B: acetonitrile
Time program: 35% B (0 min) → 50% B (7.5-12min) → 90% B (20min) →
35% B (20.01min) → stop (30min)
Flow rate: 0.2ml / min.
Injection volume: 10μL
Column Temp .: 40 ℃
Prove voltage: -3.5kV (ESI-Negative mode)
CDL Temp .: 250 ℃
Block heater temp .: 200 ℃
Nebulizing gas flow: 1.5L / min.
CDL voltage: using defnult value
Q-arry DC & RF voltage: using defnult values
Drying gas pressure: 0.1Mpa
Scan range: m / z 100-600
SIM: m / z 413 for PFOA (Segment 1; 0-12min.)
(PyGC-MS conditions)
GC-MS-QP2010 (Shimadzu Corporation)
Column: FS Capirally Column CBPI-M-50-025 50m × 0.2mmID
Column Temp: 60-250 ° C 10 ° C / min.
Injection Temp: 280 ℃
Pyrolysis Temp: 600 ℃
Ion Source Temp: 250 ℃
Erectron Energy: 70eV
Scanning Interval: 1 sec.
Mass Range: m / z 35-350

(7)通気性
JIS L 1096 A法(フラジール形法)に従い実施した
(7) Breathability Implemented according to JIS L 1096 A method (Fragile type method).

(8)フッ素元素特有の蛍光X線(二次X線)強度
(株)リガク製 波長分散型蛍光X線分析装置 ZSX100eを用いて、洗濯ゼロ回(HL−0)および洗濯20回(HL−20)、其々の試料について試料布面積7cm当たりのフッ素元素特有の蛍光X線(二次X線)2θ角度(deg)90.7〜90.8 の強度(カウント/秒、c/s)を測定した。該フッ素元素特有の蛍光X線強度はフッ素元素量によって変化するので、フッ素付着量の低下度合いが明確になる。
(8) Intensity of X-ray fluorescence (secondary X-ray) peculiar to fluorine element Using RZAK Co., Ltd. wavelength dispersion type fluorescent X-ray analyzer ZSX100e, zero washing (HL-0) and 20 washings (HL-) 20) Intensity (count / second, c / s) of fluorescent X-ray (secondary X-ray) 2θ angle (deg) 90.7 to 90.8 specific to fluorine element per 7 cm 2 of sample cloth area for each sample ) Was measured. Since the fluorescence X-ray intensity peculiar to the fluorine element changes depending on the amount of the fluorine element, the degree of decrease in the fluorine adhesion amount becomes clear.

(9)水分散フッ素系撥水剤のζ−電位の測定
大塚電子製 ゼーター電位測定装置システム ELSZ−1000Zを用い、固型分0.1%液、イオン強度10−3、pH7に調整し測定した。
(9) Measurement of ζ-potential of water-dispersed fluorine-based water repellent agent Measured by using a zeta potential measuring device system ELSZ-1000Z manufactured by Otsuka Electronics Co., Ltd., adjusted to 0.1% solid content, ionic strength 10 −3 , pH 7. did.

[合成例]
(合成例−1〜3)が非PFOAフッ素系撥水剤であり、(合成例−4)がPFOAフッ素系撥水剤である。其々の合成例で使用したエチレン性不飽和単量体混合物溶液を下記に示す。
[イ](合成例−1〜3)非PFOAフッ素系撥水剤に使用するエチレン性不飽和単量体混合物溶液
パーフルオロヘキシルエチルアクリレート 162g
オクタデシルアクリレート 40g
3−クロロ−2−ヒドロキシプロピルメタクリレート 2g
60%N−メチロールアクリルアミド 3.5g
ドデシルメルカプタン 1g
メチルイソブチルケトン 25g
合 計 233.5g
[ロ](合成例−4)PFOAフッ素系撥水剤に使用するエチレン性不飽和単量体混合物溶液
パーフルオロオクチルエチルアクリレート 100g
オクタデシルアクリレート 50g
ブチルメタクリレート 52g
3−クロロ−2−ヒドロキシプロピルメタクリレート 2g
60%N−メチロールアクリルアミド 3.5g
ドデシルメルカプタン 1g
メチルイソブチルケトン 25g
合 計 233.5g
[Synthesis example]
(Synthesis Examples -1 to 3) are non-PFOA fluorine-based water repellents, and (Synthesis Example-4) is a PFOA fluorine-based water repellent. The ethylenically unsaturated monomer mixture solution used in each synthesis example is shown below.
[A] (Synthesis Examples -1 to 3) Ethylenically unsaturated monomer mixture solution perfluorohexyl ethyl acrylate 162 g used for non-PFOA fluorine-based water repellent
Octadecyl acrylate 40g
3-chloro-2-hydroxypropyl methacrylate 2g
60% N-methylolacrylamide 3.5g
Dodecyl mercaptan 1g
Methyl isobutyl ketone 25g
Total 233.5g
[B] (Synthesis Example 4) Ethylenically unsaturated monomer mixture solution perfluorooctylethyl acrylate 100 g used for PFOA fluorine-based water repellent
Octadecyl acrylate 50g
Butyl methacrylate 52g
3-chloro-2-hydroxypropyl methacrylate 2g
60% N-methylolacrylamide 3.5g
Dodecyl mercaptan 1g
Methyl isobutyl ketone 25g
Total 233.5g

(合成例−1)
1Lガラスビーカーに、上記[イ]のエチレン性不飽和単量体混合物溶液 233.5g、25%ヘキサデシルトリメチルアンモニウム 24g、ポリオキシエチレントリデシルエーテル(HIB : 12〜13)10g、を40℃に加温し、その中へイオン交換水 118.5gを入れて、ホモジナイザーで乳化し、エチレン性不飽和単量体混合物の乳化液 385g調製した。
次いで、1.5Lガラスセパラブル4つ口合成用フラスコにイオン交換水 436g入れ、窒素ガスブローしながら78℃に昇温し、前記エチレン性不飽和単量体混合物の乳化液 77gを添加した。続いて、5% 2.2−アゾビス−2−アミジノプロパン二塩酸塩水溶液 20gを添加し重合開始させてから、前記エチレン性不飽和単量体混合物の乳化液 308gと、5% 2.2−アゾビス−2−アミジノプロパン二塩酸塩水溶液 20gを78℃で90分間要して並行滴下した。重合完了後、イオン交換水で固型分22%に調整し非PFOAフッ素系撥水剤 約1000gを得た。この合成例−1で得られた該フッ素系撥水剤のζ−電位が+32mVであった。
(Synthesis Example-1)
In a 1 L glass beaker, 233.5 g of the ethylenically unsaturated monomer mixture solution of [i] above, 24 g of 25% hexadecyltrimethylammonium, and 10 g of polyoxyethylene tridecyl ether (HIB: 12-13) at 40 ° C. The mixture was heated, and 118.5 g of ion-exchanged water was put therein and emulsified with a homogenizer to prepare 385 g of an emulsion of an ethylenically unsaturated monomer mixture.
Next, 436 g of ion-exchanged water was placed in a 1.5 L glass separable four-necked flask, heated to 78 ° C. while blowing nitrogen gas, and 77 g of an emulsion of the ethylenically unsaturated monomer mixture was added. Subsequently, 20 g of 5% 2.2-azobis-2-amidinopropane dihydrochloride aqueous solution was added to initiate polymerization, and then 308 g of an emulsion of the ethylenically unsaturated monomer mixture and 5% 2.2. 20 g of an aqueous solution of azobis-2-amidinopropane dihydrochloride was dripped in parallel at 78 ° C. for 90 minutes. After completion of the polymerization, the solid content was adjusted to 22% with ion-exchanged water to obtain about 1000 g of a non-PFOA fluorine-based water repellent. The fluorine-based water repellent obtained in Synthesis Example-1 had a ζ-potential of +32 mV.

(合成例−2)
1Lガラスビーカーに、上記[イ]のエチレン性不飽和単量体混合物溶液 233.5g、25%ヘキサデシルトリメチルアンモニウムクロライド 84g、ポリオキシエチレントリデシルエーテル(HLB : 12〜13)5gを入れて40℃に加熱し、その中へイオン交換水 63.5gを入れて、ホモジナイザーで乳化し、エチレン性不飽和単量体混合物の乳化液 385g調製した。
次いで、1.5Lガラスセパラブル4つ口合成用フラスコにイオン交換水 436g入れ、窒素ガスブローしながら78℃に昇温し、前記エチレン性不飽和単量体混合物の乳化液77gを添加した。続いて、5% 2.2−アゾビス−2−アミジノプロパン二塩酸塩水溶液 20gを添加し重合開始させてから、前記エチレン性不飽和単量体混合物の乳化液 308gと、5% 2.2−アゾビス−2−アミジノプロパン二塩酸塩水溶液 20gを78℃で90分間要して並行滴下した。重合完了後、イオン交換水で固型分23%に調整し非PFOAフッ素系撥水剤 約1000gを得た。この合成例−2で得られた該フッ素系撥水剤のζ−電位が+90mVであった。
(Synthesis Example-2)
In a 1 L glass beaker, 233.5 g of the above-mentioned [I] ethylenically unsaturated monomer mixture solution, 84 g of 25% hexadecyltrimethylammonium chloride, and 5 g of polyoxyethylene tridecyl ether (HLB: 12 to 13) were added. The mixture was heated to 0 ° C., 63.5 g of ion-exchanged water was put therein, and emulsified with a homogenizer to prepare 385 g of an emulsion of an ethylenically unsaturated monomer mixture.
Next, 436 g of ion-exchanged water was placed in a 1.5 L glass separable four-necked flask, heated to 78 ° C. while blowing nitrogen gas, and 77 g of an emulsion of the ethylenically unsaturated monomer mixture was added. Subsequently, 20 g of 5% 2.2-azobis-2-amidinopropane dihydrochloride aqueous solution was added to initiate polymerization, and then 308 g of an emulsion of the ethylenically unsaturated monomer mixture and 5% 2.2. 20 g of an aqueous solution of azobis-2-amidinopropane dihydrochloride was dripped in parallel at 78 ° C. for 90 minutes. After completion of the polymerization, the solid content was adjusted to 23% with ion-exchanged water to obtain about 1000 g of a non-PFOA fluorine-based water repellent. The ζ-potential of the fluorine-based water repellent obtained in Synthesis Example-2 was +90 mV.

(合成例−3)
1Lガラスビーカーに、上記[イ]のエチレン性不飽和単量体混合物溶液 233.5g、 25%ヘキサデシルトリメチルアンモニウムクロライド 0.2g、ポリオキシエチレンオレイルエーテル(HLB:10) 5g、ポリオキシエチレンヘキサデシルエーテル(HLB:15) 25gを入れて40℃に加熱し、その中へイオン交換水 122g入れて、ホモジナイザーで乳化し、エチレン性不飽和単量体混合物の乳化液385g調製した。
次いで、1.5Lガラスセパラブル四つ口合成用フラスコにイオン交換水 436g、アスコロビン酸 0.14gを入れ窒素ガスブローしながら78℃に昇温し、前記エチレン性不飽和単量体混合物の乳化液77gを添加した。続いて、3.5%ターシャリブチルハイドロパーオキサイド水溶液 20gを添加し重合開始させてから、前記エチレン性不飽和単量体混合物の乳化液 308g、3.5%ターシャリブチルハイドロパーオキサイド水溶液20g、および0.7%アスコロビン酸水溶液20g、を78℃で90分間要して並行滴下した。重合完了後、イオン交換水で固型分24%に調整し非PFOAフッ素系撥水剤 約1000gを得た。この合成例−3で得られた該フッ素撥水剤のζ−電位が+1mVであった。
(Synthesis Example-3)
In a 1 L glass beaker, 233.5 g of the ethylenically unsaturated monomer mixture solution of [i] above, 0.2 g of 25% hexadecyltrimethylammonium chloride, 5 g of polyoxyethylene oleyl ether (HLB: 10), polyoxyethylene hexa 25 g of decyl ether (HLB: 15) was added and heated to 40 ° C., 122 g of ion-exchanged water was put therein, and emulsified with a homogenizer to prepare 385 g of an emulsion of an ethylenically unsaturated monomer mixture.
Next, 436 g of ion-exchanged water and 0.14 g of ascorbic acid are placed in a 1.5 L glass separable four-necked flask, and the temperature is raised to 78 ° C. while blowing nitrogen gas, and an emulsion of the ethylenically unsaturated monomer mixture is obtained. 77 g was added. Subsequently, 20 g of 3.5% tertiary butyl hydroperoxide aqueous solution was added to initiate polymerization, and then 308 g of an emulsion of the ethylenically unsaturated monomer mixture, 20 g of 3.5% tertiary butyl hydroperoxide aqueous solution. , And 20 g of a 0.7% ascorbic acid aqueous solution were dropped in parallel at 78 ° C. for 90 minutes. After completion of the polymerization, the solid content was adjusted to 24% with ion-exchanged water to obtain about 1000 g of a non-PFOA fluorine-based water repellent. The ζ-potential of the fluorine water repellent obtained in Synthesis Example-3 was +1 mV.

(合成例−4)
1Lガラスビーカーに、上記[ロ]のエチレン性不飽和単量体混合物溶液 233.5g、25%ヘキサデシルトリメチルアンモニウム 16g、ポリオキシエチレントリデシルエーテル(HLB : 12〜13)10g、を40℃に加温し、その中へイオン交換水 125.5gを入れて、ホモジナイザーで乳化し、エチレン性不飽和単量体混合物の乳化液385g調製した。
次いで、1.5Lガラスセパラブル4つ口合成用フラスコにイオン交換水 436g入れ、窒素ガスブローしながら78℃に昇温し、前記エチレン性不飽和単量体混合物の乳化液 77gを添加した。続いて、5%2.2−アゾビス−2−アミジノプロパン二塩酸塩水溶液20gを添加し重合開始させてから、前記エチレン性不飽和単量体の乳化液 308gと、5%2.2−アゾビス−2−アミジノプロパン二塩酸塩水溶液 20gを、78℃で90分間要して並行滴下した。重合完了後、イオン交換水で固型分22%に調整しPFOAフッ素系撥水剤 約1000gを得た。この合成例−4で得られた該フッ素系撥水剤のζ−電位が+25mVであった。
(Synthesis Example-4)
In a 1 L glass beaker, 233.5 g of the above-mentioned [b] ethylenically unsaturated monomer mixture solution, 16 g of 25% hexadecyltrimethylammonium, and 10 g of polyoxyethylene tridecyl ether (HLB: 12-13) at 40 ° C. The mixture was heated, and 125.5 g of ion-exchanged water was put therein, and emulsified with a homogenizer to prepare 385 g of an emulsion of an ethylenically unsaturated monomer mixture.
Next, 436 g of ion-exchanged water was placed in a 1.5 L glass separable four-necked flask, heated to 78 ° C. while blowing nitrogen gas, and 77 g of an emulsion of the ethylenically unsaturated monomer mixture was added. Subsequently, 20 g of 5% 2.2-azobis-2-amidinopropane dihydrochloride aqueous solution was added to initiate polymerization, and then 308 g of the ethylenically unsaturated monomer emulsion and 5% 2.2-azobis 20 g of 2-amidinopropane dihydrochloride aqueous solution was dropped in parallel at 78 ° C. for 90 minutes. After completion of the polymerization, the solid content was adjusted to 22% with ion-exchanged water to obtain about 1000 g of a PFOA fluorine-based water repellent. The fluorine-based water repellent obtained in Synthesis Example-4 had a ζ-potential of +25 mV.

[実施例1]
ポリエステルフィラメントタフタ(238g/m、経糸 :ポリエチレンテレフタレートマルチフィラメント167dtex/48fil、緯糸 :ポリエチレンテレフタレートマルチフィラメント167dtex/48fil、経密度 :123本/2.54cm、緯密度 :97本/2.54cm)試布片(巾 : 28cm、 長さ : 80cm)に、表3に示す配合液を含浸し、マングルロールでウェットピックアップ60%に絞り、130℃熱風循環乾燥機で4分間乾燥、次いで180℃熱風循環乾燥機で1分間熱セットし、撥水度、撥油性、耐水度、通気性、フッ素元素特有の蛍光X線強度を評価した。
さらに、撥水加工剤の機械的安定性試験は、表1に示す配合液2Lをポリパッド(35×22×5cm)に入れて、図1に模式的に示すマングル装置(径12cm、巾44cm、狭窄のゴムロール二本装着)に設置し、前記のポリエステルフィラメントタフタ試布片を輪状に掛けた後、マングルロール加圧24.5N/cm(2.5kgf/cm)、布速度10m/分で、配合液の含浸、絞り、を5時間連続して行った後、配合液中の凝集物量とマングルロール上ガムアップ量を目視評価した。判定は以下のように行った。
配合液中凝集物の多い:××、中程度:×、少ない:△、無:○
マングル上ガムアップ多い:××、中程度:×、少ない:△、無:○
[Example 1]
Polyester filament taffeta (238 g / m 2 , warp: polyethylene terephthalate multifilament 167 dtex / 48 fil, weft: polyethylene terephthalate multifilament 167 dtex / 48 fil, warp density: 123 / 2.54 cm, weft density: 97 / 2.54 cm) A piece of cloth (width: 28 cm, length: 80 cm) is impregnated with the blended liquid shown in Table 3, squeezed to 60% wet pick-up with a mangle roll, dried for 4 minutes in a 130 ° C hot air circulating dryer, and then 180 ° C hot air circulated. After heat setting for 1 minute with a dryer, water repellency, oil repellency, water resistance, air permeability, and fluorescent X-ray intensity specific to the fluorine element were evaluated.
Furthermore, the mechanical stability test of the water-repellent finishing agent was carried out by putting the compounded liquid 2L shown in Table 1 into a polypad (35 × 22 × 5 cm) and a mangle device (diameter 12 cm, width 44 cm, schematically shown in FIG. After installing the polyester filament taffeta sample cloth piece in a ring shape, the mangle roll pressure is 24.5 N / cm 2 (2.5 kgf / cm 2 ), and the cloth speed is 10 m / min. Then, after the impregnation and squeezing of the blended liquid were continuously performed for 5 hours, the amount of aggregates in the blended liquid and the amount of gum up on the mangle roll were visually evaluated. The determination was performed as follows.
There are many aggregates in the mixed solution: XX, Medium: X, Low: △, None: ○
Gum up on mangle is high: XX, medium: X, low: △, nothing: ○

[実施例2、比較例1−5]
表1に記載する各実施例、各比較例の配合液を用いて実施例1に従って行った。その結果は表1に示す。
また、実施例1、2ともに得られた撥水性布帛(加工製品)を用いてシャツを得て着用したところ耐久性よく撥水性に優れるもので、水も浸みず、通気度もあり着心地が優れたものであった。さらにPFOA前駆体の検出もなく、環境と健康に優れたものであった。
[Example 2, Comparative Example 1-5]
It carried out according to Example 1 using the liquid mixture of each Example described in Table 1, and each comparative example. The results are shown in Table 1.
In addition, when a shirt was obtained and worn using the water-repellent fabric (processed product) obtained in both Examples 1 and 2, it was durable and excellent in water repellency. It was excellent. Furthermore, there was no detection of a PFOA precursor, and it was excellent in environment and health.

Figure 2014062348
Figure 2014062348

本発明によれば、加工時にロールにガムアップしにくく、かつ優れた洗濯耐久性を有する撥水布帛が提供され、その工業的価値は極めて大である。   ADVANTAGE OF THE INVENTION According to this invention, the water repellent fabric which is hard to gum up to a roll at the time of a process, and has the outstanding washing durability is provided, The industrial value is very large.

1−1、1−2:マングルロール
2:供試布(巾28cm×周80cm)
3:径25mmPVCパイプ
4:5Lポリパッド
5:撥水加工剤配合液
1-1, 1-2: Mangle Roll 2: Test cloth (width 28 cm x circumference 80 cm)
3: 25 mm diameter PVC pipe 4: 5 L polypad 5: Water repellent finish

Claims (7)

布帛に撥水加工剤が付着してなる撥水布帛であって、前記撥水加工剤が、炭素数8以上のパーフルオロアルカン酸および炭素数8以上のパーフルオロアルケン酸ならびにこれらの前駆体を含有しないフッ素系撥水剤(A)を含み、かつJIS L 1092(スプレー試験)による布帛の撥水度が、JIS L 0217 103に従う洗濯20回後(HL−20)で3級以上であることを特徴とする撥水布帛。   A water-repellent fabric in which a water-repellent agent is adhered to a fabric, the water-repellent agent comprising a perfluoroalkanoic acid having 8 or more carbon atoms, a perfluoroalkenoic acid having 8 or more carbon atoms, and a precursor thereof. It contains a fluorine-based water repellent (A) not contained, and the water repellency of the fabric according to JIS L 1092 (spray test) is grade 3 or higher after 20 washings (HL-20) according to JIS L 0217 103 A water-repellent fabric characterized by 前記フッ素系撥水剤(A)が、炭素数8未満のパーフルオロアルキル基または炭素数8未満のパーフルオロアルケニル基を有するフッ素元素含有エチレン性不飽和単量体を用いてなる重合体である、請求項1に記載の撥水布帛。   The fluorine-based water repellent (A) is a polymer using a fluorine element-containing ethylenically unsaturated monomer having a perfluoroalkyl group having less than 8 carbon atoms or a perfluoroalkenyl group having less than 8 carbon atoms. The water-repellent fabric according to claim 1. 前記撥水加工剤が、下記式(1)で表され、1013hPaの気圧における沸点が150〜250℃の範囲内にあるアルコール体化合物(B)を含む、請求項1または請求項2に記載の撥水布帛。
式(1)
X−R−Y
ただし、Xは、−H、−OH、−O(CHCZO)−H、−OC2m+1からなる群より選択されるいずれかである。また、Yは、−H、−OH、−O(CHCZO)−H、−OC2m+1からなる群より選択されるいずれかである。また、Rは−C2n−、および/または−C2n−2−、および/または−C2n−4−である。その際、ZはHまたはCHであり、n=2〜12、a=0〜3、m=1〜3である。
The said water-repellent processing agent is represented by following formula (1), The boiling point in the atmospheric pressure of 1013 hPa contains the alcohol body compound (B) in the range of 150-250 degreeC, The Claim 1 or Claim 2 containing Water repellent fabric.
Formula (1)
X-R-Y
However, X is either selected from the group consisting of —H, —OH, —O (CH 2 CZ 2 O) a —H, and —OC m Z 2m + 1 . Y is any selected from the group consisting of —H, —OH, —O (CH 2 CZ 2 O) a —H, and —OC m Z 2m + 1 . In addition, R is -C n Z 2n -, and / or -C n Z 2n-2 -, and / or -C n Z 2n-4 - a. In that case, Z is H or CH 3, n = 2~12, a = 0~3, an m = 1 to 3.
前記フッ素系撥水剤(A)と前記アルコール体化合物(B)との固形分質量比率が(前者:後者)1:0.1〜1:20の範囲内である、請求項3に記載の撥水布帛。   The solid content mass ratio of the fluorine-based water repellent (A) and the alcohol compound (B) is in the range of (the former: the latter) 1: 0.1 to 1:20. Water repellent fabric. JIS L 0217 103に従う洗濯20回後(HL−20)と洗濯0回(HL−0)とを対比して、JIS L 1092(静水圧法)による耐水度の低下率=[(HL−0耐水度)−(HL−20耐水度)]×100/(HL−0耐水度)が30%未満である、請求項1〜4のいずれかに記載の撥水布帛。   Compared with 20 times of washing (HL-20) and 0 times of washing (HL-0) according to JIS L 0217 103, the reduction rate of water resistance by JIS L 1092 (hydrostatic pressure method) = [(HL-0 water resistance The water-repellent fabric according to claim 1, wherein (degree) − (HL-20 water resistance)] × 100 / (HL-0 water resistance) is less than 30%. JIS L 0217 103に従う洗濯20回後(HL−20)と洗濯0回(HL−0)とを対比して、JIS L 1096 A法(フラジール形)による通気性の増加率=[(HL−20通気性)−(HL−0通気性)]×100/(HL−0通気性)が30%未満である、請求項1〜5のいずれかに記載の撥水布帛。   Compared with 20 times after washing (HL-20) and 0 times (HL-0) according to JIS L 0217 103, the rate of increase in air permeability by the JIS L 1096 A method (fragile type) = [(HL-20 The water repellent fabric according to claim 1, wherein (breathability) − (HL-0 breathability)] × 100 / (HL-0 breathability) is less than 30%. JIS L 0217 103に従う洗濯20回後(HL−20)と洗濯0回(HL−0)とを対比して、波長分散型蛍光X線分析装置によるフッ素元素特有の蛍光X線強度の低下率=[(HL−0前記蛍光X線強度)−(HL−20前記蛍光X線強度)]×100/(HL−0前記蛍光X線強度)が30%未満である、請求項1〜6のいずれかに記載の撥水布帛。   Compared with 20 washings (HL-20) and 0 washings (HL-0) according to JIS L 0217 103, the decrease rate of the fluorescent X-ray intensity peculiar to the fluorine element by the wavelength dispersive X-ray fluorescence analyzer = [(HL-0 the fluorescent X-ray intensity)-(HL-20 the fluorescent X-ray intensity)] × 100 / (HL-0 the fluorescent X-ray intensity) is less than 30%. The water repellent fabric according to any one of the above.
JP2012209561A 2012-09-24 2012-09-24 Water repellent fabric Pending JP2014062348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209561A JP2014062348A (en) 2012-09-24 2012-09-24 Water repellent fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209561A JP2014062348A (en) 2012-09-24 2012-09-24 Water repellent fabric

Publications (1)

Publication Number Publication Date
JP2014062348A true JP2014062348A (en) 2014-04-10

Family

ID=50617819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209561A Pending JP2014062348A (en) 2012-09-24 2012-09-24 Water repellent fabric

Country Status (1)

Country Link
JP (1) JP2014062348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196762A (en) * 2016-04-26 2017-11-02 東洋紡株式会社 Protective sheet, and protective material, protective garment, and protective article comprising the protective sheet
WO2019172021A1 (en) * 2018-03-08 2019-09-12 Agc株式会社 Method for producing water-and-oil repellent composition, and method for producing water-and-oil repellent article

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508024B2 (en) * 1986-10-17 1996-06-19 大日本インキ化学工業株式会社 Solvent-type water and oil repellent treatment agent and processing method
JPH09158045A (en) * 1995-11-29 1997-06-17 Asahi Glass Co Ltd Treatment of fiber with high friction durability
WO1997037076A1 (en) * 1996-03-29 1997-10-09 Daikin Industries, Ltd. Water- and oil-repellent composition
JP2002038375A (en) * 2000-05-16 2002-02-06 Toyobo Co Ltd Moisture-absorbing/releasing fabric and method for producing the same
WO2002064696A1 (en) * 2001-01-30 2002-08-22 Daikin Industries, Ltd. Water- and oil-repellent composition, process for producing the same and use thereof
WO2002072727A1 (en) * 2001-03-09 2002-09-19 Daikin Industries, Ltd. Water-and-oil repellant composition with improved suitability for cold cure
WO2004069935A1 (en) * 2003-02-10 2004-08-19 Daikin Industries, Ltd. Aqueous dispersion for finish
JP2004244517A (en) * 2003-02-14 2004-09-02 Jsr Corp Polyarylene copolymer, its preparation method and proton conducting membrane
JP2004324027A (en) * 2003-04-28 2004-11-18 Shikibo Ltd Method for producing high density fabric
JP2006152487A (en) * 2004-11-29 2006-06-15 Nicca Chemical Co Ltd Method for producing durable stainproof fiber product
JP2007247091A (en) * 2006-03-15 2007-09-27 Toray Ind Inc Fiber structure
JP2007270374A (en) * 2006-03-31 2007-10-18 Komatsu Seiren Co Ltd Water repellent and oil repellent cloth and method for producing the same
WO2009041648A1 (en) * 2007-09-28 2009-04-02 Asahi Glass Company, Limited A water-and-oil repellant composition and article
WO2009145234A1 (en) * 2008-05-28 2009-12-03 旭硝子株式会社 Stain-proofing agent composition, method for producing the same, and article treated with the same
JP2010100766A (en) * 2008-10-24 2010-05-06 Asahi Glass Co Ltd Water-repellent and oil-repellent composition and method for preparing the same
JP2010196213A (en) * 2009-02-26 2010-09-09 Toyobo Specialties Trading Co Ltd Woven fabric
JP2010229593A (en) * 2009-03-27 2010-10-14 Ohara Palladium Kagaku Kk Water-and oil-repellent processing agent for fiber and paper
WO2011078135A1 (en) * 2009-12-25 2011-06-30 旭硝子株式会社 Water-and-oil repellant composition, process for producing same, and method for treating article
JP2013151625A (en) * 2012-01-26 2013-08-08 Teijin Frontier Co Ltd Water repellent finishing agent and finishing method and finished product

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508024B2 (en) * 1986-10-17 1996-06-19 大日本インキ化学工業株式会社 Solvent-type water and oil repellent treatment agent and processing method
JPH09158045A (en) * 1995-11-29 1997-06-17 Asahi Glass Co Ltd Treatment of fiber with high friction durability
WO1997037076A1 (en) * 1996-03-29 1997-10-09 Daikin Industries, Ltd. Water- and oil-repellent composition
JP2002038375A (en) * 2000-05-16 2002-02-06 Toyobo Co Ltd Moisture-absorbing/releasing fabric and method for producing the same
WO2002064696A1 (en) * 2001-01-30 2002-08-22 Daikin Industries, Ltd. Water- and oil-repellent composition, process for producing the same and use thereof
WO2002072727A1 (en) * 2001-03-09 2002-09-19 Daikin Industries, Ltd. Water-and-oil repellant composition with improved suitability for cold cure
WO2004069935A1 (en) * 2003-02-10 2004-08-19 Daikin Industries, Ltd. Aqueous dispersion for finish
JP2004244517A (en) * 2003-02-14 2004-09-02 Jsr Corp Polyarylene copolymer, its preparation method and proton conducting membrane
JP2004324027A (en) * 2003-04-28 2004-11-18 Shikibo Ltd Method for producing high density fabric
JP2006152487A (en) * 2004-11-29 2006-06-15 Nicca Chemical Co Ltd Method for producing durable stainproof fiber product
JP2007247091A (en) * 2006-03-15 2007-09-27 Toray Ind Inc Fiber structure
JP2007270374A (en) * 2006-03-31 2007-10-18 Komatsu Seiren Co Ltd Water repellent and oil repellent cloth and method for producing the same
WO2009041648A1 (en) * 2007-09-28 2009-04-02 Asahi Glass Company, Limited A water-and-oil repellant composition and article
WO2009145234A1 (en) * 2008-05-28 2009-12-03 旭硝子株式会社 Stain-proofing agent composition, method for producing the same, and article treated with the same
JP2010100766A (en) * 2008-10-24 2010-05-06 Asahi Glass Co Ltd Water-repellent and oil-repellent composition and method for preparing the same
JP2010196213A (en) * 2009-02-26 2010-09-09 Toyobo Specialties Trading Co Ltd Woven fabric
JP2010229593A (en) * 2009-03-27 2010-10-14 Ohara Palladium Kagaku Kk Water-and oil-repellent processing agent for fiber and paper
WO2011078135A1 (en) * 2009-12-25 2011-06-30 旭硝子株式会社 Water-and-oil repellant composition, process for producing same, and method for treating article
JP2013151625A (en) * 2012-01-26 2013-08-08 Teijin Frontier Co Ltd Water repellent finishing agent and finishing method and finished product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196762A (en) * 2016-04-26 2017-11-02 東洋紡株式会社 Protective sheet, and protective material, protective garment, and protective article comprising the protective sheet
WO2019172021A1 (en) * 2018-03-08 2019-09-12 Agc株式会社 Method for producing water-and-oil repellent composition, and method for producing water-and-oil repellent article
CN111836870A (en) * 2018-03-08 2020-10-27 Agc株式会社 Method for producing water-and oil-repellent agent composition and method for producing water-and oil-repellent article
JPWO2019172021A1 (en) * 2018-03-08 2021-02-18 Agc株式会社 Method for manufacturing water- and oil-repellent composition and method for manufacturing water- and oil-repellent articles
CN111836870B (en) * 2018-03-08 2023-03-24 Agc株式会社 Method for producing water-and oil-repellent agent composition and method for producing water-and oil-repellent article

Similar Documents

Publication Publication Date Title
JP2007270374A (en) Water repellent and oil repellent cloth and method for producing the same
KR20080059111A (en) Fabric treated with durable stain repel and stain release finish and method of industrial laundering to maintain durability of finish
JP5926565B2 (en) Processing method
WO2013136544A1 (en) Method for imparting permanent long-lasting water repellency to textile structure
JP2012122144A (en) Water-repellent woven fabric and clothing
JP2010150693A (en) Fibrous structural material and method for producing the same
JP6263853B2 (en) Fiber structure
WO2017006849A1 (en) Stainproof fiber structure
JP2014062348A (en) Water repellent fabric
JP6224487B2 (en) Water-repellent fabric and method for producing the same
JP4667935B2 (en) Water repellent processing method for fiber structure and fiber structure water repellent processed by the method
CN101263259B (en) Method for coating surfaces and suitable particles therefor
JP2014152401A (en) Durable antistatic water-repellent polyester fiber cloth and method for producing the same
JP5865648B2 (en) Method for producing antifouling fabric
JP2007247096A (en) Fluorine-based water repellent and fiber structure
WO2020175376A1 (en) Method for manufacturing water-repellent fiber structure, fiber structure, and clothing material
JP7501694B2 (en) Stain-resistant textile structure
JP2014198913A (en) Water-repellent cloth and production method thereof
JP2015168896A (en) Color deepening agent and color deepened fabric
JP6214945B2 (en) Water repellent pollen prevention fabric
KR101926189B1 (en) Coating agent of the antistatic and antifouling fabric, carseat fabric and method of it
KR101830729B1 (en) The antistatic and antifouling fabric of carseat and method of it
JP2008214793A (en) Water-repellent lower garment and method for producing the same
JP2008255527A (en) Water/oil-repellent fiber structure and method for producing the same
JP2016069767A (en) Water and oil repellent fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170523